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Abstract. The number of descendants of a node in a binary search tree (BST) is the size of the
subtree having this node as a root; the number of ascendants is the number of nodes on the path
connecting this node with the root. Using a purely combinatorial approach (generating functions
and differential equations) we are able to extend previous results. For the number of descendants
we get explicit formulaæ for all moments; for the number of ascendants, which is harder, we get the
variance.

A natural extension of binary search trees occurs when performing local reorganisations. Poblete
and Munro have already analyzed some aspects of these locally balanced binary search trees
(LBSTs). Here, we relate these structures with the performance of median–of–three Quicksort.
We get as new results the variances for ascendants and descendants in this setting.

If the rank of the node itself is picked at random (“grand averages”), the corresponding pa-
rameters only depend on the size n. In this instance, we get all the moments for the descendants
(BST and LBST), as well as the probabilities. For ascendants (LBST), we get the variance and (in
principle) the higher moments, as well as the (normal) limiting distribution.

The emphasis is on explicit formulaæ, and these are sometimes quite involved. Thus, in some in-
stances, we have decided to state abridged versions in the paper and collect the long forms into an ap-
pendix that can be downloaded from the URLs http://info.tuwien.ac.at/theoinf/abstract/abs 120.htm
and http://www.lsi.upc.es/˜conrado/research/.
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1. Introduction

Binary search trees are among the most important and commonly used data structures, their
applications spanning a wide range of the areas of Computer Science. Standard binary search trees
(BSTs, for short) are still the subject of active research, see for instance the recent articles [2, 28].
Deepening our knowledge about binary search trees is interesting in its own; moreover, most of
this knowledge can be translated and applied to other data structures such as heap ordered trees,
k-d-trees [33], and to important algorithms like quicksort and Hoare’s Find algorithm for selection
(also known as quickselect) [12, 13, 30, 31].

We assume that the reader is already familiar with binary search trees and the basic algorithms
to manipulate them [20, 31, 9]. Height and weight-balanced versions of the binary search trees, like
AVL and red-black trees [1, 11], have been proposed and find many useful applications, since all of
them guarantee good worst-case performance of both searches and updates.

Locally balanced search trees (LBSTs) were introduced by Bell [4] and Walker and Wood [34],
and thoroughly analyzed by Poblete and Munro in [27]. LBSTs have been proposed as an alternative
to more complex balancing schemes for search trees. In these search trees, only local rebalancing is
made; after each insertion, local rebalancing is applied to ensure that all subtrees of size 3 in the
tree are complete1. The basic idea of the heuristic is that the construction of poorly balanced trees
becomes less likely. A similar idea, namely, selecting a sample of 3 elements and taking the median
of the sample as the pivot element for partitioning in algorithms like quicksort and quickselect has
been shown to yield significant improvements in theory and practice [30, 17].

Random search trees, either random BSTs or random LBSTs, are search trees built by perform-
ing n random insertions into an initially empty tree [20, 24]. An insertion of a new element into
a search tree of size k is said to be random, if the new element falls with equal probability into
any of the k + 1 intervals defined by the k keys already present in the tree (equivalently, the new
element replaces any of the k+1 external nodes in the tree with equal probability). Random search
trees can also be defined as the result of the insertion of the elements of a random permutation of
{1, . . . , n} into an initially empty tree.

Ascendants and descendants of the jth internal node of a random search tree of size n are
denoted An,j and Dn,j, respectively. Besides the two aforementioned random variables, we also
consider other random variables: the number of descendants Dn and the number of ascendants An
of a randomly chosen internal node in a random search tree of size n. This corresponds to averaging
Dn,j and An,j over j. We remark, that all the distributions, as well as the expectations E [X] and
probabilities P [X] are induced by the creation process of the random search trees (BSTs resp.
LBSTs). The number of descendants and the number of ascendants in random BSTs have been
investigated in several previous works ([3, 5, 23, 22, 21]). The number of ascendants of a random
node in a random LBST has been studied in [27, 26].

We define the number of descendants Dn,j as the size of the subtree rooted at the jth node, so
we count the jth node as a descendant of itself. The number of ascendants An,j is the number of
internal nodes in the path from the root of the tree to the jth node, both included. It is worth
mentioning the following symmetry property (which is very easy to prove) for the random variables
we are going to consider.2

1The generalization of the local rebalancing heuristic to subtree sizes larger than 3 is straightforward.
2We remark, that here and in the sequel equalities between random variables are equalities in distribution, which

is often denoted by
d
=.
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Proposition 1.1. For any n > 0 and any 1 ≤ j ≤ n,

Dn,j = Dn,n+1−j ,

An,j = An,n+1−j.

The performance of a successful search is obviously proportional to the number of ascendants
of the sought internal node. The next proposition states this relation, as well as other interesting
relationships that hold for both random BSTs and random LBSTs.

Proposition 1.2. Consider a random search tree of size n and let

Sn,j = # of comparisons in a successful search for the jth element,

Sn = # of comparisons in a successful search for a randomly chosen element,

Un = # of comparisons in a unsuccessful search for a randomly chosen external node,

Pn,j = depth of the jth element,

In =
∑

1≤j≤n

Pn,j = internal path length,

Then,

Sn,j = Pn,j + 1 = An,j,

Sn = An,

E [Un] =
n

n+ 1
(1 + E [An]) ,

E [In] = n (E [An]− 1) ,

E [An] = E [Dn] .

There is also a close relationship between the performance of quickselect [12, 19, 17] and the
number of ascendants.

Proposition 1.3. Let Fn,j be the number of recursive calls made by quickselect to select the jth

element out of n elements. Then

Fn,j = An,j.

If we consider An,j in random BSTs, then this corresponds to the selection of the pivots at
random in each phase of quickselect. If we consider An,j in random LBSTs, then the proposition
applies for the variant of quickselect that uses the median of a random sample of three elements as
the pivot in each partitioning phase.

The study of the number of descendants has applications in the context of paged trees (see for
instance [20, 14]). A paged binary search tree with page capacity b stores all its subtrees of size
≤ b (possibly empty) in pages; typically, the pages reside in secondary memory and the elements
within a page are not organized as search trees (see Figure 1: the pagination of the search tree at
the left is indicated using dashed lines; a more “realistic” representation of the same tree appears
at its right).

Let P
(b)
n be the number of pages in a random search tree of size n with page capacity b. It is

obvious that P(b)
n = I(b)

n + 1, where I(b)
n is the number of internal nodes that are the root of a

subtree that contains more than b items. In other words, in a paged search tree, we have external

nodes (pages) that may contain up to b keys; if P
(b)
n is the number of external nodes or pages in

a paged search tree, then I
(b)
n = P

(b)
n − 1 is the number of internal nodes in the tree, and these

internal nodes are in one-to-one correspondance with the internal nodes with > b descendants in
the non-paged search tree.
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Figure 1. A paged binary search tree with page capacity b = 3

Proposition 1.4. For all n, and for any constant b ≥ 1,

E

[
P(b)
n

]
= nP [Dn > b] + 1.

Proof. Let δj be the indicator random variable for the predicate “the jth element has more than b

descendants.”. Then I
(b)
n =

∑
1≤j≤n δj . The proposition follows taking expectations in both sides

of this equation, because of the linearity of expectations and E [δj ] = P [Dn,j > b].

Results about the probabilistic behavior of the number of descendants are also useful in the
analysis of the performance of quicksort if recursive calls are not made on small subfiles (say, of
size ≤ b).

Proposition 1.5. Let C
(b)
n and R

(b)
n be the number of comparisons3 and the number of partitions

made by quicksort to sort n elements, when the recursion halts on subfiles of size ≤ b. Notice that
standard quicksort corresponds to the case where b = 1. Then

E

[
R(b)
n

]
= nP [Dn > b] ,

E

[
C(b)
n

]
= n (E [Dn]− 1)− n

∑
1≤m≤b

(m− 1)P [Dn = m] .

The strategy for the selection of pivots is related with the type of random search trees that we
consider: for BSTs, we have selection of pivots at random; for LBSTs, we have that the pivots are
the medians of random samples of three elements.

Proof. It is well known that we can associate to each particular execution of quicksort a binary
search tree: the root contains the pivot element of the first stage, and the left and right subtrees
are recursively built for the elements smaller and larger than the pivot, respectively. Each internal
node in the search tree corresponds to a recursive call to quicksort. We will make a partitioning of
a given subfile if and only if the subfile contains > b elements, i.e. the corresponding internal node
has > b descendants, and the claim in the proposition follows.

