Branch Mispredictions in Quicksort

K. Kaligosi1 C. Martínez2 P. Sanders3

1Max-Planck-Inst., Germany
2Univ. Politècnica de Catalunya, Spain
3Univ. Karlsruhe, Germany

AofA 2006
Alden Biesen, Belgium
Modern hardware executes several sequential instructions in a pipelined fashion.
Introduction

- Modern hardware executes several sequential instructions in a pipelined fashion
- Jump instructions pose a major challenge!
Introduction

- Modern hardware executes several sequential instructions in a pipelined fashion
- Jump instructions pose a major challenge!
- So we try to predict which branch will be taken ...
Introduction

- Modern hardware executes several sequential instructions in a pipelined fashion.
- Jump instructions pose a major challenge!
- So we try to predict which branch will be taken ...
- Branch mispredictions are expensive: we have to rollback the pipeline.
Introduction

- In comparison-based algorithms, we want comparisons to yield as much information as possible \implies difficult to predict!
In comparison-based algorithms, we want comparisons to yield as much information as possible \(\implies \) difficult to predict!

In static branch prediction, jump instructions are statically predicted as TAKEN or NOT TAKEN.
In comparison-based algorithms, we want comparisons to yield as much information as possible \(\implies\) difficult to predict!

In static branch prediction, jump instructions are statically predicted as TAKEN or NOT TAKEN.

In dynamic branch prediction, the hardware predicts what to do during execution, taking the past into account.
Introduction

- In comparison-based algorithms, we want comparisons to yield as much information as possible \(\implies\) difficult to predict!
- In **static branch prediction**, jump instructions are statically predicted as **TAKEN** or **NOT TAKEN**
- In **dynamic branch prediction**, the hardware predicts what to do during execution, taking the past into account
 - 1-bit: We predict the instruction will take the same direction it took the last time it was executed
Introduction

- In comparison-based algorithms, we want comparisons to yield as much information as possible \(\implies \) difficult to predict!

- In **static branch prediction**, jump instructions are statically predicted as **TAKEN** or **NOT TAKEN**

- In **dynamic branch prediction**, the hardware predicts what to do during execution, taking the past into account
 - 1-bit: We predict the instruction will take the same direction it took the last time it was executed
 - 2-bit: We must be wrong twice before we change the prediction
In comparison-based algorithms, we want comparisons to yield as much information as possible \(\implies\) difficult to predict!

In static branch prediction, jump instructions are statically predicted as \text{TAKEN} or \text{NOT TAKEN}

In dynamic branch prediction, the hardware predicts what to do during execution, taking the past into account

- 1-bit: We predict the instruction will take the same direction it took the last time it was executed
- 2-bit: We must be wrong twice before we change the prediction
- ...

Introduction
2-bit Predictor
// We have to partition $A[i..j]$ around the pivot
// that we have already put on $A[i]$
int l = i; int u = j + 1; Elem pv = A[i];
for (; ;) {
 do ++l; while(A[l] < pv); // Loop S
 do --u; while(A[u] > pv); // Loop G
 if (l >= u) break;
 swap(A[l], A[u]);
}
swap(A[i], A[u]); k = u;
Setting up the Recurrences

▶ Probability that the chosen pivot is the kth smallest element out of the n: $\pi_{n,k}$
Setting up the Recurrences

- Probability that the chosen pivot is the kth smallest element out of the n: $\pi_{n,k}$
- Average number of branch mispredictions when partitioning an array of size n and the pivot is the kth: $b_{n,k}$
Setting up the Recurrences

- Probability that the chosen pivot is the kth smallest element out of the n: $\pi_{n,k}$
- Average number of branch mispredictions when partitioning an array of size n and the pivot is the kth: $b_{n,k}$
- Average number of branch mispredictions when partitioning an array of size n:

$$b_n = \sum_{1 \leq k \leq n} \pi_{n,k} \cdot b_{n,k}$$
Average number of branch mispredictions B_n to sort n elements:

$$B_n = b_n + \sum_{k=1}^{n} \pi_{n,k} \cdot (B_{k-1} + B_{n-k})$$
Setting up the Recurrences

- Average number of branch mispredictions B_n to sort n elements:

$$B_n = b_n + \sum_{k=1}^{n} \pi_{n,k} \cdot (B_{k-1} + B_{n-k})$$

- We will later consider the total cost T_n which satisfies the same recurrence with toll function

$$t_n = n + \xi \cdot b_n + o(n)$$
It is well-known that using samples to select the pivot of each recursive stage improves the average performance of quicksort and reduces the probability of worst-case behavior.
It is well-known that using samples to select the pivot of each recursive stage improves the average performance of quicksort and reduces the probability of worst-case behavior.

For quicksort with samples of size s from which we pick the $(p + 1)$th element as the pivot, we have

$$
\pi_{n,k} = \frac{\binom{k-1}{p} \binom{n-k}{s-1-p}}{\binom{n}{s}}
$$
Sampling

- A typical case is to pick the median of the sample with $s = 2t + 1$ and $p = t$.

(We can use variable-size samples with $s = s(n)$; then $s \not\to 1$ as $n \to 1$ but must grow sublinearly, $s = o(n)$; we use ℓ to denote the relative rank of the pivot within the sample, e.g., $\ell = 1 = 2$ means choosing the median of the sample.)
A typical case is to pick the median of the sample with $s = 2t + 1$ and $p = t$.

We can use variable-size samples with $s = s(n)$; then $s \to \infty$ as $n \to \infty$ but must grow sublinearly, $s = o(n)$; we use ψ to denote the relative rank of the pivot within the sample \implies e.g., $\psi = 1/2$ means choosing the median of the sample.
General results

Theorem
The average number of branch mispredictions to sort \(n \) elements with quicksort using samples of size \(s \) and choosing the \((p+1)\)th in the sample of each stage is

\[
B_n = \frac{\beta(s, p)}{\mathcal{H}(s, p)} n \ln n + O(n),
\]

where

\[
\mathcal{H}(s, p) = H_{s+1} - \frac{p + 1}{s + 1} H_{p+1} - \frac{s - p}{s + 1} H_{s-p}.
\]

and

\[
\beta(s, p) = \lim_{n \to \infty} \frac{b_n}{n} = \lim_{n \to \infty} \frac{1}{n} \sum_{1 \leq k \leq n} \pi_{n,k}^{(s,p)} b_{n,k}
\]
General results

Theorem
For variable-sized sampling, if $s \to \infty$ as $n \to \infty$ with $s = o(n)$, and $p/s \to \psi$ then

$$B_n = \frac{\beta(\psi)}{\mathcal{H}(\psi)} n \ln n + o(n \log n),$$

with $\beta(\psi) = \lim_{n \to \infty} \beta(s, \psi \cdot s + o(s))$ and

$$\mathcal{H}(x) = -(x \ln x + (1 - x) \ln(1 - x))$$
General results

Theorem

The total cost T_n of quicksort is given by

$$T_n = \frac{1 + \xi \cdot \beta(s, p)}{\mathcal{H}(s, p)} n \ln n + O(n), \quad s = \Theta(1)$$

and

$$T_n = \frac{1 + \xi \cdot \beta(\psi)}{\mathcal{H}(\psi)} n \ln n + o(n \log n), \quad s = \omega(1), s = o(n)$$
General results

- In order to compute $\beta(s, p)$, we can use, under suitable conditions,

$$
\beta(s, p) = \frac{s!}{p!(s - 1 - p)!} \int_0^1 x^p(1 - x)^{s-1-p} b(x) \, dx
$$

with

$$
b(x) = \lim_{n \to \infty} \frac{b_{n,x,n}}{n}
$$
General results

- In order to compute $\beta(s, p)$, we can use, under suitable conditions,

$$
\beta(s, p) = \frac{s!}{p!(s - 1 - p)!} \int_0^1 x^p (1 - x)^{s-1-p} b(x) \, dx
$$

with

$$
b(x) = \lim_{n \to \infty} \frac{b_{n,x \cdot n}}{n}
$$

- Computing $\beta(\psi)$ is easier!

$$
\beta(\psi) = b(\psi)
$$
General results

- The optimal value ψ^* for ψ minimizes the total cost, i.e., minimizes

$$\tau_\xi(\psi) = \frac{1 + \xi \cdot \beta(\psi)}{H(\psi)}$$

and depends on ξ
General results

- The optimal value ψ^* for ψ minimizes the total cost, i.e., minimizes

$$\tau_\xi(\psi) = \frac{1 + \xi \cdot \beta(\psi)}{\mathcal{H}(\psi)}$$

and depends on ξ

- It's not difficult to prove that for any s and p,

$$\frac{\beta(s, p)}{\mathcal{H}(s, p)} > \frac{\beta(\psi^*)}{\mathcal{H}(\psi^*)}$$
General results

- In general, there exists a threshold value ξ_c such that if $\xi \leq \xi_c$ (branch mispredictions are not too expensive) then we have to take the median of the samples, i.e., $\psi^* = 1/2$
General results

- In general, there exists a threshold value ξ_c such that if $\xi \leq \xi_c$ (branch mispredictions are not too expensive) then we have to take the median of the samples, i.e., $\psi^* = 1/2$

- If $\xi > \xi_c$ (that can happen often in practice!) then $\psi^* < 1/2$ and it is given by the unique solution in $[0, 1/2)$ of the equation

$$\xi \cdot b'(\psi) \mathcal{H}(\psi) = (1 + \xi \cdot b(\psi)) \mathcal{H}'(\psi)$$

