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THE DEDUCTION RULE
AND LINEAR AND NEAR-LINEAR PROOF SIMULATIONS

MARIA LUISA BONET AND SAMUEL R. BUSS

Abstract. We introduce new proof systems for propositional logic, simple deduction Frege systems, gen-
eral deduction Frege systems, and nested deduction Frege systems, which augment Frege systems with
variants of the deduction rule. We give upper bounds on the lengths of proofs in Frege proof systems com-
pared to lengths in these new systems. As applications we give near-linear simulations of the propositional
Gentzen sequent calculus and the natural deduction calculus by Frege proofs. The length of a proof is the
number of lines (or formulas) in the proof.

A general deduction Frege proof system provides at most quadratic speedup over Frege proof systems.
A nested deduction Frege proof system provides at most a nearly linear speedup over Frege system where
by “nearly linear” is meant the ratio of proof lengths is O(a(n)) where « is the inverse Ackermann function.
A nested deduction Frege system can linearly simulate the propositional sequent calculus, the tree-like
general deduction Frege calculus, and the natural deduction calculus. Hence a Frege proof system can
simulate all those proof systems with proof lengths bounded by O(n - a(n)). Also we show that a Frege
proof of n lines can be transformed into a tree-like Frege proof of O(nlogn) lines and of height O(logn).
As a corollary of this fact we can prove that natural deduction and sequent calculus tree-like systems
simulate Frege systems with proof lengths bounded by O(nlogn).

§1. Introduction. A Frege proof system is an inference system for propositional
logic in which the only rule of inference is modus ponens. Although it suffices to
have modus ponens as the single inference rule to obtain a complete proof sys-
tem, it is well known that other modes of inference are also sound. A notable
example of this is the deduction rule which states that if a formula B has a proof
from an additional, extra-logical hypothesis 4 (in symbols, A = B) then there is a
proof of A > B. In this paper we consider various strengthenings of this deduc-
tion rule and establish upper bounds on the proof-speedups obtained with these
deduction rules.

By a “speedup” of a proof, we mean the amount that proofs can be shortened
with additional inference rules. In this paper, the length or size of a proof is the
number of lines in the proof; where a line consists of either a formula or a sequent
(depending on the proof system). We write b~ B (and Ay, ..., A b B) to indicate
that the formula B has Frege proof of < k lines (from the hypotheses 4,,..., 4)).

Received January 1, 1992; revised July 21, 1992.
This research was supported in part by NSF Grant DMS-8902480.

© 1993, Association for Symbolic Logic
0022-4812/93/5802-0018/$03.20

688



THE DEDUCTION RULE AND PROOF SIMULATIONS 689

More generally, we write “H- to mean “provable in proof system T with <k lines”.
If S and T are proof systems we say that S can linearly (respectively, quadraticly)
simulate T if, for any T-proof of k lines, there is an S-proof of the same (or some-
times an equivalent') formula of O(k) lines (respectively, of O(k?) lines). We say
that T provides at most linear (respectively, quadratic) speedup over S if S can
linearly (respectively, quadraticly) simulate T. In general, we define:

DEerFINITION. We say S simulates T with an increase in size of f(x), if for any T-
proof of k lines, there is an S-proof of the same formula of O( f(k)) lines. We say
that T provides an at most f(x) speedup if S can simulate T with an increase in size
of f(x).

An alternative, commonly used measure of the length of a propositional proof
is the number of symbols in the proof. This is the approach used, for instance, by
Cook-Reckhow [7], [14] and Statman [15]. They have also considered extended
Frege proof systems which consist of Frege proof systems plus a new inference
rule, called the extension rule which allows the introduction of abbreviations for
formulas. They have proved that the minimum number of lines in a Frege proof
of a formula (plus the number of symbols in the formula proved) is linearly related
to the minimum number of symbols in an extended Frege proof. The intuition be-
hind their proof of this fact is that, by introducing abbreviations, it is possible to
make all formulas in a proof very short. The linear relation between number of
lines in a Frege proof and number of symbols in an extended Frege proof means
that upper and lower bounds on the number of lines in Frege proofs translate into
bounds on the number of symbols in extended Frege proofs, and vice-versa.

We begin by defining the main propositional proof systems used in this paper.
The logical connectives of all our systems are presumed to be —1, v, A and o;
however, our results hold for any complete set of connectives.

DEFINITION. A Frege proof system (denoted &) is characterized by:

(1) A finite set of axiom schemata. A axiom schema consists of a tautology and
specifies that all instances of the tautology are axioms. For example, a possible
axiom schema is (4 o (B > A)); A and B represent arbitrary formulas.

(2) The only rule of inference is modus ponens:

A A>B
B .

(3) A proof in this system is a sequence of formulas A,,..., 4, (also called ‘lines’)
where each A4, is either a substitution instance of an axiom schema or is inferred
by Modus Ponens from some A4; and 4, with j,k < i. Such a sequence is, by defini-
tion, a proof of 4,,.

(4) The proof system must be consistent and complete.

't is necessary to use an equivalent formula instead of the same formula in the case where S and T
have different languages. In this paper, we shall only consider simulations between systems which have
the same languages (i.e., the same logical connectives); see Reckhow [14] for an indepth treatment of
the more general case.
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The length of an F-proof is the number of lines in the proof; we write i~ 4 to
indicate that 4 has a Frege proof of length < k. We further write 4,,..., 4, B
to mean that B is provable from the hypotheses A4; with a Frege proof of < k lines;
in other words, that there is a sequence of < k formulas, each of which is one of
the A;s, is an axiom, or is inferred by modus ponens from earlier formulas, such
that B is the final formula of the proof. Although we have not specified the axiom
schemata to be used in a Frege proof system, it is easy to see that different choices
of axiom schemata will change the lengths of proofs only linearly. To see this, sup-
pose &, and %, are Frege proof systems with different axiom schemata. Since &,
is complete, it can prove (every instance of) every axiom schema of #; further-
more, if % proves axiom schema T of % in c lines, then %, proves any instance
of T in ¢ lines (since instances of %, axioms are still &, axioms). Hence, since the
Frege system %, has a finite number of axiom schemata, there is a constant upper
bound ¢’ on the length of %, proofs of axioms of #. This allows any # proof
of n lines to be transformed to an %, proof of < c¢'n lines by just replacing the #;
axioms by their %, proofs.

