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1Llenguatges i Sistemes Informàtics, UPC, 08034 Barcelona
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Abstract

We provide the first analytical results for the connectivity of dynamic random
geometric graphs — a model of mobile wireless networks in which vertices move
in random directions, and an edge exists between two vertices if their Euclidean
distance is below a given value. We provide precise asymptotic results for the ex-
pected length of the connectivity and disconnectivity periods of the network. We
believe the formal tools developed in this work could be of use in more concrete
settings, in the same manner as the development of connectivity threshold for
static random geometric graphs has affected a lot of research done on ad hoc net-
works. In the process of proving results for the dynamic case we also obtain new
asymptotically precise bounds for the probability of the existence of a component
of fixed size `, ` ≥ 2, for the static case.

1 Introduction

Random Geometric Graphs (RGG) have been a very influential and well-studied model
of large networks, such as sensor networks, where the network agents are represented
by the vertices of the RGG, and the direct connectivity between agents is represented
by the edges. Informally, given a radius r, a random geometric graph results from
placing a set of n vertices uniformly and independently at random on the unit torus
[0, 1)2 and connecting two vertices if and only if their distance is at most r, where the
distance depends on the chosen metric.

In the late 90s, Penrose Gupta-Kumar and Apple and Russo gave accurate esti-
mations for the value of r at which with high probability, a RGG becomes connected

(see [9], for the historical references). This happens at rc =
√

ln n±O(1)
πn , for the Eu-

clidean distance in [0, 1)2. Thereafter, hundreds of researchers have used those basic
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results on connectivity to design algorithms for more efficient coverage and communi-
cation in ad hoc networks, and in particular for sensor networks . On the other hand,
much work has been done on the graph theoretical properties of static RGG, which
is comprehensively summarized in [9].

Recently, there has been an increasing interest for MANETs (mobile ad hoc net-
works). Several “practical” models of mobility have been proposed in the literature
— for a survey of these models we refer to [6]. In all these models, the connections in
the network are created and destroyed as the vertices move closer together or further
apart. In all previous work, the authors performed empirical studies on connectivity
issues and routing performance.

The particular mobility model we study in the present paper was introduced by
Guerin [4], and it is often called in the literature the Random Walk model. This model
can be seen as the foundation for most of the mobility models developed afterwards
(see [6]). In the Random Walk model [4], each vertex chooses uniformly at random
a direction (angle) in which to travel and also a velocity from a given distribution
of velocities. Then, each vertex moves at its selected velocity towards its selected
direction. After some randomly chosen period of time, each vertex halts, chooses
a new direction and velocity, and the process repeats. An experimental study
of the connectivity of the resulting ad hoc network for different values of n and r
for this particular model is presented in [10]. As it is stated in the same paper,
in many applications which are not life-critical, “temporary network disconnections
can be tolerated, especially if this goes along with a significant decrease of energy
consumption.” This means, that the communication distance r should be kept as
small as possible, but still large enough to guarantee a connected graph, so it is
desirable to set r to be around rc.

In the present paper, we perform the first analytical study of connectivity in
the Random Walk model, presented in [4]. The setting of the model that we study,
is the following: Given an initial RGG with n vertices and a radius r set to be at the
known connectivity threshold rc, each vertex chooses independently and uniformly at
random an angle α ∈ [0, 2π), and moves a distance s in that direction for a period
of m steps. Therefore the total distance before changing direction is d = sm. Then,
a new angle is selected independently for each vertex, and the process repeats. We
denote this graph model the Dynamic Random Geometric Graph.

Our main result (Theorem 1 in Section 2) provides precise asymptotic results
for the expected number of steps that the dynamic graph remains connected once it
becomes connected, and the expected number of steps the graph remains disconnected
once it becomes disconnected. We remark that we only consider the case r = rc here,
since we are mainly interested in situations in which the network is neither highly
connected nor highly disconnected most of the time. By such choice of r, connectivity
can be guaranteed with (arbitrarily large) constant probability and at the same time
the energy consumption is as small as possible. Our results are expressed in terms of
n, s and m. Surprisingly, the final expression on the length of connectivity periods
does not depend on the number m of the steps (and therefore on the distance d covered
by the vertices) between each change of angles, as long as the angles do eventually
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change, no matter how large the value of m is. It is worth to note here that the
evolution of connectivity of this model is not Markovian, in the sense that staying
connected for a large number of steps does have an impact on the probability of being
connected at the next step. However, one key (and rather counterintuitive) fact is
that, despite this absence of the Markovian property, the argument to prove our result
is mainly based on the analysis of the connectivity changes in two consecutive steps
(see Lemma 8).

Throughout the paper, we consider the usual Euclidean distance on the unit torus
[0, 1)2, but similar results can be obtained for any `p-normed distance, 1 ≤ p ≤ ∞.
Our results can also be extended to the k-cube [0, 1]k, for any fixed k. Moreover, our
argument can be easily adapted to cover the more general model in which each vertex
i covers a different distance di = mis in one direction before changing the angle.

To the best of our knowledge, the present work is the first one in which the dynamic
connectivity of RGG is studied theoretically. In [3] the loosely related problem of the
connectivity of the ad hoc graph produced by w vertices moving randomly along the
edges of a n×n grid is studied. The authors of [7] use a similar model to the one used
in the present paper to prove that if the vertices are initially distributed uniformly at
random, the distribution remains uniform at any time.

As a side product we also derive an interesting new result for the static case: At the
threshold of connectivity rc and for any fixed integer ` > 1, the probability of having
some component of size at least ` other than the giant component is asymptotically
Θ(1/ log`−1 n). Moreover, the most common of such components are cliques with
exact size `.

Notation and Organisation. Unless otherwise stated, all our stated results are
asymptotic as n → ∞. As usual, the abbreviation a.a.s. stands for asymptotically
almost surely, i.e. with probability 1 − o(1). In Section 2 we state our results and
give an outline of the proof. Section 3 contains technical definitions and statements
of auxiliar results needed in our argument. Due to lack of space, most of the actual
proofs are deferred to the long version.

2 Main Result and Idea of the Proof

2.1 The Model and our Result

The formal definition of a random geometric graph is the following (see [9]): Given a
set of n vertices and a positive real r = r(n), each vertex is placed at some random
position in the unit torus [0, 1)2 selected independently and uniformly at random
(u.a.r.). We denote by Xi = (xi, yi) the random position of vertex i for i ∈ {1, . . . , n},
and let X = X (n) =

⋃n
i=1 Xi. Note that with probability 1 no two vertices choose

the same position and thus we restrict the attention to the case that |X | = n. We
define G(X ; r) as the random graph having X as the vertex set, and with an edge
connecting each pair of vertices Xi and Xj in X at distance d(Xi, Xj) ≤ r, where d(·, ·)
denotes the Euclidean distance in the torus. We refer to G(X ; r) as the static model.
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Let us denote by C and D the events that G(X ; r) is connected and disconnected,
respectively. We also define the parameter µ = ne−πr2n. In our analysis we restrict

to the case µ = Θ(1), which is equivalent to r = rc =
√

log n±O(1)
πn .

Formal definition of the dynamic model. Given s = s(n), s ∈ R+ and m =
m(n), m ∈ Z+, consider the random process (Xt)t∈Z = (Xt(n, s, m))t∈Z: At step
t = 0, n vertices are scattered independently and u.a.r. over [0, 1)2, as in the static
model. Moreover, for each vertex i and for each interval of steps [t, t + m] with t ∈ Z
divisible by m, an angle α ∈ [0, 2π) is chosen independently and u.a.r., and this angle
determines the direction of i between steps t and t + m. At every step, each one
of the vertices jumps a distance s in the corresponding direction. Since the dynamic
process is time-reversible, it also makes sense to consider negative steps. The dynamic
random geometric graph is then defined as a sequence

(
G(Xt; r)

)
t∈Z, where for each

particular value of t, G(Xt; r) is the random geometric graph with vertex set Xt.
In order to get a better picture of the model, it is natural to consider the underlying

continuous-time model, in which the vertices move continuously at constant speed
around the torus rather than performing jumps at discrete steps. In this model,
which we denote by

(
G(Xt; r)

)
t∈R, the vertices travel a distance d = sm between each

change of direction. Observe that our model
(
G(Xt; r)

)
t∈Z can be regarded a discrete

approximation to
(
G(Xt; r)

)
t∈R, in which we take m snapshots of the process between

each change of direction. Hence, for any given d = d(n), we can infer the approximate
behaviour of

(
G(Xt; r)

)
t∈R from the study of

(
G(Xt; r)

)
t∈Z, by choosing a large m

and thus a small s.
To state our main theorem precisely, we need a few definitions. We denote by Ct

(Dt) the event that C (D) holds at step t. In
(
G(Xt; r)

)
t∈Z, define Lt(C) to be the

number of consecutive steps that C holds starting at step t (possibly ∞ and also 0 if Ct

does not hold). The distribution of Lt(C) does not depend on t (see Lemma 3), and we
often omit the t when it is understood. Lt(D) is defined analogously by interchanging
C and D.