On the other hand, let εj be the number of comparisons made between the jth element and other
elements, during the partition where the jth element was selected as a pivot. Clearly, if Dn,j ≤ b

then εj = 0, since no recursive call will be made that chooses the jth element as a pivot. On the
other hand, if Dn,j > b, the jth element will be compared with each of its descendants (except
itself) in the associated search tree. Hence, E [εj ] =

∑n
m=b+1(m− 1)P [Dn,j = m]. We need only to

sum over j to get the desired result.

3We only count those made during the partitioning phases.
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BST LBST

Of a given node Of a random node Of a given node Of a random node

Average [3], Probability, Average [17], Average,

Ascendants
variance∗ moments, limit variance∗ variance [27]∗,

distribution [23, 5, 22, 18] higher order moments,

PGF, limit distribution∗

Descendants
Probability, Probability, PGF, average, Probability,

moments [21]∗ moments [21]∗ variance∗ moments∗

Table 1. Summary of previous works and the results of this paper.

The structure of the paper is as follows. We start with an overview of some basic facts about
generating functions and, in particular, about probability generating functions (Section 2).

In Section 3 we develop the main steps of our approach, taking the analysis of the number of
descendants in random BSTs as a first introductory example. We provide here alternative deriva-
tions to the results of Lent [21], finding the probability that the jth node in a random BST of size
n has m descendants (Theorem 3.1). We also find exact and asymptotic values for all ordinary
moments, including the expected value and variance (Theorem 3.2). Then we analyze the number
of descendants of a random node, obtaining the probability that Dn = m, as well as the moments
of Dn (Theorems 3.3 and 3.2).

The remaining sections are devoted to the analysis of the number of ascendants and descendants
in random LBSTs. In Section 5 we formally define LBSTs and give an equivalent characterization
of the model of randomness which is more suitable to our purposes.

Among our new results, in Section 6 we derive an explicit form for the generating function of the
probability distribution of Dn,j (Theorem 6.1) and closed formulæ for the average (Theorem 6.2)
and the second factorial moment (Theorem 6.3). Moreover, we find the probability distribution of
Dn (Theorem 6.4) and all its moments (Theorem 6.5).

In Section 7, we compute E [An,j], the average number of ascendants of the jth node in a random
LBST of size n (Theorem 7.1). We are also able to compute the PGF of An, the number of
ascendants of a random node (Theorem 7.2), as well as all its moments (Theorems 7.4 and 7.5),
thus extending the results of Poblete and Munro [27].

The results of previous works and the new results in this paper are summarized in Table 1.
Entries corresponding to new results in this paper and to alternative derivations of previous results
are marked by ‘∗’.

2. Mathematical Preliminaries

We start recalling the definition of generating function, for the reader’s convenience. Given a
sequence {an}n≥0 its generating function A(z) is the formal power series

A(z) =
∑
n≥0

anz
n.

As usual, [zn]A(z) denotes the coefficient of zn in A(z) (the nth coefficient of A(z)). Excellent
sources of information about generating functions and their applications to combinatorics and the
analysis of algorithms are [35, 33, 32, 20].

We make extensive use in this paper of probability generating functions (PGFs) as well as
multivariate generating functions whose coefficients are PGFs themselves. We define them in turn.
Given a discrete random variable X, its probability generating function X(z) is

X(z) =
∑
m

P [X = m] zm.
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If we assume further that X ≥ 0 and let pm = P [X = m], the PGF of the random variable X is
nothing but the ordinary generating function of the sequence {pm}m≥0. We list now a few important,
although elementary, properties of PGFs.

Proposition 2.1. For any discrete random variable X, its probability generating function X(z)
satisfies:

1. X(1) = 1.

2. X ′(1) =
dX

dz

∣∣∣∣
z=1

= E [X].

3. X(s)(1) =
dsX

dzs

∣∣∣∣
z=1

= E [Xs], where Xs denotes the sth falling factorial of X, that is, Xs =

X(X − 1) . . . (X − s+ 1). The quantity E [Xs] is customarily called the sth factorial moment
of the random variable X. Ordinary and central moments may be recovered from factorial
moments quite easily. For instance, if µ = E [X], the variance of X is given by

V [X] = E

[
(X − µ)2

]
= E

[
X2
]

+ E [X]− E [X]2 .

Since we will mostly deal with families of random variables, with two (n and j) or one (n) index,
we will systematically work with multivariate generating functions of these families. For instance, if
we were interested in the family {Xn,j}1≤j≤n, we would introduce a generating function X(z, u, v)
in three variables, such that the coefficient of znujvm in X(z, u, v) is the probability that Xn,j is
m. Thus

X(z, u, v) =
∑
n,j,m

P [Xn,j = m] znujvm, (1)

where the indices of summation n, j and m run in the appropriate ranges (or we assume that

P [Xn,j = m] is 0 whenever n < 1, j < 1, j > n or m < 0). Notice that, by definition, [znuj ]X(z, u, v)
is the PGF of the random variable Xn,j, and [znujvm]X(z, u, v) = P [Xn,j = m].

For technical reasons that will be clearer later, we will also use sometimes the derivative w.r.t. z
of such a multivariate generating function. We will introduce then

Xz(z, u, v) =
∂

∂z

∑
n,j,m

P [Xn,j = m] znujvm

=
∑
n,j,m

nP [Xn,j = m] zn−1ujvm

rather than the more natural definition given in Equation (1). This means that once we were able
to extract coefficients from such a generating function, let us say the coefficient of zn−1ujvm, we
must divide by n to obtain P [Xn,j = m].

Furthermore, we are also interested in investigating all the moments of the random variables:
mean, variance, and higher order moments. We differentiate the generating function X(z, u, v)
s times with respect to v and let v = 1, to get the generating function for the sth factorial moments,
i.e.

X (s)(z, u) =
∂sX(z, u, v)

∂vs

∣∣∣∣
v=1

, s ≥ 1. (2)

Recall that [znuj ]X (s)(z, u) = E

[
X
s
n,j

]
.

Grand averages correspond to the situation where the rank —the parameter j in Xn,j— is
random itself. More precisely, let Xn ≡ Xn,Zn, where Zn is a uniformly distributed random variable
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in {1, . . . , n}. Then Xn is the grand average of the random variables Xn,1, . . . ,Xn,n. It follows that

P [Xn = m] =
1

n

∑
1≤j≤n

P [Xn,j = m] . (3)

We remark that Xn 6=
1
n (Xn,1 + · · ·+Xn,n), even if the Xn,j ’s are independent.

Unless we are dealing with a differentiated version of the generating function X(z, u, v), we have

X(z, v) = X(z, 1, v) =
∑
n,m

znvm
∑

1≤j≤n

P [Xn,j = m] . (4)

Thus the coefficient [znvm]X(z, v), divided by n, is the probability that Xn is m. In the case
that Xz(z, u, v) were a differentiated generating function, then we should divide the coefficient
[zn−1vm]Xz(z, v) by n2. Finally, computing the derivatives of X(z, v) w.r.t. v and setting v = 1
yields the generating functions for the factorial moments of the grand average Xn.

The main steps of the systematic procedure that we will follow are thus:

1. Set up a recurrence for P [Xn,j = m];
2. Translate the recurrence to a functional equation over the corresponding generating function

X(z, u, v);
3. Solve the functional equation;
4. Extract the coefficients of X(z, u, v);
5. Repeatedly differentiate X(z, u, v) w.r.t. v and set v = 1; extract the coefficients to get the

factorial moments of Xn,j;

6. Set X(z, v) = X(z, 1, v) and repeat steps 4 and 5 for X(z, v).

In practice, the procedure might fail for several reasons. Typically, because we are not able to
solve the equation at step 3 or to extract the coefficients of a given generating function. Although
we have (almost) not used them in this paper, the reader should be aware of the existing powerful
techniques to extract asymptotic information about the coefficients of a generating function if we
know its behaviour near its singularities or in some case, even if we only know the functional
equation satisfied by the generating function [33, 6]. Also, if we are not able to solve and get an
explicit form for X(z, u, v), we can still differentiate w.r.t. to v or set u = 1 and try to solve the
(easier) resulting differential equations, to get information about the moments or the grand average.