The simplest form of the deduction theorem states that if 4 -+ B then 4 > B.
This can be informally phrased as a rule in the form

A+ B
Ao B

which is called the 1-simple deduction rule; more generally, the simple deduction

rule is
Ay,...,A, - B

Al > ("'(An—l D(An = B)))

We next define extensions to the Frege proof system that incorporate the deduc-
tion theorem as a rule of inference. For this purpose, the systems defined below
have proofs in which the lines are sequents of the form I' = A; intuitively, the se-
quent means that the formulas in I tautologically imply 4: operationally, a sequent
I' = A means that A has been proved using the formulas in I as assumptions.

A general deduction Frege system (denoted d# ) incorporates a strong version
of the deduction rule. Each line in a general deduction Frege proof is a sequent of
the form I' = A where A is a formula and I is a set of formulas. When I' is empty,
we write just = 4. A general deduction Frege system is specified by a finite set of
axiom schemata, which must be suitable for a Frege proof system. The four valid
inference rules in a general deduction Frege proof are

EA A an instance of an axiom schema,
{A} = A Hypothesis,
I'=A>B LA
1F FIDU = 32 = Modus Ponens,
I'=B .
F\{T}I:_A—DE Deduction Rule.

We write 4,,...,4, HZ- B to indicate that {4,,..., A,} = B has a general deduc-
tion Frege proof of < k lines.
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Deduction Frege systems are quite general since they allow hypotheses to be
“opened” and “closed” (i.e., “assumed” and “discharged”) in arbitrary order. A
more restrictive system is the nested deduction Frege proof system which requires
the hypotheses to be used in a ‘nested’ fashion. The nested deduction Frege sys-
tems are quite natural since they correspond to the way mathematicians actually
reason while carrying out proofs. A second reason the nested deduction Frege sys-
tem seems quite natural is that we shall prove below that nested deduction Frege
proof systems can simulate with linear size proofs the propositional Gentzen se-
quent calculus, the tree-like general deduction Frege proofs and the natural de-
duction calculus.

The primary feature of the nested deduction Frege proof system is that hypoth-
eses must be closed in reverse order of their opening. And after a hypothesis is
closed, any formula proved inside the scope of the hypothesis is no longer avail-
able. The following is an example of a nested deduction Frege proof in a system in
which X o X and X o (Y o (X A Y)) are among the axiom schemata.

{ADEA Hypothesis 4 opened,
(A,BY>E B Hypothesis B opened,
{(A,BY)=A> A Axiom,

{A,BYE A Modus Ponens,

{A)EB> A Deduction Rule; B closed,
(4,C>EC Hypothesis C opened,
(A,C>EAS A Axiom,

(A,CHrEA Modus Ponens,

(A>eC>o4 Deduction Rule; C closed,

(4> = (B> 4)

SD((C>2A)>(B>A)A(C> A)) Axiom,
(AYE(C>A)> (B> A) A (C 2 A) Modus Ponens,
{ADE (B> A) A (C > A) Modus Ponens,
{(>EA>(B>A4)A(C>A) Deduction Rule; 4 closed.

A sequent in a nested deduction Frege (nd# ) proof is of the form I' = A where
now I is a sequence of formulas. An nd% proof is a sequence of sequents I} = 4;
(i=1,2,...,n) such that I3 is taken to be the empty sequence and, for each i, one
of the following holds:

(a) I; =1T;_, and A, is an axiom.

(b) I; =T,_, * {(4;>. This opens an assumption, * denotes concatenation of
sequences.

() I;_yisI;*{B) and A;is B o A;_,. This is the deduction rule.

(d) I} =T;_, and 4; is inferred from 4; and 4, by Modus Ponens where each
of I} = Aj and I = A, are available to sequent i. We say sequent j is available
to sequent i if j <iand for all [, if j < I < i then I is an initial subsequence of I;.2

!

21t is also possible, though less elegant, to define sequent j being available to sequent i iff j < i and
I} is an initial subsequence of I;_,. Our main theorems still apply with this alternative definition.
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Examples of Modus Ponens as defined in (d) can be seen in proof above. Note
that there are two sequents containing 4 > A; this is since the first one is not avail-
able to the second Modus Ponens. Interestingly, for this particular example, the
above proof could be shortened one line by removing the two sequents containing
A o A and adding either { ) =4 > A or (4) = A > A as the first or second line
of the proof (respectively). In general, however, nested deduction Frege proofs
might have to repeat lines if they depend on different hypotheses.

We write A;,...,A, FZ Bif (A,,...,A,> = B has a nested deduction Frege
proof with < k sequents.

Nested deduction Frege proofs can be conveniently represented in pictorial form
as a column of formulas with vertical bars that represent the opening, closing and
availability of assumptions. This is best defined by an example; the nd%-proof
given above would be pictorially represented as

A

B

A>D A

| A

Bo A

[C

Ao A

A

Co4

(B> 4)>(C>4)>(B>A4) A (C > A)
(Co2A)o (B2 A) A (C> A)
| (B2 4) A (C> A4))

45 (B> 4)A(C> A).

Nested deduction Frege proofs are conceptually simple and natural and, in prac-
tice, seem to simplify the process of discovering proofs. Thus, it is surprising that
a Frege proof system can simulate nested deduction Frege proofs with near-linear
size proofs: this fact is the content of our main theorems below.

This paper also uses the propositional sequent calculus and the propositional
natural deduction calculus.

The results of this paper consist of various simulation results between proof
systems. Many of these simulations are linear; e.g., §4.2 shows that nested deduc-
tion Frege proofs linearly simulate natural deduction proofs and sequent calculus
proofs. But some of our simulations are near-linear or quadratic; this includes the
following results (and others): Frege systems simulate nested deduction Frege sys-
tems, natural deduction, and the sequent calculus with an increase in size of O(na(n))
where « is the inverse Ackermann function; tree-like Frege proofs can simulate
non-tree-like Frege proofs with an increase in size of O(nlogn); and Frege proof
systems can quadraticly simulate general deduction Frege proof systems. It re-
mains an open problem whether these nonlinear simulations can be improved;
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indeed it is possible that all the proof systems considered in this paper linearly
simulate each other. There appear to be fundamental difficulties in proving that
our simulations are optimal, because the most likely methods of proving optimal-
ity would involve establishing nonlinear lower bounds on the lengths of proofs in
Frege proof systems (which are the weakest proof systems we discuss). However,
to the best of present-day knowledge, it is entirely possible that all tautologies have
linear size Frege proofs. That is to say, it is open whether all tautologies containing
n logical connectives have Frege proofs of O(n) lines.

