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Disclaimer

o Mayre [l make a few "controversial’ statements
o And therell e little math .. sorry!

@ | express here my own opinions; my goal is NOT to
convince you BUT to make you think agout it!
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Corterts

o "Philosophy”
o Example(s)
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The Goals of Analysis of Algorithms

O To predict the amount of computational resources
needed By an alcorithm, in terms of simple
parameters, e, size.
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The Goals of Analysis of Algorithms

Q@ To predict the amount of computational resources
needed By an alcorithm, in terms of simple
parameters, e, size.

Q@ To compare the performance of competing
akternative solutions.

© To help and auide the desian of New algorithms or
variants of existing ones.

Q To explain the orserved performance oOf
alaorithms.
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The Goals of Analysis of Algorithms

o Qoals 4l and 4k are "scientific” oals.
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The Goals of Analysis of Algorithms

o Qoals 4l and 4k are "scientific” oals.
o Goals H#2 and 43 are "enaineering” coals.
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"Philosophical” issues

Claim:
Analysis of Algorithms =~ Theoretical Physics
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A pun

E =08(m) (Einstein’s Special Relativity)

F=0(md?  (Newton's Gravity Law)

I=0(V/VR) (Ohw's Resistance Law)

Az = Q(Ap) (Heisenrera’s Uncertainty Principle)

I(v,T) = O(Tv?)  (Planck’s Law for Black Body Radiation);
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A pun

2

E = mc (Einstein’s Special Relativity)
F = G"\gn (Newrton’s Gravity Law)
I=— (Ohm's Resistance Law)
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Methodoloaical issues

At a formal level:
We share many mathematical techniQues and tools

o Complex analysis

o Differential equations

o Proeaegility

o Linear alaerra

o Generating functions (aka. partition functions)
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Methodoloaical issues

Other areas of Computer Science rely more heavily in
loGie, arstract alzerra, ceometry, ...
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Epistemoloaical issues
At a deep level:

o Goals H=l and =4 of AoLA are identical to the
Main Goals of any other Science
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o We share with Theoretical Physics the Quest for
Quantitative predictions, the use of mathematical
models that provide measurarle and precise
descriptions of the Behavior of a system (which
urtimately explain it)
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Epistemoloaical issues

At a deep level:

o Goals H=l and =4 of AoLA are identical to the
Main Goals of any other Science

o We share with Theoretical Physics the Quest for
Quantitative predictions, the use of mathematical
models that provide measurarle and precise
descriptions of the Behavior of a system (which
urtimately explain it)

o Theoretical Physics is interested in orserved
natural phenomens; we (AotA) are interested in
the rehavior of artificial systems: alaorithms
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The rSle of experiments

My answer:
The rSle of experiments in AofA is the rSle they play
iN the scientific method.
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The rSle of experiments

Q Experiments are the source of (controlled)
orservations, a very fruitful startina point for
the scientific endeavour
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aout the Behavior of algorithms
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The rSle of experiments

O Experiments are the source of (controlled)
orservations, a very fruitful startina point for
the scientific endeavour

Q They help us develop hypotheses and intuitions
arout the rehavior of algorithms

Q They serve to test the hypotheses and refine them
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The rSle of experiments

O Experiments are the source of (controlled)
orservations, a very fruitful startina point for
the scientific endeavour

Q They help us develop hypotheses and intuitions
arout the rehavior of algorithms

Q They serve to test the hypotheses and refine them

Q They are the utimate yardstick for the utility of
our computational and mathematical models
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The rSle of experiments

O They can re used tO check tO what extent the
conclusions drawn £rom the models apply in (real
life?) situations where some Of our assumptions
do not hold, ea., randomness of the input,
independence, etc.
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The rSle of experiments

O They can re used tO check tO what extent the
conclusions drawn £rom the models apply in (real
life?) situations where some Of our assumptions
do not hold, ea., randomness of the input,
independence, etc.

