Lower Bounds for Cutting Planes Proofs with Small Coefficients

Maria Bonet; Toniann Pitassi; Ran Raz

The Journal of Symbolic Logic, Vol. 62, No. 3 (Sep., 1997), 708-728.

Stable URL:
http://links jstor.org/sici?sici=0022-4812%28199709%2962%3 A3%3C708%3 ALBFCPP%3E2.0.C0%3B2-1

The Journal of Symbolic Logic is currently published by Association for Symbolic Logic.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/asl.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of
scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org/
Sun May 9 10:43:38 2004



THE JOURNAL OF SYMBOLIC LoGic
Volume 62, Number 3, Sept. 1997

LOWER BOUNDS FOR CUTTING PLANES PROOFS
WITH SMALL COEFFICIENTS

MARIA BONET, TONIANN PITASSI, AND RAN RAZ

Abstract. We consider small-weight Cutting Planes (CP*) proofs; that is, Cutting Planes (CP) proofs
with coefficients up to Poly(n). We use the well known lower bounds for monotone complexity to prove
an exponential lower bound for the length of CP* proofs, for a family of tautologies based on the clique
function. Because Resolution is a special case of small-weight CP, our method also gives a new and simpler
exponential lower bound for Resolution.

We also prove the following two theorems : (1) Tree-like CP* proofs cannot polynomially simulate
non-tree-like CP* proofs. (2) Tree-like CP* proofs and Bounded-depth-Frege proofs cannot polynomially
simulate each other.

Our proofs also work for some generalizations of the CP* proof system. In particular, they work for
CP* with a deduction rule, and also for any proof system that allows any formula with small communication
complexity, and any set of sound rules of inference.

§1. Introduction. One of the most fundamental questions in propositional proof
theory is: how strong is a particular proof system? In particular, one tries to give
examples of tautologies with no short proofs in the system. It is believed that for any
conceivable proof system there exist tautologies (of size n), with no proofs of size
polynomial in ». However, proving this for every conceivable system is equivalent
to proving that NP # Co — NP [9], which is an extremely hard task. Therefore,
many researchers have concentrated on proving the existence of hard tautologies
(i.e., tautologies with no polynomial size proofs), for specific natural classes of proof
systems. Two of the biggest open problems in the area are to prove the existence of
hard tautologies for Frege systems, and for extended Frege systems.

So far, however, such lower bounds have been given only for restricted versions
of Frege systems. The first general lower bound was given for Resolution proofs of
the propositional pigeonhole principle by Haken [13]. (Resolution proofs can be
viewed as depth-1 Frege proofs.) Later, in a remarkable paper by Ajtai [1], it was
shown that no bounded-depth Frege proof can prove the pigeonhole principle in
polynomial size. Then, Krajicek [18] proved exponential lower bounds for constant-
depth Frege proofs of a different principle, and in [3], exponential lower bounds for
bounded-depth Frege proofs of the pigeonhole principle were obtained.
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The Cutting Planes (CP) proof system, first introduced in [10], is a sound and
complete refutation system for proving the unsatisfiability of propositional formulas
in conjunctive normal form. It is based on showing that there are no integral
solutions for a family of linear inequalities associated with an unsatisfiable CNF
formula. The Cutting Planes technique was first introduced in [12] in the context
of linear programming, and shown in [7] to be a canonical way of proving that
every integral solution of a given system of linear inequalities satisfies another given
inequality. In brief, a CP refutation is a sequence of linear inequalities, where
the initial inequalities are those that we are trying to prove unsatisfiable, the final
inequality is the inequality 0 > 1, and all intermediate inequalities follow from one
or two previous ones by a sound rule of inference.

Besides being a very natural proof system, CP appears to be relatively powerful.
First, it is a natural generalization of Resolution. Secondly, the propositional
pigeonhole principle (PHP) has a very simple polynomial-size CP proof [10]. This
is interesting because PHP is the canonical hard tautology that has been previously
used to prove lower bounds for Resolution as well as for bounded-depth Frege
systems (e.g., [13, 3]).

Since PHP has a short CP proof, CP is strictly stronger than Resolution (with
respect to what can be proven by polynomial-size proofs). It was shown in [11]
that any Frege system can polynomially simulate CP, and therefore CP lies between
Resolution and Frege. Thus, understanding the power of CP is an important step
in order to give lower bounds for Frege systems.

A restriction of CP is the system CP*. CP* proofs are CP proofs with the
sole restriction that all intermediate inequalities are required to have coefficients
bounded in size by a polynomial in n, where n is the size of the formula to be
proven. CP* still appears to be quite powerful: Resolution is still a special case of
CP*, where the coefficients have size O(1), and PHP still has small CP* proofs. In
fact, as far as we know, all the CP proofs ever considered are actually CP* proofs!

The main result of this paper is an exponential lower bound on the size of CP*
proofs. Our family of unsatisfiable formulas are based on the clique function. To
prove our lower bound, we show how to extract a small monotone circuit computing
clique on many inputs, from a small CP* proof. The lower bound for CP* then
follows using known monotone lower bounds for the clique function [27, 2]. This
lower bound method can be viewed as an extension of the method in [14].! We
also show how our lower bound method can be applied to obtain exponential lower
bounds for several generalizations of CP*. In particular, our method works for any
propositional proof system consisting of a sound family of inference rules, each
of which takes a constant number of formulas to a single formula, and such that
intermediate formulas have small communication complexity. Our method also
works for a generalization of CP* where we allow a form of the deduction rule.

Our second result is a separation between tree-like CP* and non-tree-like CP*. (A
tree-like proof is a proof where each intermediate formula is used only once.) We also
obtain separations between tree-like CP* and bounded-depth Frege systems. The

"'We have recently learned that the same methods were used independently and before us by Razborov
[28], to prove that certain statements are not provable in some fragments of bounded arithmetic.
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family of formulas used in the latter lower bounds are based on the st-connectivity
function.

This paper is organized as follows. In Section 2, we give some preliminary
definitions and notation. In Section 3, we give an informal discussion of our method
and the general idea of the proof. Section 4 contains the main result, the exponential
lower bound for small-weight CP proofs, as well as several generalizations of this
lower bound for stronger systems. In Section 5 we study a particular tautology
based on the st-connectivity function, and show that it has short CP* proofs but
requires large tree-like CP* proofs. As a corollary of this theorem combined with
known results, we obtain several separation results. Finally we conclude in Section
6 with a short discussion of a general interpolation theorem that follows from this
work and its connection with recent works of Razborov and Krajicek .

Very recently the results in this paper have been significantly improved by Pudlak
[23], and independently by Cook and Haken [8] (based on a previous version
of [23]). These new results prove exponential lower bounds for (unrestricted)
Cutting Planes proofs. Their method builds on the ideas in this paper. Specifically,
Pudlak proves an interpolation theorem for (unrestricted) Cutting Planes and this,
combined with new lower bounds for monotone arithmetic circuits, achieves the
lower bound for Cutting Planes.

§2. Definitions and background.
2.1. Cutting planes. We will first describe the CP refutation system for CNF
formulas. For a more complete treatment see [11, 10].

CP formulas in the variables x, ... , x, are inequalities of the form
n
Z a;xX; 2 A
i=1
where ay, ... ,a,, and A4 are integral constants, and xi, .. . , x, are integral variables.

We think of the formula as a linear inequality in the variables x), ..., x,. Notice
that in this definition of a CP formula, the constant 4 always appears at the right
hand side of the inequality, and the variables always appear in the same order. To
simplify notation we will sometimes write constants on both sides of the inequality,
and change the order of variables. Also, sometimes we will write 4 < ZLI a;x;.
Given an initial family of CP formulas in the variables x, ... , x,, the CP system
has four sound rules of inference :
(1) Basic algebraic simplifications like deleting (or adding) terms of the form
OX,‘.
(2) Addition of two inequalities: if Y7 | a;x; > A,and >__, bix; > B we can

derive
n

Z(ai +bi)x; > (A + B).
i=1

(3) Multiplication of an inequality by an integer: if ', a;x; > 4, ¢ >0, we

can derive
n
E caix; > cA.
i=1
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(4) Division of an inequality by an integer: if Y7, a;x; > 4, and ¢ > 0 divides

each a;, we can derive
- a; A
E —X; 2 — .
(4 C

i=1

As introduced in [10], the CP system can be used as a refutation system for CNF

formulas : Given a CNF formula f, in the variables x|, ... , x,, we think of the

variables xi,. .., x, as integers that can get the values 0, or 1, where 0 represents

FALSE, and 1 represents TRUE. We first translate the formula f into a family of
CP formulas in the following way: a clause

k m
\/ xj; vV \/ X
i=1 i=1

is translated into the CP formula

k m
ij, + Z(l —x;,) > 1.
i=1 i=1

The family, E(f'), of CP formulas corresponding to the CNF formula, f, is the
set of CP formulas we obtain by translating each clause in f, together with the
inequalities x; > 0, and —x; > —1,forall1 < i < n.

A CP refutation of f (or E(f)) is a CP proof for the inequality 0 > 1, from the
initial family E(f'). It was proved in [10] that CP is a sound and complete refutation
system for CNF formulas. Clearly, by looking at —f, CP is a sound and complete
proof system for DNF formulas. This result can also be derived by noticing that
CP is in fact a generalization of Resolution.

DEerINITION. The length of a CP proof is the number of formulas in it. The size of
the proof is the number of binary symbols needed to write down all the coefficients
in the proof. The unary-representation-size of the proof is the number of unary
symbols needed to write down all the coefficients in the proof.

It was shown in [10], that any CP proof of length / can be converted into a new
one such that the coefficients are all smaller (in magitude) than 2P°%(), Therefore,
without loss of generality we can assume that the length and the (binary) size of
a CP proof are polynomially equivalent. Can we assume that the coefficients are
even smaller? It is still open whether coefficients smaller than O(2"), or O(2""),
or Poly(n) (where n is the number of variables) are enough. Therefore, we do not
know whether or not unary-representation-size is equivalent to (binary) size.

DEFINITION. Let F = {f,|n € N} be a family of propositional formulas. Then
we say that F has polynomial-size CP* refutations if there exists a family of CP*
refutations, R = {R,|n € N}, and a constant ¢ such that: (1) foralln € N, R,
is a refutation of f,; and (2) for all n € N, the unary-representation-size of R, is
at most size(f,)¢ (i.e., polynomial in the size of f,,). Similarly we say that F has
polynomial-size CP refutations if there exists a family of CP refutations, R, and a
constant ¢ such that: (1) for alln € N, R, is a refutation of f,; and (2) for all
n € N, the (binary) size of R, is at most size(f,)°.
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CP* is in fact a complete refutation system for CNF formulas, simply because it is
a generalization of Resolution. It is still not known whether CP* can polynomially
simulate CP. Although we tend to believe that CP is stronger, we believe that
CP proofs with large coefficients are highly non-intuitive. Therefore, in a way, CP*
captures (at least) the intuitive part of CP. We also believe that our hard tautologies
for CP* will turn out to be hard for CP as well. 2

To any CP proof (or CP* proof) corresponds a standard directed acyclic graph:
the nodes of the graph correspond to the formulas in the proof. An edge from a
formula L’ to a formula L exists if and only if L’ was directly used to derive L.
Clearly the in-degree of each node, L, is 0,1, or 2, as L can be one of the initial
formulas, or can be derived by one or two previous formulas. If the out-degree of
all of the nodes are at most 1, the graph is a tree, and the proof is called tree-like.
Thus a tree-like proof is one where every formula is used at most once. (If one
wants to construct a tree-like proof from a non-tree-like proof, one might have to
re-derive a formula each time the formula is used.)

2.2. Generalized cutting planes systems. In this section we define more general
abstract systems that our lower bound applies to.

Let S be an arbitrary refutation system, and let f be a set of formulas that we
are trying to refute. Then the deduction rule for S allows the prover to query an
arbitrary allowable formula L, and then the proof splits into two halves, where
the first half is dedicated to refuting f A {L}, and the second half is dedicated to
refuting f A {—L}. We will now formally define CP with Deduction.

DEFINITION. Let f be a set of unsatisfiable linear inequalities. P is a refutation
of f in CP with Deduction if and only if P consists of the following two parts:
(1) The first part, 4, is a set of CP formulas arranged in a balanced binary
tree, where each edge of the tree is labeled with exactly one CP formula in
A, and such that if el and e2 are the two edges leading out of a vertex,
then the CP formula associated with e1 must be the negation of the CP
formula associated with e2. Let the set of all simple paths from root to
leaf in the tree be denoted by {pi,..., p,}, and let the set of associated
formulas along path p; be denoted by Form(p;).
(2) The second part, B, consists of ¢ separate CP proofs, By, ..., B,, where B;
is a CP refutation of f U Form(p;).

DEFINITION. A proof P in CP* with Deduction is defined as in the definition of
CP with Deduction, except that now all of the formulas in P are required to have
small coefficients.

We will now define a generalization of CP* where the formulas are allowed to be
more expressive.

DEFINITION. Let f be a boolean formula over underlying variables xi, ... , x,.
Let S|, S, be a fixed partition of {xi,...,x,} into two disjoint sets. The com-
munication complexity of f with respect to S| and S, is the standard deterministic
communication complexity required to compute f, when Player I is given a truth
assignment of the variables in S}, and Player II is given a truth assignment of the

2Since the appearance of a preliminary version of this paper, this was proved by [23, 8].
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variables in S». The communication complexity of f is the worst-case deterministic
communication complexity of f with respect to S| and S, over all partitions S;, S»
of the variables. The e-probabilistic communication complexity of f is defined in
the same manner. (For a more complete treatment of communication complexity,
see [20, 30, 15].)

The threshold formulas of CP are a special case of formulas with small commu-
nication complexity. Any small-weight threshold function has a small deterministic
communication complexity protocol for any partition of the input, and any high-
weight threshold function has a small e-probabilistic communication complexity
protocol for any partition of the input. The following generalizations of CP* and
CP allow us to work with more general formulas that have small communication
complexity (e-probabilistic communication complexity), and more general sets of
rules of inference.

DerINITION.  Let f be a set of boolean formulas using 7 distinct variables. Let
P be a sequence of boolean formulas. P is a Generalized CP* refutation of f if and
only if P satisfies the following conditions:

(1) Each formula in P has communication complexity of O(poly(logn));

(2) Each formula in P is either from f, or follows from one or two previous
formulas by a sound inference (that is, 4 follows from g; and g, by a sound
inference if any truth assignment that falsifies 4 also falsifies either g or
22);

(3) The final formula in P is unsatisfiable.

If only Conditions 2 and 3 hold we will call P an Inference refutation of f.

DEFINITION. P is a Generalized CP refutation of f if and only if: every formula
of P has e-probabilistic communication complexity O(poly(logn)), and conditions
2 and 3 above also hold.

In Section 4, we will prove lower bounds for both of the above generalizations of
Cutting Planes. We also note here that our lower bounds in Section 4 also hold in
the more general setting where the inferences take up to some fixed constant number
of formulas to a single formula (in the above definition, we have fixed the constant
to be 2).

§3. Methods and results. In this paper, we will use the well-known lower bounds
for monotone complexity [27, 2] to prove lower bounds for the length of CP* proofs.
Our result is inspired by the result of [14], who prove an exponential lower bound
for the length of tree-like CP proofs, for some tautology. Below we give the main
ideas of their proof.

Given a monotone boolean function, f, a minterm x of f, and a maxterm y of
f, there must be at least one coordinate i, such that x; = 1, and y; = 0. This simple
fact inspired [16] to define the following communication search problem: Assume
that A4 is a subset of minterms of a monotone boolean function f, and B is a subset
of maxterms of the same function /. Player I gets a minterm x € A4, Player II gets a
maxterm y € B, and their goal is to find a coordinate i, with x; = 1 and y; = 0 (the
sets 4 and B are known to both players). Karchmer and Wigderson [16] proved
that if 4 is the set of all the minterms of £, and B is the set of all the maxterms
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of f, then the communication complexity of the corresponding search problem is
exactly equal to the monotone circuit depth of the function f'.

Inspired by [16]’s result, [14] constructed tautologies 7 (4, B) for particular sets
A, B € {0, 1}", that express the following:

xEA,yEB—»\/(xizl/\yi=0).

i=1

By simple reductions, [14] showed how in some cases: a tree-like CP* (CP) proof
for T'(A, B) can be cheaply translated into a deterministic (probabilistic) communi-
cation complexity protocol for the corresponding communication search problem.
These connections enabled them to use known lower bounds for communication
search problems to prove lower bounds on the length of tree-like CP (or CP*)
proofs.

In particular, [14] took f to be the monotone boolean function that interprets
the inputs as an undirected graph of n = 3k vertices, and outputs 1 if and only if
the graph contains a matching of size k. They took the sets 4, B of minterms and
maxterms that were previously considered in [26].

In this paper we will also use this method with minor modifications to give a
tree-like CP* lower bound for an st-connectivity tautology. This result combined
with a new upper bound will give us a separation between CP* and tree-like CP*.

Can the same be done for non-tree-like proofs? The main result of this paper
generalizes the result of [14] to the non-tree-like case. We show directly how to
translate any CP* proof for T'(A4, B) into a monotone boolean circuit that separates
the sets 4 and B.

In this paper, we will consider the monotone boolean function f that interprets
the inputs as an undirected graph of n = k!> vertices, and outputs 1 if and only
if the graph contains a clique of size k. We take the sets 4, B of minterms and
maxterms of f that were previously considered in [27, 2]. We form the tautology
T (A, B) as before. Then using our main result together with known lower bounds
for the monotone complexity of the clique function [2], we obtain exponential lower
bounds for the size of any CP* proof for T (A4, B). We remark that the proof actually
works for coefficients up to O(2"). We also remark that we use the clique-based
tautology rather than the tautology used in [14] only because the monotone circuit
lower bounds are stronger for the clique function.

§4. Lower bounds for CP*. In this section, we are going to use the lower bound
for the monotone complexity of the clique function [2] to obtain a lower bound for
a certain clique tautology in small-weights Cutting Planes.

A graph G, on n vertices is called a k-clique if G consists of a single clique of size
k, and no other edges. The graph G, is said to be a minterm of the clique function
because G, contains a k-clique, but if any edge is taken away, this condition is
violated. A graph G, on n vertices is called a (k — 1)-coclique if the vertices are
partitioned into k — 1 sets, and no edges are present within each set, but all edges
are present between the sets. The graph G, is a maxterm of the clique function
because G, does not contain a k-clique, but if any edge is added, then there will be
a k-clique.
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The lower bound in [27, 2] is very strong. It says that for some &, every monotone
circuit separating k-cliques from (k — 1)-cocliques requires exponential size.

DEFINITION. A monotone boolean function O,k is called a clique separator if it
interprets the inputs as the edges of a graph on n vertices, and outputs 1 on an input
representing a k-clique, and 0 on an input representing a (k — 1)-coclique.

THEOREM 1 ([2]). For k = n?/3, any monotone boolean circuit that computes a
. . L 3
clique separator function Q, . requires size Q(2 (n/ logn)"/ ).

Informally, our version of the clique principle states that if G, is a k-clique, and
if G, is a (k — 1)-coclique then there must be an edge present in G, that is absent
in G,. We will formalize the negation of the k-clique principle on graphs with n
vertices by the propositional formula -~ CLIQUE, ;. The underlying variables are
x={x;;|1<i<k 1<j<n},andy={y;;|1<i<k—1,1<j<n}. The
matrix x describes the graph G, in the following way: the variable x; ; is 1 if and
only if j is the i” element of the k-clique, and 0 otherwise. Similarly, y describes
the graph G,, where y; ; is 1 iff vertex j is in set i, and 0 otherwise.

Let us note here that every clique and coclique have several different matrix
representations. We will often use the phrase “in some matrix representation”.

The unsatisfiable formula - CLIQUE, , is the conjunction of the following
clauses. The clauses in (1)—(3) describe the condition that x must be a matrix
that describes a k-clique. The clauses in (4)—(5) say that y must be a matrix that
describes a (k — 1)-coclique. The clauses in (6) say that if there is an edge from
vertex i to vertex j in Gy, then i and j cannot be in the same group in G,.

(1) xjpV---Vxpuforalll, 1 <1 <k.

(2) —ux;,\/—ux” foralli, j,lsuchthatl </ <kand1<i,j<n,i#j.

(3) -1x1, —xp; foralli,l,l’suchthat 1 <L I’<kand1<i<n,l#/.

(4) y»1iV---Vyg_;forallisuchthatl <i <n.

(5) -1y1,v—|y1/ ;foralli,/,l’suchthat1 < LI’ < (k—1)and1<i <n,l #1.

(6) —xp; V =xpj V e Vooyy; for all g, l’ t such that 1 < I’ < k,
1<t<(k—1)and1<i,j<n,l#!'andi # j.

To prove our CP* lower bound, we are going to assume we have a polynomial
size refutation of -~ CLIQUE, ,. From the existence of such a refutation we will
extract a monotone circuit of polynomial size computing a function @, x, as above.
By the previous theorem this is a contradiction, and we have to conclude that there
cannot be a polynomial size refutation of - CLIQUE,, .

In the next theorem we will show how to extract monotone circuits from refuta-
tions. Let us note here that while the representation of graphs in the tautology uses
a matrix encoding, the input variables, e; ;, of the circuit represent (in the standard
way) possible edges in the graphs. So we will use different representations of graphs
depending on whether we are in the proof context or in the circuit context. Also,
we will use capital letters to refer to 0-1 truth assignments, and lower case letters to
refer to propositional variables and input variables to circuits.

4.1. Bounds for standard CP*.

THEOREM 2. Given any Cuttmg Planes refutation of =~ CLIQUE,, ;, we can build a
monotone circuit of size O(m - s°), for some clique separator functlon Onx. Here m
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is the length of the refutation, and s is the maximum absolute value that ) a; ; X ;
and S b;; Y;; can take throughout the refutation (the maximum is taken over all
the formulas 3" a; jxi; + 3. bj;yi; > ¢ of the refutation, and over all the O-1 truth
assignments for x, ).

ProOF. We will give here a more general proof that disregards the actual rules of
inference, and only assumes that they are all sound. We remark that for the actual
rules of inference of CP, one can prove that the circuit is of size O(m - s*).

We build the circuit by levels. Each line (formula) in the refutation gives rise
to a different level of circuits. At the level corresponding to line L, the circuit
only distinguishes pairs of cliques and cocliques that in some matrix representation
falsify the line L. The last line is 0 > 1. Since every pair of clique and coclique
in matrix representation falsifies it, the circuit at that level will compute the clique
function on all k-cliques and all (k — 1)-cocliques.

For any line

L: Zaf,jxi,j + Zbi,jy'}.i 2c

in the refutation, and any pair of integers (M, N) such that M + N < ¢, we will
build a monotone circuit C4 y. To build the circuits Cy; ,, we will use circuits
CAL;,Y - from previous levels. Let (V, W) be a pair of truth assignments for the
input variables e; ; (of the circuits that we are building), such that V represents a
k-clique, and W represents a (k — 1)-coclique. The circuits Cf; , will satisfy the
following :
(1) If some matrix representation (X, ¥) of (V, W) satisfies 3" a; j X;; = M,
and Y b;;Y;; = N then Cj;, on input ¥ gives output 1 and Cj;, on
input W gives output 0.
It will be simpler to disregard circuits C AL4 v, for M, N that cannot be
achieved as the sums > a;; X;; = M and ) b;;Y;; = N.
(2) The extra work that is needed to build all the circuits C; 5 (for all M, N),
from all the circuits at previous levels is O(s°).
Clearly, for the last line, 0 > 1, the circuit CoL,o will compute the clique function on
all k-cliques and all (k — 1)-cocliques, and the circuit size will be at most O (m - s°).
Assume that L is the /-th formula in the refutation. We will build the circuits
Cj; v by induction on /. Suppose that for every line, L', numbered < / we have the

circuits C, y, . We will now build the circuits for the /-th line.

Let L be Za,-,jx,v,j + Zbi,jyhj > c, and fix M,N such that M + N < c. We
are going to divide the proof into cases, depending if L is an axiom, or was derived
from previous formulas.

Case 0: L is an axiom of the types 1 — 6.

(This is the base case, and must occur for / = 1.) If L is of the types 1 — 5, all pairs
of clique and coclique (V, W), in any matrix representation, satisfy the line L, and
therefore the circuits Cf; y are trivial.

If Lisoftype 6, Lis1 —x;; +1 —xp;+1—yp,; +1—y:; > 1, or equivalently
—X1; = Xprj — Vi — Vi = —3. A pair (V, W) of clique and coclique falsifies L (in
one of their matrix representations), iff i and j are in the clique and also i and j
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are in the same partition in the coclique. Then we define
sz,—z =¢€ij-

As required, C 2 _, outputs 1 on all the cliques with nodes i and j in the clique,
and O on all the cocliques for which 7 and j are in the same partition. We only need
one non trivial monotone circuit for L since M = —2, N = —2 is the only pair of
values such that M + N < —3, that can be achieved.

Case 1: L was derived by a sound rule of inference from L,, and L,.
Say Lyis ) d;jxi;j+> e ;yi; > c and Ly is Yo fiixij+ > gijyi; > .

Let us first define two sets of pairs of integers: T, and Ty. Ty is defined by
(M1, M) € T, iff there exists a clique such that in some matrix representation X,

Zai’-in‘>7 =M, Zd'kin».i =M, Zfi,in,j = M.

Similarly, Ty is defined | by: (N1, N») € Ty iff there is a coclique such that in some
matrix representation Y,

Zbi’j Yij=N, Ze'\f Yij =N, ng,j Yij =N,

As visual aid, we will form a rectangular grid with the rows labeled with pairs
(M, M,) € Ty, and the columns labeled with palrs (N1, N;) € Ty, and the entry
(M, M), (N1, Ny)) labelled by either the circuit C M‘ , or the circuit CM N,- The
existence of the entry ((M 1,M2) (N1, N3)) in the grid means that there exists a
pair of clique and coclique (v, W), with matrix representation (X, Y), such that
2 Xij =M, 3 dijX,; =M, Y fi;Xi; = My, Y bi;Yi; =N, Y e, Y, =
Ni,and 3 g;;Yi; = N,. Since M + N < ¢, (X, ) falsifies L. By soundness of
the rule of inference used to derive L, (X, ¥) has to either falsify L, or L,. Now,
if (X, Y) falsifies L; with M| + N| < ¢j, by the induction hypothesis we have the
monotone circuit CAL/ ;> that on input v gives output 1, and on input W gives
output 0. Then in the entry ((M;, M>), (N, N;)) of the grid we write CA]j,‘ ~,- On
the other hand, if (X, Y) doesn’t falsify L,, then it falsifies L,, with M> + N> < €2,
by the induction hypothesis we have the monotone circuit CL’ ,» that on input 14
outputs 1, and on input W outputs 0. Then the position ((Ml, M), (N1, N,)) in
the grid gets the circuit C MZ Ny

With the visual aid of the grid, we can now describe the monotone circuit CL MN -
In each row take the AND of all the circuits in that row. After doing that take the
OR of all of those AND:s.

Let us show that C[; \ works. Suppose we have a pair of truth assignments
(V, W) where VV represents a chque and W represents a coclique, and for some
matrix representation (X, Y) of (V W), a;;Xij=Mand S b;;Y;; = N. We
need to show that C; ; on input Vislandon Wis0:

To get 1 on input V we must get 1 in one of the AND:s, so that the OR is 1. Let
M be d;;X;;, and M, be S fijXi ;. Then there is a row labeled with (M|, M)
on tl_}e grid. Because each circuit in that row gives 1 on ¥, their ANDs also gives 1
on V.
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To get 0 on circuit C}j; ,; with input W, all the ANDs have to be 0 on 7. Thus in

every AND, there must be a circuit that on W is 0. Let N; be Y€ ;jY;;,and N, be
>-&i,;Yi;. Then there is a column labeled with (N1, N>) on the grid. Because each
circuit on that column gives 0 on W, there is a circuit on each row that gives 0 on
W . Thus all the ANDs will be 0 on W .

Let us now check the extra work needed to build the circuits C; , for all pairs
(M,N). The grid we just described is of size O(s*). For a fixed pair (M, N), we
compute O(s*) ANDs and afterwards, O(s?>) ORs (we assume the fanin of all the
gates in the circuit is 2). Also, there are O(s?) possible pairs. So for all pairs (M, N ),
the total extra work for L is O(s®). .

COROLLARY 3. Let P be a Cutting Planes refutation of - CLIQUE, ,, with k =
n?/3. For every ¢ < 1/3, if all the coefficients in all the inequalities in P are smaller
than O(2""), then the length of P is Q(2"").

COROLLARY 4. For every ¢ < 1/3, the unary-representation-size of any Cutting
Planes refutation of = CLIQUE,, ., with k = n*/3, is Q(2"")

4.2. A separation between Frege systems and CP*. The lower bounds given above
show that Frege systems are strictly stronger than CP*. This is because the clique
tautology has a polynomial size Frege proof. We will show this by reducing
- CLIQUE,, to the negation of the pigeonhole principle. This was done explicitly
in [28], but we will include it here for completeness. Since Buss [5] showed that the
pigeonhole principle has polynomial size Frege proofs, CLIQUE, , must also have
polynomial size Frege proofs.

Let us show now the reduction of - CLIQUE,, . to the negation of the pigeonhole
principle. Foralli,1 <i <k,andall j,1 < j < (k — 1), we define

n

P = \/(Xi,l AYji).
I=1

Foralli,1 <i <k, Py VPpV---VP;_y is obtained from clauses 1-5. And
—-P;; VP, forall il j are obtained from clauses of type 6.

4.3. Bounds for generalized models. The above proof shows how to extract a
monotone circuit from a proof, as long as the rules are sound, and the formulas
are small-weight threshold formulas. With some modifications, this proof can
be generalized to the setting where formulas have small communication complexity.
The idea here is that the grid will now be partitioned into rectangles according to the
communication protocol. Because the protocol is short, the number of rectangles
is small, and therefore the final monotone circuit will have small size. This leads to
our main theorem.

THEOREM 5. Given any inference refutation (see Sec. 2.2) of -~ CLIQUE, ,, we can
build a monotone circuit of size < m - 23P*1, for some clique separator function Q,, .
Here m is the length of the refutation, and D is an upper bound for the communication
complexity of all the formulas in the refutation.

PrROOF. Again, we build the circuit by levels. At the level corresponding to line
L, the circuit only distinguishes pairs of cliques and cocliques that in some matrix
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representation falsify the line L. The final formula in the refutation is unsatisfiable.
Since every pair of clique and coclique in matrix representation falsifies it, the circuit
at that level will compute the clique function on all k-cliques and all (k —1)-cocliques.

Give the variables x = {x;;} to Player I, and the variables y = {y; ;} to Player
II. The communication complexity of all the functions below is considered with
respect to this particular partition. The communication complexity of any formula
L in the proof (with respect to this partition) is at most D. Let P; be one fixed
communication protocol for determining the truth value of L (with communication
complexity < D). For the last line of the refutation (which is unsatisfiable), take
P, to be the trivial protocol.

Let H be the set of all boolean strings of length < D. We will call H the set of
all possible histories. For the truth assignment X, Y (for the variables x, y), define
hi(X,Y) € H to be the string communicated by P; on X, Y. We call 4, (X, ¥);
the history of (X, ). Since P, can be viewed also as a communication protocol for
the function 4, the communication complexity of the function 4; is at most D.

Clearly, the value of the history 4 = Ay (X, 7) determines the value of the formula
Lon (X,Y). Wedenote this value by L(h). L(h) is undefined if the history 4 cannot
be the communication string of the protocol P;. If L(k) is FALSE, we say that the
history 4 falsifies the formula L. If L(/) is TRUE, we say that the history 4 satisfies
the formula L. For the last line of the refutation, since P, is the trivial protocol,
h (X, Y) is always the empty string, and for the empty string #, L(h) is FALSE
(since the last line is unsatisfiable).

For any line L in the refutation, and any history 4 € H, which falsifies L, we will
build a monotone circuit C/*. To build the circuits C}, we will use circuits C/% from
previous levels. Let (¥, W) be a pair of truth assignments for the input variables
e;,; (of the circuits that we are building), such that V represents a k-clique, and W
represents a (k — 1)-coclique. The circuits C/ will satisfy the following :

(1) If some matrix representation (X, Y) of (V, W) satisfies h, (X, Y) = h
then C/ on input ¥ gives output 1 and C/ on input W gives output 0.

(2) The extra work that needed to build all the circuits C/* (for all /), from all
the circuits at previous levels, is at most 232+1

Clearly, for the last line of the refutation (which is unsatisfiable), the circuit C/
(for the empty string 4) will compute the clique function on all k-cliques and all
(k — 1)-cocliques, and the circuit size will be at most m - 230+,

Assume that L is the /-th formula in the refutation. Again, we will build the
circuits C} by induction on /. Suppose that for every line, L', numbered < / we
have the circuits C/- . We will now build the circuits for the /-th line. As before we
divide the proof into two cases:

Case 0: L is an axiom of the types 1 — 6.

If L is of the types 1 — 5, all pairs of clique and coclique (¥, W), in any matrix
representation, satisfy the line L, and therefore no circuit C* is needed.

If L is of type 6 then a pair (V, W) of clique and coclique falsifies L (in one of
their matrix representations), iff i and j are in the clique and also i and j are in the
same part of the coclique. Then we define for all 4 € H that falsifies L:

L
Ciy =eij.
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As required, C/ gives output 1 on all the cliques with nodes i and j in the clique,
and 0 on all the cocliques for which 7 and j are in the same part.

Case 1: L was derived by a sound rule of inference from L;, and L,.
The proof follows easily from the following lemma:

LEMMA 6. Let Ry be a set of truth assignments for x, and Ry a set of truth
assignments for y. Assume that every gX ,Y) € Ry x Ry falsifies L, and that in the
rectangle R = Ry x Ry the function h defined as

BT, V) = (b, (X, 9), b (X, 7))

has communication complexity d. Then there exists a monotone circuit Cg such that:
(1) Cg uses the circuits {C;'}, {C2} (for all h'), plus 2¢ — 1 extra gates. i.e.,
the extra work needed to build Cg is 2¢ — 1.
(2) If some matrix representation (X, Y) of (V, W) satisfies (X, Y) € R then
Cr on input 14 gives output 1 and Cg on input W gives output 0.

Proor. The proof is by induction on d: For d = 0, h is known at the beginning,
ie, hy = hy (X,Y), hy = h,(X,Y) are fixed on the rectangle R. Since the
rectangle R falsifies L, and since L was derived by a sound rule from L;, L, we
know that either 4, falsifies L1, or h, falsifies L,. Without loss of generality, assume
that 4, falsifies L;. Then the required circuit is

Cr=C,".

Clearly (by the induction hypothesis for ChLIl ) if some matrix representation (X, ¥)
of (V, W) satisfies (X, ¥) € R then C,ﬁ' on input ¥ gives output 1 and ChL]‘ on
input W gives output 0. )

For d > 0 we look at the communication protocol for 4, in the rectangle R. We
have two cases:

Case 1: Player I sends the first bit: Let Ry be the subset of Ry, where this bit is
0, and let R, be the subset of Ry where this bit is 1. The rectangles Ry X Ry, and
R X Ry satisfy the induction hypothesis for 4 — 1. The circuit Cg in this case will
be

CR = CR()XRY \ CRlny'

Clearly, by the induction hypothesis C works, and itssizeis 2- (291 —1)+1 = 29 -1,
as required.
Case 2: Player II sends the first bit: Let R, be the subset of Ry, where this bit is
0, and let R be the subset of Ry where this bit is 1. The rectangles Ry x Ry, and
Ry x R, satisfy the induction hypothesis for 4 — 1. The circuit Cg in this case will
be
Cr = CryxRy N CRyxR,-

Clearly, by the induction hypothesis Cz works, and its sizeis 2 (291 —1)4+1 = 291,
as required. 4

the history A, (X, Y) = h, is in fact a rectangle R = Ry x Ry. Assume that

A standard argument shows that for a string 4, the set of pairs X, ¥, with
ssum:
X,

s
h falsifies L. Since the communication complexity of the function (X, Y) =
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(hy, (X, Y),h,(X, Y)) is always smaller than 2D, the conditions of the lemma are
satisfied with d = 2D. Thus we can use the lemma to build C/.

Since there are at most 2°*! possible histories, the extra work needed to build all
the circuits CF is at most 23P+1, -

COROLLARY 7. Let P be any inference refutation of ~CLIQUE, ,, with k = n?3.
For every ¢ < 1/3, if the communication complexity of every formula in P is smaller
than O(n®), then the length of P is Q(2").

COROLLARY 8. For every ¢ < 1/3, If P is a Generalized CP" refutation of
—~CLIQUE, ;, then P must have size of Q(2"").

Our lower bound for CP* also holds if we add the deduction rule:

THEOREM 9. Let P be a refutation of - CLIQUE,  in CP* with deduction. Then
for every & < 1/3, the length of P is Q(2"").

Proor. The proof is by a reduction to the previous corollaries. Consider the
following abstract system: The formulas of the system are of the type p — L, where
L is a CP* formula, and p is a set of CP* formulas. The formula p — L can be
concluded from p; — Ly, p» — L, iff any truth assignment that falsifies p — L
also falsifies either p; — L; or p, — L, (i.e., any sound inference). Clearly this
general rule is stronger than the following two simpler rules:

(1) If L can be concluded from L;, L, by any sound rule then p — L can be
concluded from p — L, p — L,.

(2) For any CP* formula L, the formula p — 0 > 1 can be concluded from
pV{L} -0>1,pVv{-L} —>0>1.

Therefore this model can simulate CP* with deduction: We simulate the proofs
in part two (of a CP* with deduction proof), by using inferences of type 1, and we
finally prove 0 > 1 using inferences of type 2. In the simulation the set p will be the
set of all the formulas that we assume at some point. Given a proof in CP* with
deduction, we translate it into a proof in the new system. If the tree of deductions
in the original proof is of size bigger than O(2"") then we are done. Otherwise, since
the tree is balanced, the size of the set p in each formula in the translation will be
smaller than O(n?®).

Now the only thing to see is that this falls into the category of generalized CP*.
To see this, one has to see that there is a short communication complexity protocol
to decide whether p — L (soundness is clear by definition). This is true, because
there is a short protocol for each of the formulas in p. So the two players can find
out the value of each formula in p, and the value of the formula L, and then decide
on the value of p — L. The communication complexity of this protocol is O(n®'),
foranye < ¢’ < 1/3. =

§5. Separation theorems. Informally, our version of the st-connectivity principle
states that if G, is a graph on » vertices, such that G, consists of a single path of
length / connecting vertex s to vertex ¢, and if G, is a graph such that the vertices
are partitioned into two sets (with s in one set and ¢ in the other), and all edges are
present within each set, but no edges are present between the sets, then there must
be an edge present in G, that is absent in G),. The graph G, is said to be a minterm
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of the st-connectivity function because G contains a path from s to ¢, but if any
edge is taken away, this condition is violated. Similarly, the graph G, is a maxterm
of the st-connectivity function because G, does not contain a path from s to #, but
if any edge is added, then there will be a path from s to .

We will formalize the negation of the st-connectivity prmmple for length / on
graphs with n vertices by the propositional formula — STCONN The underlying
varlablesarex_{x,,|1<z<l1<] <n}, andy_{y,j|z_1 2, 1<j<n}
The matrix x describes the graph G, in the following way: the variable x; ; is 1 if
and only if j is the i-th element on the path from s to ¢. Similarly, y describes the
graph G, where y; ; is 1 iff vertex j is in set 1, and y»; is 1 iff vertex j is in set 2.

The unsatisfiable formula - STCONN/, is the conjunction of the following clauses.
The clauses in (1)—(4) describe the condition that x must be a matrix that describes
a path of length / from vertex 1 (= s) to vertex n (= t). The clauses in (5)—(7) say
that y must be a partition of the vertices [1, n] into two groups, where vertex 1 is in
group 1 and vertex 7 is in group 2. The clauses in (8)—(9) say that if there is an edge
from vertex i to vertex j in Gy, then i and j cannot be in different groups in G,,.

( ) X1,15 Xin-
(2) Vyioy xig foralli, 1 <i <[
(3) —xi; V —xiy foralli, j,ksuchthat1 <i </,1< jk <nandj#k.
(4) —xix V —x;jy for all i, j,k such that 1 <, j <l i#jand1 <k <n.
(5) yi,15 Y25 "¥2,15 Vi
(6) y1.i \/yz, foralli,1 <i <n.
(7) =y1; V—yaforalli,1 <i <n.
(8) —xg;i V =xg41; V i V ya forall g,4, j such that 1 < g </ —1and
1<i,j<n.
(9) —xg: V =xg41,; V 2 V y1 for all ¢,i, j such that 1 < g </ —1and
1<i,j<n.

The st-connectivity tautology described above will be used to separate CP* from
tree-like CP*, and also to separate bounded-depth Frege from tree-like CP*. First
we will show that STCONN', has short and natural bounded-depth Frege proofs.
Next we will show that STCONN, also has short proofs in CP*. This is not as
obvious as the bounded-depth Frege proof, but follows along similar lines. Lastly,
we derive lower bounds for tree-like CP* proofs of STCONN! , using the method in
[14].

5.1. Bounded-depth Frege proofs of STCONN’ Small size bounded-depth Frege
refutations of - STCONNi, are quite natural. First, forallg,1 <¢ </ -1, andall
i, j, 1 <1i,j < n,weobtain from clauses 8 and 9 the formulas:

Xgi N\ Xg41,; — (1 Ay V(2 A y2,7))-

These formulas express the fact that if there is a path of length 1 from i to j in Gy,
then i and j must be in the same group in G,. Now using these formulas, we can
derive the following formulas forallk, 1 <k <mn, k #i,k # j,

(g A Xgiix A xgez) = ((P1i Ayi) V (2 Aya)).

The above formulas express the fact that if there is a path of length 2 from i to j
through vertex k in G, then i and j must be in the same group in G,. Combining
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these formulas, we then obtain:
(Xgi A Xgi2,; A (\/ xg16)) = (i Ay) V (020 A vz ).
k=1

From the above formula together with the initial clause, \/}_; x,+1, (from 2), we
can now derive

(xgi ANxgs2;) = (1 Ay )V (v2 Ayaj)).

This formula expresses the fact that if there is a path of length 2 from i to j in Gy,
then i and j must be in the same group in G,. Repeating this argument / — 1 times,
we can eventually derive

(x11 Ax10) = 110 A yia) V (21 A yan).

Using the initial clauses in 1, x; 1, x;,,, we then derive (y11 A y1.,) V (¥21 A Y2n)-
But now it is easy to derive false using the initial clauses from 5.

5.2. Small-weight non-tree-like CP proofs of STCONN/. First we must convert
the above clauses expressing — STCONNL into inequalities. Although these trans-
lations are simple, we describe them below.

(1) x1,1 > 1 x, > 1
(2) Ypoyxig = 1foralli, 1 <i<I.
(3) 1> x;; +x;x foralli, j,ksuchthat 1 <i <I,1< j,k<n,j#k.
(4) 1> x4 +xj foralli, jksuchthat 1 <i,j </, 1<k <nandi#j.
(5) yiu>Lyrn =102 150> yi,.
(6) y1i+y2; > 1forallisuchthatl <i < n.
(N 1>y +yforalli,1 <i<n.
(8) 3> x4+ Xq41,; + Y1+ ya forallg,i, j,1<qg<I-11<ij<n.
(9) 3> x4+ xg41,; + y2i+ 1 forallg,i, j,1<g<I-1,1<ij<n.

In addition to the above equations, we also have the inequalities 0 < x; ;,0 < y; ;,
vij < land x;; < 1 for all variables in the formula.

We will now describe a small-weight Cutting Planes refutation of the above
inequalities. For each a, 0 < a </, we will derive the inequalities:

3> Xgi + Xgiak + Y1i + Yok

for all g,i,k such that ¢ + a < I, 1 < i,k < n. Furthermore, the size of these
derivations will be polynomial, and the weights will all be bounded by a polynomial.
These formulas intuitively express the fact that if i and k are connected by a path
of length a in Gy, then they must be in the same setin G,. Whena =/—-1,9 =1,
i =1and k = n, we have

32 X110+ x, + Y10 +Y2n

which contradicts clauses (1) and (5).

It is thus left to derive the inequalities: 3 > x,; + Xgi0k + Y10 + Yo, for
alla, 1 < g+a < 1,1 < i,k < n. The base case, when a = 1, are initial
inequalities, so there is nothing to prove. By the induction hypothesis, we have
small-weight, polynomial size derivations for: 3 > x,; + Xy 14k + Y1, + Y2k, and for
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32> Xgtak + Xgras1,j + Yix + 2, forall 1 <k < n. Adding these two formulas
we obtain for each value of k:

6 > xgi +2Xg1ak + Xgrav1,j T Y1+ Yok + Yk + Y2

Now for each k, adding to the above the initial inequality, y; 4 + y2x > 1, we obtain
for each k (a): 5 > 2x,4,% + Z, where

Z = Xqi + Xgrayl,j T Y1, + V2

Now separately, we can derive (b): 4 > Z from the initial inequalities 1 > x,;,
1 > x44a11,5, 1 > y1;and 1 > y, ;. Adding (a) and (b) and dividing by 2, we then
obtain for each k, 4 > x,,,x + Z. Adding these » equations together, one for each
k, we obtain

n
4n > nZ + quﬂ,,k.
k=1

However, 1 < 37/_; X,44x i an initial inequality, and thus we can add this and
divide by » to obtain the desired inequality 3 > Z.

The above derivation has polynomial size, and the weights have size O(n). Note
that our Cutting Planes proof is not tree-like because the intermediate formulas
talking about paths of length @ must be used many times in order to generate the
intermediate formulas talking about paths of length a + 1.

5.3. Lower bounds for small-weight, tree-like CP proofs of STCONN/. In this
section we will prove the following theorem.

THEOREM 10. For [ = n'/'%, any tree-like CP* refutation of ~STCONN!, requires
super-polynomial size.

The above theorem is an application of the method in [14].

COROLLARY 11. Bounded-depth Frege cannot be p-simulated by small-weight, tree-
like Cutting Planes.

COROLLARY 12. Small-weight Cutting Planes cannot be p-simulated by small-
weight tree-like Cutting Planes.

We remark that it is already known that Cutting Planes cannot be p-simulated
by Bounded-depth Frege, because the propositional pigeonhole principle has short
CP proofs, but requires exponential-size bounded-depth Frege proofs. Actually,
the short proof of the pigeonhole principle is in tree-like CP*. This means that
Bounded-depth Frege and tree-like CP* are incomparable.

We will now describe the proof of Theorem 10. The communication complexity
problem associated with STCONNf, is as follows. Let M, be the set of graphs on
n vertices that contain a path of length / from s to ¢ and no other edges, and let
M, be the set of graphs on n vertices that consist of a partition of the vertices into
two sets B; and B, such that s € B, t € B,, and all edges within B, and within
B, are present and no other edges are present. The communication complexity
problem, Findedge(l, n) is: Player I is given a graph G, € M, and Player Il is given
a graph G, € M, and they want to find an edge of G, which is not present in G,.
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Let C,(Findedge(l,n)) denote the e-probabilistic communication complexity of the
game Findedge(l, n).

LemMA 13. Let P be a tree-like CP* refutation of — STCONN!, with at most n*
lines, for some constant k. Then for ¢ < 1/4, C,(Findedge(l,n)) < O(logn(log
logn)?).

ProoF. The proof of the lemma is implicit in [14]. The method described there
implies that any CP proof for - STCONNf, gives a probabilistic communication
protocol for the game Findedge(, n), with complexity O (log m(loglog(sn))?), where
m is the length of the proof, and s is an upper bound for the largest coefficient
involved. -

To complete the proof of the lower bound, we will need the following lower bound
due to Raz and Wigderson [25] (see also [24], and [4]).

THEOREM 14. Let ¢ < 1/4 and let [ = n'/'.  Then for sufficiently large n,
C,(Findedge(l,n)) > Q((logn)?).

Theorem 10 now follows from the above theorem and the above lemma.

The referee of this paper has pointed out that it is also possible, using known
results, to separate (sequence-like) CP* from bounded-depth Frege proofs. In
particular, we can define a tautology WeakClique, stating that a graph cannot
contain both a k-clique as well as a k'**-co-clique, for any e. The monotone
circuit lower bounds of [2] still apply, and thus it follows that WeakClique requires
exponential-size CP* proofs. (In fact, Kraji¢ek proves lower bounds for this form of
the clique tautology in [17].) On the other hand, by essentially the same reduction
of Cligue to PHP, one can reduce WeakClique to the weak pigeonhole principle,
WPHP. (This was also done explicitly in [28].) Now by the quasi-polynomial upper
bounds for WPHP due to Paris, Wilkie and Woods [22], it follows that there are
quasi-polynomial-size bounded-depth Frege proofs of WeakClique.

§6. Conclusions and related results. The proofsin this paper are actually instances
of a more general interpolation theorem for small-weight CP (this possibility was
brought to our attention by Jan Kraji¢ek as well as Russell Impagliazzo, and was
recently proved in [17]). This theorem states, roughly, thatif {4;(x, y), Bi(x,2) |i <
q} is a set of unsatisfiable clauses with a polynomial-size CP* refutation, and
such that: 4;(x, y) involve variables x1, ... , x, and yi,... , y, and B;(x, z) involve
variables x1, ... ,x,and zi, ... , z,, then there exists an “interpolant” formula, C (x)
such that: C(x) is computable by a polynomial-size circuit, and C(x) outputs 1
whenever there exists a y such that all of the clauses 4;(x, y) are true, and outputs 0
whenever there exists a z such that all of the clauses B; (x, z) are true. In special cases,
the formula C(x) can also be shown to be computable by a monotone polynomial-
size circuit, as is the situation for the tautologies discussed in this paper. This
general interpolation theorem can be proven using our method. (See the paper by
Kraji¢ek [17] for a very nice treatment of this general formulation.)

As mentioned in the introduction, very similar methods were used earlier by
Razborov in [28] for different reasons. In that paper, Razborov addressed the
question of whether or not P versus NP can be resolved within certain systems of
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bounded arithmetic. In an earlier paper, Razborov argues that all known circuit
lower bounds can be formalized within this same system (S?). Thus it is important
to understand whether or not we can resolve P versus NP using the same proof-
theoretic strength. In an important paper by Razborov and Rudich [29], they
defined the notion of a natural proof of P # NP, and they argued first that
all recent lower bounds are actually natural, and secondly, assuming a standard
cryptographic conjecture (stronger than P # NP), that there is no natural proof
of P # NP. In a later paper, Razborov ([28]) showed that P # NP is not
provable in Szz(a), assuming the same cryptographic assumption. His result was
later interpreted in the propositional setting by Krajicek [17]. We will now briefly
describe what Razborov proved once it is translated down into the propositional
setting, and how our interpolation theorem can be used to generalize his result.

Razborov’s result shows, assuming a cryptographic conjecture, that there is no
polynomial-size Resolution proof of P # NP. (In fact, he shows that there is no
polynomial-size Resolution proof even with limited extension, but for expository
purposes we will ignore this slightly strengthened form.) More specifically, we for-
malize P # NP propositionally by the family of propositional statements LB, (c, «),
n € N. For a fixed n, the underlying variables of the statement are oy, . . . , o, and
they are intended to describe a boolean circuit of size n¢. The statement says that
either the variables a, ... , @, do not describe a legitimate encoding of a boolean
circuit, or the circuit computed by the a’s disagrees with the satisfiability function
on some input. The size of this statement is roughly 2°) because it is necessary to
explicitly describe the satisfiability function.

Razborov also defines another family of statements, HARD, (¢, o, B,g),n € N,
that are closely related to the formulas LB,,. For fixed n, the underlying variables
of the statement are o, . . . , Qne/2, P1s- -+ 5 Bucjp,and g1, ..., g2n. The s describe a
circuit C; of size n¢/2, the f’s describe a circuit C, of size n¢ /2, and the g’s describe
a boolean function on # bits. The formula HARD,(c, @, B, g) states that if o and
encode legitimate circuits, C; and C; respectively, then either C; does not compute
g, or C; does not compute g SAT,,, where g€P SAT, is the function obtained
as the bit-wise parity of g and the satisfiability function on inputs of length ».
Assuming that SAT, does not have circuits of size n°, this formula is a tautology,
and furthermore, it can be shown that if the family of formulas LB, have short
proofs, then so do HARD,(c, @, B, g); thus lower bounds for HARD,, give lower
bounds for LB,. (The idea is that if HARD, is false, then C; computes g and C,
computes g SAT,, so C;@ C», the circuit obtained by taking the parity of C; and
(,, is a polynomial-size circuit computing SAT,, and thus LB, must also be false.)

The nice thing is that now we are in a position where the interpolation theorem
can be applied. Razborov’s result can be interpreted as showing: (1) that Resolution
has a feasible interpolation theorem; and (2) applying this interpolation theorem to
the formulas HARD,,, it can be shown that if there is a polynomial-size Resolution
proof of HARD,, then there exists a polynomial-time-computable predicate C,
that is natural against P/ poly. In particular, C, takes as input strings g of length
2", and with the property that if g is hard to compute and g SAT, is easy, then
C.(g) = 1, and if g is easy to compute and g SAT, is hard, then C,(g) = 0. This
C, can be used to obtain a natural property against P/ poly, and therefore by [29],
this violates that a certain type of pseudo-random number generator exists.
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Using our interpolation theorem for Cutting Planes, the same argument can now
be applied to show that HARD,, does not have polynomial-size CP proofs with
small coefficients unless the same cryptographic conjecture fails to hold.

It is interesting to understand whether or not feasible interpolation theorems hold
for more general proof systems. In a recent paper by Krajicek and Pudlak [19],
they give some evidence that there is no feasible interpolation theorem for Extended
Frege systems. However, it is still open whether or not weaker systems (such as
bounded-depth Frege systems) have feasible interpolation theorems.
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