This last question is interesting because of close connections to open problems
in computational complexity. Cook-Reckhow [7] noted that if there is any proof
system (which must have polynomial time recognizable proofs) in which tautolo-
gies have proofs containing polynomially many symbols, then NP = coNP. From
this it follows immediately that if tautologies always have Frege proofs with poly-
nomially many lines, then NP = coNP. This is because Frege proofs with polyno-
mially many lines can be transformed into extended Frege proofs with polynomially
many symbols. Furthermore, because of the connections (due to Cook) between
extended Frege proof systems and theories of bounded arithmetic, superpolyno-
mial lower bounds on the number of lines in Frege proofs imply that S} does not
prove P = NP [6], [5]. Thus it is expected to be quite difficult to give superpoly-
nomial lower bounds on the lengths of Frege proofs; in fact, it already appears to
be quite difficult to give nonlinear lower bounds.

The problem of giving nonlinear lower bounds on the number of lines in Frege
proofs is similar in spirit to the notoriously difficult problem of giving nonlinear
lower bounds on the size of circuits for computing explicitly given Boolean func-
tions. However, we feel that the former problem may be more amenable to solu-
tion than the latter. The best that we have been able to achieve in the way of lower
bounds is to show that our method of proof for obtaining the O(na(n)) upper
bound cannot be improved (see §3.2); of course, this does not rule out alternative
methods of proof yielding O(n) size proofs.

The present paper is an expansion of portions of [2], [4]. The proof of the main
theorem of the present paper depends on the Serial Transitive Closure problem for
trees; for this, see [3] (preliminary versions of this are also in [2], [4]).

§2. Simulations of simple and general deduction. This section contains some pre-
liminary results giving bounds on how much the deduction rule can shorten proofs.
Most of our results are stated in the form “If proof system X can prove a formula
in n lines, then the formula has a Frege proof of f(n) lines”. Obviously f depends
on the system X.

First recall the usual proof of the deduction theorem (see, e.g., Kleene [8]) which
establishes the following:

THEOREM 1 (deduction theorem). There is a constant ¢ such that if A+~ B then
A > B.

(The constant ¢ is equal to 5 in Kleene’s system.) The bound of ¢ - n is obtained
by replacing each formula C occurring in a proof of B from 4 with the formula
A o C and then “filling in the gaps” in the resulting proof with a constant number
of lines per gap. For axioms, this is easily done since if C is an axion then 4 o C
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can be proved in a constant number of lines. For modus ponens inferences, this is
done using the fact that for any formulas 4, C, and D there is a Frege proof of A>D
from A > C and A o (C o D) with a constant number of lines. If the proof of The-
orem 1 is iterated for m hypotheses, then we get the result that if 4;,...,4,, 5 B
then b 4; o (4, © -+- > (4,, © B)---). However, we can substantially improve
the bound c™n:

THEOREM 2 (simple deduction theorem). Suppose A,,..., A, b~ B. Then

Foarm (A1 2 (43 2+ 2 (4, 2 B)-+).

ProoF. Given an n line proof P of B from assumptions 4,,...,4,,, we construct
a Frege proof P’ of B from the single assumption 4; A A, A --- A A4, (Where the
conjunction is to be associated from left-to-right). For any Frege proof system,
there is a constant k such that C'A D i~ C and C A D b~ D. Thus, P’ can be con-
structed to (1) first derive each of A4,...,A,, in 2k(m — 1) lines and (2) then derive
Bin < nlines (via P). Clearly P’ has O(m + n) lines, and by one application of The-
orem 1, there is a Frege proof of 4; A -+ A A4,, > B with O(m + n) lines. Finally it
can be shown by induction on m that

Fom [A1 A -+ A A, o B]
S [(4; > (4; 2 > (A, 2 B)-+))].

By combining these last two proofs with a Modus Ponens inference, Theorem 2
is proved. O

We use the name simple deduction Frege proof system for the system in which
all hypotheses must be opened at the beginning a proof and closed at the end of
a proof. Theorem 2 shows that a Frege proof system can simulate simple deduc-
tion Frege proofs with linear size proofs or, equivalently, that the simple deduction
Frege proof system provides only a linear speedup (i.e., a constant factor speedup)
over Frege proof systems.

An interesting corollary to Theorem 1 is that conjunctions may be arbitrarily
reordered and reassociated with linear size Frege proofs.

COROLLARY 3. Let B be any conjunction of Ay,...,A,, in that order but asso-
ciated arbitrarily. Let i,...,i, be any sequence from {1,...,m}, and let C be any con-
junction of A,,...,A;, again in the indicated order and associated arbitrarily. Then

O(m+n) B> C.

PROOF. By Theorem 1 it suffices to show that B t5g57 C. The proof of B from
C proceeds as follows: (1) from the assumption B deduce each subformula of B and,
in particular, each of the formulas 4;,..., 4,,, and (2) deduce each subformula of
C from the smallest to the largest. Since there is a constant k such that E A F b~ E
and EA FH- F and E,F b E A F for all formulas E and F, it is clear that the
proof contains O(m + n) lines. O

We now consider the simulation of proof systems with more powerful versions
of the deduction rule.

THEOREM 4. If HZ~ B then 5 B.

Theorem 4 states that a general deduction Frege proof system can provide no
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more than a quadratic speedup over a Frege proof system; whether this quadratic
bound is optimal is an open question.

ProoF. For the proof, we let /\[_, A, denote any conjunction of the formulas A ;
ordered and associated arbitrarily (each 4; should occur exactly once as a conjunct).
To prove Theorem 4, we prove the more general result that if {4;,...,4,} =B
has a d#-proof P of nlines then (/\], 4;) > B has a Frege proof P’ of O(n*) lines.
To form the proof P’ replace each sequent {4,,...,4,,} = B of P by the formula
(/\i~1 4;) > B; it will suffice to “fill in the gaps” to make P’ a valid proof. First, an
axiom in P becomes w.l.o.g. an axiom of the Frege system. Second, a hypothesis
{A} = A in P becomes the tautology 4 > 4 which has a constant length Frege
proof.

