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Introduction Small Samples Large Samples

Problem: Given an array A of n items and a rank m,1 � m � n, find the mth smallest element in A.

The algorithm should work in (expected) linear time�(n), irrespective of m.
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Introduction Small Samples Large Samples

Hoare (1962) invents quickselect: pick some element p
from the array, called the pivot, rearrange the

contents of A so that all elements in A smaller that p
are to its left, and all elements larger than p are to its

right; if p is at position j = m it is the sought element;

if j > m proceed recursively in A[1::j � 1], otherwise inA[j + 1::n].
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Elem quickselect(vector<Elem>& A, int m) {int l = 0; int u = A.size() - 1;int k, p;while (l <= u) {p = select_pivot(A, l, u, m);swap(A[p], A[l]);partition(A, l, u, j);if (m < j) u = j-1;else if (m > j) l = j+1;else return A[j];} }
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The expectation characteristic function:

f(�) = limn!1m=n!�
E[Cn;m]n

The second factorial moment characteristic

function:

g(�) = limn!1m=n!�
E
hCn;m2

i
n2

For the variance we have

v(�) = limn!1m=n!�
V[Cn;m]n2 = g(�)� f2(�)
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Example

Standard quickselect (Knuth, 1971):

f(�) = m0(�) = 2�2(� ln�+(1��) ln(1��)) = 2+2�H(�)
Median-of-three (Kirschenhofer, Martínez & Prodinger, 1997):

f(�) = m1(�) = 2 + 3�(1� �)
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A plot of the standard quickselect and

median-of-three characteristic functions
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Introduction Small Samples Large Samples

Adaptive sampling uses a sample of s elements to

choose a pivot for each recursive stage of

quickselect.

If the current relative rank is � = m=n, we select

the element of rank r(�) from the sample

Example

Standard quickselect: s = 1; r(�) = 1
Median-of-(2t+ 1): s = 2t+ 1; r(�) = t+ 1
Proportion-from-s: r(�) � � � s

Adaptive Sampling for Selection Data Structures 2006



Introduction Small Samples Large Samples

Adaptive sampling uses a sample of s elements to

choose a pivot for each recursive stage of

quickselect.

If the current relative rank is � = m=n, we select

the element of rank r(�) from the sample

Example

Standard quickselect: s = 1; r(�) = 1
Median-of-(2t+ 1): s = 2t+ 1; r(�) = t+ 1
Proportion-from-s: r(�) � � � s
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Example

We are looking the fourth element (m = 4) out of n = 15 elements

9 5 10 12 3 1 11 15 7 2 8 13 6 4 14

� = 4=15 < 1=3
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Example

We are looking the fourth element (m = 4) out of n = 15 elements

7 5 4 6 3 1 8 2 9 15 11 13 12 10 14
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Example

We are looking the fourth element (m = 4) out of n = 15 elements

7 5 4 6 3 1 8 2 9 15 11 13 12 10 14

1=3 < � = 4=8 = 1=2 < 2=3
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Example

We are looking the fourth element (m = 4) out of n = 15 elements

7 5 4 6 3 1 8 2 9 15 11 13 12 10 14

1=3 < � = 4=8 = 1=2 < 2=3
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Example

We are looking the fourth element (m = 4) out of n = 15 elements

1 5 4 2 3 6 8 7 9 15 11 13 12 10 14
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Example

We are looking the fourth element (m = 4) out of n = 15 elements

1 5 4 2 3 6 8 7 9 15 11 13 12 10 14

� = 4=5 > 2=3
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Example

We are looking the fourth element (m = 4) out of n = 15 elements

1 5 4 2 3 6 8 7 9 15 11 13 12 10 14

� = 4=5 > 2=3
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Example

We are looking the fourth element (m = 4) out of n = 15 elements

2 3 1 4 5 6 8 7 9 15 11 13 12 10 14
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A plot of standard, median-of-three and

proportion-from-two characteristic functions
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A plot of median-of-three versus batfind (a.k.a.

proportion-from-three) characteristic functions
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�-find is like proportion-from-3, but cut points

located at � and 1� � , instead of 1=3 and 2=3
If � ! 0 then f� ! m1 (median-of-three)