The functional equations that arise in our study are linear partial differential equations of the
first (BSTs) and of the second (LBSTs) order. The former can be solved, in principle, by quadrature
through the variation of constant —actually, functions in u and v— method. For the second order
differential equations, the theory of hypergeometric differential equations comes into play [16].

Nowadays, most of the necessary mathematical knowledge is embodied into modern computer
algebra systems. In our case, Maple needed little or no assistance to solve the differential equations
that we had.

The last step, that of extracting coefficients in exact form, was, at large, the least systematic
and mechanical one. A great deal of combinatorial identities, inspired guessing and patience was
needed. Standard Maple tools like the function interp or the Gfun package [29] proved also to be
useful. However,

once the solution is obtained, it is just a matter of minutes to check its correctness. It is quite
difficult to provide a detailed and ordered description of the methods that we used to extract
coefficients from generating functions. As a result, the paper contains only some hints here and
there, while some claims are just stated without further explanation.
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3. The number of descendants in random BSTs

The number of the descendants Dn,j of the jth node of a BST of size n is recursively computed
as the number of descendants in the left subtree of the jth node, plus the number of descendants in
its right subtree, plus one (to count the jth node itself). The probability that Dn,j = m is computed
conditioning on the events “the rank of the root is k,” that means the root is the kth node of a
search tree. Recall that, for a random BST of size n, the rank of the root is k with probability 1/n,
for k = 1, . . . , n. Using the recursive definition of Dn,j we have

P [Dn,j = m] =
n∑
k=1

P

[
Dn,j = m | the root is the kth element

]
× P

[
the root is the kth element

]
=

1

n
[[m = n]] +

1

n

j−1∑
k=1

P [Dn−k,j−k = m] +
1

n

n∑
k=j+1

P [Dk−1,j = m] , (5)

where [[P ]] is 1 if P is true and 0 otherwise [10].
This recursion translates nicely into a functional equation over the generating function for the

family of random variables {Dn,j}. Solving the functional equation and extracting coefficients of
the generating function, we get the following theorem, which was already found by Lent [21] using
probabilistic techniques.

Theorem 3.1. The probability that the jth internal node of a random binary search tree of size
n has m descendants is, assuming that j ≤ n+ 1− j,

P [Dn,j = m] =



2

(m+ 1)(m+ 2)
for 1 ≤m < j,

1

(m+ 1)(m+ 2)

(
1 + 2j

m

)
for j ≤ m < n+ 1− j,

2(n + 1)

m(m+ 1)(m+ 2)
for n+ 1− j ≤ m < n,

1

n
for m = n.

For the cases where j > n + 1 − j we can use the symmetry on j and n + 1 − j (Proposition 1.1)
to compute the corresponding probabilities.

Also, the distribution function for Dn,j is

P [Dn,j ≤ m] =



m

m+ 2
for 1 ≤ m < j,

m+ 1

m+ 2
−

j

(m+ 1)(m+ 2)
for j ≤ m < n+ 1− j,

m2 + 3m+ 1− n

(m+ 1)(m+ 2)
for n+ 1− j ≤ m < n,

1 for m = n.

Proof. We start defining the generating function

D(z, u, v) =
∑

1≤j,m≤n

P [Dn,j = m] znujvm.
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Multiplying both sides of (5) by nzn−1ujvm and summing for all n ≥ 1, 1 ≤ j ≤ n and m ≥ 1,
yields

∂D

∂z
=

uD

1− uz
+

D

1− z
+

uv

(1− vz)(1− uvz)
,

D(0, u, v) = 0. (6)

The solution to the differential equation above is relatively simple

D(z, u, v) =
uz

v(1− z)(1− uz)

−
u(1 − v)(v − u)

(1− z)(1− uz)v2(1− u)
log

1

1− vz

−
(1− v)(1− uv)

(1− z)(1− uz)v2(1− u)
log

1

1− uvz
. (7)

The statement of the theorem follows after extracting the coefficient [znujvm]D(z, u, v).

The explicit and simple form of the trivariate generating function in Theorem 3.1 allows us to
compute all the moments explicitly. It is convenient to deal with a sort of shifted factorial moments;
the ordinary moments can be computed by linear combinations of the shifted factorial ones.

Theorem 3.2. Let d
(s)
n,j = E [(Dn,j + 2)s] and dn,j = d

(1)
n,j, where Dn,j denotes the number of

descendants of the jth internal node in a random binary search tree of size n. For all n > 0 and all
1 ≤ j ≤ n,

1. dn,j = Hj +Hn+1−j + 1,

2. d
(2)
n,j = 2(n + 1)Hn − 2jHj − 2(n+ 1− j)Hn+1−j + 2(n+ 2).

3. For all s ≥ 3,

d
(s)
n,j =

s

s− 2
(n+ 1)s−1 −

s

(s− 1)(s− 2)

[
js−1 + (n+ 1− j)s−1

]
.

Proof. We begin by introducing

D(s)(z, u) =
∂s(v2D(z, u, v))

∂vs

∣∣∣∣
v=1

,

and hence its coefficients are

d
(s)
n,j = [znuj ]D(s)(z, u) = E [(Dn,j + 2)s] .

The shifted moments are particularly easy to obtain, since the coefficients of D(s)(z, u) that we seek
are linear combinations of the coefficients of the next generating functions:

∂s

∂vs
log

1

1− vz

∣∣∣
v=1

= (s− 1)!

(
z

1− z

)s
,

∂s

∂vs
v log

1

1− vz

∣∣∣
v=1

= (s− 1)!

(
z

1− z

)s
+ s(s− 2)!

(
z

1− z

)s−1

,

∂s

∂vs
v2 log

1

1− vz

∣∣∣
v=1

= (s− 1)!

(
z

1− z

)s
+ 2s(s− 2)!

(
z

1− z

)s−1

+ s(s− 1)(s− 3)!

(
z

1− z

)s−2

,

∂s

∂vs
log

1

1− uvz

∣∣∣
v=1

= (s− 1)!

(
uz

1− uz

)s
,
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∂s

∂vs
v log

1

1− uvz

∣∣∣
v=1

= (s− 1)!

(
uz

1− uz

)s
+ s(s− 2)!

(
uz

1− z

)s−1

,

∂s

∂vs
v2 log

1

1− uvz

∣∣∣
v=1

= (s− 1)!

(
uz

1− uz

)s
+ 2s(s− 2)!

(
uz

1− uz

)s−1

+ s(s− 1)(s− 3)!

(
uz

1− uz

)s−2

.

We might additionally observe that for all n ≥ 0 and 1 ≤ j ≤ n

[znuj ]
1

(1− z)s+1(1− uz)(1− u)
=

(
s+ n+ 1

s+ 1

)
−

(
s+ n− j

s+ 1

)
,

[znuj ]
1

(1− z)(1− uz)s+1(1− u)
=

(
s+ j + 1

s+ 1

)
, and

[znuj ]
1

(1− z)2(1− uz)2
= (j + 1)(n + 1− j).

Theorem 3.2 is an immediate consequence of the formulæ above.

Corollary 3.1. The expected value and variance of Dn,j are, respectively,

E [Dn,j] = Hj +Hn+1−j − 1,

V [Dn,j] = 2(n + 1)Hn − (2j + 1)Hj − (2n− 2j + 3)Hn+1−j

+ 2(n + 2)−H2
j −H

2
n+1−j − 2HjHn+1−j.

Furthermore, for j = αn, with 0 < α < 1, we have

E [Dn,αn] = 2 log n+ logα+ log(1− α) + 2γ − 1 + o(1),

V [Dn,αn] = 2n
(

1− α logα− (1− α) log(1− α)
)

+O(log2 n),

where γ = 0.5772156649 . . . is Euler’s constant.

To recover higher order ordinary moments, we only need to express the ordinary powers as linear
combinations of the shifted falling factorials with coefficients λs,k. Thus

xs =
s∑

k=0

λs,k(x+ 2)k.

It is easy to show that

λs,k =
s∑
i=k

{
i

k

}(
s

i

)
(−2)s−i,

where
{
i
k

}
denote Stirling numbers of the second kind. The coefficients λs,k satisfy a recursion that

is similar to that of the Stirling numbers

λs+1,k = λs,k−1 + (k − 2)λs,k,

and λs,0 = (−2)s.