Third, the sequents in a modus ponens inference in P

IiA>B LA
Irnuvl,=B

become the formulas /\I't > (4 > B) and A\I, > 4 and A\(I'; U T;) > B. Tt will
suffice to show that the third formula can be proved from the first formulas with a
Frege proof of O(n) lines. By Corollary 3 there are Frege proofs of A\(I'yuTI;)> T,
for i = 1,2 containing O(m) lines where I' U I', contains m formulas. From these
latter two formulas and from /\I' > (4 > B) and /\I, > B there is a Frege proof
of /\(I' nI;) > B with a constant number of lines. It is easily shown that the
number of formulas in the left-hand side of sequent in a d# proof is bounded by
the number of lines in the proof; hence m < n, and for modus ponens one can “fill
in the gap” in P’ with O(n) lines.
Fourth, the sequents in a deduction rule inference in P

I B
IL=EA>B’

where I, is I}\{4} become the formulas ATy > B and /\I';, (4 > B). In this
case, by Corollary 3, there is a Frege proof of (4 A A\I) > /\I'; of O(n) lines
(again since the number of formulas in the conjunction is bounded by n). With
this, there is a Frege proof of AI'; > (4 > B) from /\I'} > B with constantly many
additional lines. Thus we have “filled the gap” for the deduction rule inference with
O(n) lines. O

§3. Simulation of the nested deduction Frege system. In this section we show how
to simulate almost linearly the nested deduction Frege system by the Frege system.
In §3.1 we reduce the simulation problem to the problem of solving the serial tran-
sitive closure problem on trees, and in §3.2 we discuss a combinatorial result about
the serial transitive closure problem.

3.1. Main theorems. We next state our main results that Frege systems can
simulate nested deduction Frege proof systems with nearly linear proof size. The
“near-linear” size estimates are in terms of extremely slow growing functions such
as log* and the inverse Ackermann function. The log* function is defined so that
log*n is equal to the least number of iterations of the logarithm base 2 which
applied to n yields a value < 2. In other words, log*n is equal to the least value of
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2
k such that n < 22°  where there are k 2’s in the stack. To get even slower growing
functions, we define the log™” functions for each i > 0. The log*® function is just
the base 2 logarithm function and the log®? is just the log* function. For i > 1,
the log™? function is defined to be equal to the least number of iterations of the
log®*~ 1 function which applied to n yields a value < 2. The Ackermann function
can be defined by the equations

A0, m) = 2m,
An+ 1,0)=1,
A +1,m+ 1) = A(n, A(n + 1,m)).

It can be shown that A(i + 1, ) is equal to the least value n such that log*)(n) > j;
this means that log*“4(i + 1, j) = j (see [3] for a proof of this fact). It is well known
that the Ackermann function is recursive but dominates eventually every primitive
recursive function.

DErRINITION. The inverse Ackermann function o is defined so that «a(n) is equal
to the least value of i such that A(i,i) > n. Equivalently, a(n) is equal to the least i
such that log®~Yn < i.

MAIN THEOREM 5. Let i > 0. Suppose F"Z— B and that in this nd# proof of B
assumptions are opened m times. Then

v w—
O(n+ mlog*m) B.

MAIN THEOREM 6. If H%Z~ B then to5—amy B.

These main theorems are extremely close to a linear simulation of nested de-
duction Frege proof systems by Frege proof systems. It is immediate that m < n;
Theorem 5 implies that if one could somehow further bound the number of hy-
potheses m by O(n/log™"n) for a fixed value i, then one would obtain a linear simu-
lation. However, we have no indication that m can be bounded in this way.

To prove the main theorems, we reduce them to combinatorial theorems regard-
ing the serial transitive closure of trees. Suppose that we have a nested deduction
Frege proof P of a sequent = B such that P contains n lines and uses the hypothesis
rule m times. To prove Main Theorem 5 for a fixed value of i, we will translate P
into a Frege proof of B containing O(n + mlog®’m) lines. Likewise, for Main
Theorem 6, P is translated into a Frege proof of B of O(n - a(n)) lines.

This is how the simulation goes: Each line in the proof P is of the form I' = B
where I is a sequence of formulas {A;,...,A;>. From the sequent I" = B we form
the logically equivalent formula (/\I') > B where the conjunction is associated
from left to right; thus A I'is the formula ((---(4; A Ay) A -+ A A1) A A,). When
I is empty, /\I' is a fixed tautology. This translation of sequents into equivalent
formulas gives us a sequence of formulas P’; unfortunately, P’ is not a valid Frege
proof and so it remains to show how P’ can be made into a valid Frege proof with
only a relatively small increase in the number of lines.

To make P’ into a valid Frege proof we shall add additional lines. There are
four rules of inference for nd%: Axiom, Hypothesis, Deduction Rule, and Modus
Ponens. For each rule of inference, we explain what lines need to be added to P’;
we save Modus Ponens for last since it is by far the most difficult case.
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First consider an axiom inference in P which is of the form I" = B where B is an
axiom, so P’ contains /\I" > B as the corresponding formula. Since a Frege proof
system is axiomatized with axiom schemata, there is a proof of B > (X > B) with
a constant number of lines (independent of the formulas B and X). Thus there is a
constant length Frege proof of the formula /\I' > B; namely, take the axiom B,
derive B > (/\I' > B) and then use Modus Ponens. This constant length Frege
proof is inserted into the sequence P’.

Second, consider a hypothesis inference where P contains a sequent I" * (B) = B
and P’ contains ((/\I') A B) > B.It s easy to derive (X A B) > Bin a Frege proof
in a constant number of lines where the constant is independent of the formulas B
and X, so the sequent in P’ can be derived in a constant number of lines.

Third, consider a deduction rule inference in P; here P contains a sequent
I'* (A = B followed immediately by I' = A4 o B and P’ contains the corre-
sponding formulas ((/\I') A A) > B and (/\I') > (4 > B). Agai.. there is a con-
stant length Frege proof of the latter formula in P’ from the former one; this con-
stant length proof is to be inserted into P’.

Fourth and hardest, we consider a line in P’ that corresponds to a sequent of P
obtained by Modus Ponens. Suppose thatin P there arelinesI'; = Aand I, = A> B
from which I' = Bis inferred by modus ponens. Since P is a nested deduction Frege
proof, I'; and I, are initial subsequences of I'. In P’ the formulas (/\I';) > 4 and
(/\I.) = (A = B) appear, and from them we wish to derive the formula (AI') > B
in a small number of lines. Note that there is a constant size Frege proof of X > B
from the hypotheses X; > 4 and X, o (4 > B) and X > X, and X > X, where
the constant is independent of the formulas X, X, X,, A, and B. Thus we will
modify P’ by adding the formulas (/') > (/\I;) at the beginning and inserting
a Frege proof of (/A\I') > B from these new formulas and from the other two
formulas.

It remains now to give short Frege proofs of the formulas (AI') > (/\I'") which
have been added to the beginning of P’. By examining the fourth case above we
see that there are < 2n such formulas and they always have I’ an initial subse-
quence of I, and thus they are tautologies of the form

(A AAd)A-)AA)D (- (Ag A Ay) A-) A A,

where without loss of generality I < k < m. To prove one such tautology requires
O(k — 1) lines. Unfortunately, if we used O(k — I) lines for each tautology, the total
number of lines would only be bounded by O(m - n) instead of the desired bound
of O(n + mlog™m) or O(n - a(n)). To get this lower bound on the number of lines
we must exploit the fact that there are many tautologies to be proved. In other
words, we can achieve significant reduction in the number of proof lines by proving
the 2n many tautologies simultaneously rather than separately.

To get short Frege proofs, we shall rephrase the problem as a transitive closure
problem. We shall now work only with tautologies of the form /\I' > AIT where
II is a proper initial subsequence of I and may be the empty sequence. Since there
were m uses of the hypothesis rule in P, there are at most m + 1 distinct /\F ’s; we
think of them forming a directed graph G (actually a tree) with an edge from A\I'
to /\ITiff I extends IT by one element. For example, for the nested deduction proof
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pictured in §1, the directed graph G of tautologies is

/\T< >
ARG,
/ N\
A\<A, BY A4, C>

There are < 2n distinct “target” tautologies which are, by definition, the ones
we need to prove. It is useful to think of these target tautologies as being in the
transitive closure of the directed graph G. The Frege proof of these target tautol-
ogies will proceed as follows: First prove in O(m) lines the tautologies \I' > AIT
where I extends IT by a single element (this may include both target and nontarget
tautologies), obtaining all the edges in the tree-like directed graph G. Next we prove
all the target tautologies in O(n + mlog*’m) or O(n - a(n)) lines. The procedure for
this latter step is to prove many intermediate formulas A\I' > /\IT from the tran-
sitive closure of the directed graph of /\I'’s. For this, we consider the slightly more
general setting of the Serial Transitive Closure problem discussed next.

3.2. Serial transitive closure problem. A directed graph is transitive if, whenever
there is an edge from a node X to a node Y and an edge from Y to Z, there
is an edge from X to Z. The transitive closure of G is a smallest transitive, directed
graph containing G. We write X — Y to indicate the presence of an edge from X
to Y. It is easy to see that any edge in the transitive closure of a graph G can be
obtained from the edges of G by a series of zero or more closure steps, which are
inferences of the form

A-B B-C
A-C

In other words, if 4 - B and B — C are edges in the transitive closure of G, then
A — C is too. This is because the edges that can be derived by closure steps from
edges in G both must be in any transitive graph containing G and also form a tran-
sitive graph on the nodes of G.

The serial transitive closure problem is the problem of deriving a given set of
“closure edges” in the transitive closure of a directed graph. A solution to the serial
transitive closure problem is a sequence of closure steps which generates all of the
given closure edges, and the size of a solution is the number of closure steps in the
solution. The serial transitive closure problem is formally defined as follows:

SERIAL TRANSITIVE CLOSURE PROBLEM: An instance consists of

e a directed graph G with m edges and

o alist of n closure edges X; — Y, (i = 1,...,n) which are in the transitive closure

of G but not in G.

A solution is a sequence of edges U, — V; (i = 1,...,s) containing all n closure
edges such that each U; — V is inferred by a single closure step from earlier edges
and/or edges in G. We call s the number of steps of the solution.

Note that the number of steps in a solution counts only closure steps and does
not count edges that are already in G.
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It should be stressed that the set of closure edges can be any subset of the edges
in the transitive closure of the graph (but not in the graph). The degenerate case of
deriving a single closure edge 4 — B is quite simple, since the minimum number of
closure steps required will be one less than the length of a shortest path from A
to B. The general question of determining the optimal size of a solution is made
difficult by the fact that, when a set of closure edges is being derived, it may be
possible for individual closure steps to aid in the generation of multiple closure
edges. In other words, it is not necessary to generate each closure edge indepen-
dently. It is also important that the set of closure edges will, in general, not be all
the edges in the transitive closure of the graph; the problem of finding a minimal
length derivation of all the edges in the transitive closure of the graph is uninterest-
ing because, in this case, exactly one closure step is needed per closure edge.

We call a directed graph a tree if it can be obtained from a rooted tree T by
either directing all edges in T away from the root or directing all edges toward the
root. We picture trees as having root at the top and either having all edges directed
downward or having all edges directed upward.

THEOREM 7. Let i > 0. If the directed graph G is a tree then the serial transitive
closure problem has a solution with O(n + mlog®’m) steps.

THEOREM 8. If the directed graph G is a tree then the serial transitive closure
problem has a solution with O((n + m) - a(m)) steps.

Theorems 7 and 8 are precisely what is needed to complete the proof of the main
theorems. This is because in §3.1 the proof of the main theorems was reduced to
the problem of proving < 2n ‘target’ tautologies. Let G be the graph with m edges
defined at the end of §3.1 and let the target tautologies be the closure edges: this
specifies an instance of the Serial Transitive Closure problem and any solution of
this instance leads directly to a Frege proof of the target tautologies of length O(s);
namely, the Frege proof simulates each closure step in the solution with a constant
number of lines.

Unfortunately the proofs of Theorems 7 and 8 are too complicated to include
in this paper. Complete proofs can be found in [2], [4], and [3]. In addition, [3]
proves a lower bound of O(na(n)) for the serial transitive closure problem, showing
that Theorem 8 is optimal. Of course, this does not rule out other approaches for
obtaining Frege proof system simulations of the nested deduction Frege proof
system; so it is still open whether the Frege calculus can linearly simulate nd%.

§4. Applications. We discuss and prove some corollaries which give unexpected
connections between nested deduction Frege proof systems and tree-like d% proofs,
natural deduction, and the propositional Gentzen sequent calculus.

4.1. Simulation of the tree-like general deduction Frege system. A proof is tree-
like if no line is used more than once in the proof as a hypothesis of an inference.

THEOREM 9. If I' = A has a tree-like general deduction Frege proof of n lines,
then l—}% I = A where I  is any sequence containing the same elements as the
set I' without repetition.

Note. One elementary fact to note about nd% proofs is that if IT is a sequence
of k formulas and if the sequent IT = A has an nd% proof of n lines, then the
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sequent also has an nd% proof of n lines in which the first k lines are hypoth-
esis inferences which open the hypotheses in II—of course, these k hypotheses
remain open at the end of the proof. By reordering the first k lines of the nd#
proof, it is clear that for any permutation IT' of I, IT' = A also has an n line
nd% proof.

Notation. The subscript seq will be omitted most of the time. When we deal with
a nested deduction Frege proof, we will often abuse notation by writing I' = 4
instead of I',, = A. By the previous note the order of the formulas in I, is
irrelevant.