(provided that $b(x)$ is in $C^2[0, 1/2]$)
General results

The threshold value ξ_c is the solution of

$$\frac{d^2 \tau_\xi(\psi)}{d \psi^2} \bigg|_{\psi=1/2} = 0$$
The threshold value ξ_c is the solution of

$$\left. \frac{d^2 \tau_{\xi}(\psi)}{d\psi^2} \right|_{\psi=1/2} = 0$$

That is

$$\xi_c = -\frac{4}{b''(1/2) \ln 2 + 4b(1/2)}$$
Static branch prediction

- We analyze here optimal prediction: if the position of the pivot $k \leq n/2$ then we predict Loop S not taken and Loop G taken, and the other way around.
Static branch prediction

- We analyze here optimal prediction: if the position of the pivot $k \leq n/2$ then we predict Loop S not taken and loop G taken, and the other way around.

- If $k \leq n/2$ we incur a branch misprediction every time there is an element which is smaller than the pivot; symmetrically, if $k > n/2$ then the number of branch mispredictions is $n - k$.
Static branch prediction

- We analyze here optimal prediction: if the position of the pivot $k \leq n/2$ then we predict Loop S not taken and loop G taken, and the other way around.

- If $k \leq n/2$ we incur a branch misprediction every time there is an element which is smaller than the pivot; symmetrically, if $k > n/2$ then the number of branch mispredictions is $n - k$.

- Hence, $b_{n,k} = \min(k - 1, n - k)$, $b(\psi) = \min(\psi, 1 - \psi)$ and

$$
\tau_\xi(\psi) = \frac{1 + \xi \cdot \min(\psi, 1 - \psi)}{\mathcal{H}(\psi)}
$$
Static branch prediction

The value of ψ^* as a function of ξ
The number of branch mispredictions is twice the number of exchanges: we incur a misprediction each time we abandon the loops S and G.

\[b_{n; k} = 2(k - 1)(n - k) \]

\[b(1) = 2(1) \]
The number of branch mispredictions is twice the number of exchanges: we incur a misprediction each time we abandon the loops S and G.

Hence, $b_{n,k} = 2(k - 1)(n - k)$ and $b(\psi) = 2\psi(1 - \psi)$.
l-bit branch prediction

- We can analyze in full detail the performance when using fixed-sized samples. For example, for median-of-\((2t + 1)\) we have

\[
\beta(2t + 1, t) = \frac{t + 1}{2t + 3}
\]
We can analyze in full detail the performance when using fixed-sized samples. For example, for median-of-$(2t + 1)$ we have

$$\beta(2t + 1, t) = \frac{t + 1}{2t + 3}$$

For variable-size samples, $\beta(\psi) = 2\psi(1 - \psi)$.
1-bit branch prediction

- We can analyze in full detail the performance when using fixed-sized samples. For example, for median-of-\((2t + 1)\) we have
 \[
 \beta(2t + 1, t) = \frac{t + 1}{2t + 3}
 \]

- For variable-size samples, \(\beta(\psi) = 2\psi(1 - \psi)\).

- The threshold is then at \(\xi_c = 2/(2 \ln 2 - 1) \approx 5.177\ldots\) and \(\psi^*\) is the solution of
 \[
 \ln \psi + 2\xi \psi^2 \ln \psi = \ln(1 - \psi) + 2\xi(1 - \psi)^2 \ln(1 - \psi)
 \]
The value of ψ^* as a function of ξ
2-bit branch prediction

- In (Kaligosi, Sanders, 2006), an approximate model to compute $b_{n,k}$ is given, from which

$$b(x) = \frac{2x^4 - 4x^3 + x^2 + x}{1 - x(1 - x)}$$

follows
2-bit branch prediction

- In (Kaligosi, Sanders, 2006), an approximate model to compute $b_{n,k}$ is given, from which

$$b(x) = \frac{2x^4 - 4x^3 + x^2 + x}{1 - x(1 - x)}$$

follows

- We are working on a more refined analysis of $b_{n,k}$ for this prediction scheme; once $b_{n,k}$ has been found, we should only have to apply the machinery shown here
Some real data

Time vs. size on a Pentium 4 (from Kaligosi, Sanders, 2006)
Some real data

Time vs. $1/\psi$ on a Pentium 4
Some real data

Time vs. size on an Athlon 64
Some real data

Time vs. size on an Opteron
Some real data

Time vs. size on a Sun
Future work

- Complete the analysis of static branch prediction with fixed-size samples (it’s not easy to obtain $\beta(s, p)$ for general s and p!)
- Analyze the 2-bit prediction scheme and possibly others
- Conduct additional experiments, compare theoretical analysis to real data
- Analyze branch mispredictions and their impact on the performance of other algorithms