Let us consider now Dn, the number of descendants of a random node in a random BST of size
n. The following two theorems give closed formulæ for the probability that Dn is m and for the

shifted factorial moments of Dn, i.e. for d
(s)
n = E [(Dn + 2)s].
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Theorem 3.3. The probability that a randomly chosen internal node in a random binary search
tree of size n has m descendants is given by

P [Dn = m] =


2(n+ 1)

n(m+ 1)(m+ 2)
for 1 ≤ m < n,

1

n
for m = n.

Proof. Plug u = 1 into the solution of (7) to get

D(z, v) = D(z, 1, v) = −
2(1 − v)

v2(1− z)2
log

1

1− vz
−
z(zv − v2 + 2v − 2)

v(1− vz)(1− z)2
. (8)

The coefficient of [znvm]D(z, v), divided by n, is the sought probability.

Theorem 3.4. The sth shifted factorial moment d
(s)
n = E [(Dn + 2)s] of the number of descendants

of a random node in a random binary search tree of size n is given by

1. dn = d
(1)
n = 2(1 + 1

n)Hn − 1,

2. d
(2)
n = 3(n+ 1).

3. For all s ≥ 3,

d(s)
n =

1

n

(
(n+ 2)s +

2

s− 1
(n + 1)s

)
∼
s+ 1

s− 1
ns−1.

Proof. Repeated differentiation of the generating function v2D(z, v) w.r.t. v and setting v = 1, gives
us the generating functions of the shifted factorial moments. Their coefficients are extracted much
in the same way as in Theorem 3.2.

A few comments concerning the last theorem are in order now. Observe that for s ≥ 3

1

n

n∑
j=1

d
(s)
n,j =

(n + 1)s−1

s− 1

(
s+ 1 +

2

n

)
.

Asymptotically, this quantity is

∼
s+ 1

s− 1
ns−1,

one of the observations in the work of Lent [21]. The coincidence in asymptotic behavior with d
(s)
n

is remarkable; recall that in general

E [Ds
n] 6= E

( 1

n

∑
1≤j≤n

Dn,j

)s ,
except when s = 1 and the same observation holds for the shifted factorial moments we were dealing
with.

Last, but not least, we can obtain the following corollaries, from Propositions 1.4 and 1.5 and
the theorems in this section. These results can already be found in [20], although there is a slight

difference in E

[
C

(b)
n

]
, because n + 1 comparisons per partition are counted there, while we count

n− 1 comparison per partition.

Corollary 3.2. The expected number of pages in a random binary search tree of size n with page
capacity b is

E

[
P(b)
n

]
= 2

n + 1

b+ 2
.
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The filling ratio for binary search trees is thus

γb =
n/b

E

[
P

(b)
n

] ∼ 1

2
.

Corollary 3.3. The expected number of recursive calls to sort a random permutation of size n,
when the recursion stops in subfiles of size ≤ b is

E

[
R(b)
n

]
=

2n− b

b+ 2
.

Also, the expected number of comparisons to sort a random permutation of size n, when the
recursion stops in subfiles of size ≤ b is

E

[
C(b)
n

]
= 2(n + 1) (Hn −Hb+1) + n+ 5−

6(n+ 1)

b+ 2
.

4. The number of ascendants in random BSTs

Considering the element k of the root of a BST, we obtain for the number of ascendants An,j of
the jth node of a BST of size n the following recursion:

P [An,j = m] =
1

n
[[m = 1]] +

1

n

j−1∑
k=1

P [An−k,j−k = m− 1] +
1

n

n∑
k=j+1

P [Ak−1,j = m− 1] . (9)

Introducing the generating function for the family of random variables {An,j}

A(z, u, v) =
∑

1≤j,m≤n

P [An,j = m] znujvm,

this recursion translates by multiplying both sides by nzn−1ujvm and summing for all n ≥ 1,
1 ≤ j ≤ n and m ≥ 1 into the following differential equation:

∂A

∂z
=

v

1− z
A +

uv

1− uz
A +

uv

(1− z)(1− uz)

with the initial condition A(0, u, v) = 0. This differential equation has the following solution

A(z, u, v) =
uv

(1− z)v(1− uz)v

∫ z

0
(1− t)v−1(1− ut)v−1dt. (10)

Starting with this generating function, it is easy to get the following theorems. At first we obtain
an old result from [3]:

Theorem 4.1. The expected number of ascendants an,j = E [An,j] of the jth node in a random
binary search tree of size n is

an,j = Hj +Hn+1−j − 1.

Proof. Starting with (10), taking derivatives w.r.t. v and setting v = 1, we get the generating
function A(z, u), whose coefficients are the expected values an,j = E [An,j]. It is given by

A(z, u) =
u

(1− z)(1− uz)
log

1

1− z
+

1

(1− z)(1− uz)
log

1

1− uz
−

uz

(1− z)(1− uz)
.

It is easy to extract the coefficients of this expression, which leads immediately to the stated
theorem.
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Theorem 4.2. The second factorial moment a
(2)
n,j = E

[
(An,j)

2
]

of the number of ascendants of

the jth node in a random binary search tree of size n is

a
(2)
n,j =

2 (n+ 1)

(n+ 1− j) j
Hn +H2

j + 2HjHn+1−j +
2
(
−nj − n+ j2 − j − 1

)
(n+ 1− j) j

Hj +H2
n+1−j

+
2
(
−nj − n+ j2 − j − 1

)
(n+ 1− j) j

Hn+1−j −H
(2)
j −H

(2)
n+1−j −

2(−2nj + 2 j2 − 2 j − 1)

(n+ 1− j) j
.

(11)

Proof. Differentiating equation (10) two times w.r.t. v and setting v = 1 gives the generating

function A(2)(z, u) of the second factorial moments a
(2)
n,j of the number of ascendants:

A(2)(z, u) = −
2zu

(1− uz) (1− z)
log

1

1− uz
−

2zu

(1− uz) (1− z)
log

1

1− z

−
2 (uz − u− 1)

(1− uz) (1− z)
log

1

1− z
log

1

1− uz
+

u

(1− uz) (1− z)
log2 1

1− z

+
1

(1− uz) (1− z)
log2 1

1− uz
+

2u

(1− uz) (1− z)

∫ z

0
log

1

1− t
log

1

1− ut
dt.

Extracting the coefficients leads to the given theorem. Since one expression in A(2)(z, u) turns out
to be a bit messier, we sketch how to extract the coefficients of it. First we get the following sum

[znuj ]
1

(1− z)(1− uz)

∫ z

0
log

1

1− t
log

1

1− ut
dt =

j∑
k=0

n−j+k∑
l=0

[zluk]

∫ z

0
log

1

1− t
log

1

1− ut
dt

=

j∑
k=1

n−j+k∑
l=k+2

1

lk(l − k − 1)
,

which can be simplified to

j∑
k=1

n−j+k∑
l=k+2

1

lk(l − k − 1)
=

j∑
k=1

1

k

n−j−1∑
l=1

1

l(l + k + 1)
=

j∑
k=1

1

k(k + 1)

n−j−1∑
l=1

(
1

l
−

1

l + k + 1

)

=

j∑
k=1

1

k(k + 1)
(Hn−j−1 +Hk+1 −Hn−j+k) =

j∑
k=1

(
1

k
−

1

k + 1

)
(Hn−j−1 +Hk+1 −Hn−j+k)

= Hn−j−1

j∑
k=1

(
1

k
−

1

k + 1

)
+

j∑
k=1

(
Hk

k
−
Hk+1

k + 1

)
+

j∑
k=1

(
1

k
−

1

k + 1

)

−
j∑

k=1

(
Hn−j+k

k
−
Hn−j+k+1

k + 1

)
−

1

n− j

j∑
k=1

(
1

k + 1
−

1

n− j + k + 1

)
.

The sums telescope and we finally get

[znuj]
1

(1− z)(1− uz)

∫ z

0
log

1

1− t
log

1

1− ut
dt =

n+ 1

(j + 1)(n− j)
(Hn+1 −Hj+1 −Hn+1−j)

+
2jn2 − 4nj2 + 2j3 + n2 − jn + 2n− 2j + 1

(n− j)(j + 1)(n + 1− j)
.

