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Abstract. The interpolation method has been one of the main tools for proving lower bounds
for propositional proof systems. Loosely speaking, if one can prove that a particular proof system
has the feasible interpolation property, then a generic reduction can (usually) be applied to prove
lower bounds for the proof system, sometimes assuming a (usually modest) complexity-theoretic
assumption. In this paper, we show that this method cannot be used to obtain lower bounds for Frege
systems, or even for TC0-Frege systems. More specifically, we show that unless factoring (of Blum
integers) is feasible, neither Frege nor TC0-Frege has the feasible interpolation property. In order to
carry out our argument, we show how to carry out proofs of many elementary axioms/theorems of
arithmetic in polynomial-sized TC0-Frege.

As a corollary, we obtain that TC0-Frege, as well as any proof system that polynomially simulates
it, is not automatizable (under the assumption that factoring of Blum integers is hard). We also
show under the same hardness assumption that the k-provability problem for Frege systems is hard.
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1. Introduction. One of the most important questions in propositional proof
complexity is to show that there is a family of propositional tautologies requiring
superpolynomial-sized proofs in a Frege or extended Frege proof system. The problem
is still open, and it is thus a very important question to understand which techniques
can be applied to prove lower bounds for these systems, as well as for weaker sys-
tems. In recent years, the interpolation method has been one of the most promising
approaches for proving lower bounds for propositional proof systems and for bounded
arithmetic. Here we show that this method is not likely to work for Frege systems and
some weaker systems. The basic idea behind the interpolation method is as follows.

We begin with an unsatisfiable statement of the form F (x, y, z) = A0(x, z) ∧
A1(y, z), where z denotes a vector of shared variables, and x and y are vectors of
private variables for formulas A0 and A1, respectively. Since F is unsatisfiable, it
follows that for any truth assignment α to z, either A0(x, α) is unsatisfiable or A1(y, α)
is unsatisfiable. An interpolation function associated with F is a Boolean function
that takes such an assignment α as input, and outputs 0 only if A0 is unsatisfiable,
and 1 only if A1 is unsatisfiable. (Note that both A0 and A1 can be unsatisfiable, in
which case either answer will suffice.)
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How hard is it to compute an interpolation function for a given unsatisfiable
statement F as above? It has been shown, among other things, that interpolation
functions are not always computable in polynomial time unless P = NP ∩ co −NP
[M1, M2, M3]. Nevertheless, it is possible that such a procedure exists for some special
cases. In particular, a very interesting and fruitful question is whether one can find
(or whether there exists) a polynomial-sized circuit for an interpolation function in
the case where F has a short refutation in some proof system S. We say that a
proof system S admits feasible interpolation if, whenever S has a polynomial-sized
refutation of a formula F (as above), an interpolation function associated with F
has a polynomial-sized circuit. Kraj́ıček [K2] was the first to make the connection
between proof systems having feasible interpolation and circuit complexity.

There is also a monotone version of the interpolation idea. Namely, for conjunctive
normal form formulas A0 and A1, F = A0(x, z)∧A1(y, z) is monotone if the variables
of z occur only positively in A1 and only negatively in A0. In this case, an associated
interpolant function is monotone, and we are thus interested in finding a polynomial-
sized monotone circuit for an interpolant function. We say that a proof system S
admits monotone feasible interpolation if whenever S has a polynomial-sized refutation
of a monotone F , a monotone interpolation function associated with F has a monotone
polynomial-sized circuit.

Beautiful connections exist between circuit complexity and proof systems with
feasible interpolation in both (monotone and nonmonotone) cases.

In the monotone case, superpolynomial lower bounds can be proven for a (suffi-
ciently strong) proof system that admits feasible interpolation. This was presented
by the sequence of papers [IPU, BPR, K1] and was first used in [BPR] to prove lower
bounds for propositional proof systems. (The idea is also implicit in [Razb2].)

In short, the statement F that is used is the clique interpolation formula, A0(g, x)∧
A1(g, y), where A0 states that g is a graph containing a clique of size k (where the
clique is described by the x variables), and A1 states that g is a graph that can be
colored with k− 1 colors (where the coloring is described by the y variables). By the
pigeonhole principle, this formula is unsatisfiable. However, an associated monotone
interpolation function would take as input a graph g and distinguish between graphs
containing cliques of size k from those that can be colored with k − 1 colors. By
[Razb1, AB], when k = n2/3, such a circuit is of exponential size. Thus, exponen-
tial lower bounds follow for any propositional proof system S that admits feasible
monotone interpolation.

Similar ideas also work in the case where S admits feasible interpolation (but
not necessarily monotone feasible interpolation). The first such result, by [Razb2],
gives explicit superpolynomial lower bounds for (sufficiently strong) proof systems S
admitting feasible interpolation, under a cryptographic assumption. In particular,
it was shown that a (nonmonotone) interpolation function, associated with a certain
statement expressing P �= NP , is computable by polynomial-sized circuits only if there
do not exist pseudorandom number generators. Therefore, lower bounds follow for
any (sufficiently strong) propositional proof system that admits feasible interpolation
(conditional on the cryptographic assumption that there exist pseudorandom number
generators). It is also possible to prove nonexplicit superpolynomial lower bounds for
a (sufficiently strong) proof system under the assumption that NP is not computable
by polynomial-sized circuits.

Many researchers have used these ideas to prove lower bounds for propositional
proof systems. In particular, in the last five years, lower bounds have been shown
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for all of the following systems using the interpolation method: resolution [BPR],
cutting planes [IPU, BPR, Pud, CH], generalizations of cutting planes [BPR, K1, K3],
relativized bounded arithmetic [Razb2], Hilbert’s Nullstellensatz [PS], the polynomial
calculus [PS], and the Lovasz–Schriver proof system [Pud3].

1.1. Automatizability and k-provability. As explained in the previous para-
graphs, the existence of feasible interpolation for a particular proof system S gives rise
to lower bounds for S. Feasible interpolation, moreover, is a very important paradigm
for proof complexity (in general) for several other reasons. In this section, we wish to
explain how the lack of feasible interpolation for a particular proof system S implies
that S is not automatizable.

We say that a proof system S is automatizable if there exists a deterministic pro-
cedure D that takes as input a formula f and returns an S-refutation of f (if one
exists) in time polynomial in the size of the shortest S-refutation of f . Automatiz-
ability is a crucial concept for automated theorem proving: in proof complexity we
are mostly interested in the length of the shortest proof, whereas in theorem proving
it is also essential to be able to find the proof. While there are seemingly powerful
systems for the propositional calculus (such as extended resolution or even axiomatic
set theory (ZFC)), they are scarce in theorem proving because it seems difficult to
search efficiently for a short proof in such systems. In other words, there seems to
be a tradeoff between proof simplicity and automatizability—the simpler the proof
system, the easier it is to find the proof.

In this section, we formalize this tradeoff in a certain sense. In particular, we
show that if S has no feasible interpolation, then S is not automatizable. This was
first observed by Impagliazzo. The idea is to show that if S is automatizable (using
a deterministic procedure D), then S has feasible interpolation.

Theorem 1.1. If a proof system S does not have feasible interpolation, then S
is not automatizable.

Proof. Suppose that S is automatizable, and suppose D is the deterministic
procedure to find proofs, and moreover, D is guaranteed to run in time nc, where
n is the size of the shortest proof of the input formula. Let A0(x, z) ∧ A1(y, z) be
the interpolant statement, and let α be an assignment to z. We want to output an
interpolant function for A0(x, α) ∧ A1(y, α). First, we run D on A0(x, z) ∧ A1(y, z)
to obtain a refutation of size s. Next, we simulate D on A0(x, α) for T (s) steps, and
return 0 if and only if D produces a refutation of A0(x, α) within time T (s). T (s)
will be chosen to be the maximum time for D to produce a refutation for a formula
that has a refutation of size s; thus T (s) = sc in this case. This works because in the
case where A1(y, α) is satisfiable with satisfying assignment γ, we can plug γ into the
refutation of A0(x, α)∧A1(y, α) to obtain a refutation of A0(x, α) of size s. Therefore
S has feasible interpolation.

Thus, feasible interpolation is a simple measure that formalizes the complex-
ity/search tradeoff: the existence of feasible interpolation implies superpolynomial
lower bounds (sometimes modulo complexity assumptions), whereas the nonexistence
of feasible interpolation implies that the proof system cannot be automatized.

A concept that is very closely related to automatizability is k-provability. The
k-symbol provability problem for a particular Frege system S is as follows. The
problem is to determine, given a propositional formula f and a number k, whether
or not there is a k-symbol S proof of f . The k-line provability problem for S is
to determine whether or not there is a k-line S proof of f . The k-line provability
is an undecidable problem for first-order logic [B1]; the first complexity result for
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the k-provability problem for propositional logic was provided by Buss [B2], who
proved the rather surprising fact that the k-symbol propositional provability problem
is NP -complete for a particular Frege system. More recently, [ABMP] show that the
k-symbol and k-line provability problems cannot be approximated to within linear
factors for a variety of propositional proof systems, including resolution and all Frege
systems, unless P = NP .

The methods in our paper show that both the k-symbol and k-line provability
problems cannot be solved in polynomial time for any TC0-Frege system, Frege sys-
tem, or extended Frege system, assuming hardness of factoring (of Blum integers).
More precisely, using the same idea as above, we can show that if there is a polynomial
time algorithm A solving the k-provability problem for S, then S has feasible interpo-
lation: suppose that F = A0(x, z) ∧ A1(y, z) is the unsatisfiable statement. We first
run A with k = n, n2, n3, . . . on F , until A first verifies that there is a size s = |F |c
proof of F for some fixed value of c. Now let α be an assignment to z. As above, we
run A to determine if there is an O(s)-symbol (or O(s)-line) refutation of A0(x, α)
and return 0 if and only if A accepts. In fact, this proof can be extended easily to
show that both the k-symbol and k-line provability problems cannot be approximated
to within polynomial factors for the same proof systems (TC0-Frege, Frege, extended
Frege) under the same hardness assumption.

1.2. Interpolation and one way functions. How can one prove that a certain
propositional proof system S does not admit feasible interpolation? One idea, due to
Kraj́ıček and Pudlák [KP], is to use one way permutations in the following way. Let
h be a one way permutation and let A0(x, z), A1(y, z) be the following formulas.

The formula A0:
h(x) = z, AND the ith bit of x is 0.
The formula A1:
h(y) = z, AND the ith bit of y is 1.

Since h is one to one, A0(x, z) ∧ A1(y, z) is unsatisfiable. Assume that A0, A1 can
be formulated in the proof system S and that in S there exists a polynomial-sized
refutation for A0(x, z) ∧ A1(y, z). Then, if S admits feasible interpolation, it follows
that given an assignment α to z there exists a polynomial-sized circuit that decides
whether A0(x, α) is unsatisfiable or A1(y, α) is unsatisfiable. Obviously, such a circuit
breaks the ith bit of the input for h. Since A0, A1 can be constructed for any i, all
bits of the input for h can be broken. Hence, assuming that the input for h is secure,
and that in the proof system S there exists a polynomial-sized refutation for A0 ∧A1,
it follows that S does not admit feasible interpolation.

A major step towards the understanding of feasible interpolation was made by
Kraj́ıček and Pudlák [KP]. They considered formulas A0, A1 based on the Rivest–
Shamir–Adleman (RSA) cryptographic scheme and showed that unless RSA is not
secure, extended Frege systems do not have feasible interpolation. It has been open,
however, whether or not the same negative results hold for Frege systems and for
weaker systems such as bounded depth threshold logic or bounded depth Frege.

1.3. Our results. In this paper, we prove that Frege systems, as well as constant-
depth threshold logic (referred to below as TC0-Frege), do not admit feasible interpo-
lation, unless factoring of Blum integers is computable by polynomial-sized circuits.
(Recall that Blum integers are integers P of the type P = p1 ·p2, where p1, p2 are both
primes such that p1 mod 4 = p2 mod 4 = 3.) Thus our result significantly extends
[KP] to weaker proof systems. In addition, our cryptographic assumption is weaker.
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To prove our result, we use a variation of the ideas of [KP]. In a conversation with
Moni Naor [N], he observed that the cryptographic primitive needed here is not a one
way permutation as in [KP], but the more general structure of bit commitment. Our
formulas A0, A1 are based on the Diffie–Hellman secret key exchange scheme [DH].
For simplicity, we state the formulas only for the least significant bit. (Our argument
works for any bit.)

Informally, our propositional statement DH will be

DHn = A0(P, g,X, Y, a, b) ∧A1(P, g,X, Y, c, d).

The common variables are two integers X,Y , and P and g. P represents a number
(not necessarily a prime) of length n, and g an element of the group Z∗

P . The private
variables for A0 are integers a, b, and the private variables for A1 are integers c, d.

Informally, A0(P, g,X, Y, a, b) will say that ga mod P = X, gb mod P = Y ,
and gab mod P is even. Similarly, A1(P, g,X, Y, c, d) will say that gc mod P = X,
gdmodP = Y , and gcd mod P is odd. The statement A0 ∧ A1 is unsatisfiable since
(informally) if A0, A1 are both true we have

gab mod P = (ga mod P )b mod P = Xb mod P

= (gc mod P )b mod P = gbc mod P = (gb mod P )c mod P

= Y c mod P = (gd mod P )c mod P = gcd mod P.

We will show that the above informal proof can be made formal with a (polynomial-
sized) TC0-Frege proof. On the other hand, an interpolant function computes one
bit of the secret key exchanged by the Diffie–Hellman procedure. Thus, if TC0-
Frege admits feasible interpolation, then all bits of the secret key exchanged by the
Diffie–Hellman procedure can be broken using polynomial-sized circuits, and hence
the Diffie–Hellman cryptographic scheme is not secure. Note, that it was proved that
for P = p1 · p2, where p1, p2 are both primes such that p1 mod 4 = p2 mod 4 = 3 (i.e.,
P is a Blum integer), breaking the Diffie–Hellman cryptographic scheme is harder
than factoring P ! (See [BBR] and also [Sh, Mc]).

It will require quite a bit of work to formalize the above statement and argument
with a short TC0-Frege proof. Notice that we want the size of the propositional
formula expressing the Diffie–Hellman statement to be polynomially bounded in the
number of binary variables. And additionally, we want the size of the TC0-Frege
proof of the statement also to be polynomially bounded. A key idea in order to define
the statement and prove it efficiently is to introduce additional common variables to
our propositional Diffie–Hellman statement. The bulk of the argument then involves
showing how (with the aid of the auxiliary variables) one can formalize the above proof
by showing that basic arithmetic facts, including the Chinese remainder theorem, can
be stated and proven efficiently within TC0-Frege.

1.4. Section description. The paper is organized as follows. In section 2, we
define our TC0-Frege system. In section 3, we define the TC0-formulas used for the
proof. In section 4, we define precisely the interpolation formulas which are based
on the Diffie–Hellman cryptographic scheme. In section 5, we show how to prove our
main theorem, provided we have some technical lemmas that will be proved fully in
section 7. In section 6, there is a discussion and some open problems. Finally, in
section 7, we prove all the technical lemmas required for the main theorem.
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The unusual organization of the paper is due to the many very technical lemmas
required to show the result, which are essential to the correctness of the argument but
which not every reader might want to go through. Sections 1–6 give an exposition of
the result, relying on the complete proofs in the technical part.

2. TC0-Frege systems. For clarity, we will work with a specific bounded-depth
threshold logic system, which we call TC0-Frege. However, any reasonable definition
of such a system should also suffice. Our system is a sequent-calculus logical system
where formulas are built up using the connectives ∨, ∧, Thk, ¬, ