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Abstract. This paper presents new theorems to analyze divide-and-conquer recurrences, which
improve other similar ones in several aspects. In particular, these theorems provide more informa-
tion, free us almost completely from technicalities like floors and ceilings, and cover a wider set of
toll functions and weight distributions, stochastic recurrences included.
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1. Introduction

This work presents new theorems to solve many divide-and-conquer recurrences
that arise in practice. Recall that a recurrence is a definition of a function Fn in
terms of the values of F at indices smaller than n; a recurrence is divide-and-
conquer—DAC, for short—if the average size of these indices is a fraction of n.
Our reference source here is the Master Theorem—MT, for short—as it can be
found in Sedgewick and Flajolet [1996]. Other references in this subject include
the (classic) Master Theorem [Aho et al. 1974; Bentley et al. 1980; Cormen et al.
1990], several improvements [Kao 1997; Verma 1994; 1997; Wang and Fu 1996]
as well as other related results [Karp 1994].

Assume that we have the recurrence Fn 5 tn 1 W z FSn
, with tn . 0 and Sn 5

Z z n 1 2(1) for some 0 , Z , 1. If Fn describes the cost to solve with a
certain algorithm a problem of size n, then tn— customarily called toll func-
tion—is the cost of the divide and combine steps, W is the fixed number of
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recursive calls at each step, and Sn is the size of the subproblems to be
recursively solved. Let a 5 2logZ W. Then, the MT states that the solution to
the recurrence is

Fn 5 5 Q~na! , if tn 5 2~na! and a , a;
Q~tn log n!, if tn 5 Q~na logc n! and c $ 0;1

Q~tn!, if tn 5 V~na! and a . a.

(To be completely rigorous, the last case above requires additional conditions of
smoothness for the toll function tn.)

Usually, a MT does not provide an explicit solution but partial information
about the function under study, like bounds on its growing order. Nevertheless, a
MT has two interesting properties: First, it typically provides results which rely
exclusively upon the asymptotic behaviour of the toll function and of the
distribution of weights; for instance, in the MT above we only use the main term
of tn and the value a, which depends on W and Z. In particular, this means that
the values of Fn at small indices are irrelevant to most MTs. Second, a MT is
easy and fast to use. As an example, we can solve the DAC recurrence

Mn 5 n 2 1 1 M n/ 2 1 M n/ 2 (1)

for n $ 2, with M0 5 M1 5 0, which defines the number of comparisons to sort
an array of n keys with mergesort in the worst case [Flajolet and Golin 1994].
The term 2(1) in the definition of Sn covers expressions with floors and ceilings
in the argument of the recursive call. Hence, a direct application of the rules
above yields Mn 5 Q(n log n).

In this paper, we will make the MT more flexible and more informative. For
instance, consider the recurrence

Bn 5 1 1
~n 2 1!/ 2

n
z B (n21)/ 2 1

~n 2 1!/ 2

n
z B (n21)/ 2 (2)

for n $ 2, with B0 5 0 and B1 5 1, which defines the expected number of steps
of a binary search for a random key in an array of size n. This recurrence does
not follow the MT pattern utterly, since we have 1 2 1/n expected recursive calls
at each step. Therefore, to use the MT we must assume that the solution to the
recurrence Fn 5 1 1 Fn/ 2 must be close to Bn—which is true—, and conclude
Bn 5 Q(log n). We need a posterior reasoning to rigorously prove that this
approximation does not lead to a wrong answer.

By contrast, the MT presented in Section 2 directly deals with recurrences
where the number of recursive calls is not constant but tends to a constant. As a
consequence, we will get rid of the annoying technicalities related to factors with
floors and ceilings. And we will see that in some cases it is possible to get the
multiplying factor of the dominating term of the function under study. This
improvements will yield the result Bn 5 log2 n 1 o(log n) for the example
above.

1 Through all this work, logc n means (log n)c.
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Yet we will extend the MT further, to deal with recurrences where the
asymptotic sizes of the subproblems to be recursively solved consist in several
fixed fractions of the original problem,2 like

Fn 5 tn 1 S 2 2
1

În
DF (n11)/3 1 4F (n/ 2)2 7În 1 S 1

2
1

1

nDF (4n/5)1ln2 n (3)

for n large enough. (Since all the theorems in this work rely only upon the
asymptotic properties of the toll function and the distribution of weights, we can
avoid explicitly stating the initial values of the recurrence.)

It is frequent that the analysis of the cost of a given algorithm or data structure
results in a stochastic recurrence, which does not follow any of the patterns
mentioned above. As an example of stochastic recurrence, consider

Qn 5 n 1 1 1
2

n
O

0#k,n

Qk (4)

for n $ 1, with Q0 5 0. This recurrence defines the expected number of
comparisons to sort an n-key random array with quicksort. Clearly, the MTs we
know so far cannot solve it, since the size of the subarrays to be recursively
sorted is not fixed; it can be either an insignificant part of the whole input or
almost it all. In this case, though, other techniques lead us to a closed solution
[Hoare 1962].

Much more difficulties presents the analysis of the stochastic recurrence

Qn 5 1 1
4

n~n 1 1!
O

0#k,n

~n 2 k!Qk (5)

for n $ 1, with Q0 5 0, where Qn denotes the expected number of comparisons
during a half-defined search in a random quad-tree of size n. An accurate
asymptotic expression for Qn can be obtained after a thorough analysis by means
of generating functions [Flajolet et al. 1993], but this technique requires a deep
knowledge and expertise.

Section 3 presents a new MT for stochastic recurrences, which shares the good
properties of the MT in Section 2: it is simple and fast to use, and only the main
term of tn and information on the asymptotic distribution of weights will be
relevant. In addition, we will see how a simple iteration of the former MT
sometimes yields several of the main terms of the function under study with their
corresponding multiplicative factors.

The rest of the paper is organized as follows: Sections 4 and 5 present
general-purpose theorems that solve many DAC recurrences that do not have to
follow any particular pattern. Those theorems will allow us to prove in Sections 6
and 7 the MTs given in Sections 2 and 3, but also have other applications. For

2 To the best of the author’s knowledge, Kao [1997] was the first to develop a basic MT for this kind
of recurrences in 1986 (personal communications). Some additional results about these recurrences
may be found in Verma [1997].
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instance, they are useful for the analysis and asymptotic improvement of
quicksort and quickselect [Martı́nez and Roura 1998].

In Section 8, we will see that it is possible to directly compute the main term of
the variance of the cost of some algorithms, if the nonrecursive cost is large
enough and the algorithm follows one of two typical patterns (quickselect and
quicksort are prototypical examples of those patterns).

Finally, Section 9 presents some open problems.
Preliminary versions of this work appeared in Roura [1997a; 1997b].

2. The Discrete Master Theorem

In this section, we cast in the form of a Master Theorem some of the results that
will be proved in latter sections. This MT deals with recurrences like (1), (2), and
(3), where the problem is broken into pieces such that the asymptotic size of each
one is a fixed fraction of the size of the whole problem. We call them discrete
recursive definitions.

Definition 2.1. We say that

Fn 5 H bn , if 0 # n , N
tn 1 O1#d#DRd,nFSd,n

, if n $ N

is a discrete recursive definition of Fn iff D $ 1; Rd, n 5 wd 1 rd, n $ 0, where
wd . 0 and (1#d#D urd, nu 5 2(n2r) for some r . 0; and Sd, n 5 zd z n 1 sd, n,
where 0 , zd , 1 and (1#d#D usd, nu/n 5 2(n2s) for some s . 0.

Here, D is the finite number of subproblems to be recursively solved; Rd, n is
the number of recursive calls to deal with the dth subproblem, where wd is the
asymptotic number of calls to it; and Sd, n is the (integer) size of the dth
subproblem, where zd is the asymptotic fraction of the original problem to be
solved by the dth recursive call.

For example, (1) is a discrete recursive definition. There we have two
subproblems to recursively deal with: D 5 2; whose size is asymptotically 1/2 of
the size of the original problem: z1 5 z2 5 1/ 2, 21 # s1, n # 0, 0 # s2, n # 1;
and there is exactly one call to each one: w1 5 w2 5 1, r1, n 5 r2, n 5 0. For the
bounds of sn, k, we have used the fact that r 2 1 # r # r and r # r # r 1
1 for every real r. Notice that r 5 s 5 1 is a possible choice in this example.

The Discrete MT (Theorem 2.3) covers the presence of sublogarithmical
factors in the toll function, that is, factors whose growing order is smaller than
log« n for any « . 0. This allows us to deal with toll functions like tn 5 n2 ln3 n z
ln ln n, for instance. We define precisely this concept.

Definition 2.2. Let mn be a strictly positive nondecreasing function for large
n. Moreover, assume that for every « . 0 the function log« n/mn is increasing as
long as n is large enough. Then we say that mn is a sublogarithmical function.

Now we are ready to state the Discrete MT (examples of its use can be found
in Appendix A).

THEOREM 2.3 (DISCRETE MASTER THEOREM). Let Fn be a function defined by
a discrete recursive definition, and let B na lnc n z jn be the main term of tn, where
B . 0, a and c are arbitrary constants, and jn 5 mn or jn 5 1/mn for some
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sublogarithmical function mn. Let F(x) 5 (1#d#D wd z (zd)x, and * 5 1 2 F(a).
Then,

(1) if * . 0, then Fn ; tn/*;
(2) if * 5 0, then

(2.1) if c . 21, then Fn ; tn ln n/*9, where *9 5 2(c 1 1)(1#d#D wd z
( zd)a ln zd;

(2.2) if c 5 21, then Fn 5 2(na log« n) for any « . 0, and Fn 5 V(na) if
Fn $ 0 for every n $ 0;

(2.29) if c 5 21 and mn 5 1, then Fn ; tn ln n z ln ln n/*0, where *0 5
2(1#d#D wd z ( zd)a ln zd;

(2.3) if c , 21, then Fn 5 2(na) (Fn 5 Q(na), if Fn $ 0 for every n $
0);

(3) if * , 0, then Fn 5 2(na) (Fn 5 Q(na), if Fn $ 0 for every n $ 0), where
a is the unique solution of F(a) 5 1.

PROOF. Section 6 is devoted to prove this theorem. e

The Discrete MT could be trivially adapted to deal with negative toll functions
by changing the conditions “B . 0” and “Fn $ 0 for every n $ 0” to “B , 0”
and “Fn # 0 for every n $ 0”, respectively.

Also, though we will not prove it in this work, we could relax Definition 2.1 to
permit the value zd 5 1 for some indices, as long as (a) there is, at least, one
index d such that 0 , zd , 1; and (b) the total sum of weights wd of the indices
d with zd 5 1 is strictly smaller than 1. Notice that neither

An 5 tn 1 An23 (6)

nor

Bn 5 tn 1 2B n/ 2 1 2Bn21 (7)

is, even under the relaxation above, a discrete recursive definition. The first
recurrence does not satisfy any of the two conditions, while the second recur-
rence fails to fulfill the condition (b). They are out of the scope of this paper. By
contrast, the recurrence

Fn 5 tn 1 F n/ 2 1
1

2
z Fn22

is a discrete recursive definition, and so we could analyze it exactly as stated by
the Discrete MT.

The case zd 5 0 for some indices 1 # d # D is especially awkward. We avoid
dealing with it.

3. The Continuous Master Theorem

This section covers the analysis of recurrences like (4) and (5), which we will call
continuous. But first we need to define the concept of shape function (the reason
for this name will be clear after Definition 3.2).
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Definition 3.1. Let v( z) $ 0 be a function over [0, 1] such that *0
1 v( z) dz

exists and is at least 1. Furthermore, assume that there is some m , 0 such that
*0

1 v( z) zm dz also converges.3 Then we say that v( z) is a shape function.

Definition 3.2. We say that

Fn 5 H bn , if 0 # n , N
tn 1 O0#k,n vn,kFk , if n $ N

is a continuous recursive definition of Fn iff there exist some shape function v( z),
some constant 0 , q # 1 and some function Mn 5 Q(nq) with integer values
such that, if we define zn, j 5 j/Mn for every 0 # j # Mn, In, j 5 [ zn, j z n,
zn, j11 z n) for every 0 # j , Mn, and

«n , j 5 U O
k[In, j

vn , k 2 E
zn, j

zn, j11

v~ z! dzU (8)

for every 0 # j , Mn, then (0#j,Mn
«n, j 5 2(n2r) for some r . 0.

Usually, Mn 5 n is a possible choice, and in this case (8) reduces to

«n , k 5 U vn , k 2 E
k/n

(k11)/n

v~ z! dzU .

Loosely speaking, we can use the integral in the expression above to find a good
approximation to vn, k. Notice that there can only be one shape function v( z)
related to a given continuous recursive definition, except for bizarre shape
functions obtained from v( z) by changing its value at a finite number of points,
or by similar minor perturbations.

For instance, consider the recurrence

Sn 5 n 1 1 1
2

n2 O
0#k,n

kSk (9)

for the expected number of comparisons to select the ith out of n keys using
quickselect—also known as FIND [Hoare 1961]—when i is chosen at random. Its
shape function is v( z) 5 2z (see Figure 1), since

E
k/n

(k11)/n

v~ z! dz 5 E
k/n

(k11)/n

2z dz 5 z2U
k/n

(k11)/n

5
2k

n2
1

1

n2
5 vn , k 1

1

n2
,

and hence «n, k 5 1/n2 and (0#k,n «n, k 5 1/n 5 2(n2r) with r 5 1.
Therefore, v( z) is nothing except the asymptotic shape of the distribution of

weights, which now is very similar to a continuous probability distribution, where
the area beneath the function is the asymptotic number of recursive calls. Since,
by definition, *0

1 v( z) dz $ 1, we are assuming that there is at least one

3 The author’s conjecture is that this technical property is always true if *0
1 v( z) dz exists and is at

least 1. Section 7 provides more details.

175Improved Master Theorems for Divide-and-Conquer Recurrences



recursive call for large n. This condition (very likely to hold in practice)
simplifies the study of these recurrences.

On the other hand, we have allowed Mn to be Q(nq) for some q # 1, as long
as q . 0. So it is not necessary that v( z) fits the n weights individually, but a
polynomial number of groups of weights. This relaxation could be useful when
dealing with particularly difficult recurrences.

THEOREM 3.3 (CONTINUOUS MASTER THEOREM). Let Fn be a function defined
by a continuous recursive definition, and let B na lnc n z jn be the main term of tn,
where B . 0, a and c are arbitrary constants, and jn 5 mn or jn 5 1/mn for some
sublogarithmical function mn. Let w(x) 5 *0

1 v(z)zx dz, and * 5 1 2 w(a). Then,

(1) if * . 0, then Fn ; tn/*;
(2) if * 5 0, then

(2.1) if c . 21, then Fn ; tn ln n/*9, where *9 5 2(c 1 1) *0
1 v( z) za

ln z dz;
(2.2) if c 5 21, then Fn 5 2(na log« n) for any « . 0, and Fn 5 V(na) if

Fn $ 0 for every n $ 0;
(2.29) if c 5 21 and mn 5 1, then Fn ; tn ln n z ln ln n/*0, where *0 5

2*0
1 v( z) za ln z dz;

(2.3) if c , 21, then Fn 5 2(na) (Fn 5 Q(na), if Fn $ 0 for every n $
0);

(3) if * , 0 (including the case * 5 2`) then Fn 5 2(na) (Fn 5 Q(na), if
Fn $ 0 for every n $ 0), where a is the unique solution of w(a) 5 1.

PROOF. Section 7 is devoted to prove this theorem. e

To use the Continuous Master Theorem, we must first identify the shape
function v( z) for the distribution of weights. This is equivalent to identifying the
values {wd}1#d#D and { zd}1#d#D for the discrete case. One possibility is to
conjecture that v( z) 5 n z vn, zn. For instance, for (9) this technique yields
v( z) 5 n z 2/n2 z zn 5 2z, which we have already proved to be right. But for (5)
we have additional problems, since the expression n z vn, zn 5 4(1 2 z)/(1 1

FIG. 1. Shape function for FIND.
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1/n) includes n. Lemma 7.2 in Section 7 provides a way to find v( z) that works
in many practical situations.

Examples of how to use the Continuous Master Theorem can be found in
Appendix B.

4. The Core Theorems

In this section and Section 5, we will prove some general theorems that apply to
many DAC recurrences. In Sections 6 and 7, we will see how to use these results
to prove the statements of both the Discrete and the Continuous MTs.

We begin introducing the concept of divide-and-conquer recursive definition
formally.

Definition 4.1. Let Fn be a function defined for every n $ 0, and let

^ 5 @N, $bn%0#n,N , $tn%n$N , $wn , k%n$N
0#k,n#

be a recursive definition, with N $ 1 and wn, k $ 0. For every n $ N, let Wn 5
(0#k,n wn, k and Zn 5 (0#k,n (wn, k/Wn)(k/n). Then we say that ^ is a DAC
recursive definition of Fn if and only if (a) Fn 5 bn for every 0 # n , N; (b) for
every n $ N,

Fn 5 tn 1 O
0#k,n

wn , kFk ; (10)

and (c) it exists some upper bound U , 1 such that Zn # U for all n large
enough. We also define W 5 limn3` Wn and Z 5 limn3` Zn, if they exist.

This definition can be easily interpreted: Wn is the total number of recursive
calls to solve a problem of size n; Zn is the average fraction of the original
problem that is solved by a recursive call (it turns out that 0 # Zn , 1); and for
large n, the average size of the recursive calls is, at most, a fraction of the whole
problem. For example, for (9), we have Wn 5 1 2 1/n, W 5 1, Zn 5 2/3 2
1/3n and Z 5 2/3, while for (1) we have Wn 5 2, W 5 2, Zn 5 1/ 2 and Z 5
1/ 2. By contrast, (6) is not a DAC recursive definition.

Most of the results from which both MTs are derived refer to canonical
recursive definitions, which are defined as follows:

Definition 4.2. Let ^ be a DAC recursive definition of a function Fn. We say
that ^ is a canonical recursive definition if and only if both these properties hold:
(a) The constant W exists and is equal to 1. (b) If we define mn 5 Wn 2 W, then
umnu 5 2(n2r) for some r . 0.

Hence, a DAC recursive definition is canonical if the number of recursive calls
tends to 1, with a minimum convergence speed. For instance, for (9), we have
W 5 1, and umnu 5 1/n 5 2(n2r) with r 5 1.

Now, assume that Fn $ 0 is defined by (10). Then we have Fn 5 V(tn),
because Fn cannot grow more slowly than tn does. So the question is identifying
under which conditions Fn can grow faster than tn. For the recursive definitions
we deal with and roughly speaking, we will prove that there is a growing order
Q(na) associated to every distribution of weights, irrespectively of how small tn
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is. This would be similar to state that Fn 5 Q(max{tn, na}), which is almost
true.

For instance, consider the recurrence

Fn 5 tn 1 F n/4 . (11)

We will see in this section that a 5 0 for any canonical recurrence, such as this
one. Therefore, for “large” values of tn (case 1 of the MTs) like n, n3 or even 2n,
we should get Fn 5 Q(tn), which is true. For “small” values of tn (case 3 of the
MTs) like 1/n, 1/n3 or 22n, Fn should be Q(1), which is also true. However,
things are not so easy for values of tn close to Q(1) (case 2 of the MTs). For
example, for tn 5 1 the growing order of Fn turns out to be Q(log n) instead of
Q(1). We will see in Section 5 why this additional factor appears.

At this point, it is worth commenting on the word “Core” in the title of this
section. It tries to suggest the idea that recursive definitions with a toll function
small enough—and thus inside the zone dominated by the term Q(na) associated
to the distribution of weights—are the most difficult to analyze. Indeed, there is
no way to find the lower order terms of Fn nor even the multiplicative factor of
the main term na, but to consider all the values of Fn, the values at small indices
included.

For example, consider (11), and assume that it holds for n $ 1. Let tn . 0 be
small enough. Then Fn 5 Q(1), but modifying F0 yields a significant change in
Fn for every n. In fact, changing the value of the function at any index
significantly affects F at an infinite number of indices. Set in terms of a recursion
tree (see Cormen et al. [1990], for example), the solution to the recurrence is
dominated by the values at the leaves.

Moreover, in some cases, the multiplicative factor of the main term na is not
even asymptotically constant. Consider the following recurrence,

Fn 5 tn 1 H F2n/4 , if n is even
F2(n21)/411 , if n is odd

for every n $ 2. Let tn . 0 be small enough and such that t2n 5 t2n11, and let
F0 5 0 and F1 5 1. Then it is easy to see that Fn 5 Q(1), but Fn cannot tend
to a constant, since it fluctuates periodically.

We end this section with two theorems which formalize one of the claims
above, namely that any canonical recurrence is on the one hand V(1), and on the
other hand 2(1) for tn small enough. The three technical conditions in the
statement of Theorem 4.3 typically hold and, loosely speaking, avoid cases like
“everything is zero” and “the negative and the positive contributions cancel out.”

THEOREM 4.3. Let Fn be defined by a canonical recursive definition, and let
bn $ 0, tn . 0 and (0#k,N wn,k 5 2(n2s) for some s . 0. Then Fn 5 V(1).

PROOF. By hypothesis, umnu 5 uWn 2 1 u 5 2(n2r), where r . 0. Choose
some n such that 0 , n , max{r, s}, and define W9n 5 (N#k,n wn, k. Taking
into account that Wn $ 1 2 umnu, we have W9n 5 Wn 2 (0#k,N wn, k $ 1 1
2(n2r) 2 2(n2s) $ 1 2 n2n, as long as n is large enough.
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Now define

Z9n 5 O
N#k,n

wn , k

1 2 n2n
z
k

n
#

Wn

1 2 n2n O
0#k,n

wn,k

Wn

z
k

n
5

Wn

1 2 n2n
z Zn #

Wn

1 2 n2n
z U,

where 0 , U , 1 is the upper bound for the Zn’s that exists by definition.
Choose any V such that U , V , 1. Then it is clear that Z9n # V for large n.

For the next step of the proof, choose some N9 . N large enough to get W9n $
1 2 n2n, Z9n # V, and also n2n # 1/ 2 for every n $ N9. Let h( x) 5
exp(2Vn/(1 2 Vn) xn). In what follows, we will use the easy-to-prove fact that
h( x) $ 1 is a decreasing convex function in the interval [1, 1`).

Set M 5 min{Fn/h(n)}N#n,N9. Notice that bn $ 0 and tn . 0 imply M . 0.
We can prove by induction that Fn $ M z h(n) holds not only for all N # n ,
N9 but also for all n $ N9: Assuming the induction hypothesis, we have

Fn 5 tn 1 O
0#k,n

wn , kFk

i.h.

$ O
N#k,n

wn,kM z h~k! 5 M z W9n O
N#k,n

wn,k

W9n
z h~k!.

The convexity of h( x), the bound for W9n and the fact that h( x) is decreasing
yields

Fn $ M z W9n z hS O
N#k,n

wn , k

W9n
z kD $ M~1 2 n2n! z hS O

N#k,n

wn,k

1 2 n2n
z kD .

From the definition of Z9n, Fn $ M(1 2 n2n) z h(nZ9n). Taking into account
that 1 2 x $ exp(22x) for all 0 # x # 1/ 2, and replacing x by n2n, we get 1 2
n2n $ exp(22n2n). Furthermore, Z9n # V and h( x) is decreasing, and thus we
have Fn $ M exp(22n2n) z h(nV) 5 M z h(n), the last step obtained through
simple manipulations. This ends the inductive proof.

Finally, h(n) $ 1 yields Fn $ M . 0 for every n $ N, and the statement of
the theorem follows. e

THEOREM 4.4. Let Fn be defined by a canonical recursive definition, and let
tn 5 2(logc n) for some c , 21. Then Fn 5 2(1).

PROOF. Let ^ be the recursive definition for Fn. First of all, we introduce a
recursive definition & for a new function Gn, by modifying ^ as follows: Let sn, k

denote the weights of ^, Yn denote (0#k,n sn, k, and assume without loss of
generality that Yn . 0—recall that limn31` Yn 5 1. Define wn, k, the weights of
&, to be equal to sn, k if Yn $ 1, and equal to sn, k/Yn if Yn , 1 (this is just a
normalization of the weights so that they sum at least 1). Let un be the toll
function of ^; we define the toll function of & as tn 5 uunu. Altogether, 2Gn #
Fn # Gn trivially holds for every n $ 0, so it is enough to bound Gn by above to
prove the theorem.

Let Wn, W, etc. be as in Definitions 4.1 and 4.2 but for the set of weights wn, k

of &. Then, on the one hand, we have that W is still 1, but now Wn $ 1 and
mn $ 0. On the other hand Zn remains the same and hence Zn # U for some
0 , U , 1. Choose some V such that U , V , 1, and some n such that 0 ,
n , r, where r . 0 is the constant in Definition 4.2. Choose some a $ 1 large
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enough to get Vn/(1 2 Vn) # an. We introduce two auxiliar functions, f( x) 5
exp(2Vn/(1 2 Vn)( x 1 a)n), and g( x) 5 ( i$1 gi( x)c, where gi( x) 5 ln( x 1
a) 2 i ln V. It is not difficult to prove that, for every x $ 0, 0 , f( x) # 1 is an
increasing concave function, and g( x) $ 0 is a well-defined decreasing convex
function.

There are three bounds for the quantities introduced so far that we will find
helpful through this proof (they all hold for n large enough, say for n $ N9 for
some constant N9). First, taking into account that mn 5 2(n2r), we have 0 #
mn # 1/((n 1 a)n 1 1). Second, we define Z9n 5 (nZn 1 a)/(n 1 a) 5 Zn 1
a(1 2 Zn)/(n 1 a) # U 1 a/n # V. Finally, by the initial hypothesis about tn

we know that there exists some constant K . 0 such that tn # K lnc(n 1 a).
Assume n $ N9, and introduce

Sn 5 O
0#k,n

wn , kf~k! 5 O
0#k,n

wn , k

Wn

z f~k! 1
mn

Wn
O

0#k,n

wn , kf~k! ,

where for the second equality above we have used the fact that Wn 5 1 1 mn.
Then, since f( x) is positive, increasing and concave, and mn is positive, we can
bound Sn to get

Sn # fS O
0#k,n

wn , k

Wn

z kD 1
mn

Wn

z Wnf~n! 5 f~nZn! 1 mnf~n! .

By the definition of Z9n, we know that nZn 1 a 5 (n 1 a) Z9n # (n 1 a)V.
Therefore,

f~nZn! 5 expS 2Vn

~1 2 Vn!~nZn 1 a!nD # expS 21

~1 2 Vn!~n 1 a!nD . (12)

For the next step we use an auxiliar function An 5 1 2 1/((n 1 a)n 1 1) 5
(n 1 a)n/((n 1 a)n 1 1). Since 1/An 5 1 1 1/(n 1 a)n, and 1 1 x # exp( x)
for every x $ 0, it follows that 1/An # exp(1/(n 1 a)n), and thus An $
exp(21/(n 1 a)n). Hence, Anf(n) $ exp(21/(n 1 a)n) f(n) 5 exp(2(1 2
Vn)/(n 1 a)n), and from (12), mn # 1/((n 1 a)n 1 1), and the definition of
An we conclude Sn # f(n). We will use this inequality in a moment.

Now introduce Rn 5 (0#k,n wn, kg(k), and use the convexity of g( x) to get

Rn $ O
0#k,n

wn , k

Wn

z g~k! $ gS O
0#k,n

wn , k

Wn

z kD 5 g~nZn! 5 O
i$1

gi~nZn!
c.

By definition, gi(nZn) 5 ln(nZn 1 a) 2 i ln V 5 ln((n 1 a) Z9n) 2 i ln V.
Assume n $ N9; the bound for Z9n yields gi(nZn) # ln(n 1 a) 1 ln V 2 i ln
V 5 gi21(n). Therefore, Rn $ ( i$1 gi21(n)c 5 lnc(n 1 a) 1 g(n).

We are ready to prove the theorem. Set M 5 max{(Gn/K 1 g(n))/
f(n)}0#n,N9. Then we have Gn/K # M z f(n) 2 g(n) for any n , N9. We can
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prove this bound by induction when n $ N9:

Gn

K
5

tn

K
1 O

0#k,n

wn , k z
Gk

K

i.h.

$ lnc~n 1 a! 1 O
0#k,n

wn,k~M z f~k! 2 g~k!!

5M z Sn 1 lnc~n 1 a! 2 Rn # M z f~n! 2 g~n!.

Finally, we have Fn # Gn # K(M z f(n) 2 g(n)) # K z M for every n $ 0
(and Fn $ 2K z M), and the theorem is proved. e

5. The Flesh Theorems

In this section, we deal with the canonical recursive definitions whose toll function is
large enough to dominate the solution. These recurrences are typically easier to
analyze than those in Section 4 (and thus the “Flesh” in the title), and in most cases
we can get the multiplicative factor of the main term of the function under study.
Moreover, sometimes it is possible to extract one by one several main terms with
their multiplicative factors, until the core is reached (see Appendix B).

The reason for the name chosen in the following definition will be clear after
Theorem 5.3.

Definition 5.1. Let un be a function over the integers. We say that gn is a
bounding function of un if and only if there exist some constant Ng $ 1 and some
strictly positive nonincreasing function b(z) defined over (0, 1) such that (a) ungn 2
ukgk $ b(k/n)un for every n . Ng and every Ng # k , n; (b) un, gn . 0 for every
n $ Ng; (c) gn is a subpolynomial function; and (d) ungn 5 v(1).

For instance, gn 5 1 is a bounding function of un 5 n2. Take b( z) 5 1 2 z2.
Then we have ungn 2 ukgk 5 n2 2 k2 5 (1 2 (k/n)2)n2 5 b(k/n)un. The
other conditions trivially hold.

The word “entropy” is defined below with a meaning wider than usually. Our
definition reduces to the traditional one when tn 5 1 and gn 5 log2 n.

Definition 5.2. Let ^ be a canonical recursive definition of a function Fn, and
let gn be a bounding function of tn. We define the entropy of ^ with respect to gn

at every n $ max{N, Ng} as

*n
(g) 5 gn 2 O

Ng#k,n

wn , k z
tk

tn

z gk . (13)

We also define *(g) 5 limn3` *n
(g), if it exists.

The next theorem, together with Lemma 5.4, will allow us to bound the
solution of many canonical recursive definitions.

THEOREM 5.3. Let Fn be defined by a canonical recursive definition, and let gn

be a bounding function of un. If tn 5 2(un), then Fn 5 2(ungn). If tn 5 o(un), then
Fn 5 o(ungn).

PROOF. Let *n
(g) be defined as in (13) but using un instead of tn. We first

prove that *n
(g) 5 V(1), as follows. We know that Zn # U for large n, where

0 , U , 1. Choose some V such that U , V , 1, and let n be large enough to
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get nV . Ng. Then tngn . tngn 2 tkgk $ b(k/n)tn $ b(V)tn for every Ng #
k , nV. Alternatively, we can write gn . gn 2 tk/tn z gk $ b(V). We now use
these bounds in the definition of *n

(g):

*n
(g) 5 S O

0#k,n

wn , k 2 mnDgn 2 O
Ng#k,n

wn , k z
tk

tn

z gk

$ O
0#k,Ng

wn,kgn 1 O
Ng#k,nV

wn,kSgn 2
tk

tn

z gkD 2 mngn

$ O
0#k,nV

wn,kb~V! 2 mngn .

On the other hand, from

V O
nV#k,n

wn , k 5 O
nV#k,n

wn , k z
nV

n
# O

0#k,n

wn , k z
k

n
5 ZnWn # U z Wn ,

we have (0#k,nV wn,k 5 Wn 2 (nV#k,n wn,k $ (1 2 U/V)Wn. Altogether, we
deduce *n

(g) $ (1 2 U/V)b(V)Wn 2 mngn. But mngn vanishes for large n, because
umnu 5 2(n2r) for some r . 0 and gn is a subpolynomial function. Therefore, since
1 2 U/V . 0, b(V) . 0 and Wn tends to W 5 1, we have *n $ Q for some constant
Q . 0 and n large enough (say, larger than some constant N*).

Now we can prove the 2¼ case. Since tn 5 2(un), there exist constants K . 0
and M such that utnu # Kun for every n $ M. Choose M to be at least N*, and
introduce a new function,

Gn 5 H Fn , if 0 # n , M
Kun 1 O0#k,n wn,kGk , if n $ M.

A simple proof by induction yields 2Gn # Fn # Gn for every n. Now define

In 5 5 Gn , if 0 # n , Ng

Gn 2
K

Q
z ungn , if n $ Ng .

Let n $ M. Using the definitions of In and Gn in the first step, and the
definition of In back in the second step, we get

In 5 Kun 1 O
0#k,n

wn , kGk 2
K

Q
z ungn

5 Kun 2
K

Q Sungn 2 O
Ng#k,n

wn,kukgkD 1 O
0#k,n

wn,kIk

5 Kun 2
K

Q
z un*n 1 O

0#k,n

wn,kIk .
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From the bound for *n, the toll function above is # Kun 2 K/Q z unQ 5 0, as
long as n $ M. Therefore, if we define

Jn 5 H uInu, if 0 # n , M

O0#k,n wn,k Jk , if n $ M,

then we have In # Jn. But according to Theorem 4.4, Jn 5 2(1), that is, Jn # S
for some constant S . 0 and n large enough. This implies In # S as well, and
hence Fn # Gn 5 In 1 K/Q z ungn # S 1 K/Q z ungn or alternatively,
Fn/ungn # S/ungn 1 K/Q. Taking into account that ungn 5 v(1), the term
S/ungn will vanish for large n, and thus we can conclude Fn/ungn # K9 (and
Fn/ungn $ 2K9) for any constant K9 . K/Q as long as n is large enough. The
case 2¼ is proved.

The proof of the case o¼ follows the pattern above. Therefore, we only point
out the differences. We have to show that for every « . 0 there is some N« large
enough such that uFnu/ungn # « as long as n $ N«. Set n 5 Q z «/ 2. Then, by
hypothesis, it exists some Mn such that utnu # nun for every n $ Mn. Define Gn

using nun as toll function for every n $ Mn, and In as Gn 2 n/Q z ungn for
every n $ Ng. Then we have In # Sn for some constant Sn . 0 and every n
large enough, and thus Fn/ungn # Sn/ungn 1 n/Q. Since the first term vanishes
for large n, we can always pick some N« large enough to get Fn/ungn # n/Q 1
n/Q 5 « for every n $ N« (and also Fn/ungn $ 2«), thus proving the case o¼
and the theorem. e

The following lemma provides bounding functions for the most usual toll
functions.

LEMMA 5.4

—Let un 5 nadn for every n $ Nu, where Nu $ 1, a . 0, and dn is a strictly
positive nondecreasing function at every n $ Nu. Then gn 5 1 is a bounding
function of un.

—Let vn 5 lnc n z en for every n $ Nv, where Nv $ 2, c . 21, and en is a
strictly positive nondecreasing function at every n $ Nv. Then gn 5 ln n is a
bounding function of vn.

—Let wn 5 ln21 n for every n $ Nw, for some Nw $ 3. Then gn 5 ln n z ln ln
n is a bounding function of wn.

PROOF. For the first case, let Ng 5 Nu and take b( z) 5 1 2 za. Thus,
b( z) . 0 is nonincreasing in (0, 1). Take any n . Ng and any Ng # k , n.
Then ungn 2 ukgk 5 nadn 2 kadk $ nadn 2 kadn 5 (1 2 (k/n)a)nadn 5
b(k/n)un, and the condition (a) in Definition 5.1 is satisfied. The conditions (b),
(c), and (d) are trivial to prove.

For the second case, take b( z) 5 2(c 1 1)ln z, if 21 , c # 0, or b( z) 5
2ln z, if c . 0. Let Ng 5 Nv, and take any k and n such that Ng # k , n. For
the moment, we have vngn 2 vkgk 5 lnc11 n z en 2 lnc11 k z ek $ lnc11 n z en

2 lnc11 k z en 5 (lnc11 n 2 lnc11 k)en.
To check that the condition (a) in Definition 5.1 holds, we consider the last

expression separately for positive and negative c. For c . 0, it is not difficult to
prove that lnc11 n 2 lnc11 k $ 2ln(k/n)lnc n when n $ 1 and 1 # k # n.
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Therefore, vngn 2 vkgk $ 2ln(k/n)lnc n z en 5 b(k/n)vn. Similarly, when
21 , c # 0 it suffices to prove that lnc11 n 2 lnc11 k $ 2(c 1 1)ln(k/n)
lnc n when n $ 1 and 1 # k # n, and then vngn 2 vkgk $ 2(c 1 1)ln(k/n)lnc

n z en 5 b(k/n)vn. The rest of conditions in Definition 5.1 trivially hold.
For the third case, let Ng 5 Nw, and take any n . Ng and any Ng # k , n.

Define b( z) 5 2ln z, and let y 5 ln n and z 5 k/n. It can be shown that ln y 2
ln( y 1 ln z) $ 2ln z/y for all z in (exp(2y), 1]. Therefore, wngn 2 wkgk 5 ln
ln n 2 ln ln k 5 ln y 2 ln( y 1 ln z) $ 2ln z/y 5 b(k/n)wn. The rest of
conditions for a bounding function can be easily proved. e

The following corollary is an immediate consequence of Theorem 5.3 and
Lemma 5.4.

COROLLARY 5.5. Let the functions Fn, Gn, and Hn be defined by canonical
recursive definitions with toll functions tn 5 2(nadn), t9n 5 2(logc n z en) and
2(log21 n), respectively, as stated in Lemma 5.4. Then Fn 5 2(tn), Gn 5 2(t9n log n)
and Hn 5 2(log log n). Moreover, Fn 5 Q(tn) if Fn $ 0 and tn 5 2(nadn).

The last theorem of this section allows us to compute the constant factor of the
leading term of the solution of some recurrences.

THEOREM 5.6. Let Fn be defined by a canonical recursive definition, and let gn

be a bounding function of tn. Furthermore, assume that *(g) exists. Then Fn 5
tngn/*(g) 1 o(tngn).

PROOF. From the proof of Theorem 5.3 we know that *n
(g) 5 V(1). So, if

*(g) exists, it is strictly positive. Define

Gn 5 5 Fn , if 0 # n , Ng

Fn 2
tngn

*(g)
, if n $ Ng .

For n $ Ng, use the definition of Gn in both directions, like in the proof of
Theorem 5.3. This yields

Gn 5 tn 2
*n

(g)

* (g)
z tn 1 O

0#k,n

wn , kGk .

Let t9n denote the toll function above, and let hn 5 *n
(g) 2 *(g). Then t9n 5

tn 2 (*(g) 1 hn)/*(g) z tn 5 2hntn/*(g) 5 o(tn), because hn 5 o(1).
Therefore, it suffices to apply Theorem 5.3 to get Gn 5 o(tngn), which implies
Fn 5 tngn/*(g) 1 Gn 5 tngn/*(g) 1 o(tngn). e

As an example of application of Theorem 5.6, we can easily compute the
expected number of comparisons to find a key chosen at random in a trie with n
keys, when the digits are independent and equally likely to be 0 or 1. The
recurrence is

Tn 5 1 1
1

2n O
0#k#n

Sn
kDTk .
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(It would be a simple matter to write another recurrence with range 0 . . . n 2 1
for k.) Note that this recurrence is not covered by any of the MTs presented in
this work; however, we can solve it anyway. The entropy with respect to ln n is

*n
(ln) 5 ln n 2

1

2n O
2#k#n

Sn
kDln k.

The distribution of weights gets closer to n/ 2 as long as n grows. This implies
*n

(ln) ; ln n 2 ln(n/ 2), *(ln) 5 ln 2, and Tn ; ln n/ln 2 5 log2 n.
More formally, we can use the fact that

1

2n O
(11«)n/ 2,k#n

Sn
kD # expS2

«2n

6 D
for any 0 # « # 1 (see Hagerup and Rub [1990, page 306]), and set « 5 «n 5
n21/3 to get

*n
(ln) 5 ln n 2

1

2n O
2#k#(11«n)n/ 2

Sn
kDln k 2

1

2n O
(11«n)n/ 2,k#n

Sn
kDln k

$ln n 2 lnS~1 1 «n!n

2 D 2 expS2
«n

2n

6 Dln n 5 ln 2 1 o~1!.

On the other hand, it is easy to prove an upper bound ln 2 for *(ln). Therefore,
*(ln) 5 ln 2, and finally Tn ; log2 n.

6. Proof of the Discrete Master Theorem

In this section, we will derive the Discrete MT. While doing this, we will
repeatedly make use of the quantities introduced in Definitions 2.1, 4.1 and 4.2.

LEMMA 6.1. F(x) is a strictly decreasing continuous function such that limx31`

F(x) 5 0 and limx32` F(x) 5 1`.

PROOF. By elementary calculus. e

LEMMA 6.2. A discrete recursive definition is canonical if and only if F(0) 5 1.

PROOF. For the “only if” proof, we observe that W 5 limn31` Wn 5
(1#d#D wd 5 F(0).

For the “if” proof, the definition of discrete recursive definition tells us that
umnu 5 uWn 2 F(0) u # (1#d#D urd, nu 5 2(n2r). Furthermore, Z 5 limn3`

Zn 5 (1#d#D wd z zd 5 F(1), which by Lemma 6.1 is strictly smaller than 1
when W 5 F(0) 5 1. e

Theorem 6.3 justifies the cases 2.3 and 3 of the Discrete MT when the
recurrence is canonical, that is, when a 5 0. Note that the case 2.3 reduces to
a 5 0 and c , 21, and the condition * , 0 in the case 3 is equivalent to a , 0.

THEOREM 6.3. Let Cn be defined by a canonical discrete recursive definition,
and let tn 5 2(logc n), where c , 21. Then Cn 5 2(1). Moreover, Cn 5 Q(1) if
Cn $ 0 for every n $ 0 and tn . 0 for n large enough.
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PROOF. It is enough to realize that (0#k,N wn, k 5 0 for large n, and use
Theorems 4.3 and 4.4. e

For the next step, we need to define the concept of subpolynomial function
formally.

Definition 6.4. Let ln be a strictly positive nondecreasing function for large
n. Moreover, assume that for every « . 0 the function n«/ln is increasing as long
as n is large enough. Then we say that ln is a subpolynomial function.

Lemma 6.5 is used to prove Theorems 6.6 and 7.10.

LEMMA 6.5. Let tn 5 najn, where a . 0 and jn 5 ln or jn 5 1/ln for some
subpolynomial function ln. Then 1 is a bounding function of tn.

PROOF. We only need to prove that najn is as stated by Lemma 5.4, which is
obvious when jn 5 ln. When jn 5 1/ln, it is enough to express tn as na/ 2 dn,
with dn 5 na/ 2/ln. e

Theorem 6.6 corresponds to the case 1 of the Discrete MT when a 5 0 and
a . 0. The statement of the MT applies to toll functions with subpolynomial
factors that are 2(logc n) for some c, which is more restrictive than the functions
considered by Theorem 6.6.

THEOREM 6.6. Let a function be defined by a canonical discrete recursive
definition, and let tn 5 najn, where a . 0 and jn 5 ln or jn 5 1/ln for some
subpolynomial function ln. Then *(1) 5 1 2 F(a).

PROOF. Let us assume jn 5 ln. Then, for large n,

*n
(1) 5 1 2 O

1#d#D

Rd , n z
tSd, n

tn

5 1 2 O
1#d#D

~wd 1 rd , n!S zd 1
sd , n

n D a
lSd, n

ln

.

But 1 $ lSd , n
/ln $ (Sd, n/n)e 5 ( zd 1 sd, n/n)« for any 1 # d # D and any « .

0, as long as n is large enough. Moreover, the contribution to *n
(1) of rd, n and

sd, n vanishes for large n. Altogether,

1 2 F~a! 5 1 2 O
1#d#D

wd z zd
a # * (1) # 1 2 O

1#d#D

wd z zd
a1« 5 1 2 F~a 1 «! .

This is true no matter how small « is, and F( x) is a continuous function. We can
thus conclude *(1) 5 1 2 F(a).

A similar argument proves the case jn 5 1/ln. e

Note that the MTs do not deal with toll functions whose growing rate is larger
than polynomial, like 2n. Nevertheless, several of the results in this work also
apply to superpolynomial toll functions, which are formally defined as follows:

Definition 6.7. Let un be a positive function for large n. For every a . 0,
assume that un/na is increasing as long as n is large enough. Then we say that un

is a superpolynomial function.

Notice that the conditions in the first case of Lemma 5.4 trivially hold for any
superpolynomial function. As a consequence, the statement of Corollary 5.5 for
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toll functions like tn 5 2(nadn) is true not only for polynomial toll functions but
for superpolynomial toll functions as well.

The next theorem deals with discrete recurrences when the toll function is
superpolynomial.

THEOREM 6.8. Let a function be defined by a canonical discrete recursive
definition, and let tn be a superpolynomial function. Then *(1) 5 1.

PROOF. The proof is very similar to that of Theorem 6.6. It is enough to
realize that *(1) $ 1 2 F(a) for every a . 0, no matter how large a is. e

We require Lemma 6.9 for the statements of Theorems 6.10 and 7.12.

LEMMA 6.9. Let tn 5 lnc n z jn, where c . 21 and jn 5 mn or jn 5 1/mn for
some sublogarithmical function mn. Then ln n is a bounding function of tn.

PROOF. If jn 5 mn, then tn is clearly as stated by Lemma 5.4. If jn 5 1/mn,
we only need to write tn as ln(c21)/ 2 n z dn, with dn 5 ln(c11)/ 2 n/ln. e

Theorem 6.10 corresponds to the case 2.1 of the Discrete MT when a 5
a 5 0.

THEOREM 6.10. Let a function be defined by a canonical discrete recursive
definition, and let tn 5 lnc n z jn, where c . 21 and jn 5 mn or jn 5 1/mn for some
sublogarithmical function mn. Then *(ln) 5 2(c 1 1)(1#d#D wd z ln zd.

PROOF. Let us assume jn 5 1/mn (the case jn 5 mn is similar). Then

*n
(ln) 5 ln n 2 O

1#d#D

~wd 1 rd,n!
lnc11Sd,n

lnc n
z

mn

mSd,n

for large n. Besides,

lnc11Sd,n

lnc n
#

lnc11Sd,n

lnc n
z

mn

mSd,n

#
lnc112«Sd,n

lnc2«n

for any 1 # d # D and any « . 0, as long as n is large enough. Furthermore,
ln( zd 1 sd, n/n) 5 ln zd 1 2(n2s) for some s . 0. Thus,

lnc11Sd,n 5 ~ln n 1 ln zd 1 2~n2s!!c11

5 lnc11n 1 ~c 1 1!lnc n ln zd 1 2~logc21n! 1 2~n2s logc n!.

Taking into account that 2(logc21 n) 1 2(n2s logc n) 5 2(logc21 n), and that

O
1#d#D

urd , nu z
lnc11Sd,n

lnc n
# O

1#d#D

urd,nuln n 5 2~n2rlog n!,

we can bound *n
(ln) as follows:

*n
(ln) # ln n 2 O

1#d#D

~wd 1 rd,n!
lnc11Sd,n

lnc n
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5 ln n 2 O
1#d#D

wd~ln n 1 ~c 1 1!ln zd 1 2~log21n))12(n2rlog n!

5 2~c 1 1! O
1#d#D

wd z ln zd 1 2~log21n),

where, for the last step, we have used the fact that W 5 1. A similar reasoning
yields the bound

*n
(ln) $ 2~c 1 1 2 «! O

1#d#D

wd z ln zd 1 2~log21n).

From these last two bounds, and since the one above holds for any « . 0, the
theorem is proved. e

Finally, Theorem 6.11 corresponds to the case 2.2 of the Discrete MT when
a 5 a 5 0.

THEOREM 6.11. Let a function be defined by a canonical discrete recursive
definition, and let tn 5 ln21 n. Then *(ln z ln ln) 5 2(1#d#D wd z ln zd.

PROOF. By the definitions of entropy and discrete recursive definition,

*n
(lnzln ln)

ln n
5 ln ln n 2 O

1#d#D

~wd 1 rd,n!ln lnSSzd 1
sd,n

n DnD ,

as long as n is large enough. Let y 5 ln n. Recall that urd, nu 5 2(n2r) and
usd, nu/n 5 2(n2s). Then,

* y
(lnzln ln)

y
5 ln y 2 O

1#d#D

~wd 1 2~exp~2ry!!!ln~ y 1 ln~zd 1 2~exp~2sy!!!!.

The contributions of the terms 2(exp(2ry)) and 2(exp(2sy)) vanish for large
y. Thus,

* (lnzln ln) 5 lim
y31`

*y
(lnzln ln) 5 lim

y31`

O1#d#D wd~ln y 2 ln~ y 1 ln zd!!

1/y
.

Now it suffices to use l’Hôpital’s rule to get the statement of the theorem. e

To derive both the Discrete and the Continuous MTs, we will use the
fundamental property that every discrete or continuous recursive definition is
either canonical or can be reduced to a canonical one by means of a definition
like Cn 5 Fn/na, for some appropriate constant a. This concept is formalized as
follows:

Definition 6.12. Let ^ be a DAC recursive definition of a function Fn. We
say that ^ is a proper DAC recursive definition if and only if there exists some
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constant a such that, if we define Cn 5 Fn/na, then

Cn 5
tn

na
1 O

0#k,n

wn , k z
ka

na
z

Fk

ka
5

tn

na
1 O

0#k,n

wn , kS k

nD
a

Ck

is a canonical recursive definition.

For instance, any canonical recursive definition is a proper DAC recursive
definition with a 5 0, that is, with Cn 5 Fn. Typically, W $ 1, and then a is
positive. For W smaller than 1 (which is not usual in practice) a is negative,
which is problematic for small indices. This is why we required W to be at least 1
for continuous recursive definitions; note that the term (k/n)a is unbounded for
small k and negative a. By contrast, for discrete recursive definitions we allowed
W to be smaller than 1; this is a reason to avoid the case zd 5 0.

As an example of nonproper DAC recursive definition, we have (7); it is easy
to see that it is not canonical nor can be converted into canonical through a
change like Cn 5 Fn/na. Theorems 6.13 and 7.14 state that this is never the case
with discrete and continuous recursive definitions.

THEOREM 6.13. All discrete recursive definitions are proper DAC recursive
definitions whose a is the unique solution of F(a) 5 1.

PROOF. From Lemma 6.1, F(a) 5 1 has always a unique solution. Define
Cn 5 Fn/na. Then, for large n,

Cn 5
tn

na
1 O

1#d#D

R9d , nCSd, n
,

where R9d, n 5 (wd 1 rd, n)( zd 1 sd, n/n)a. Set w9d 5 wd z zd
a and r9d, n 5 R9d, n 2

w9d. Then we have (1#d#D ur9d, nu 5 2(n2r 1 n2s).
Let Wn, W, etc. be defined over the new weights. On the one hand, Wn 5

(1#d#D R9d, n 5 (1#d#D(w9d 1 r9d, n), and W 5 (1#d#D w9d 5 F(a) 5 1.
Furthermore, umnu 5 uWn 2 W u # (1#d#D ur9d, nu 5 2(n2r 1 n2s). On the
other hand,

Zn 5 O
1#d#D

R9d , n

Wn

z
Sd , n

n
5

1

Wn
O

1#d#D

~w9d 1 r9d , n!S zd 1
sd , n

n D ,

and hence Z 5 (1#d#D w9d z zd 5 F(a 1 1) , 1. The theorem follows. e

We now make use of Theorems 5.6 and 6.13 to summarize Theorems 6.3, 6.6,
6.8, 6.10, and 6.11 into Corollary 6.14. This corollary also includes the corre-
sponding results for continuous recurrences (Theorems 7.9, 7.10, 7.11, 7.12, and
7.13), which will be presented and proved in Section 7.

COROLLARY 6.14. Let Fn be defined by a discrete (respectively, continuous)
recursive definition, and let a be the unique solution to F(a) 5 1 (respectively,
w(a) 5 1).

—If tn 5 2(na logc n), where c , 21, then Fn 5 2(na). Moreover, Fn 5 Q(na)
if Fn $ 0 for every n $ 0 and tn . 0 for large n .
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—If tn 5 najn, where a . a and jn 5 ln or jn 5 1/ln for some subpolynomial
function ln, then Fn ; tn/(1 2 F(a)) (respectively, Fn ; tn/(1 2 w(a))).

—If tn is a superpolynomial function, then Fn ; tn.

—If tn 5 na lnc n z jn, where c . 21 and jn 5 mn or jn 5 1/mn for some
sublogarithmical function mn, then Fn ; tn ln n/*, where * 5 2(c 1
1)(1#d#D wd z ( zd)a ln zd (respectively, * 5 2(c 1 1) *0

1 v( z) za ln z dz).

—If tn 5 na ln21 n, then Fn ; tn ln n z ln ln n/*, where * 5 2(1#d#D wd z
( zd)a ln zd (respectively, * 5 2*0

1 v( z) za ln z dz).

7. Proof of the Continuous Master Theorem

We begin with the conjecture included in Definition 3.1.

CONJECTURE 7.1. For every positive function v(z) such that *0
1 v(z) dz con-

verges, there exists some m , 0 such that *0
1 v(z)zm dz also converges.

The author of this paper could not prove that, irrespective of v( z), the
integral w( x) converges for every x [ [m, 0] for some m , 0, though no
counterexample of this statement was found. However, this property clearly
holds for the shape functions we usually deal with. For instance, if v( z) is
bounded near 0, then any m . 21 fulfills the condition above. To the best of the
author’s knowledge, it is an open problem to determine if the statement of
Conjecture 7.1 is always true.

The following lemma provides an easy way to find the shape function of many
continuous recurrences.

LEMMA 7.2. Let vn,k 5 A z f1
. . . fm/( g1

. . . gm11) be the weights of a given
recurrence, where A . 0 is an arbitrary constant, m $ 0 is any integer constant, fi 5
(ain 1 bik 1 ci) for all 1 # i # m for some constants ai, bi, and ci such that at least
one of ai or bi is not 0, and gi 5 (n 1 di) for all 1 # i # m 1 1, where the di’s are
arbitrary constants. Set sn,k 5 A z (a1n 1 b1k) . . . (amn 1 bmk)/nm11 and v(z) 5
n z sn,zn, and suppose that *0

1 v(z) dz is at least 1. Then the given recurrence is
continuous and v(z) is its shape function.

PROOF. First, we prove that there exists some m , 0 such that *0
1 v( z) zm dz

converges. Since v9( z) exists and is bounded in [0, 1], v( z) is also bounded in
[0, 1]. Set h 5 max{v( z)}0#z#1, and choose any 21 , m , 0. Then *0

1 v( z) zm

dz # h *0
1 zm dz , 1` .

To prove the conditions in Definition 3.2, let B $ 0 be such that uv9( z) u # B
for every 0 # z # 1. It is easy to see that this bound produces

E
k/n

(k11)/n

v~ z! dz # E
k/n

(k11)/n SvS k

nD 1 S z 2
k

nDBD dz 5
v~k/n!

n
1

B

2n2
,

and its symmetric *k/n
(k11)/n v( z) dz $ v(k/n)/n 2 B/ 2n2. Now, we set Mn 5 n

to get «n, k # B/ 2n2 and (0#k,n «n, k 5 2(n21). Finally, it is enough to notice
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that uvn, k 2 sn, ku 5 2(n22) to obtain

O
0#k,n

«n , k # O
0#k,n

S Uvn , k 2 sn , kU 1 U sn , k 2 E
k/n

(k11)/n

v~ z! dzU D 5 2~n21!. e

Hereafter, we will present results for continuous recurrences that are equiva-
lent to those for discrete recurrences in Section 6, together with some technical
propositions.

LEMMA 7.3. w(x) is a strictly decreasing continuous function in the interval [m,
1`), such that limx31` w(x) 5 0.

PROOF. By hypothesis, w(0) $ 1. This implies that there are z1 and z2 such
that 0 , z1 , z2 , 1 and *z1

z2 v( z) dz . 0. For every x , y such that w( x) and
w( y) exist,

w~ x! 2 w~ y! $ E
z1

z2

v~ z!~ zx 2 zy! dz $ E
z1

z2

v~ z! dz z min$ zx 2 zy%z1#z#z2
. 0.

Hence, w( x) is a strictly decreasing function.
Proving that w( x) tends to 0 as long as x grows is not more difficult. For every

« . 0, let 0 , z« , 1 be large enough to get *z«

1 v( z) dz # «/ 2. Assume x $ 0.
Then,

w~ x! 5 E
0

z«

v~ z! zx dz 1 E
z«

1

v~ z! zx dz

# ~z«!
x E

0

z«

v~z! dz 1 E
z«

1

v~z! dz # ~z«!
xw~0! 1

«

2
# «

for x large enough.
It is left to prove that w( x) is a continuous function. Recall that m , 0 is the

constant such that, according to Conjecture 7.1, *0
1 v( z) zm dz converges. Choose

any a such that a . m. Then,

lim
x3a

uw~x! 2 w~a!u 5 lim
x3a

UE
0

1

v~z!zm~zx2m 2 za2m! dzU
#E

0

1

v~z!zm dz z lim
x3a

~max$uzx2m 2 za2mu%0#z#1! 5 w~m! z 0 5 0. e

The following two technical propositions will be used in several proofs in this
section.

PROPOSITION 7.4. Let a function be defined by a continuous recursive defini-
tion. For every x . 0, define
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«n , j~ x! 5 U O
k[In, j

vn , kS k

nD x

2 E
zn, j

zn, j11

v~ z! zx dzU
for all 0 # j , Mn. Then for every x . 0, we have (0#j,Mn

«n, j( x) 5 2(n2s) for
some s . 0.

PROOF. First of all, notice that «n, j(0) equals «n, j. Take any 0 # j , Mn, and
assume that the first term in the definition of «n, j( x) is larger than the second
term. Then

«n , j~ x! # O
k[In, j

vn , kS zn , j11 z n

n D x

2 E
zn, j

zn, j11

v~ z!~ zn , j!
x dz

5 Sj 1 1

Mn
Dx

O
k[In, j

vn,k 2 S j

Mn
DxE

zn, j

zn, j11

v~z! dz

5
~ j 1 1!x 2 jx

~Mn!
x O

k[In, j

vn,k 1 S j

Mn
DxS O

k[In, j

vn,k 2 E
zn, j

zn, j11

v~z! dzD .

Now, if we set

cn 5 H 1, if 0 , x # 1
~Mn!

x 2 ~Mn 2 1!x, if x . 1
,

then it is easy to see that ( j 1 1)x 2 jx # cn. Moreover, j , Mn. Hence,
«n, j( x) # cn/(Mn)x (k[In , j

vn, k 1 «n, j. If the second term in the definition of
«n, j( x) is larger than the first one, a similar reasoning yields «n, j( x) # cn/(Mn)x

*zn , j

zn , j11 v( z) dz 1 «n, j. Altogether,

O
0#j,Mn

«n , j~ x! # O
0#j,Mn

S cn

~Mn!
x S O

k[In, j

vn , k 1 E
zn, j

zn, j11

v~ z! dzD 1 «n , jD
5

cn

~Mn!
x S O

0#k,n

vn,k 1 E
0

1

v~z! dzD 1 O
0#j,Mn

«n, j 5
cn

~Mn!
x
Q~1! 1 2~n2r!.

Finally, taking into account that cn/(Mn)x 5 2(n2qx) when 0 , x # 1 and cn/
(Mn)x 5 2(n2q) when x . 1, we can bound the expression above by 2(n2s) for
some s . 0 small enough. e

PROPOSITION 7.5. Let a function be defined by a continuous recursive defini-
tion. Then, for every x . 0, (0#k,n vn,k(k/n)x 5 w(x) 1 2(n2s) for some s . 0.
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PROOF. It is enough to observe that

U O
0#k,n

vn , kS k

nD x

2 w~ x!U 5 U O
0#j,Mn

S O
k[In, j

vn , kS k

nD x

2 E
zn, j

zn, j11

v~ z! zx dzD U ,

which is not larger than (0#j,Mn
«n, j( x). But, according to Proposition 7.4, this

sum is 2(n2s) for some s . 0. e

LEMMA 7.6. A continuous recursive definition is canonical if and only if
w(0) 5 1.

PROOF. For the “only if” proof, a reasoning similar to the one in Proposition
7.5 yields uWn 2 w(0) u 5 2(n2r). Hence, w(0) has to equal 1 for the recurrence
to be canonical.

For the “if” proof, when w(0) 5 W 5 1, we have umnu 5 2(n2r). Moreover,
WnZn 5 (0#k,n vn, k k/n 5 w(1) 1 2(n2s) for some s . 0 small enough.
Now, taking into account that Wn 5 1 1 2(n2r), we obtain Zn 5 w(1) 1
2(n2s 1 n2r), and conclude that Z 5 w(1) , 1. e

We require just two more technical propositions before proving the main
results for continuous recurrences.

PROPOSITION 7.7. Let vn,k be the weights of a continuous recursive definition, fn

be any function such that fn 5 V(1) and fn 5 o(n), x $ 0, and r . 0 and 0 , q #
1 be the constants in the definition of continuous recursive definition. Define hn 5
max{ fn, n12q}. Then (0#k,fn

vn,k(k/n)x 5 2(max{n2r, (hn/n)2m}), where m , 0 is
such that w(m) converges.

PROOF. Assume x 5 0. Let gn 5 Q(hn z nq21) be a function with integer
values such that gn z n/Mn $ fn for large n (notice that this implies gn $ 1).
Then (0#k,fn

vn, k # (0#k,gn z n/Mn
vn, k 5 (0#j,gn

(k[In , j
vn, k for large n. On

the other hand,

U O
0#j,gn

S O
k[In, j

vn , k 2 E
zn, j

zn, j11

v~ z! dzD U # O
0#j,gn

«n , j 5 2~n2r!.

Furthermore, (0#j,gn
*zn , j

zn , j11 v( z) dz 5 *0
gn/Mn v( z) zmz2m dz, which can be

bounded by

S gn

Mn
D 2mE

0

gn/Mn

v~z!zm dz # 2~~hn/n!2m!w~m! 5 2~~hn/n!2m!.

Altogether, the proposition is proved for the case x 5 0.
The proof for x . 0 is now trivial, since (0#k,fn

vn, k(k/n)x # (0#k,fn
vn, k.

e

PROPOSITION 7.8. Let vn,k be the weights of a continuous recursive definition,
x $ 0, and N $ 1 be any constant. Then (0#k,N vn,k(k/n)x 5 2(n2u) for some
u . 0.
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PROOF. It is enough to use Proposition 7.7 with fn 5 N. Then hn 5 Q(n12q)
and the sum above is bounded by 2(max{n2r, nmq}). e

THEOREM 7.9. Let Cn be defined by a canonical continuous recursive definition,
and let tn 5 2(logc n), where c , 21. Then Cn 5 2(1). Moreover, Cn 5 Q(1) if
Cn $ 0 for every n $ 0 and tn . 0 for n large enough.

PROOF. By Proposition 7.8, we have (0#k,N wn, k 5 2(n2u) for some u . 0.
Hence, we only need to use Theorems 4.3 and 4.4 to complete this proof. e

THEOREM 7.10. Let a function be defined by a canonical continuous recursive
definition, and let tn 5 najn, where a . 0 and jn 5 ln or jn 5 1/ln for some
subpolynomial function ln. Then *(1) 5 1 2 w(a).

PROOF. Let us assume jn 5 1/ln. Then

*n
(1) 5 1 2 O

Ng#k,n

vn , k z
tk

tn

5 1 2 O
Ng#k,n

vn , kS k

nD
a
ln

lk

.

By hypothesis, for every « . 0 there exists some N« such that k«/lk # (k 1
1)«/lk11 and lk # lk11 for all k $ N«. Choose any 0 , « , a, and let k and
n be such that N« # k , n. Then we have k«/lk # n«/ln and lk # ln.
Therefore,

O
N«#k,n

vn , kS k

nD
a

# O
N«#k,n

vn , kS k

nD
a
ln

lk

# O
N«#k,n

vn , kS k

nD
a2«

.

Now we can set Ng 5 N« to get

1 2 O
Ng#k,n

vn , kS k

nD
a

$ *n
(1) $ 1 2 O

Ng#k,n

vn , kS k

nD
a2«

.

From Propositions 7.5 and 7.8, we deduce 1 2 w(a) $ *(1) $ 1 2 w(a 2 «),
which is true no matter how small « is. Since w( x) is a continuous function, we
conclude *(1) 5 1 2 w(a).

A similar argument proves the case jn 5 ln. e

THEOREM 7.11. Let a function be defined by a canonical continuous recursive
definition, and let tn be a superpolynomial function. Then *(1) 5 1.

PROOF. The proof is very similar to that of Theorem 7.10. e

THEOREM 7.12. Let a function be defined by a canonical continuous recursive
definition, and let tn 5 lnc n z jn, where c . 21 and jn 5 mn or jn 5 1/mn for some
sublogarithmical function mn. Then *(ln) 5 2(c 1 1) *0

1 v(z)ln z dz.

PROOF. First of all, we must make sure that *(ln) exists and is strictly positive.
It is easy to prove that 2*0

1 v( z) ln z dz, if exists, is strictly greater than 0.
Proving that it does not diverge is not more difficult. Let m , 0 be such that w(m)
converges, and let 0 , u , 1 be such that 2ln z # zm in the interval (0, u].
Then,
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2E
0

1

v~z!ln z dz # E
0

u

v~z!zm dz 2 E
u

1

v~z!ln z dz # w~m! 2 w~0!ln u , 1`.

Now, assume jn 5 1, that is, tn 5 lnc n. Then we have

*n
(ln) 5 ~1 2 Wn!ln n 1 Wnln n 2 O

Ng#k,n

vn,k z
lnc11k

lnc n
.

Let gn 5 Q(nd) be a function with integer values, where d 5 q/ 2. So, we have
0 , d , q and 0 , d 1 1 2 q , 1. For large n,

*n
(ln) 5 2mnln n 1 O

gnzn/Mn#k,n

vn,k z
lnc11n 2 lnc11k

lnc n

1 O
0#k,Ng

vn,kln n 1 O
Ng#k,gnzn/Mn

vn,kSln n 2
lnc11k

lnc n D .

The term 2mnlnn above vanishes because mn 5 2(n2r). Moreover, the second
line above is positive, and can be bounded by ((0#k,gn z n/Mn

vn, k) ln n. Setting
fn 5 Q(n12q/ 2) in Proposition 7.7 proves that this sum also vanishes for large n.
The rest of the proof is devoted to find the limit of the term that is left.

For every gn # j , Mn, define

Dn , j 5 U O
k[In, j

vn , k z
lnc11n 2 lnc11k

lncn
2 S2~c 1 1!E

zn, j

zn, j11

v~z!ln z dzDU .

Assume that the first term above is larger than the second one. Then

Dn , j

c 1 1
# O

k[In, j

vn , k z
lnc11n 2 lnc11~zn, j z n!

~c 1 1!lncn
1 E

zn, j

zn, j11

v~z!ln zn, j11 dz

5 S2ln zn, j 1 2S 1

log nDD O
k[In, j

vn,k 1 ln zn, j11E
zn, j

zn, j11

v~z! dz.

But

2ln zn, j O
k[In, j

vn,k 1 ln zn, j11E
zn, j

zn, j11

v~z! dz

5 ln zn, j z SE
zn, j

zn, j11

v~z! dz 2 O
k[In, j

vn,kD 1 lnSzn, j11

zn, j
D E

zn, j

zn, j11

v~z! dz

# 2lnS gn

Mn
D z «n, j 1 lnSgn 1 1

gn
D E

zn, j

zn, j11

v~z! dz.
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Taking into account the facts that 2ln( gn/Mn) 5 Q(log nq2d) 5 2(log n) and
ln(1 1 1/gn) 5 Q(1/gn) 5 2(n2d), we have

Dn , j

c 1 1
5 2~log n!«n, j 1 2~n2d!E

zn, j

zn, j11

v~z! dz 1 2S 1

log nD O
k[In, j

vn,k .

If the second term in the definition of Dn, j above is larger than the first one, by
means of a similar reasoning, we get

Dn , j

c 1 1
5 2~log n!«n, j 1 2~n2d! O

k[In, j

vn,k 1 2S 1

log nD E
zn, j

zn, j11

v~z! dz.

Thus, we can conclude

O
gn#j,Mn

Dn , j 5 2~log n! O
gn#j,Mn

«n, j 1 2S 1

log nDWn 1 2S 1

log nDw~0!,

which vanishes for large n, because the sum of «n, j’s is 2(n2r) for some r . 0.
Now we are ready to finish the proof, since

U O
gnzn/Mn#k,n

vn , k z
lnc11n 2 lnc11k

lncn
2 S2~c 1 1!E

gn/Mn

1

v~z! ln z dzDU
is bounded by above by (gn#j,Mn

Dn, j 5 o(1). Therefore,

* (ln) 5 lim
n31`

2~c 1 1!E
gn/Mn

1

v~z! ln z dz 5 2~c 1 1!E
0

1

v~z! ln z dz.

This ends the proof of the case jn 5 1.
The cases jn 5 mn and jn 5 1/mn for sublogarithmical mn 5 v(1) can be

proved by similar arguments (see the proof of Theorem 6.10). e

THEOREM 7.13. Let a function be defined by a canonical continuous recursive
definition, and let tn 5 ln21 n. Then *(ln z ln ln) 5 2*0

1 v(z)ln z dz.

PROOF. This proof follows the same pattern as the one of Theorem 7.12.
Therefore, we skip some steps, for the sake of brevity.

Let nn 5 exp(=ln n), and gn 5 Q(nq/nn) be a function with integer values. By
the definitions of entropy and continuous recursive definition,

*n
(lnzln ln) 5 2mn ln n z ln ln n 1 ln n z O

gnzn/Mn#k,n

vn,k~ln ln n 2 ln ln k!

1 ln n z ln ln n O
0#k,Ng

vn,k 1 ln n z O
Ng#k,gnzn/Mn

vn,k~ln ln n 2 ln ln k!,

as long as n is large enough. The term 2mn ln n z ln ln n clearly vanishes
for large n. Moreover, the second line above is positive, and bounded by
((

0#k,gn z n/Mn
vn, k) ln n ln ln n. By Proposition 7.7, this term is also o(1), since
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fn 5 hn 5 n/nn and (hn/n)2m 5 nn
m. Below, we prove that the limit of the

remaining term above is as stated by the theorem.
For every gn # j , Mn, define

Dn , j 5 U ln n z O
k[In, j

vn,k~ln ln n 2 ln ln k! 2 S2E
zn, j

zn, j11

v~z!ln z dzDU .

Assume that the first term above is larger than the second one (the opposite
produces a similar bound). Then

Dn , j # ln n z O
k[In, j

vn,k~ln ln n 2 ln ln~zn, j z n!! 1 E
zn, j

zn, j11

v~z!ln zn, j11 dz.

Now it is not difficult to get

Dn , j # 2ln n z lnS1 2
ln~1/zn, j!

ln n D O
k[In, j

vn,k 1 ln zn, jE
zn, j

zn, j11

v~z! dz

1lnS1 1
1

gn
D E

zn, j

zn, j11

v~z! dz.

The contribution to the entropy of the second line is asymptotically irrelevant,
because ln(1 1 1/gn) 5 Q(1/gn) 5 o(1). For the next step, we show that the
factor ln n z ln (1 2 ln(1/zn, j)/ln n) equals ln zn, j 1 o(1), which is easy if we
take into account the fact that 1/zn, j 5 2(Mn/gn) 5 2(nn). Hence, ln(1/zn, j) 5

2(ln nn) 5 2~Î3 ln n!, which implies ln(1/zn, j)/ln n 5 2(ln22/3 n) 5 o(1). Finally,
we observe that ln(1 2 x) 5 2x 1 2( x2) when x 5 o(1) to conclude

ln n z lnS1 2
ln~1/zn, j!

ln n D 5 ln n z Sln zn, j

ln n
1 2~ln24/3n!D 5 ln zn, j 1 o~1!.

Now it is enough to follow the last steps in the proof of Theorem 7.12 to finish
this proof. e

THEOREM 7.14. All continuous recursive definitions are proper DAC recursive
definitions whose a is the unique solution of w(a) 5 1.

PROOF. From Lemma 7.3 and w(0) $ 1, the equation above has a unique
solution. Define Cn 5 Fn/na. Then, for every n $ N,

Cn 5
tn

na
1

1

na O
0#k,N

vn , kFk 1 O
N#k,n

vn , k z
ka

na
z

Fk

ka
5 t9n 1 O

0#k,n

v9n , kCk ,

where t9n 5 tn/na 1 (1/na)(0#k,N vn, kFk, and

v9n , k 5 H 0, if 0 # k , N
vn,k~k/n!a, if N # k , n.
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From Propositions 7.4 and 7.8, it is a simple matter to prove that v( z) za is the
shape function of # (just set x 5 a). Moreover, since w(a) 5 1, we have
*0

1 v( z) za dz 5 1. This proves that the recurrence for Cn is a canonical
continuous recursive definition.

As a final remark, notice that the term (1/na) (0#k,N vn, kFk in t9n is
2(n2a2u) for some u . 0 (use Proposition 7.8), and hence we are allowed to
forget about the contribution of this term to the main term of Cn. e

8. Computing the Variance

We have devoted previous sections to analyze the (expected) cost of algorithms.
However, if the executions are random (in the different possible inputs of the
same size; or in the different possible executions with the same input, if the
algorithm is randomized), then the variance of the cost is also a valuable
measure. In this section, we will analyze the variance of two types of algorithms.

8.1. ONE-BRANCH ALGORITHMS. The first class includes the algorithms that
perform one recursive call with probability 1 2 Sn, and otherwise stop the
recursion chain with probability Sn, where Sn tends to zero as long as n grows.
FIND is a prototypical example of this class. It divides the original array into two
parts, and afterwards recursively continues in the subarray to the left or in the
subarray to the right of the current pivot, or either stops with probability 1/n. In
this setting, vn, k is the probability that the algorithm performs the recursive call
over a subproblem with size k when the original problem has size n.

Let 7n be the random variable that describes the nonrecursive cost, including
both the cost to split the problem and the cost to combine the recursive
solutions. We assume that these two costs do not depend on the particular input
nor the recursive solutions, but eventually depend on which was the “pivot”
(whatever it means depending on the algorithm). We also assume that the
following symmetry holds:

Tn , j
(k) 5 Pr$7n 5 juthe ~k 1 1!-th element is the pivot%

5 Pr$7n 5 juthe ~n 2 k!-th element is the pivot%.

Under this hypothesis, the size of the recursive call implicitly gives us which was
the pivot (or its symmetric).

Let the total cost of the algorithm be described by the random variable ^n,
and let Pn, j 5 Pr{^n 5 j}. Of course, we have ( j$0 Pn, j 5 1. The Pn, j’s satisfy
the following recurrence:

Pn , j . O
0#k,n

vn , k O
i$0

Pk , iTn , j2i
(k) .

The reason for the “.” above is that we dismiss the contribution to the cost of
the executions that stop the chain of recursive calls, since, by hypothesis, Sn tends
to zero, and in most practical situations this cost is asymptotically irrelevant.

Let

E~n, k! 5 E@7nuthe ~k 1 1!-th element is the pivot# 5 O
j$0

Tn, j
(k) z j, (14)
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and

Q~n, k! 5 E@~7n!
2uthe ~k 1 1!-th element is the pivot# 5 O

j$0

Tn, j
(k) z j2. (15)

Define Fn 5 E[^n] 5 ( j$0 Pn, j z j and Gn 5 E[(^n)2] 5 ( j$0 Pn, j z j2. On the
one hand, by means of simple rewriting we obtain

Fn . tn 1 O
0#k,n

vn , kFk , (16)

as expected. Recall that, despite the approximation above, the main term of the
solution of the recurrence is indeed the main term of Fn. On the other hand,
from the equality j2 5 ( j 2 i)2 1 2( j 2 i)i 1 i2, it is straightforward to get

Gn . O
0#k,n

vn , k O
i$0

Pk , i O
j$0

Tn , j2i
(k) z j2

5 O
0#k,n

vn,k~Q~n, k! 1 2E~n, k!Fk! 1 O
0#k,n

vn,kGk . (17)

To solve this recurrence we need to estimate the sums (k vn, kQ(n, k) and
(k vn, kE(n, k) Fk.

Assume that the set of vn, k’s corresponds to a canonical continuous recursive
definition, and that 7n is not random, that is, 7n 5 tn. Then Q(n, k) 5 (tn)2,
and from E(n, k) 5 tn and (16) we have (0#k,n vn, k2E(n, k) Fk . 2tnFn 2
2(tn)2. Thus, (17) reduces to

Gn . 2tnFn 2 ~tn!
2 1 O

0#k,n

vn , kGk . (18)

Notice that this recurrence is a continuous recursive definition with the same
shape function as (16).

Suppose first tn ; najn, where a . 0 and jn includes subpolynomial terms.
According to the Continuous MT, Fn ; tn/(1 2 w(a)). Therefore, the toll
function in (18) is ; 2n2a(jn)2/(1 2 w(a)) 2 n2a(jn)2 5 n2a(jn)2(1 1
w(a))/(1 2 w(a)), and

Gn ,
1 1 w~a!

~1 2 w~2a!!~1 2 w~a!!
z ~tn!

2 .

Hence, the variance of ^n, V[^n] 5 E[(^n)2] 2 E[^n]2, can be computed as

V@^n# ,
w~2a! 2 w~a!2

~1 2 w~2a!!~1 2 w~a!!2
z ~tn!

2 .

Suppose now tn ; lnc n z jn, where c . 21 and jn includes sublogarithmical
terms. Then Fn ; tn ln n/(c 1 1)I, where I 5 2*0

1 v( z) ln z dz . Replacing this
result in (18) yields Gn ; (tn)2 ln2 n/(c 1 1)2I2, and we can only conclude V[^n] 5
o(Fn)2, but no more precise statement can be made in general.
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8.2. TWO-BRANCH ALGORITHMS. These algorithms perform two recursive
calls to subproblems with size k and n 2 1 2 k, respectively, with probability
1 2 Sn. Otherwise, the algorithm makes no recursive call. Again, Sn tends to
zero as long as n grows. Quicksort is a prototypical example of this class. It
divides the array into two parts, and afterwards it recursively sorts the left and
the right subarrays.

Let cn, k be the probability that the original problem of size n is broken into
two subproblems of sizes k and n 2 1 2 k, respectively. Like for one-branch
algorithms, assume that the algorithm’s cost to break and recombine does not
depend on the particular input nor the recursive solutions, but does depend on k,
the “pivot.” Again, let Pn, j 5 Pr{^n 5 j}. Then

Pn , j . O
0#k,n

cn , k O
i, y$0

Pk , iPn212k , yTn , k , j2i2y .

Let E(n, k) be defined as in (14), and let Fn 5 E[^n]. It is easy to see that Fn

follows the recurrence

Fn . tn 1 O
0#k,n

cn , k~Fk 1 Fn212k! .

Let Q(n, k) be defined as in (15), and let Gn 5 E[(^n)2]. Then

Gn . O
0#k,n

cn , k O
i , y$0

Pk , iPn212k , y O
j$0

Tn , k , j2i2y z j2.

Using j2 5 ( j 2 i 2 y)2 1 2( j 2 i 2 y)i 1 2( j 2 i 2 y) y 1 2iy 1 i2 1 y2

yields

Gn . O
0#k,n

cn , k~Q~n, k! 1 2E~n, k!~Fk 1 Fn212k! 1 2FkFn212k!

1 O
0#k,n

cn,k~Gk 1 Gn212k!.

We can solve the recurrences for Fn and Gn under some particular hypotheses.
Assume that E(n, k) 5 tn, Q(n, k) 5 (tn)2, and that there exists some function
c( z) such that

O
0#j,Mn

U O
k[In, j

cn , k 2 E
zn, j

zn, j11

c~ z! dzU 5 2~n2r!,

where c( z), Mn, In, j, zn, j and r are like in Definition 3.2. Then Fn follows the
continuous recurrence

Fn . tn 1 O
0#k,n

vn , kFk ,

where vn, k 5 cn, k 1 cn, n212k, and thus v( z) 5 c( z) 1 c(1 2 z). Moreover,
a 5 1, because
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E
0

1

v~ z! z1 dz 5 E
0

1

~c~ z! z 1 c~ z!~1 2 z!! dz 5 E
0

1

c~ z! dz 5 1.

Also, under the assumptions above, we have

Gn . 2tnFn 2 ~tn!2 1 2 O
0#k,n

cn , kFkFn212k 1 O
0#k,n

vn , kGk .

Suppose first tn ; najn, where a . 1 and jn includes subpolynomial terms.
Then Fn ; tn/(1 2 w(a)), and

Gn , S 1 1 w~a!

~1 2 w~2a!!~1 2 w~a!!
1

2*0
1 c~ z! za~1 2 z!a dz

~1 2 w~2a!!~1 2 w~a!!2D ~tn!
2 ,

where the integral above results from a reasoning similar to those used to derive
the Continuous MT. We can conclude

V@^n# ,
w~2a! 2 w~a!2 1 2*0

1 c~z!za~1 2 z!a dz

~1 2 w~2a!!~1 2 w~a!!2
z ~tn!

2 .

Suppose now tn ; n lnc n z jn, where c . 21 and jn includes sublogarithmi-
cal terms. Then Fn ; tn ln n/*, where * 5 2(c 1 1) *0

1 v( z) z ln z dz. Like
for one-branch algorithms, we can only conclude V[^n] 5 o(Fn)2, since

Gn ,
2 *0

1 c~ z! z~1 2 z! dz

~1 2 w~2!!*2
z ~tn!

2 ln2n 5
~tn!

2 ln2n

*2
.

For this last step, it is enough to notice that 2 *0
1 c( z) z(1 2 z) dz 5 1 2 w(2).

9. Open Problems

The results of this work could be extended in other directions. For instance,
consider the system of equations

Fn
(1) 5

tn
(1) 1 O

0#i,n

vn , i
(1, 1)Fi

(1) 1 · · · 1 O
0#i,n

vn , i
(1, k)Fi

(k) ,

Fn
(2) 5

tn
(2) 1 O

0#i,n

vn , i
(2, 1)Fi

(1) 1 · · · 1 O
0#i,n

vn , i
(2, k)Fi

(k) ,

· · ·

Fn
(k) 5

tn
(k) 1 O

0#i,n

vn , i
(k , 1)Fi

(1) 1 · · · 1 O
0#i,n

vn , i
(k , k)Fi

(k) ,

where the weights above fulfill the discrete and/or the continuous pattern. The
problem is: Can we systematically solve such a system, for a wide set of toll
functions and weight distributions?

On the other hand, it would be interesting to dispose of theorems to
systematically solve recurrences on more than one variable, like
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Fn , m 5 tn , m 1 O
0#i,n

O
0#i,n

wn , m , i , jFi , j ,

where the weights above follow a discrete or continuous pattern.
Finally, and mostly of theoretical interest, we could deal with toll functions

tn 5 nadn for some dn subpolynomial and superlogarithmical (like dn 5
exp(=ln n)), or dn 5 v(log21 n) and dn 5 o(log211« n) for every « . 0, or
dn 5 o(log21 n) and dn 5 v(log212« n) for every « . 0. The main interest of
the later case would be finding the maximum growing order for dn such that
Fn 5 2(na).

Appendixes

A. Examples of the Use of the Discrete Master Theorem

We start solving (1). First, we identify the main term of toll function, and the sets
of values {wd}1#d#D and { zd}1#d#D. This yields tn ; n1 ln0 n, w1 5 w2 5 1
and z1 5 z2 5 1/ 2. Note that the bounds for rd, n and sd, n trivially hold here,
because Definition 2.1 always covers floors and ceilings. We now define F( x) 5
2(1/ 2)x, and evaluate * 5 1 2 F(1) 5 0. Since * 5 0, we compute *9 5 2(0 1
1)(2(1/2)1 ln(1/2)) 5 ln 2. Therefore, Mn ; n ln n/ln 2 5 n log2 n.

Let us analyze (2). The main term in its toll function is n0 ln0 n. Moreover,
w1 5 w2 5 1/ 2 and z1 5 z2 5 1/ 2. So, we define F( x) 5 (1/ 2)x. Since * 5
1 2 F(0) 5 0, we compute *9 5 2(0 1 1)((1/2)0 ln(1/2)) 5 ln 2, and conclude
Bn ; ln n/ln 2 5 log2 n.

We now consider (3). Suppose tn 5 6n2/ln5 n. The weights are w1 5 2, w2 5
4 and w3 5 1/ 2; the fractions are z1 5 1/3, z2 5 1/ 2 and z3 5 4/5. It is a
simple matter to check that this recurrence follows Definition 2.1. So, we define
F( x) 5 2(1/3)x 1 4(1/ 2)x 1 1/ 2 z (4/5)x, and * 5 1 2 F(2) 5 2122/225.
Since * , 0, we have Fn 5 Q(na), where a is the unique solution of the
equation F(a) 5 1, which numerically is a . 2.68723.

Solving

f~n! 5 Q~n! 1 2fSn

2D 1 2fSn

3D 1 2fSn

6D
is very similar. It yields f(n) 5 Q(na), where a . 1.72121 is the unique solution
of 2(1/2)a 1 2(1/3)a 1 2(1/6)a 5 1. This is an upper bound to the system of
equations presented in Kuo and Chang [1994, pp. 79 – 80], where a very good
approximation, a . 1.722, is given.4

Finally, set tn 5 n2 for (11). Solving it is very easy: w1 5 1 and z1 5 1/4;
F( x) 5 (1/4)x and * 5 1 2 F(2) 5 15/16; since * . 0, we deduce Fn ;
n2/(15/16) 5 16n2/15.

In this example, we can get more information by means of a simple trick. Let
Gn 5 Fn 2 16n2/15. Then,

4 Thanks are due to Fatos Xhafa for suggesting this example.
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Gn 5 n2 1 F n/4 2
16n2

15
5 2

n2

15
1

16

15 n

4
2

1 Gn/4 .

We can now find bounds for Gn. Taking into account that n/4 2 3/4 # n/4 #
n/4, we have n2/16 2 3n/8 1 9/16 # n/42 # n2/16, and hence

2
2n

5
1

9

15
1 Gn/4 # Gn # Gn/4 .

We can use the Discrete MT again to solve G9n 5 22n/5 1 9/15 1 G9n/4. This
is even simpler, since the distribution of weights remains unchanged, and so does
F( x). The main term in the toll function is negative (22n/5); recall that this is
not a problem. Computing * yields * 5 1 2 F(1) 5 3/4, and therefore G9n ;
22/5 z n/(3/4) 5 28n/15. We now solve G 0n 5 G 0n/4, and get G 0n 5 2(na) 5
2(1); not Q(1), since every term could be zero. Finally, we conclude Fn 5
16n2/15 1 Gn, where 28n/15 1 o(n) # Gn # 2(1), thus achieving tighter
bounds for Fn. We will see that for stochastic recurrences this technique provides
more accurate results.

B. Examples of the Use of the Continuous Master Theorem

We first analyze (4). It is trivial to show that v( z) 5 2. Therefore, w( x) 5
*0

1 v( z) zx dz 5 2/( x 1 1) if x . 21 (and w( x) 5 1` otherwise). Since * 5
1 2 w(1) 5 0, we define *9 5 2*0

1 v( z) z1 ln z dz 5 1/ 2, and finally Qn ; n
ln n/(1/ 2) 5 (2 ln 2)n log2 n . 1.38n log2 n.

To solve (5) we start identifying the shape function for the weights, using
Lemma 7.2. First, we replace the term n 1 1 in the denominator of vn, k by n.
This yields sn, k 5 4(n 2 k)/n2. Second, we compute v( z) 5 n z sn, zn 5 n z
4(n 2 zn)/n2 5 4(1 2 z). Third and last, we check that *0

1 v( z) dz 5 2 $ 1
indeed. Now we define w( x) 5 4 *0

1 (1 2 z) zx dz 5 4(1/( x 1 1) 2 1/( x 1 2))
if x . 21 (and w( x) 5 1` otherwise). Since * 5 1 2 w(0) 5 21 , 0, we
conclude Fn 5 Q(na), where a is the unique solution of w(a) 5 1. This yields
a 5 (=17 2 3)/2 . 0.56155 (the only solution to a2 1 3a 2 2 5 0 that is larger
than 21).

We now solve (9), for which we already know that v( z) 5 2z. In this case
w( x) 5 2/( x 1 2) if x . 22 (and w( x) 5 1` otherwise). Since * 5 1 2
w(1) 5 1/3 . 0, it follows that Sn ; n/(1/3) 5 3n.

In this example, we can get more information, using the technique that was
presented in Appendix A. Define Gn 5 Sn 2 3n. Then,

Gn 5 n 1 1 1
2

n2 O
0#k,n

kSk 2 3n 5 22n 1 1 1
6

n2 O
0#k,n

k2 1
2

n2 O
0#k,n

kGk .

But (0#k,n k2 5 n3/3 2 n2/ 2 1 n/6. Thus,

Gn 5 22 1
1

n
1

2

n2 O
0#k,n

kGk .
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Notice that, in contrast to what happens with discrete recurrences, the recur-
rence for Gn above does not contain noise terms. Now we use the Continuous
MT again. The first step is already done, since the distribution of weights
remains the same, and w( x) too. Since * 5 1 2 w(0) 5 0, we compute *9 5
2*0

1 v( z) z0 ln z dz 5 1/ 2, and get Gn ; 22 ln n/(1/ 2) 5 24 ln n.
We can go one step further, defining In 5 Gn 1 4Hn, which is slightly simpler

than defining In 5 Gn 1 4 ln n. Notice that we are extracting the main terms of
Sn one by one. This step yields

In 5
4Hn

n
2

1

n
1

2

n2 O
0#k,n

kIk ,

where we have used the fact that (0#k,n kHk 5 n2Hn/ 2 2 n2/4 2 nHn/ 2 1
n/4. Now we get * 5 1 2 w(21) 5 21 , 0, and hence In 5 2(na) 5 2(1); we
cannot deduce In 5 Q(1), since the toll function in the definition of In includes
positive and negative terms together. At this point we cannot go any further,
because we have reached the core of the recurrence. As a conclusion, we have
Sn 5 3n 2 4 ln n 1 2(1).

As a final remark, hybrid recurrences like

Fn 5 n2 1 F n/ 2 1
1

n
O

0#k,n

Fk

can be analyzed by combining both MTs. So, to solve this recurrence is enough to
find out that w1 5 1, z1 5 1/ 2 and v( z) 5 1; compute * 5 1 2 (1/ 2)2 2
*0

1 z2 dz 5 5/12 . 0; and conclude Fn ; n2/(5/12) 5 12n2/5.
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