The next theorem gives the variance, which is now easy to obtain.
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the insertion hits

one of these leaves

Figure 2. The fringe heuristic

Theorem 4.3. The variance V [An,j] of the number of ascendants of the jth node in a random
search tree of size n is

V [An,j] =
2 (n+ 1)

(n+ 1− j) j
Hn +

(
nj − 2n− j2 + j − 2

)
(n+ 1− j) j

Hj +

(
nj − 2n− j2 + j − 2

)
(n+ 1− j) j

Hn+1−j

−H
(2)
j −H

(2)
n+1−j +

2(nj − j2 + j + 1)

(n+ 1− j) j
.

(12)

5. Locally balanced binary search trees

One approach to avoid drastically unbalanced binary search trees is the introduction of strict
balance constraints like in AVLs or red-black trees [1, 11]. Such schemes guarantee logarithmic
performance of searches and updates in the worst-case, but they have additional space requirements
and are more difficult to implement than standard BSTs. As an alternative, several authors [4, 34,
27] have suggested the use of a simple heuristic that makes the construction of poorly balanced
trees much less likely than with the use of the standard algorithms. Furthermore, the heuristic was
shown to yield significant savings in the expected search time.

The basic idea is really simple: whenever a son is appended to a node that itself is a single
son (its “brother” is an external node), a rotation of the three nodes is performed to place the
median of the three elements as the root of the subtree and the other two elements as sons (see
Figure 2). Since no other kind of rebalancing operation is ever made, Poblete and Munro refer to
this technique as a fringe heuristic. We will call the binary search trees constructed in this way
locally balanced binary search trees (LBST, for short).

Poblete and Munro [27] and Poblete [26] carry on the analysis of this heuristic and some gener-
alizations by means of bottom-up or fringe techniques: they basically study the number of nodes
that are at level k and which are the root of a subtree of size 1 or 2.

As we have already mentioned in the introduction, the standard model for random LBSTs states
that a random LBST of size n is the result of n random insertions into an initially empty tree.
Equivalently, a random LBST of size n is the result of inserting the elements of a random permuta-
tion of {1, . . . , n} into an initially empty tree. Here, we show that a recursive, top-down definition
of the randomness model is also possible. This characterization of the model of randomness is more
amenable to the kind of algebraic manipulations that we want to carry on; as we will see, the
recurrence relations for the analyzed quantities translate to equations over generating functions in
a natural way, almost automatically.
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Definition 5.1. 1. A random binary search tree of size s ≤ 2 is also a random locally balanced
search tree. Recall that a BST of size 2 is random if the smallest (resp. largest) key is the root
with probability 1/2.

2. A binary search tree T of size n ≥ 3, with left and right subtrees T1 and T2, is a random
LBST if and only if, both T1 and T2 are random independent LBSTs, and

πn,k = P

[
|T1| = k − 1

∣∣∣ |T | = n
]

=
(k − 1)(n− k)(

n
3

) , for all 1 ≤ k ≤ n.

The reader should have noticed that the only difference between this definition and that for
random BSTs relies on the splitting probabilities πn,k. In the case of BSTs, each element of the
random permutation has the same probability (namely, 1/n) of being the first element and hence
of becoming the root. In the case of LBSTs, when n ≥ 3, the probability that the kth element is
one of the first three elements of the permutation and is the median of these three elements is

1

n
×
k − 1

n− 1
×
n− k

n− 2
× 3! = πn,k.

Indeed, the left hand side of the equation above give us the probability that the kth element is
the first, times the probability that it is followed by a smaller element, times the probability that
the two elements are followed by a larger element. For any permutation of such three elements,
we have that the kth element is among the first three elements and it is their median. Now, under
these conditions the kth element will be the root of the LBST (after the insertion of the first three
elements, with rebalancing if necessary). The insertion of the fourth, fifth, etc. elements will not
affect the root of the LBST. The principle applies recursively to the subsequences of elements
smaller and greater than the selected element and the definition follows.

This argument also justifies the deep connection between LBSTs, quicksort and quickselect (see
Propositions 1.3 and 1.5), when we consider the variants that select the median of 3 elements taken
at random as the pivot of each partitioning phase.

6. The number of descendants in random LBSTs

As in Section 3, let Dn,j denote the number of descendants of the jth node, but now in a random
LBST of size n. The recursion for P [Dn,j = m] is almost the same as for random BSTs, the only
difference being the splitting probability πn,k, the probability that the root of the LBST is the kth

element. Thus,

P [Dn,j = m] =

[ ∑
1≤k<j

πn,k P [Dn−k,j−k = m] + πn,j[[m = n]]

+
∑
j<k≤n

πn,k P [Dk−1,j = m]

]
. (13)

Theorem 6.1. Let

Dz(z, u, v) =
∂

∂z

∑
n,j,m

P [Dn,j = m] znujvm =
∑
n,j,m

nP [Dn,j = m] zn−1ujvm.

Then,

Dz(z, u, v) =
A0(z, u, v)

v(1− z)2(1− uz)2(1− uv)2(1− v)2(v − u)2(1− u)2

+
A1(z, u, v)

(1− uz)2(1− u)(1− v)3(1− uv)3
log

1

1− z

+
A2(z, u, v)

(1− z)2(u− v)3(1− u)(1− v)3
log

1

1− uz
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+
A3(z, u, v)

v2(1− z)2(1− uz)2(v − u)3(1− u)3(1− v)3
log

1

1− vz

+
A4(z, u, v)

v2(1− z)2(1− uz)2(1− u)3(1− v)3(1− uv)3
log

1

1− uvz
,

where each of the Ai(z, u, v)’s is a complicated polynomial in z, u and v. They are listed in full in
the appendix.

Proof. We multiply the recursion (13) by
(
n
3

)
and zn−3ujvm, sum up over all n ≥ 1 and 1 ≤ j,m ≤ n

to get the following differential equation:

1

6

∂2Dz

∂z2
=

u2v3

(1− vz)2(1− uvz)2
+

u2

(1− uz)2
Dz +

1

(1− z)2
Dz, (14)

where the initial conditions are Dz(0, u, v) = uv and ∂
∂zDz(0, u, v) = uv(1 + u)(1 + v). We use the

partial derivative w.r.t. z to define Dz(z, u, v) because the differential equation just given, which
translates the recurrence for P [Dn,j = m], is then of the second order. Had we introduced the
generating function Dz(z, u, v) in the standard manner, we would have had a third order differential
equation, with no appearance of the function itself, only the first and third derivatives.

The differential equation (14) is solvable: its explicit form (abridged) is the one given in the
statement of the theorem.

From the explicit form of Dz(z, u, v) given in Theorem 6.1 we can, in principle, compute exact
expressions for P [Dn,j = m] and all moments. However, the task is daunting, and we will content
ourselves computing the expected value and the second factorial moment in the next two theorems.

Theorem 6.2. The expected number of descendants dn,j = E [Dn,j] of the jth node in a random
LBST of size n is, when 5 ≤ j ≤ n− 4

dn,j = −
12

7
Hn +

12

7
Hj +

12

7
Hn+1−j

−
6

7j
−

6

7(n + 1− j)
+

79

70

−
3(3j − 5)

7n
+

6(j − 1)2

7n2
+

2(2j − 3)(j − 1)2

7n3

+
3(j − 2)(j − 1)3

7n4
−

3(2j − 5)(j − 1)4

7n5
+

2(j − 3)(j − 1)5

7n6
.

The remaining cases when j ≤ 4 (or when j > n− 4, by symmetry) appear in the appendix.

Proof. Taking the first derivative with respect to v, and setting v = 1 we get4

∂Dz

∂v

∣∣∣∣
v=1

=
B0(z, u)

70(1− uz)2(1− u)7(1− z)2

+
B1(z, u)

7(1 − u)7(1− uz)2
log

1

1− z

+
B2(z, u)

7(1 − z)2(1− u)7
log

1

1− uz
,

where the Bi(z, u)’s are polynomials in z and u. Their explicit value can be found in the appendix
at the end of this paper.