Q £ your model does not apply, try to £ind an
explanation for failure

© Correctness is NoOt an arsolute concept in Natural
sciences: the cdaim that the Earth is an sphere is
Not correct, But it more "correct” than the claim
it is plane! Use experiments to Quantity the
‘correctness” of your model
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The rSle of experiments

Q Simulations are closely related to experiments But
a simulation produces (numerical) data according to
3 theoretical model
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The rSle of experiments
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a simulation produces (numerical) data according to
a theoretical model

Q Simulations are very useful to investicate when
the asywptotic reaime starts, estimate the
maanitude of hidden constarts, ete
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The rSle of experiments

Q Simulations are closely related to experiments But
a simulation produces (numerical) data according to
a theoretical model

Q Simulations are very useful to investiaate when
the asywptotic reaime starts, estimate the
maanitude of hidden constarts, ete

© For us it is often difficut to draw a line petween
experiments and simulations: the algorithms (=
Nnature) micht re seen as models themselves!
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Do’s and Don+ts

Q They should e set up with a falsifiakle hypothesis
(that's what the scientitic method requiresh
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Do’s and Don+ts

Q They should e set up with a falsifiakle hypothesis
(that's what the scientific method requiresh

Q £ not, theyre fine for the exploratory phase, But
Not much more ... Put it Boldly: use them, they
miaht Be Good to illustrate your point, eut Be
aware of their limited value
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Do’s and Don+ts

Q They should e set up with a falsifiakle hypothesis
(that's what the scientific method requiresh

Q £ not, theyre fine for the exploratory phase, But
Not much more ... Put it Boldly: use them, they
miaht Be Good to illustrate your point, eut Be
aware of their limited value

© Experiments must re reproducigle: retter report
artifact-independent measures!
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Do’s and Don+ts

o Empirical comparative studies (“running races™ can
raise your adrenaline ), may Bring you £ame and
fortune, But have little or no explicative power ...
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Do’s and Don+ts

o Empirical comparative studies (“running races™ can
raise your adrenaline ), may Bring you £ame and
fortune, But have little or no explicative power ...

o They are OK $from the enaineering perspective

o Comparina two variants A’ and A" of an alaorithm
is useful from the scientific point of view; the
differences in performance could hopefully re
explained in terms of the (small) differences
Between A’ and A"
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Do’s and Don+ts

o CPU time depends on many factors, including the
instrument of measure (the computer)!
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instrument of measure (the computer)!

@ A serious scientific study of CPU time and other
machine-dependent features must analyze and
explain each Of the factors involved: run the
experiments for different architectures,
ProGgramming lanauaaes, . ..
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@ A serious scientific study of CPU time and other
machine-dependent features must analyze and
explain each Of the factors involved: run the
experiments for different architectures,
ProGgramming lanauaaes, . ..

o Studies of CPU time versus input size alone are
More often than Not useless; we need
experiments to reveal the dependence of CPU
tivme on several parameters
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Do’s and Don+ts

o CPU time depends on many factors, including the
instrument of measure (the computer)!

@ A serious scientific study of CPU time and other
machine-dependent features must analyze and
explain each Of the factors involved: run the
experiments for different architectures,
ProGgramming lanauaaes, . ..

o Studies of CPU time versus input size alone are
More often than Not useless; we need
experiments to reveal the dependence of CPU
tivme on several parameters

o They are difficut to reproduce
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Do’s and Don+ts

o Benchmarks are not experiments; they are
orservations, much like orserving the rehavior of
animals in the wild.
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explained and complementted By experiments (under
controlled conditions).

o They are also good (athouah f£ar $rom completeD
10 check the utility of our mathematical models; of
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Do’s and Don+ts

o Benchmarks are not experiments; they are
orservations, much like orserving the rehavior of
animals in the wild.

o They are a Nnice source Of orservational data, to e
explained and complementted By experiments (under
controlled conditions).