If � ! 1=2 then f� behaves like proportion-from-2,

but it is not the same
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A plot of �-find’s characteristic function for various

values of �
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A plot of �-find’s characteristic function for various

values of �
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A plot of �-find’s characteristic function for various

values of �
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A plot of �-find’s characteristic function for various

values of �
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A plot of �-find’s characteristic function for various

values of �
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A plot of �-find’s characteristic function for various

values of �
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A 3D plot of �-find’s characteristic function
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Theorem

There exists a value ��, namely, �� = 0:182 : : :, such that

for any � , 0 < � < 1=2, and any �,

f��(�) � f�(�)
Furthermore, �� is the unique value of � such that f�
is continuous,i.e.,

f��;1(��) = f��;2(��)

Adaptive Sampling for Selection Data Structures 2006



Introduction Small Samples Large Samples

Theorem

There exists a value ��, namely, �� = 0:182 : : :, such that

for any � , 0 < � < 1=2, and any �,

f��(�) � f�(�)
Furthermore, �� is the unique value of � such that f�
is continuous,i.e.,

f��;1(��) = f��;2(��)
If we consider average total cost then �� � 0:25
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Theorem

The expectation characteristic function f(�) of any

adaptive sampling strategy satisfies

f(�) = 1 + s!(r(�)� 1)!(s� r(�))!�"Z 1

� f ��x
�xr(�)(1� x)s�r(�) dx

+ Z �
0

f ��� x1� x
�xr(�)�1(1� x)s+1�r(�) dx#
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Theorem

The second factorial moment characteristic functiong(�) of any adaptive sampling strategy satisfies

g(�) = 2f(�)� 1 + s!(r(�)� 1)!(s� r(�))!�"Z 1

� g ��x
�xr(�)+1(1� x)s�r(�) dx

+ Z �
0

g ��� x1� x
�xr(�)�1(1� x)s+2�r(�) dx#
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A plot of v(�) for standard quickselect (Kirschenhofer,

Prodinger (1998)) and for median-of-three
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Intuition: Using very large sample and

proportion-from-s helps, because we get a very

good pivot, very close to the sought element

We should make sure that our pivot is very close

BUT at the right side of the sought element! (i.e.,

slightly to the right if � < 1=2, slightly to the left if� > 1=2)
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Definition

A family of sampling strategies is biased if, for � < 1=2,
r(�) > s � �+ 1� �
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Theorem

Biased proportion-from-s sampling with s!1
achieves optimal expected performance:

f(�) = 1 +min(�; 1� �)
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The proof of Martínez, Panario, Viola (2004) for

fixed-size sampling with s!1 works also for

variable-size samples, i.e., s = s(n), as long as s(n)!1
and s(n)=n! 0 when n!1.

Theorem

For biased proportion-from-s sampling with increasing

variable-size samples (i.e., s = s(n)!1; s=n! 0),
E[Cn;m] = n+min(m;n�m) + ��max�s; ns

��
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Theorem

Biased proportion-from-s sampling with s!1 has

subquadratic variance:

v(�) = limn!1m=n!�
V[Cn;m]n2 = 0
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Theorem

Biased proportion-from-s sampling with s!1 has

subquadratic variance:

v(�) = limn!1m=n!�
V[Cn;m]n2 = 0

The same holds true for median-of-(2t+ 1), whent!1
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Theorem

For biased proportion-from-s sampling with increasing

variable-size samples (i.e., s = s(n)!1; s=n! 0),
V[Cn;m] = � max n2s ; n � s!!
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Theorem

The optimal sample size to minimize both the variance

and the expected value of proportion-from-s is

s� = �(pn)
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Open Problems

Obtain explicit solutions for interesting particular

cases

Show that for any fixed sample size s, the optimal

strategy is proportion-from-s at appropriate cut

points (like �-find)

Find a simple (exact or approximate) formula for

the location of optimal cut points

Why the coefficient of n2 in the variance of

median-of-3 is bimodal? Any intuitive explanation?

Better asymptotic estimates for the optimal

sample size s� (namely, the coefficient of
pn). How

does it depend on �?
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