4It turns out that Maple gets stuck doing the work in the obvious way, i.e. take the derivative, then take the limit
when v → 1. But we can produce the differential equations satisfied by the generating functions for the factorial
moments from the differential equation (14) and solve them. Also, the problem can be fixed by computing a series

expansion of the derivatives around v = 1.
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In order to get to the coefficients, we use formulæ such as

[znuj]
1

(1− u)4(1− uz)2
log

1

1− z
= (n+ 1)

(
j − n+ 3

3

)(
Hn −Hn−1−j

)
+

(j + 1)n3

6
−

5(j + 1)(j + 2)n2

12

+
(j + 1)(11j2 + 40j + 30)n

36
−

3j − 10

12

(
j + 3

3

)
,

[znuj ]
1

(1− u)5(1− uz)2
log

1

1− z
= (n+ 1)

(
j − n+ 4

4

)(
Hn −Hn−1−j

)
−

(j + 1)n4

24
+

(7j + 18)(j + 1)n3

48

−
(j + 1)(13j2 + 65j + 75)n2

72

+
(j + 1)(25j3 + 173j2 + 348j + 180)n

288

−
12j − 65

60

(
j + 4

4

)
,

and similar ones that are not too hard to obtain. To retrieve the final answer, we have also to take
into account that we need to shift the coefficients in zn by 1 and multiply by 1

n , because we were

considering ∂
∂z

∑
n,j,m P [Dn,j = m] znujvm. Putting everything together, the theorem follows.

Theorem 6.3. The second factorial moment of the number of descendants d
(2)
n,j = E

[
D

2
n,j

]
of the

jth node in a random LBST of size n is, when 5 ≤ j ≤ n− 4,

d
(2)
n,j =

(
36n

5
−

12

35

)
Hn +

(
36j

5
−

36n

5
−

48

7

)
Hn+1−j +

(
12

35
−

36j

5

)
Hj

−
132

35j
−

132

35(n + 1− j)
+

3489

175
−

33j

5
+

(
66

7
−

429j

35
+

33j2

5

)
1

n

+
132(j − 1)2

35n2
+

44(2j − 3)(j − 1)2

35n3
+

66(j − 2)(j − 1)3

35n4

−
66(2j − 5)(j − 1)4

35n5
+

44(j − 3)(j − 1)5

35n6
.

The formulæ for the second factorial moment in the special cases (when j ≤ 4 or j > n − 4) are
collected in a table in the appendix.

Proof. The second factorial moment d
(2)
n,j is the coefficient of zn−1uj times 1

n in

∂2Dz

∂v2

∣∣∣∣
v=1

=
C0(z, u)

35(1− z)2(1− u)7(1− uz)2

+
C1(z, u)

35(1− z)2(1− u)7(1− uz)2
log

1

1− z

+
C2(z, u)

35(1− z)2(1− u)7(1− uz)2
log

1

1− uz

where the Ci(z, u)’s are polynomials in z and u. They have been listed in the appendix. Using
techniques similar to the ones in the proof of Theorem 6.2, we extract the coefficients and obtain
the stated result.
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As in Section 3, we shift now our attention to the number of descendants of a random node in
a random LBST of size n. We start giving an explicit expression for the probability distribution of
Dn.

Theorem 6.4. The probability that a random node in a random LBST of size n has m descendants
is

P [Dn = m] =
12

7

(n+ 2 +m)(n− 1−m)

n2(m+ 1)(m+ 2)
−

12

7

m5

nn6
+

12

7n2
,

for 5 ≤ m < n. The probability that a random node has n descendants is P [Dn = n] = 1
n .

Furthermore, the probability that a random node in a random LBST of size n has no children is

P [Dn = 1] =
6

7

1

n2

(
n+ 1

2

)
=

3

7

(
1 +

1

n

)
.

In the appendix, a table collects the general result for 5 ≤ m < n as well as the special cases
where m < 5 or m = n.

Proof. If we consider the explicit form for Dz(z, u, v) given in Theorem 6.1 and average w.r.t. j, i.e.
we plug u = 1 there, we get

Dz(z, v) =
v

(1− vz)2
+

12

7(1− v)(1− z)
−

24

7v(1 − z)2
+

2(v2 − 6v + 12)

7v(1− z)3

+
v

7(1 − v)5

[
− 15(1− v)3 + 20v(1 − v)2(1− z)− 30v2(1− v)(1− z)2

+ 60v3(1− z)3 + (1− 7v + 23v2 − 57v3 − 22v4 + 2v5)(1− z)4

]
−

60

7

v5(1− z)4

(1− v)6
log

1

1− z
+
(60

7

v5(1− z)4

(1− v)6
−

24

7

1− v

v2(1− z)3

)
log

1

1− vz
. (15)

Alternatively, we can write down the differential equation for Dz(z, v) = Dz(z, 1, v) and solve it.
The differential equation is

1

6

∂2Dz

∂z2
=

v3

(1− vz)4
+ 2

Dz

(1 − z)2
,

where the initial conditions are Dz(0, v) = v, and ∂
∂zDz(0, v) = 2v(1 + v). The reader may readily

check that the explicit form given in Equation (15) is a solution to the differential equation above.
The purely rational term in Equation (15), i.e. the one that is not multiplied by any logarithmic

function, although more complicated than the others, has the very pleasant feature that “almost”
all coefficients are 12

7 . On the other hand,

[znvm]
1

(1− z)3
log

1

1− vz
=

1

m

(
n−m+ 2

2

)
,

and thus

−[znvm]
24

7

1− v

v2

1

(1− z)3
log

1

1− vz
=

12

7

(n+ 3 +m)(n−m)

(m+ 2)(m+ 1)
.

This is the main contribution in the coefficient znvm of Dz(z, v), the remaining contributions being
small. Indeed,

60

7

v5(1− z)4

(1− v)6
log

1

1− vz
produces no coefficients at all, since m ≤ n. And the remaining contribution comes from

−[znvm]
60

7

v5(1− z)4

(1− v)6
log

1

1− z
= −

12

7

m5

n5
.
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The general part of the theorem follows from the considerations made above. The special cases,
when m < 5 or m = n have to be dealt with separately. In particular, to get the probability that a
random node in a random LBST of size n has no children (the special case m = 1) we compute

∂Dz(z, v)

∂v

∣∣∣∣
v=0

=
6

7

1

(1− z)3
+

1

7
(1− z)4,

extract the coefficient of zn−1 in the GF above and divide by n2, yielding P [Dn = 1] ∼ 3/7. Also,
for evident reasons, P [Dn = n] = 1/n, since only the root has n descendants and we choose it with
probability 1/n.

Finally, the moments of Dn can be computed after differentiation of Dz(z, v), whose explicit form
was given in the proof above. We state now the following result.

Theorem 6.5. Let d
(s)
n = E [(Dn + 2)s], i.e., d

(s)
n is the shifted sth factorial moment of the num-

ber of descendants of a random node in a random locally balanced binary search tree of size n.

Furthermore, let dn = d
(1)
n . Then

1. dn = 12
7

(
1 + 1

n

)
Hn −

1
49

(
26− 9

n

)
, for n ≥ 6,

2. d
(2)
n =

5(n+ 1)(7n + 2)

14n
, for n ≥ 6,

3. d
(3)
n =

(n+ 1)(10n2 + 5n+ 6)

6n
, for n ≥ 6.

4. For all n ≥ s+ 7 and all s ≥ 4,

d(s)
n =

A(s, n) (n+ 1)s+1

(s+ 6)6 (n+ 2− s)2 n n6 (s− 1)
,

where

A(s, n) = (s+ 5)5(s+ 3)(s+ 2)n7

− (s+ 4)4(s+ 2)
(

13s2 + 128s+ 195
)
n6

+ (s+ 3)3
(

67s4 + 1082s3 + 6125s2 + 11326s + 6600
)
n5

− 5(s+ 2)2
(

35s5 + 643s4 + 4459s3 + 15317s2 + 15906s + 3960
)
n4

+ 4(s+ 1)
(

61s6 + 1159s5 + 8157s4 + 24383s3 + 60116s2 − 9276s − 31680
)
n3

− 4
(

43s7 + 794s6 + 5176s5 + 10190s4 − 80183s3 + 29336s2 − 220956s − 77040
)
n2

+ 48
(
s7 + 17s6 + 97s5 + 215s4 + 1894s3 − 39832s2 + 41208s − 25200

)
n

− 1036800s2 + 3110400s − 2073600.

Corollary 6.1. For any n ≥ 6 and for j = αn, with 0 < α < 1, we have

E [Dn,αn] =
12

7
log n+O(1),

V [Dn,αn] = −
3

5
n
(

11α(1 − α) + 12α logα+ 12(1− α) log(1− α)
)

+O(log2 n).