o They are also good (athouah f£ar $rom completeD
10 check the utility of our mathematical models; of
course it’s very nice when your predictions explain
well "real-life" phenomena

@ Good predictions for real-life data —
understanding what is the "structure” of these
instances — we can cenerate synthetic
instances that mimick well real-life instances put
that we can control at will
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Do’s and Don+ts

o We (the AofA community) need Nnot do the
experiments ourselves; But we always should strive
for someone to do them:
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Do’s and Don+ts

o We (the AofA community) need Nnot do the
experiments ourselves; But we always should strive
for someone to do them:

o Beforehand, they provide data on which we can ruild
our theories.
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Do’s and Don+ts

o We (the AofA community) need Nnot do the
experiments ourselves; But we always should strive
for someone to do them:

o Beforehand, they provide data on which we can ruild
our theories.

s Afterwards, they should e used to validate our
theories.
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Do’s and Don+ts

o |# you want to do experiments yourself: Read the
literature on experimental alaorithmics, ea. the
paprers By D. Johnson, By B Moret or gy CC.
Mc&Geoch = petter experiments, more useful
dats, ...
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Do’s and Don+ts

o |# you want to do experiments yourself: Read the
literature on experimental alaorithmics, ea. the
paprers By D. Johnson, By B Moret or gy CC.
Mc&Geoch = petter experiments, more useful
dats, ...

o I§ you do not want to do experiments yourself:

R ead the literature on experimental alaorithmics
= check that the experimental setup is correct
and well desianed, the results can Be useful £or you
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A very small sample of (un)explained experiments

o J. Eppinaer’s award winnina "An empirical study of
insertion and deletion in ginary search trees”
(1983); see the paper By J. Culrerson and |. Munro
£or some models and simulations providing partial

answers.
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A very small sample of (un)explained experiments

o J. Eppinaer’s award winnina "An empirical study of
insertion and deletion in ginary search trees”
(1983); see the paper By J. Culrerson and |. Munro
£or some models and simulations providing partial
answers.

o R Sedaewick’s experiments on depth-first search
1o locate a path from u to v in a (arid) araph
(Ac$A 2.005).
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A very small sample of (un)explained experiments

o J. Eppinaer’s award winnina "An empirical study of
insertion and deletion in ginary search trees”
(1983); see the paper By J. Culrerson and |. Munro
£or some models and simulations providing partial
answers.

o R Sedaewick’s experiments on depth-first search
t0o locate a path from u to v in a8 (arid) araph
(ActA 2005).

@ R Sedzewick’s experiments on the height of
left-leaning red-glack trees (ActA 2008).
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A very small sample of (un)explained experiments

o J. Eppinaer’s award winnina "An empirical study of
insertion and deletion in ginary search trees”
(1983); see the paper By J. Culrerson and |. Munro
£or some models and simulations providing partial
answers.

o R Sedaewick’s experiments on depth-first search
t0o locate a path from u to v in a8 (arid) araph
(ActA 2005).

@ R Sedzewick’s experiments on the height of
left-leaning red-glack trees (ActA 2008).

o J-F. Marckert’s simulations of DLAs, animals, and
other compinatorial structures (AoctA 2008).
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A very small sample of (unexplained experiments

@ The cache performance of quicksort
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A very small sample of (unexplained experiments

@ The cache performance of quicksort
o Other experiments (time permits)
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The cache performance of @uicksort

1 3) 3 ~ CACHE
B=3 (FAST)
5 5 1 Cc=4
9 8 4
Lol [ alafs]of2[e] [ s])s[ o of 7o -]
~—
MAIN MEMORY
(SLow) A request for position 9isaHIT

A request for position 7isaMISS
Some page in the cache is evicted and page <2,6,5> goes to the cache
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The cache performance of Quicksort

i j

| |

sort recursively sort recursively
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The cache performance of @uicksort

QR How many cache misses do we expect when sorting
a file of size n with Quicksort?
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The cache performance of @uicksort

QR How many cache misses do we expect when sorting
a file of size n with Quicksort?