PROOF OF THE THEOREM. We shall prove by induction on n that if the sequent
{Ay,...,A,} & B has a tree-like d% proof P of n lines then there is an nd% proof
P’ of {Ay,...,A,> = B of length < 2n lines. The proof splits into four cases de-
pending on the final inference in P.

Case 1. The last line of P is = A, for A an axiom. Then P’ is just an nd# proof
of = 4 which has one line.

Case 2. The last line of P is {4} = A. Then P’ is an nd# proof of (A) = A4
which has only one line.

Case 3. The last line of P is

IA>B TLEA
LUl ~B

Assume the proof of I'; = A o B has n, lines and the proof of I, = A4 has n, lines,
so that n = n; + n, + 1 since P is tree-like. By the induction hypothesis, there are
nd% proofs P, and P, of the sequents I'; = 4 > B and I, = A4 of lengths < 2n,
and < 2n, lines, respectively. The proof P’ of (I'1 U I}),q = Bis

[T, uT,
from Py,
Ao B
: from P,,
A
B by modus ponens.

This proof has < 2n, + 2n, + 1 lines, i.e., < 2n lines.

Note. The first line [T} U T, above means that each formula in I'; U I, is opened
as a hypothesis.

Case 4. The last line of P is

rec
NIV EX

By the induction hypothesis, there is a nd% proof P, of the sequent I' = C with
2n — 2 lines. The proof of (I'\{A});.q =4 > Cis
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{4}
4

: } from P,,
C
A>C.

This proof has size (2n — 2) + 1 or (2n — 2) + 2 lines, depending on whether A4 is
in I' or not. In either case, this is < 2n lines.

The theorem follows from Cases 1-4. O

COROLLARY 10. If A has a tree-like dF proof of n lines, then g A.

4.2. Simulation of the sequent calculus. The next theorems give a linear simula-
tion of the propositional Gentzen sequent calculus by the nested deduction Frege
system. We will prove this by showing the stronger result that the nested deduction
Frege system linearly simulates the Gentzen calculus where we do not count struc-
tural inferences like weakening, contraction, and exchange. There is a direct simu-
lation of the sequent calculus, but we prove the stronger result because we need it
for the simulation of the natural deduction system. For the next theorems, it is
crucial that Gentzen sequent calculus proofs are always tree-like. The definition
of the Gentzen sequent calculus can be found in Takeuti [17]; we are concerned
with only the propositional fragment of the sequent calculus, which we call PKT.
Also we work with a version PKT* of the propositional sequent calculus where we
do not count the weak structural inferences weakening, exchange, and contraction.
In other words, the size of a PKT* proof is computed by counting only sequents
which are inferred by an inference other than these three kinds of weak structural
rules. Because we use PKT*, Theorems 11 and 14 and Corollary 15 also hold
for many variations of the sequent calculus, for instance with the mix rule, or
with a rule that allows arbitrary reordering of cedents, or with either the multi-
plicative or additive versions of rules. (But the tree-like property is crucial for
our proofs.)

Recall that * denotes concatenation of sequences. So if I' = (A,,...,4,) and
A=<{By,...,B,y then I' * A = {A,,...,A;,By,...,B,). Also, if 4 =(By,...,B;)
then 4 = {—By,...,1B).

THEOREM 11. If A,,...,A,,— By,...,B, has a PKT proof of n steps, then
I—"ad(%— {Ayy...s A, By,..., B> Ep A TP

PROOF. We prove, by induction on n, the following stronger statement:

If HE 4,....,A,—B,,...,B,, then there is a subsequence I of
{Ayy.-.s A, 1By,..., 1B, such that IT Fges p A —p.

Theorem 11 follows directly from this fact since: (a) if I is a subsequence of
(Ay,...,A,,By,...,71B,> and IT H4- p A —p, then

22— (Ay,...,Ap,By,..., B Ep A TIp,
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and (b),it is easy to prove that if a PKT sequent calculus proof has » lines then
every sequent in the proof has no more than n lines in the antecedent or in the
succendent (i.e., that m, k < n).

Let P be a tree-like PKT* proof of n inferences other than weak structural in-
ferences; P’ will be the nd# proof that we are going to create to simulate P.

Base case. n = 1. The proof P consists only of an axiom, say A - 4. Now we
need to build a nd% proof of (A, 14) = p A —p. That can be done in a constant
number of lines, say d.

Induction step. We suppose the statement holds for all m < n and prove it for n.
We have different cases depending on what the last line of the PKT* proof is. We
will prove the most representative cases:

—1: left. The last line of P is

I'—->A4,A4
AT >4

By the induction hypothesis, there is a nd# proof of ITl=p A —p where IT is a
subsequence of I' * 14 * {1 A4), in say c(n — 1) lines. There is an almost identical
proof of IT, = p A —1p in the same number of lines, where I1, is a subsequence of
{T1A) *I' * 114, i.e., a reordering of II. The only difference between the two
proofs is in the order of the hypotheses, which is unimportant (recall the note
following Theorem 9).

v: right. The last line of P is

F—’A,A F—)A,B
r-4,Av B r'-A4,Av B)

Since I' - 4, A has a proof of n — 1 lines; by the induction hypothesis there is a
nd% proof, say P, of

II=pAp

in ¢(n — 1) lines, where IT is a subsequence of I' * =14 * {1 A). If "1 4 is not in the
sequence I1, then the same proof in ¢(n — 1) lines is a proof of p A —1p from a sub-
sequence of I' * 14 * {(—1(4A v B)). If 14 is in IT then let II; be obtained from
IT by replacing —14 with —1(4 v B). The following is a proof of II, = p A —p:

11,
: a proof of 14 from —1(4 v B)
—4 in ¢, lines,

} from P;.
pATIp

All the lines above are obtained either from P, or in a constant number of lines,
say c¢;. So this proof has < c¢(n — 1) + ¢, lines, so < c - n lines taking c such that
¢y <c
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v: left. The last line of P is

AT—»A4 BT -4
AVvBT >4

Say that A,I" — A has a proof of n, lines, B,I" —» 4 has a proof of n, lines, so that
n=n, + n, + 1, since the proofs of A,I" - 4 and B,I" - 4 do not share work (P
is tree-like). By the induction hypothesis there are nd# proofs P, and P, of

IL=pAn—p and IL=Ep A p

of sizes c-n; and c-n, respectively, where I, and II, are subsequences of
{AY * I * 14 and (B) * I' * /14 respectively. If A is not in II; (or B is not in
I1,), then the same proof P, (or P,)is a proof of p A —p from the subsequence II;
(or II) of (A v BY*I'* 1 A. If Aisin I, and B is in II,, then consider the se-
quence I1; containing all the formulas from II; except A, and all the formulas (non-
repeated) from II, except B. The following is a proof of (A v B) * II; = p A —p:

A v B

E

[' A
: from P,

pATIp

,21 SpATp

B

from P,,

| PATD
BopaA—p

AvBopaA—p

pAIp.

This proof has c-n, + ¢+ n, + ¢, lines for some constant c,. Since n =n; + n, + 1,
the proof length is < ¢ - n taking ¢, < c.

Note. Even though P, and P, had the hypotheses in a different order in which
they are used in the proof above, we can always obtain a proof in the same number
of lines where the hypotheses can be permuted.

Cut. The last line of P is

I'- 4,4 AT - A
-4 ’

Suppose I' — 4, A has a PKT* proof of n, lines and 4,I" - 4 has a PKT* proof
of n, lines, and since P is tree-like, n = n; + n, + 1. By the induction hypothesis,
there are proofs of II; =p A —1p and I, =p A p, say P, and P, of <c-n,
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and <ic-n, lines respectively, and where II;, and II, are subsequences of
I'* 4% (—A) and (4> * I' * 14 respectively. Again, if 14 is not in II, (or A
is not in II,), then the same proof P, (or P,) is a proof of p A —p from a sub-
sequence of I'* —14 in < c-n lines. But if 14 is in II; and A is in II,, then
define II; as a sequence containing the formulas of II; except —1A4 and the for-
mulas of IT, except A. The following is a proof of p A —1p from the subsequence
I of I * A.

e
- 4
: from P,,
pATIp
—A>pA—p
[ A4

: from P,,

[P AP
A>pA—p

Av Ao pA—p

p A p.

This proof has < c¢-n; + ¢ - n, + c; lines, for some constant c;. So < c-n lines
for ¢ > c;.
Weakening. The last line of P is

-4 or -4
AT - A I'->A4,A)

Recall that since P is a PKT* proof, we are not counting the weakening inferences;
so, by the induction hypothesis, there is a nd% proof, say P; of

IT=pA—p

of c - n lines, where IT is a subsequence of I' * —14. Since II is also a subsequence
of A* I * A, P, is also a proof of p A —1p from the sequence I1.
The result follows taking ¢ > d, c,,c,,c5. O
Before we finish the result on the nd% simulation of sequent calculus, let us
state the following lemmas:
LEMMA 12. The formula —(By Vv --- v B,) (7B A --- A T1B,) has a proof in
O(k) lines in a Frege system. Here, parentheses are associated from left to right.
ProoF. By induction on k. O
LEMMA 13. If 4%~ (A,,..., Ay, DBy,...,— 1B &= p A —p, then

'éd(‘"?) <A1>'-~>Am> I=Bl Ve V Bk'
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PrOOF. Let I =(Ay,...,A,>. Assume that M4Z- ' (B, ..., —B)
p A Tp. We build a nd% proof of I' = B, v --- v B, the following way.
[T
[ B; A - A 1B,

1B,

—IBy A --- A 1By )
. O(k) lines to separate —1B; A --- A —1B,, and

n lines by assumption,

—B,_,;

1B,

| P AP J
(B, A---ATIB)DpAp

: O(k) lines from Lemma 12,
By Vv -V B)D(MB A ATIB)

By Vv---VB)opA—ip

B,V -V B,

The proof above has O(k) + n + d lines, for some constant d. Since k < n, the
proof has O(n) lines. O

Theorem 11 and Lemma 13 together show that nested deduction Frege systems
simulate tree-like sequent calculus with a linear increase in the size of the proof.
THEOREM 14. If AT A,,... A, — B,,...,B,, then

,éd(':l;) <A1,"'9Am>|=B1 V oeee V Bk'

COROLLARY 15. If M- A, then to5—g A-

ProoF. If H5T- > 4, then by Theorem 14, H42- 4, and by Theorem 6,
Fotr ey A- 0

Corollary 15 improves a theorem of Orevkov [11] which implies that if — A has
a (tree-like) proof in the sequent calculus of n lines and height h, then Fopysgm 4.
Orevkov’s theorem is stated for a proof system KGL which is a reformulation of
the usual sequent calculus [10]. Although KGL proofs need not be tree-like, it
appears that Gentzen proofs must be tree-like in order to be linearly translated
into KGL. Orevkov, like us, does not need to count structural inferences.

4.3. Simulation of the natural deduction. The next results give a linear simula-
tion of the propositional natural deduction calculus by the nested deduction Frege
system. For the definition of natural deduction see [13], [16]; it is important to
note that natural deduction proofs are tree-like. We call the propositional portion
of it ND. First we claim that PKT* linearly simulates ND, and as a corollary we
obtain that nested deduction Frege systems linearly simulate ND. This corollary
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could,be obtained by a direct simulation of ND by nd#, but doing it this way also
relates sequent calculus with natural deduction.

THEOREM 16. If A has a ND proof of n lines, then Haos— — A.

ProoF. By induction on n. Prove that if 4 has a ND proof of n lines using
hypotheses A4,,..., A;, then l—POKT,,T;— Ay,..., A, — A. The details are left to the reader.

(I

COROLLARY 17. If A has a ND proof of n lines, then Fye— A.

ProOF. The result follows directly from Theorem 16 and the proof of Theo-
rem 14. O

CoRrOLLARY 18. If A has a ND proof of n lines, then bgesmm A.

PRrROOF. The result follows directly from Corollary 17 and Main Theorem 6. []

§5. Tree-like Frege proofs. In this last section, we prove that the tree-like Frege
calculus simulates the Frege calculus with an increase in size of nlogn. In fact, we
show that a Frege proof of n lines can be transformed into a tree-like Frege proof
of O(nlogn) lines and of height O(logn). This result improves on theorems of
Krajicek [9] and Pitassi-Beame-Impagliazzo [12] which say that a Frege calculus
proof of n lines can be transformed into a tree-like Frege proof of O(n?) lines and
of height O(log n). We need some definitions and lemmas.

DEerINITION. Let A4,,..., A, be formulas with n a power of 2. The Balanced Con-
junction N\7_, A, of A,..., A, is defined inductively by

o If n=1,then A\, A, isjust A,.

o Otherwise, A\, 4,5 ("%, 4) A (A Ay )

DEeFINITION. Let A4,..., 4, be formulas, where n = 2™ + s and 0 < s < 2™ The
Pseudobalanced Conjunction N\[_, A;of A,,..., A, is defined inductively by

o If n=1,then JA\/_, A, isjust 4.

e Otherwise, N\7_, 4, is (A", 4,) A (A}_, 4,.,,) and the first conjunct is
balanced and the second is pseudobalanced.

Pseudobalanced formulas were first introduced by Bonet for the study of the
number of symbols in propositional proofs [2], [1].

LemMA 19. The formula (J\'_] A,) A A, 2 JA\s_, A,, where the conjunctions are
associated in a pseudobalanced way, has a tree-like Frege proof of O(logk) lines.

Proor. By induction on the depth of the formula J\%_, 4;. (The depth is equal
to[log,k1.)

Base case. The depth is one. In a constant number of lines we obtain a tree-like
proof of 4, A A, D A A A,.

Induction step. Assume that the lemma holds for depth s. Let now

k—1 k
N A A Ao N A
i=1 i=1

be a formula such that )\;_, 4, has depth s + 1. Then k = 2* + a + 1 where
0 < a < 2°. We consider separately the cases a = 0 and a > 0.
If k—1=2°then \*_, 4, A A, 2 J\L_, A, has a tree-like proof in a constant

number of lines, say c,, since JA\¥_| 4, A A, is the same formula as Af‘z LA
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If k —1=2°+ awhere 0 < a < 25, then

2s 25+a 2s 2544
<AA,-/\ .\ A,->AA,(:>AA,~/\< A A,./\Ak>
i=1 i=25+1 i=1 i=25+1

has a tree-like Frege proof in a constant number of lines, say c,. By the induction
hypothesis

25+a 2s+a+1

AinAi> N A

i=25+1 i=25+1

+

has a tree-like proof in, say, cs lines. So with, say, c; more lines, we obtain

2s 2544 2s 25+a+1
AAH\<A AiAAk>DAAiA A;
1

i=25+1 i=1 i=25+1

and - .
AAiA AkDAAi
i=1 i=1

in a tree-like way. The last formula can be proven in cs + ¢, + c; lines.

The result follows taking ¢ > c,, 02 + c5. O

LEMMA 20. The formula ', 4,2 (NE, 4,) A A; for j such that 1< j<k
has a tree-like Frege proof of 0(log k) lines. Again, the conjunctions are associated
in a pseudobalanced way.

Proor. By induction on the depth of A -1 4;. The proof is similar to the proof
of Lemma 19 and is left to the reader

LEMMA 21. The formula J\%_, S(AF 4) A (A; A A), where 1 < j, 1<k
and conjunctions are pseudobalanced has a tree-like Frege proof of O(logk) lines.

ProoF. By Lemma 20 the formulas

k k k k
A Ai > A Ai AN Aj al’ld A Ai > A Ai AN Al
i=1 i=1 i=1 i=1

have proofs of O(logk) lines. With constantly many more lines we get the wanted
result in O(log k) lines. O

DEerFINITION. The height of a proof is defined to be the largest integer h such
that there exists formulas By,..., B, in the proof with each B, inferred by an
inference which has B; as a hypothesis.

THEOREM 22. If b5~ A then there is a tree-like Frege proof of A of O(nlogn) lines
and of height O(log n).

PrOOF. Let the Frege proof of A4 consist of the following sequence of lines:

A, A, - A,

Let B, be the pseudobalanced conjunction A A; where, by convention, B, is an
arbltrary tautology (say, an axiom). We ﬁrst show that for all i < n, the formula
B; > B; ;. has a tree-like Frege proof of size O(logn) and hence of height O(logn).
This is proved in two cases depending on how A4, , is inferred.

Case 1. A;., is an axiom. Since 4, is an axiom, there is a tree-like proof of

B> (B A Aiyy) |
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in a constant number of lines. Also, Lemma 19 gives us a tree-like proof of the
formula
(B; A Aiv1) @ Biyy

in O(logi) many lines. From these, the formula B; o B;,, follows tautologically
in a constant number of lines (namely, prove the tautology that the first two for-
mulas imply the third formula in a constant size tree-like proof and then use modus
ponens twice).

Case 2. A, is obtained by modus ponens from former lines, say 4, and 4,.
By Lemma 21, we obtain

B> B; A (A, A A)

in tree-like proof of O(logi) lines which is also trivially of height O(logi). There is
a constant size tree-like proof of the tautology

BiA(Ay A A)D B A Ay
And by Lemma 19 there is again a tree-like proof of size and height O(logi) of
(B A Ai+1) 2 Biy .

From these three formulas, B; o B;,, follows tautologically with a constant-size,
tree-like proof. Case 2 is complete.

We can now describe the tree-like Frege proof of A. It begins with proofs of each
of B; o B;, (in parallel). Without loss of generality, n is power of two, say n = 2°
(if necessary, proof length can be padded by including extra axioms). Then for [
equal to 1, then 2, etc., up to s, the formulas

Byt = Bt )

are proved, for all 0 < i < 2°~". The displayed formula is proved by a constant size
tree-like proof from the formulas B, ;)5:-1 2 B4 1)20-1 and B4 1y21-1 2 Bgit2)21- 1.

This then yields a O(logn) height and O(nlogn) size proof of B, > B,. Finally,
since A = A,, Lemma 20 implies there is a tree-like proof of B, > A4 of size and
height O(logn). Now the axiom B, and two further modus ponens inferences yield
the formula A. O

As discussed at the end of the introduction, it is open whether the O(nlogn)
simulation in Theorem 22 can be improved, even if there are no restrictions on the
height of the Frege proof. However, we can suggest a family of formulas which
have linear size non-tree-like Frege proofs but might require size Q(nlogn) size
tree-like Frege proofs. As a special case of Corollary 3, any formula of the form

AAiDAAﬁ
i=1 i=1

has a Frege proof of O(n) lines. Examination of the proof of Corollary 3 shows
that this Frege proof is not tree-like. We conjecture that there is a constant ¢ such
that these formulas require > cnlogn line tree-like Frege proofs infinitely often
(see [1] for an analysis of number of symbols in proofs of these formulas). This
conjecture would imply the optimality of the simulation of Theorem 22.

An immediate consequence of Theorem 22 and Corollaries 15 and 18 is that
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tree-like Frege proofs simulate both natural deduction and the sequent calculus
with an increase in size of O(na(n)log(n)).

It is very easy to show that natural deduction and sequent calculus tree-like
linearly simulate the tree-like Frege calculus, and we leave the proofs to the reader.
Then together with Theorem 22, we obtain the following corollaries.

COROLLARY 23. If by A, then Fopesm — A.

COROLLARY 24. If b~ A, then A has a natural deduction proof with O(nlogn)
steps.

These corollaries are surprising since PKT and natural deduction proofs are
tree-like but Frege proofs are not.
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