As in Section 3, several interesting corollaries may be deduced from the results in this section
and Propositions 1.4 and 1.5.
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Corollary 6.2. The expected number of pages in a random locally balanced search tree of size n
with page capacity b ≥ 2 is

E

[
P(b)
n

]
∼

12

7

n

b+ 2
.

The filling ratio for locally balanced search trees is thus

γb =
n/b

E

[
P

(b)
n

] ∼ 7

12
= 0.58333 . . .

Corollary 6.3. The expected number of recursive calls to sort a random permutation of size n,
when the recursion stops at subfiles of size ≤ b and the pivots are selected as the median of samples
of three elements, is

E

[
R(b)
n

]
= E

[
P(b)
n

]
− 1 ∼

12

7

n

b+ 2
.

Also of interest is the expectation Cn,b := E

[
C

(b)
n

]
of the number of comparisons to sort a random

permutation of size n with quicksort, where the pivots are selected as the median of samples of
three elements (for subfiles of length n ≥ 3) and the recursion stops at subfiles of size ≤ b. We
only consider here comparisons, that appear by comparing the pivot to each other element in the
partitioning step, and do not count the (on average) 8

3 comparisons to select the median of three
elements. We also make the assumption, that small subfiles of size n ≤ b are stored unsorted in
own pages and so we do not count comparisons in these cases. To get these expectations we don’t
use Proposition 1.5. We take another approach and start with the following recursion for Cn,b:

Cn,b = n− 1 +
n∑
k=1

πn,k (Ck−1,b + Cn−k,b) for n > b ≥ 0 and n ≥ 3 , (16)

with initial values C2,0 = 1, C2,1 = 1 and Cn,b = 0 otherwise. (With these initial values we take care
of the one additional comparison, sorting a subfile of length 2, when the pages are smaller than 2.)

To solve this recurrence, we introduce the bivariate generating function
Cz(z, v) =

∑
n>b≥0 Cn,bnz

n−1vb. Multiplying both sides of equation (16) by n(n− 1)(n− 2)zn−3vb

and summing up over all n > b ≥ 0 leads to the following differential equation

∂2

∂z2
Cz(z, v) =

12

(1− z)2
Cz(z, v) (17)

+
12(z6v4+z5v4+z5v3−15 z4v3+10 z3v3+10 z3v2−5 z2v3+5 z2v2−5 z2v+zv3−4 zv2−4 zv+z+v2+v+1)

(1− z)5 (1− zv)5 ,

with initial conditions Cz(0, v) = 0 and ∂
∂zCz(0, v) = 2(1 + v).



THE ELECTRONIC JOURNAL OF COMBINATORICS 5 (1998), #R20 21

This differential equation is of Eulerian type, and can be solved easily. We get then

Cz(z, v) =

(
120

7

(1− z)4 (v + 2) v5

(1− v)8 +
24

7

1

(1− v) (1− z)3

)
log

1

1− z

+

(
−

120

7

(1− z)4 (v + 2) v5

(1− v)8 +
24

7

2 v − 3

(1− v) (1− z)3 v2

)
log

1

1− zv

− 12
v

(1− v)3 (1− zv)
+ 2

v

(1− zv)2 (1− v)
− 2

v

(1− zv)3 (1− v)
(18)

−
2

49

89 v − 252

(1− v) (1− z)3 v
−

2

7

7 v2 − 31 v + 36

(1− z)2 (1− v)2 v
−

12

7

2 v − 3

(1− v)3 (1− z)

+
2

49

R(z, v)

(1− v)7 .

with
R(z, v) = 40 z4v6 + 929 z4v5 + 327 z4v4 − 23 z4v3 − 23 z4v2 + 12 z4v − 2 z4 − 160 z3v6 − 3296 z3v5 −
468 z3v4 + 92 z3v3 + 92 z3v2− 48 z3v+ 8 z3 + 240 z2v6 + 4104 z2v5− 768 z2v4 + 282 z2v3− 138 z2v2 +
72 z2v − 12 z2 − 160 zv6 − 1896 zv5 + 1632 zv4 − 1168 zv3 + 372 zv2 − 48 zv + 8 z + 40 v6 + 54 v5 −
618 v4 + 1132 v3 − 828 v2 + 222 v − 2 .

Extracting the coefficients, we get with E

[
C

(b)
n

]
= Cn,b = 1

n [zn−1vb]Cz(z, v) the required expec-

tations. This leads to

Theorem 6.6. The expected number of comparisons to sort a random permutation of size n, when
the recursion stops in subfiles of size ≤ b and the pivots are selected as the median of samples of
three elements, is for n > b ≥ 0 and n ≥ 6 given as

E

[
C(b)
n

]
=

12

7
(n+ 1)Hn −

12

7
(n+ 1)Hb+1 +

37n

49
+

219

49
−

36(n + 1)

7(b+ 2)
+

4(3b − 1)(b+ 1)6

49n6
.

7. The number of ascendants of a given node in a LBST

As in the case of the number of ascendants in a random BST, computing the probability that
the jth node in a random LBST has m ascendants turns out to be an extremely difficult problem.

However, the recursive definition can easily be translated to a differential equation for the cor-
responding generating function Az(z, u, v). Because of the same technical reason discussed in Sec-
tion 6, the function Az(z, u, v) is actually the derivative w.r.t. z of the generating function such
that the coefficient of znuj is the PGF of An,j. The recurrence for An,j

An,j =

j−1∑
k=1

πn,k(An−k,j−k + 1) + πn,j +
n∑

k=j+1

πn,k(Ak−1,j + 1) for n ≥ 3 ,

with initial values A0,j = 0, A1,1 = 1, A2,1 = 3
2 , A2,2 = 3

2 and An,j = 0 otherwise, translates into
the second-order differential equation

1

6

∂2Az
∂z2

=
v

(1− z)2
Az +

u2v

(1− uz)2
Az +

u2v

(1− z)2(1− uz)2
, (19)

and the initial values are Az(0, u, v) = uv and ∂
∂zAz(0, u, v) = uv(1 + v)(1 + u). This differential

equation is the starting point for our next theorems.
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Theorem 7.1. The expected number of ascendants an,j = E [An,j] of the jth node in a random
locally balanced search tree of size n is

an,j =
24

35
Hn +

18

35
Hj +

18

35
Hn+1−j

+
12

35j
+

12

35(n + 1− j)
−

279

175
−

6

7n

+
18j

35n
−

12(j − 1)2

35n2
−

4(2j − 3)(j − 1)2

35n3

−
6(j − 2)(j − 1)3

35n4
+

6(2j − 5)(j − 1)4

35n5
−

4(j − 3)(j − 1)5

35n6
,

for 5 ≤ j ≤ n− 4. In the appendix we give alse the cases j = 1, 2, 3, 4. The cases where j > n− 4
follow from the special cases with j ≤ 4 and the symmetry in j and n+ 1− j of an,j.

Proof. Although it is in principle possible to solve the differential equation5 (19), it is sufficient
for our purpose to take derivatives w.r.t. v and setting v = 1, to get the differential equation for
Az(z, u), the generating function whose coefficients are the expected values an,j = E [An,j]. It is

1

6

∂2Az
∂z2

−

(
1

(1− z)2
+

u2

(1− uz)2

)
Az =

u

1− u

(
1

(1− z)4
−

u3

(1− uz)4

)
, (20)

and the initial conditions are now Az(0, u) = u and ∂
∂zAz(0, u) = 3u(1 + u).

The solution of the differential equation (20) yields the explicit form

Az(z, u) =
D0(z, u)

(1− z)2(1− u)7(1− uz)2

+
D1(z, u)

(1− z)2(1− u)7(1− uz)2
log

1

1− z

+
D2(z, u)

(1− z)2(1− u)7(1− uz)2
log

1

1− uz
,

where the polynomials Di(z, u) can be found in the appendix.
Once we have the explicit form for Az, extracting the coefficients is just a matter of patience

and careful computations. A possible shortcut is to expand each of the three main parts of Az as
power series in z and u, and spot a pattern in the shape of the coefficients. The inspired guesses
can be readily checked and proved by induction. For instance, the coefficient of znuj in the purely
rational term of Az is

−
69

175
n+

18

35
j −

9

175
,

whenever 5 ≤ j ≤ n − 4; the remaining values of j are special cases that we have to consider
separately. Similarly, the coefficient of znuj in the second term —the one that contains log(1/(1−
uz)) as a factor— is

18Hj(n+ 1)

35
−

18j

35
+

12n

35j
−

12

35
+

12

35j
.