A: ©(FInn) ... But let’s try Being more precise!
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The cache performance of @uicksort

The model: a fully associative cache (with LRU
replacement) with C paaes of size B each (ie., each
paae can store up to B elements)

Suppose that Quicksort empties the cache after each
partitioning stace
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The cache performance of @uicksort

The model: a fully associative cache (with LRU
replacement) with C paaes of size B each (ie., each
page can store up to B elements)

Suppose that Quicksort empties the cache after each
partitioning stace —

n

E[M,] = {B

2 n
14+ 2 M, B
l+ +nkz::11@[ e-1], n >
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The cache performance of @uicksort

But thinas are actually MUCH more complicated!

o After partitioning Afi..j] some elements are in the
cache, sO the recursive calls on Afi..k — 1] and
Alk + 1..7] may take advantace
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The cache performance of @uicksort

But thinas are actually MUCH more complicated!

o After partitioning Afi..j] some elements are in the
cache, sO the recursive calls on Afi..k — 1] and
Alk + 1..7] may take advantace

o Orservation: elements in the cache after
partitioning are ~ Ali.i+ B — 1] and Ak — p..k + ¢
With ¢g—p+1=C(B—-1)
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The cache performance of @uicksort

But thinas are actually MUCH more complicated!

o £ we call first on Afi..k — 1] then the elements
Alk + 1.k + q] won't likely remain in the cache when
the recursive sort of Afi.k — 1] finishes! — the
34E Of misses of the two recursive calls are not
independent
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The cache performance of @uicksort

But thinas are actually MUCH more complicated!

o £ we call first on Afi..k — 1] then the elements
Alk + 1.k + q] won't likely remain in the cache when
the recursive sort of Afi.k — 1] finishes! — the
34E Of misses of the two recursive calls are not
independent

o And we are not taking alicnment issues into
accountt herel
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The cache performance of @uicksort

LaMarcea, Ladner: "The Influence of Caches on the
Performance of Sorting" (1997
@ "Memory—tuned Quicksort": small sugarrays are
immediately sorted with insertion sort rather
than left unsorted until 8 final sinale insertion
sort step
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The cache performance of @uicksort

LaMarcea, Ladner: "The Influence of Caches on the
Performance of Sorting" (1997
@ "Memory—tuned Quicksort": small sugarrays are
immediately sorted with insertion sort rather
than left unsorted until 8 final sinale insertion
sort step
o "MutiQuicksort": partition the array into several
chunks using multiple pivots, so that each chunk fits
the cache
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The cache performance of @uicksort

LaMarcea, Ladner: "The Influence of Caches on the
Performance of Sorting" (1997
@ "Memory—tuned Quicksort": small sugarrays are
immediately sorted with insertion sort rather
than left unsorted until 8 final sinale insertion
sort step
o "MutiQuicksort": partition the array into several
chunks using multiple pivots, so that each chunk fits
the cache
o Both variants present modest performance aains
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Small first

o In order to guarantee O(logn) stack size, the two
recursive calls are reordered so that we first sort
the smwallest surarray
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Small first

o In order to guarantee O(logn) stack size, the two
recursive calls are reordered so that we first sort
the smwallest surarray

o This might Be Good £or cache misses: we sort first
a surarray that fits "Retter"” in the cache ...right?
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Small first

void quicksort(Vector& A,
int k;

if (§j - i + 1 <= n0) {

int i,

easysort(A, i, j); return;

}
int pp = get_pivot(A,
swap (A[i], Alppl);
partition(A, i, j, k);
if (k - i <= j - k) {
quicksort(A, i, k -
quicksort(A, k + 1,
} else {
quicksort(A, k + 1,
quicksort(A, i, k -

g

i,

1);
i)

i)
1);

i)

int j) {

<
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Bidirectional partition

[£ we partition Ali..j] and then call Quicksort on

Ali.k — 1], partition from richt to left; i£ you call
Quicksort on Alk..j| partition from left to riakt (usual
partition)
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Bidirectional partition

void sort_lr(Vector& A, int i, int j) A

int k;

if (j - i + 1 <= n0)
easysort(A, i, j);

}

int pp = get_pivot(A,

swap (A[i], Alppl);

partition_1r (A, i, j,

sort_rl1(A, i, k - 1);

sort_1r(A, k + 1, j);

{
return;
i, 3);
k);
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Bidirectional partition

void sort_rl(Vector& A, int i, int j) A

int k;
if (j - 1 + 1 <= n0) {

easysort(A, i, j); return;

int pp = get_pivot(A, i,
swap (A[j1, Alppl);
partition_rl(A, i, j, k);
sort_1r(A, k + 1, j);
sort_rl(A, i, k - 1);

i)
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Experiments

o We generate s = 500 random permutations of
each size n € {1000, 2000, ...,50000}
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Experiments

o We generate s = 500 random permutations of
each size n € {1000, 2000, . ..,50000}

o We count the numeer of misses for each variant
10 process each iNput in the sample (the same input
is fed to each @Quicksort)
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Experiments

o We generate s = 500 random permutations of
each size n € {1000, 2000, . ..,50000}

o We count the numeer of misses for each variant
10 process each iNput in the sample (the same input
is fed to each @Quicksort)

o First set: B:= 100, C := 10, second set: B := 4,

C =25
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Experiments

o We generate s = 500 random permutations of
each size n € {1000, 2000, . ..,50000}

o We count the numeer of misses for each variant
10 process each iNput in the sample (the same input
is fed to each @Quicksort)

o First set: B:= 100, C := 10, second set: B := 4,

C =25

o Ratios (cache__size)/(array_size) ranaina $rom

O.02 to | and $#rom O.O0O2 to Ol
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Experiments

o We generate s = 500 random permutations of
each size n € {1000, 2000, ...,50000}

o We count the numeer of misses for each variant
10 process each iNput in the sample (the same input
is fed to each @Quicksort)

o First set: B:= 100, C := 10, second set: B := 4,
C =25

@ R atios (cache__size)/(array_size) ranaina £rom
O0O2 to | and $from O.0OO02L to Ol

o Simple pivot selection scheme
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Experiments

The raseline £Or comparison is Quicksort with maximal
‘waste": E[My)| = 2% Inn +©(n).
We |ook at the followina auantities
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Experiments

The raseline £Or comparison is Quicksort with maximal
‘waste": E[My)| = 2% Inn +©(n).
We |ook at the followina auantities

® 0, = (E[M,(lo)} — M,)/n
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Experiments

The raseline £Or comparison is Quicksort with maximal
‘waste": E[My)| = 2% Inn +©(n).
We |ook at the followina auantities

® 0, = (E[M,(lo)} — M,)/n

® U, = averaae 4k OF misses per access =

MTL o l
2nlnn+0(n) ™~ B
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Experiments

o The hypothesis: E[M,] = E[M,QO)] —k-n
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Experiments

o The hypothesis: E[M,] = ]E[M,(lo)} —kem

o Different variants would have different values of
k
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Experiments

The NuMRer - Of ficse< per Acce<< (B = 100,C = 10)

1078

INg w
© =]

N
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~

1 2 3 4
10*

Black = Std; Red = Bidirectional; Blue = Small First
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Experiments
The ratio p, = M, /MY (B = 100,C = 10

0.425 -
0.4 é
0.375 é
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B AL L L e
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10°
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Experiments
The ratio p, = M, /MY (B = 100,C = 10
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But p, should tend to |, right?
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Experiments
(0)
The coeffidient of n: k ~ M=M= (B — 100, C = 10)
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Experiments
The coefticient k' ~ w (B =100,C =10)
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Experiments

The numBer L, Of misses per access (B = 4,C = 25)
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Experiments
The coefficient of n: k ~ M (B=4,C =25)
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Experiments

o The experiments either do not support the
hypothesis or k is very, very small for all considered
strateaies {
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o There are very small differences among the
different strateaies .. ut why?

o For example, Small-First makes the same numeer
Of accesses as standard Quicksort But apparently

E {My(f'td)} <E {My(Lsmall-mrst)
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Experiments

o The experiments either do Nnot support the
hypothesis or k is very, very small for all considered
strateaies {

o There are very small differences among the
different strateaies .. ut why?

o For example, Small-First makes the same numeer
Of accesses as standard Quicksort But apparently

E {My(f'td)} <E {My(Lsmall-mrst)

o Bidirectional partitioning is slightly Better than
Small-First, sut still slightly worse than standard
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Firterinag DNA sequences

@ Given two long sequences of DNA, a common
task in Bioinformaties is to £ind reaions of
similarity among them (cf. G Gonnet, AoFA
2008

Joint work with F. Bassino and J. Clément
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2008

o Finding the similarities is computationally expensive

Joint work with F. Bassino and J. Clément
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Firterinag DNA sequences

@ Given two long sequences of DNA, a common
task in Bioinformaties is to £ind reaions of
similarity amona them (cf. G. Gonnet, AoLA
2008

o Finding the similarities is computationally expensive

® Quuite often, simple algorithms called fitters are
run on the two sequences to focus the similarity
computation on promising regions

Joint work with F. Bassino and J. Clément
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Firterinag DNA sequences

@ The filter processes "windows" u and v of lenath L
and 2L from the aiven sequences U and V and
either keeps them for future inspection or
discards them
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Firterinag DNA sequences

@ The filter processes "windows" u and v of lenath L
and 2L from the aiven sequences U and V and
either keeps them for future inspection or
discards them

o The filters we consider are reliagle: i£ u and v are
conrtain significant similaraties then the filter will
keep (u,v)
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Firterinag DNA sequences

@ The filter processes "windows" u and v of lenath L
and 2L from the aiven sequences U and V and
either keeps them for future inspection or
discards them

o The fiters we consider are reliagle: i u and v are
convtain siagnificant similaraties then the fiter will
keep (u,v)

o A pair (u,v) is "good" if there is a suestring v’ of v
such that the edit distance retween u and v’ is <d
—we allow for up to d errors; symeollicaly:

A*(u,v) <d
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Firterinag DNA sequences

o The filter processes "windows" u and v of length L
and 2L from the aiven sequences U and V and
either keeps them £or future inspection or
discards them

o The filters we consider are reliagle: i£ u and v are
conrtain significant similaraties then the filter will
keep (u,v)

o A pair (u,v) is "good" if there is a suestring v’ of v
such that the edit distance retween u and v’ is <d
—we allow for up to d errors; symeollicaly:

A*(u,v) <d
@ Typical values: L =100, d = 0.1L
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Firterinag DNA sequences

o The filter processes "windows" u and v of lenath L
and 2L from the aiven sequences U and V and
either keeps them £or future inspection or
discards them

o The filters we consider are reliagle: i£ u and v are
conrtain significant similaraties then the filter will
keep (u,v)

o A pair (u,v) is "good" if there is a suestring v’ of v
such that the edit distance retween u and v’ is <d
—we allow for up to d errors; symeollicaly:

A*(u,v) <d

@ Typical values: L =100, d = 0.1L

o The proelem is that a fiter micht keep (u,v) which
are not "@ood", those are called false positives
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Firterinag DNA sequences

@ A k-match in (u,v) is 8 pair (z,7) such that
wii+k—1=v[j.j+k—1]
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Firterinag DNA sequences

o A k-tatch in (u,v) is a pair (z,7) such that
wii+k—1=v[jj+k—1]
o A folklore resutt states that

4t of k-matches > L —k(d+1)+1
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@ A folklore resutt states that

4t of k-matches > L —k(d+1)+1

@ This is the Rasis for the firter analyzed By Sutinen
and Szpankowski (Fun with Algorithms, 1998)
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Fiterina DNA sequences
@ A k-match in (u,v) is 8 pair (z,7) such that
wii+k—1=v[j.j+k—1]
o A folklore resuit states that

4t of k-matches > L —k(d+1)+1

@ This is the Rasis for the fitter analyzed By Sutinen
and Szpankowski (Fun with Algorithms, 1998)

o There is an optimal choice £or k: if too small then
you et too many matches By pure chance; if too
larae then the lower Bound arove is NOt useful
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Fiterina DNA sequences
@ A k-match in (u,v) is 8 pair (z,7) such that
wii+k—1=v[j.j+k—1]
o A folklore resuit states that

4t of k-matches > L —k(d+1)+1

@ This is the Rasis for the fitter analyzed By Sutinen
and Szpankowski (Fun with Algorithms, 1998)

o There is an optimal choice £or k: if too small then
you et too many matches By pure chance; if too
larae then the lower Bound arove is NOt useful

@ We consider a filter used in the system
which counts the nuweer of order preserving
matches
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Firterinag DNA sequences

o The relevant parameter is the efficiency of the
fiter

f =Pr{(u,v) is @oad | (u,v) is kept}
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o The relevant parameter is the efficiency of the
fiter

f =Pr{(u,v) is @oad | (u,v) is kept}

o The efficiency f can Be calculated from

vs = Pr{(u,v) is kept | A*(u,v) = 4}, 0>d
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Firterinag DNA sequences

o The relevant parameter is the efficiency of the
fiter

f =Pr{(u,v) is @oad | (u,v) is kept}

o The efficiency f can Be calculated from

vs = Pr{(u,v) is kept | A*(u,v) = 4}, 0>d

o We have an approximate model to compute v;
(there’s still some work to re doned
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Firterinag DNA sequences

o The relevant parameter is the efficiency of the
fiter

f =Pr{(u,v) is @oad | (u,v) is kept}

o The efficiency f can Be calculated from

vs = Pr{(u,v) is kept | A*(u,v) = 4}, 0>d

o We have an approximate model to compute v;
(there’s still some work to re doned

o But now [l show you a few results from
experiments. ..
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Firterinag DNA sequences
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Firterinag DNA sequences
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The hiring prorlem

@ Oriainally introduced By Broder et al. (SODA
2008)

Joint work with M. Archirald
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2008)

o A (potenttially intinite) sequence of iid. random
variarles Q; uniformly distriruted in [0, 1]

Joint work with M. Archirald
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The hiring prorlem

@ Oriainally introduced By Broder et al. (SODA
2008)

o A (potenttially intinite) sequence of iid. random
variarles Q; uniformly distriruted in [0, 1]

o At step i you either hire or discard candidate i with
score Q; (cf. T Bruss, AotA 2008)

Joint work with M. Archirald
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The hiring prorlem

@ Oriainally introduced By Broder et al. (SODA
2008)

o A (potenttially intinite) sequence of iid. random
variarles Q; uniformly distriruted in [0, 1]

o At step i you either hire or discard candidate i with
score Q; (cf. T Bruss, AotA 2008)

@ Decisions are irrevocarle

Joint work with M. Archirald
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The hiring prorlem

@ Oriainally introduced By Broder et al. (SODA
2008)

o A (potenttially intinite) sequence of iid. random
variarles Q; uniformly distriruted in [0, 1]

o At step i you either hire or discard candidate i with
score Q; (cf. T Bruss, AotA 2008)

@ Decisions are irrevocarle

o Qoals: hire candidates at some reasonagle rate,
improve the "mean" Quality of the company's staff

Joint work with M. Archigald
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The hiring proklem

o Here: a permutation m of lenath n, candidate i has
score (1)

The réle of experiments in Analysis of Alaorithms C. Martinez



The hiring prorlem

o Here: a permutation m of lenath n, candidate i has
score (1)

o The model is equivalent after "normalization”, put
is amenagle to techniQues from analytic
compinatories

The réle of experiments in Analysis of Alaorithms C. Martinez



The hiring prorlem

o Here: a permutation m of lenath n, candidate i has
score (1)

o The model is equivalent after "normalization”, put
is amenagle to techniQues from analytic
compinatories

@ We qall a8 hiring strateay rank-rased i$ and only i£
it only depends on the relative ranks of the
candidates seen soO far
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The hiring prorlem

o Here: a permutation m of lenath n, candidate i has
score (1)

o The model is equivalent after "normalization”, put
is amenagle to techniQues from analytic
compinatories

@ We qall a8 hiring strateay rank-rased i$ and only i£
it only depends on the relative ranks of the
candidates seen so far

o H(m) = the set of candidates hired in permutation
™ h(m) = #H(7)

The réle of experiments in Analysis of Alaorithms C. Martinez



The hiring prorlem

Let 7o j denote the permutation one cets after
relageling j,j+1,...,n=|n[toj+1,7+2,...,n+1and
appending j at the end

Example: 32451 0 3 = 425613

Let X;(m) =1 i# candidate with score j is hired after 7
and X;(m) = 0 otherwise.

h(m o 7) = h(m) + X;()

Let X(7) the nuwiker of j such that X;(m) =1
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The hiring proklem

Theorem
Let H(z,u) = X cp %uh(”). Then

(1— z)%H(z,u) —H(z,u)=(u—1) ) X(W)%uh(w).
TEP ’
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Hirina arove the maximum

Candidate 1 is hired i£ and only i# her score is arove the
score of the rest currently hired candidate.

o X(m)=1
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o H(m) ={i:1is a left—to-richt maximum}
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Hirina arove the maximum

Candidate 1 is hired i£ and only i# her score is arove the
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o X(m)=1
o H(m) ={i:1is a left—to-richt maximum}
o Elh,] =[2"] Z& _, Tl 0O(1)
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Hirina arove the maximum

Candidate 1 is hired i£ and only i# her score is arove the
score of the rest currently hired candidate.

o X(m)=1
o H(m) ={i:1is a left—to-richt maximum}
o Elh,] =[2"] Z& _, Tl 0O(1)

@ Variance of h, is also Inn + O(1) and after proper
normalization hY converaes to N(0,1)
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Hiring arove the median

Candidate 1 is hired i£ and only i# her score is arove the
score Of the median Of the scores of currently hired
candidates.

o X(m) = [(h(m) +1)/2]

o\/§(1+0( n=1)) < E[hn <3\f +0(n Y

@ This resutt follows easily By using previous theorem
with X (7) = (h(7) +1)/2 and Xy () = (h(7) + 3)/2 to
lower and upper BoOund
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Hirina arove the median

n € {1000,...,10000}, M = 100 random permutations for
each n
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R.emarks on the hirina prorlem

o Experiments hint at Xy () close 10O aiving the
right answer. But why?

@ We have many other resutts on the two previous
strateaies and other reasonakle strateacies (ea.,
hire agove the rest P%)

o There is a lot of work that remains to Be done
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Conclusions

@ This talk is only my personal view of this
important(?) issue
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@ This talk is only my personal view of this
important(?) issue

® ...and a taste of a few prorlems where
experimentation can play its part
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Conclusions

@ This talk is only my personal view of this
important(?) issue

® ...and a taste of a few prorlems where
experimentation can play its part

o 'l Be happy tO answer Questions (if | can), sut |
pPrefer you express your comments!
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Thank you £or your
attention
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