We are interested in the length of the periods in which
(
G(Xt; r)

)
t∈Z stays con-

nected (disconnected). More precisely, we consider the expected number of steps that(
G(Xt; r)

)
t∈Z stays connected (disconnected) starting at step t conditional upon the

fact that it becomes connected (disconnected):

PC = E (Lt(C) | Dt−1 ∧ Ct), PD = E (Lt(D) | Ct−1 ∧ Dt).

Our main theorem then reads as follows:

Theorem 1. Let r = rc. The expected length of the connectivity (disconnectivity)
periods in

(
G(Xt; r)

)
t∈Z is

PC ∼


π

4µsrn if srn = o(1),
1

1−e−µ(1−e−4srn/π)
if srn = Θ(1),

1
1−e−µ if srn = ω(1),

PD ∼


π(eµ−1)
4µsrn if srn = o(1),

eµ−1

1−e−µ(1−e−4srn/π)
if srn = Θ(1),

eµ if srn = ω(1),
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Notice that surprisingly these results are independent of the number of steps m
(and thus of the travelled distance d) between the changes of direction of the vertices.
In fact, the proof of Theorem 1 only requires that the vertices change their direction
eventually.

Intuitively speaking, the consequences of the result are the following: First observe
that, for s = o(1/(rn)), the expected number of steps in a period of connectivity
(disconnectivity) has a factor inversely proportional to s. This means that for any
s = o(1/(rn)) the expected total distance PC · s covered by each vertex during a
connectivity period (disconnectivity period, respectively) is

PC ·s ∼
π

4µrn
∼ π

√
π

4µ
√

n lnn

(
respectively, PD · s ∼

π(eµ − 1)
4µrn

∼ π
√

π(eµ − 1)
4µ
√

n lnn

)
.

Moreover, we can choose s small enough, such that we do not expect
(
G(Xt; r)

)
t∈R to

become temporarily disconnected between two consecutive steps of
(
G(Xt; r)

)
t∈Z in

which the graph is connected, and we can approximate the continuous model by the
discrete model.

2.2 Outline of the Proof

The main ingredient of the proof is the fact that PC and PD can be expressed in
terms of the probabilities of events involving only two consecutive steps. We stress
this fact because the sequence of connected/disconnected states of

(
G(Xt; r)

)
t∈Z is

not Markovian, since staying connected for a long period of time makes it more likely
to remain connected for one more step. More precisely, in Lemma 8 we show that it
suffices to compute the probabilities of the events:

(Ct ∧ Dt+1), (Dt ∧ Ct+1), C and D. (1)

However, the lemma requires that the expectations E (L(C)) and E (L(C)) are finite,
which is proven in Lemma 10. From Equation (2) in Section 3 and Corollary 7 we ob-
tain the probabilities of the events in (1). It turns out that the existence/non-existence
of isolated vertices is asymptotically equivalent to the disconnectivity/connectivity of
the graph, both in the static case G(X ; r) and for two consecutive steps of

(
G(Xt; r)

)
t∈Z.

Proposition 5 characterizes the changes of the number of isolated vertices between two
consecutive steps. The proof is based on the computation of the joint factorial mo-
ments of the variables accounting for these changes. At first sight, it is not obvious
that the probability of existence of components of larger sizes is negligible compared
to the probability of sudden apperance of isolated vertices, but this is indeed shown in
Lemma 6. The proof is quite lengthy, since the arguments for components of different
sizes and/or different diameters are very different.

As a side product of the techniques applied to the dynamic case we also obtain
a new result for the static case: For a fixed integer ` ≥ 1, let K` be the number of
components in G(X ; r) of size exactly `. For any fixed ε > 0, let K ′

ε,` be the number of
components of size exactly ` which have all their vertices at distance at most εr from
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their leftmost one. Let K̃` denote the number of components of size ≥ ` and which
are not solitary. We will define solitary components in Section 3, but intuitively a
solitary component can be thought of as a unique and very large component (usually
of size Θ(n)). Notice that K ′

ε,` ≤ K` ≤ K̃`. We can prove the following theorem:

Theorem 2. Let ` ≥ 2 be a fixed integer. Let 0 < ε < 1/2 be fixed. Assume that
µ = Θ(1). Then

Pr
[
K̃` > 0

]
∼ Pr [K` > 0] ∼ Pr

[
K ′

ε,` > 0
]

= Θ
(

1
log`−1 n

)
.

The theorem states that asymptotically all the weight in the probability that
K̃` > 0 comes from components which also contribute to K ′

ε,` for ε arbitrarily small.
This implies that at rc, the more common components of size ≥ ` are cliques of size
exactly `, with all their vertices close together.

3 Sketch of Technical Details

In order to prove our main theorem, we need some background about the static case
which can be regarded as a snapshot of the dynamic case. Recall that K1 is the
random variable counting the number of isolated vertices in G(X ; r). It is well known
(see [9]) that for r = rc a.a.s. there is only one giant component and a Poisson number
of isolated vertices with parameter µ = ne−πr2n = Θ(1). Hence,

Pr [C] ∼ Pr [K1 = 0] ∼ e−µ and Pr [D] ∼ Pr [K1 > 0] ∼ 1− e−µ. (2)

Therefore, the probability that G(X ; r) has some component of size greater than 1
other than the giant component is o(1).

For the analysis of the dynamic model we need additional definitions. We denote
by Xi,t = (xi,t, yi,t) the position of i at time t. Let Xt =

⋃n
i=1 Xi,t be the set of

positions of the vertices at time t. The following lemma (see [7]) indicates that the
dynamic model at any fixed time t can be seen as a copy of the static model.

Lemma 3. At any fixed step t ∈ Z, the vertices are distributed over the torus [0, 1)2

independently and u.a.r. Consequently for any t ∈ Z, G(Xt; r) has the same distribu-
tion as G(X ; r).

Let us consider two arbitrary consecutive steps t and t + 1 of (Xt)t∈Z, t an ar-
bitrary fixed integer (omitted from notation whenever it is understood). For each
i ∈ {1, . . . , n}, the random positions Xi,t and Xi,t+1 of vertex i at t and t + 1 are
denoted by Xi = (xi, yi) and X ′

i = (x′i, y
′
i). Let also X = Xt and X ′ = Xt+1. Note

that Xi and X ′
i are not independent. In fact if 2πzi (zi ∈ [0, 1)) is the angle in which

i moves between t and t+1, then x′i = xi +s cos(2πzi) and y′i = yi +s sin(2πzi). That
motivates a description of the model at t and t + 1 in terms of a three dimensional
placement of the vertices, in which the third dimension is interpreted as a normalized
angle. For each i ∈ {1, . . . , n}, define the random point X̂i = (xi, yi, zi) ∈ [0, 1)3, and
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let X̂ =
⋃n

i=1 X̂i. By Lemma 3 all random points X̂i are chosen independently and
u.a.r. from the 3-torus [0, 1)3. Moreover, X̂ encodes all the information of the model
at t and t + 1. In fact, if we map [0, 1)3 onto [0, 1)2 by π1 : (x, y, z) → (x, y) and
π2 : (x, y, z) → (x+s cos(2πz), y+s sin(2πz)), we can recover the positions of i at t and
t+1 from X̂i and write Xi = π1(X̂i) and X ′

i = π2(X̂i). By Lemma 3, for any measur-
able sets A ⊆ [0, 1)2 and B ⊆ [0, 1)3, Pr [Xi ∈ A] = Area(A), Pr [X ′

i ∈ B] = Area(A),
and Pr

[
X̂i ∈ B

]
= Vol(B).

For each i ∈ {1, . . . , n}, considerRi = {X ∈ [0, 1)2 : d(X, Xi) ≤ r} andR′
i = {X ∈

[0, 1)2 : d(X, X ′
i) ≤ r}. Let R̂i = π−1

1 (Ri) and R̂′
i = π−1

2 (R′
i) be their counterparts in

[0, 1)3. Observe that Xi is isolated in G(X ; r) iff (X̂ \{X̂i})∩R̂i = ∅, and analogously
X ′

i is isolated in G(X ′; r) iff (X̂ \ {X̂i}) ∩ R̂′
i = ∅.

For each i ∈ {1, . . . , n}, we define Q̂i = R̂′
i \ R̂i and Q̂′

i = R̂i \ R̂′
i. Given any two

vertices i and j, observe that X̂i ∈ Q̂′
j iff X̂j ∈ Q̂′

i iff d(Xi, Xj) ≤ r and d(X ′
i, X

′
j) > r

(i.e. the vertices are joined by an edge at time t but not at time t + 1). This holds
with probability Vol(Q̂i) = Vol(Q̂′

i), which neither depends on the particular vertices
nor on t and will be denoted by q hereinafter. The value of this parameter depends
on the asymptotic relation between r and s and is given in the following lemma:

Lemma 4. The probability that two different vertices i, j ∈ {1, . . . , n} are at distance
≤ r at t but > r at t + 1 is q ≤ πr2, which also satisfies: q ∼ 4

πsr if s = o(r), Θ(r2)
if s = Θ(r), and πr2 if s = ω(r).

Next, we study the changes of the isolated vertices between two consecutive steps t
and t+1. Extending the notation in Section 2, let K1,t the number of isolated vertices
of G(Xt; r). For any two consecutive steps t and t + 1, define the following random
variables: Bt is the number of vertices i such that Xi is not isolated in G(Xt; r) but
X ′

i is isolated in G(Xt+1; r); Dt is the number of vertices i such that Xi is isolated in
G(Xt; r) but X ′

i is not isolated in G(Xt+1; r); St is the number of vertices i such that
Xi and X ′

i are both isolated in G(Xt; r) and G(Xt+1; r). Denote them by B, D and S
whenever t and t+1 are understood. Note that B and D have the same distribution.

Recall that given a collection of events E1(n), . . . , Ek(n) and of random variables
W1(n), . . . ,Wl(n) taking values in N, with k and l fixed, they are mutually asymp-
totically independent if for any k′, l′, i1, . . . , ik′ , j1, . . . , jl′ , w1, . . . , wl′ ∈ N such that
k′ ≤ k, l′ ≤ l, 1 ≤ i1 < · · · < ik′ ≤ k, 1 ≤ j1 < · · · < jl′ ≤ l we have

Pr

[
k′∧

a=1

Eia ∧
l′∧

b=1

(Wjb
= wb)

]
∼

k′∏
a=1

Pr [Eia ]
l′∏

b=1

Pr [Wjb
= wb]. (3)

By computing the joint factorial moments E ([B]`1 [D]`2 [S]`3), we can show the fol-
lowing proposition:

Proposition 5. Assume µ = Θ(1). Then for any two consecutive steps,

E (B) = E (D) ∼ µ(1− e−qn) and E (S) ∼ µe−qn.

Moreover we have that
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1. If s = o(1/rn), then Pr [B > 0] ∼ E (B); Pr [D > 0] ∼ E (D); S is asymp-
totically Poisson; and (B > 0), (D > 0) and S are asymptotically mutually
independent.

2. If s = Θ(1/rn), then B, D and S are asymptotically mutually independent
Poisson.

3. If s = ω(1/rn), then B and D are asymptotically Poisson; Pr [S > 0] ∼ E (S);
and B, D and (S > 0) are asymptotically mutually independent.

Taking into account that K1,t = Dt + St and K1,t+1 = St + Bt, the number of
isolated vertices at two consecutive steps can in the case s = Θ

(
1/(rn)

)
be completely

characterized by Proposition 5. For the other ranges of s, the result is weaker but still
sufficient for our further purposes. We remark that if s = o

(
1/(rn)

)
then creations

and destructions of isolated vertices are rare, but a Poisson number of isolated vertices
is present at both consecutive steps. If s = ω

(
1/(rn)

)
then the isolated vertices which

are present at both consecutive steps are rare since, but a Poisson number of them is
created and also a Poisson number destroyed.

Given a component Γ of G(X ; r), Γ is embeddable if it can be mapped into the
square [r, 1− r]2 by a translation in the torus. Embeddable components do not wrap
around the torus. Components which are not embeddable must have a size of at least
Ω(1/r).

Sometimes several non-embeddable components can coexist together. However,
there are some non-embeddable components which are so spread around the torus that
do not allow any room for other non-embeddable ones. Call these components solitary.
By definition we can have at most one solitary component. We cannot disprove the
existence of a solitary component, since with probability 1− o(1) there exists a giant
component of this nature. For not solitary components, we give asymptotic bounds
on the probability of their existence according to their size.

In order to characterize the connectivity of
(
G(Xt; r)

)
t∈Z, we need to bound the

probability that components other than isolated vertices and the giant one appear at
some step. We know by the comments in Section 2 that a.a.s. this does not occur at
one single step. However during long periods of time this event could affect the con-
nectivity and must be considered. Extending the notation in Section 2, given a step
t, let K̃2,t be the number of non-solitary components other than isolated vertices oc-
curring at step t. In the next lemma, we show that such components have a negligible
effect compared to isolated vertices in the dynamic evolution of connectivity.

Lemma 6. Assume that µ = Θ(1) and s = o
(
1/(rn)

)
. Then,

Pr
[
K̃2,t > 0 ∧ K̃2,t+1 = 0

]
= Pr

[
K̃2,t > 0 ∧Bt > 0

]
= o(srn).

From Proposition 5 and Lemma 6 the following corollary is straightforward to
prove.

Corollary 7. Assume that µ = Θ(1). Then,

Pr [Ct ∧ Dt+1] ∼ e−µ(1− e−E(B)), Pr [Dt ∧ Ct+1] ∼ e−µ(1− e−E(B))
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Pr [Ct ∧ Ct+1] ∼ e−µe−E(B), Pr [Dt ∧ Dt+1] ∼ 1− 2e−µ + e−µe−E(B).

For the next lemma, recall the definition of Lt(C) and Lt(D) from Section 2.

Lemma 8. If E (L(C)) < +∞ (but possibly E (L(C)) → +∞ as n → +∞), then
conditional upon Ct but not Ct−1 we have

E (Lt(C) | Dt−1 ∧ Ct) =
Pr [C]

Pr [Dt−1 ∧ Ct]
,

which does not depend on t. The same statement holds if we interchange C and D.

Proof. We have that Lt−1(C) + 1[Dt−1]Lt(C) = 1[Ct−1] + Lt(C), and by taking expec-
tations and using the hypothesis that E (L(C)) < +∞ we get

E (1[Dt−1]Lt(C)) = Pr [C], ∀t.

The statement follows from the fact that

E (Lt(C) | Dt−1 ∧ Ct) =
E (1[Dt−1 ∧ Ct]Lt(C))

Pr [Dt−1 ∧ Ct]
=

E (1[Dt−1]Lt(C))
Pr [Dt−1 ∧ Ct]

.

To prove that E (L(C)) < +∞ and E (L(D)) < +∞ we use the following technical
lemma.

Lemma 9. Let b = b(n) be the smallest natural number such that (b−3)ms ≥ 3
√

2/2.
Then, there exists p = p(n) > 0 such that for any fixed circle R ⊂ [0, 1)2 of radius
r/2, any i ∈ {1, . . . , n}, any t ∈ Z, and conditional upon any particular position of
Xi,t in the torus, the probability that Xi,t+bm ∈ R is at least p.

The next lemma allows us to apply Lemma 8

Lemma 10. E (L(C)) < +∞ and E (L(D)) < +∞.

Theorem 1 follows from Lemma 10, Lemma 8 and Corollary 7.

4 Conclusion.

In this extended abstract, we have formally introduced the dynamic random geometric
graph in order to study analytically the Random Walk model for MANETs, defined
in [4]. We studied the expected length of the connectivity and disconnectivity periods,
taking into account different step sizes s and different lengths m during which the
angle remains invariant, always considering the static connectivity threshold r = rc.
We believe that a similar analysis can be performed for other values of r > rc as well.
Also, it would be interesting to extend our results when the connectivity radii rv are
different for different vertices.
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The Random Walk model simulates the behavior of a swarm of mobile vertices as
sensors or robots, which move randomly to monitor an unknown territory or to search
in it. There exist other models such as the Random Way-point model, where each
vertex chooses randomly a fixed way-point (from a set of pre-determined way-points)
and moves there, and when it arrives it chooses another and moves there (see [2]).
A possible line of future research is to do a study similar to the one developed in
this paper for this way-point model. We believe that the techniques developed in this
paper will prove very useful to carry out that study.

Acknowledgment. We thank Christos Papadimitriou for careful reading and many
suggestions which improved the paper.
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