In the same vein, an explicit formula for the coefficient of the first term can be obtained. Finally,
we collect everything, consider the coefficient zn−1uj and divide by n, since Az is a derivative w.r.t.
z.

5With the substitutions Az(z, u, v) =
(

(1−z)(1−u)
u

) 1+
√

1+24v
2

B(z, u, v) and z = 1 + t(1− u)/u, the resulting differ-

ential equation is hypergeometric.
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The differential equation (20) is exactly the same as the one for the number of passes in quickselect
with median-of-three (see Proposition 1.3). The only difference between the expected number of
passes in quickselect, as given in the work by Kirschenhofer et al. [17], and the number of ascendants
in LBSTs relies on the initial conditions. The reason is that in the mentioned paper only one
recursive call is counted if we want to select some element in a file of size ≤ 2, while the average
number of ascendants of the jth node in a random LBST of size n ≤ 2 is 3/2 (for j = 1 and j = 2).
Then an,j and the expected number of passes to select the jth element out of n differ in the constant
term, exactly by 1/7.

In a similar way, when differentiating the differential equation (19) two times w.r.t. v and setting

v = 1, we get the differential equation for A
(2)
z (z, u), the generating function whose coefficients are

the second factorial moments a
(2)
n,j of the number of ascendants. Solving this differential equation and

extracting the coefficients leads to the second factorial moments, which are given in the appendix.

In [27] the authors considered the expectation and variance of An in random LBSTs. To be
more precise, they stated the problem in terms of unsuccessful search costs. Here, we are able to
reproduce their results and extend them to higher order moments. Since we deal with ascendants
of internal nodes, our results can be naturally stated in terms of successful search costs, and then
translated to unsuccessful costs using Proposition 1.2. where an = E [An] is the expected number
of ascendants of a random node in a random tree with n nodes.

Theorem 7.2. Let

Az(z, v) =
∂

∂z

∑
n,m

P [An = m] znvm.

Then

Az(z, v) =
v

(1− 2v)(1− z)2

−
v2

(1− 2v)∆

(
(∆ + 4v + 3)(1 − z)−(∆−1)/2 + (∆− 4v − 3)(1 − z)(∆+1)/2

)
,

where ∆ =
√

1 + 48v.

Proof. The differential equation to be solved (from Equation (19), plugging u = 1) is

1

6

∂2Az
∂z2

=
2v

(1− z)2
Az +

v

(1− z)4
,

where Az(z, v) = Az(z, 1, v) and the initial conditions are Az(0, v) = v and ∂
∂zAz(0, v) = 2v(1 + v).

Recall that Az(z, v) = Az(z, 1, v). The solution of the differential equation above is the explicit form
given in the theorem.

Extracting coefficients in exact form from there is quite difficult. However, as Philippe Flajolet
kindly pointed to us, asymptotic information and most notably, the limiting probability distribution
can be established [8, 15]. In this case, it follows that An converges in distribution (converges in
law) to a Gaussian distribution, i.e.

P

An − 12
7 log n√

300
343 log n

< x

 =
1
√

2π

∫ x

−∞
e−t

2/2 dt+O

(
1

√
log n

)
.

This result follows from the asymptotic estimation for the average and the variance of An and
the fact that Az(z, v) is essentially a quasi-power of [zn]Az(z, v) in a neighborhood of v = 1, i.e.

[zn]Az(z, v) = c(v) · n(∆−3)/2
(
1 +O(1/

√
n)
)
,
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and the error term is uniformly bounded. Using the expansion [6]

[zn](1− z)α =
n−α−1

Γ (−α)

(
1 +

α(α+ 1)

2n
+O

( 1

n2

))
we get uniformly in the circle |v − 1| < 1

4

[zn]Az(z, v) = [zn]−
v2

(1− 2v)∆
(∆ + 4v + 3)(1 − z)−(∆−1)/2 +O(n)

= −
v2(∆ + 4v + 3)

(1− 2v)∆Γ(∆−1
2 )
· n

∆−3
2

(
1 +O

( 1
√
n

))
.

Applying the following quasi-power theorem of Hwang [15, 7] leads immediately to the above given
result.

Theorem 7.3. (Quasi-power theorem [H.-K. Hwang]) Assume that the Laplace transforms
λn(s) = E

[
esXn

]
of a sequence of random variables Xn are analytic in a disc |s| < ρ, for some

ρ > 0, and satisfy there an expansion of the form

λn(s) = eβnU(s)+V (s)

(
1 +O

( 1

κn

))
,

with βn, κn → +∞, and U(s), V (s) analytic in |s| ≤ ρ. Assume also the variability condition,

U ′′(0) 6= 0.

Under these assumptions, the mean and variance of Xn satisfy

E [Xn] = βnU
′(0) + V ′(0) +O(κ−1

n ) , V [Xn] = βnU
′′(0) + V ′′(0) +O(κ−1

n ).

The distribution of Xn is asymptotically Gaussian and the speed of convergence to the Gaussian

limit is O(κ−1
n + β

−1/2
n ):

P

[
Xn − βnU ′(0)√

βnU ′′(0)
≤ x

]
= Φ(x) +O

(
1

κn
+

1
√
βn

)
.

Φ(x) denotes here the distribution function of the Gaussian normal distribution.

The next step in our programme is to differentiate Az as many times as needed w.r.t. v and set
v = 1, in order to get the generating functions for factorial moments.

Theorem 7.4. The expected number of ascendants an = E [An] of a random node in a random
LBST of size n, when n ≥ 6, is

an =
12

7

(
1 +

1

n

)
Hn −

1

49

(
124 −

9

n

)
.

Proof. Let, as usual,

A
(s)

(z) =
∂sAz
∂vs

∣∣∣∣
v=1

.

To avoid cluttering the notation, we also let Az(z) = A
(1)

(z). Here is the generating function for
the expectations

Az(z) =
24

7

1

(1− z)3
log

1

1− z
+

4

49
(1− z)−3 + (1− z)−2 −

4

49
(1− z)4.

Then we extract the (n− 1)th coefficient and divide by n2 to get the expected value of An; recall
that since we are averaging w.r.t. j and Az is already a partial derivative w.r.t z, we have in fact

E [An] =
1

n2
[zn−1]Az(z).
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Theorem 7.5. The variance of the number of ascendants, An, of a random node in a random
LBST with n nodes, or equivalently, the variance of the successful search cost for a random element
in a LBST of size n is, when n ≥ 6,

V [An] =
1

343

(
300 +

2100

n
−

216

n2

)
Hn

−
144

49

(
1 +

1

n

)(H2
n

n
+H(2)

n

)
+

1

2401

(
10758 +

2431

n
−

81

n2

)
+

2304

343nn6
.

Proof. Analogously to what we did in the proof of the previous theorem, we compute the second
derivative of Az(z, v), and let v = 1. Then

A
(2)

(z) =
288

49

1

(1− z)3
log2 1

1− z
+
(
−

480

343

1

(1− z)3
+

96

343
(1− z)4

)
log

1

1− z

+
9988

2401

1

(1− z)3
− 4

1

(1 − z)2
−

384

2401
(1− z)4.

Extracting the coefficients is not as easy as before, but it is also doable, yielding the second
factorial moment:

E

[
A2
n

]
=

144

49

(
1 +

1

n

)(
H2
n −H

(2)
n

)
−

1

343

(
3264 +

1248

n

)
Hn

+
1

2401

(
32210 −

242

n

)
+

2304

343nn6
.

From here, the remaining computations are just mechanical.

For higher order moments, i.e. s > 2, the procedure applies but the computations get messier. If

we do only consider the main order term in a
(s)
n = E

[
A
s
n

]
, then the result is much easier.

Theorem 7.6. The sth factorial moment of the number of ascendants, An, of a random node in a
random LBST with n nodes, or equivalently, the sth factorial moment of the successful search cost
for a random element in a LBST of size n is, when n ≥ 6,

a(s)
n =

(
12

7

)s
logs n+O(logs−1 n).
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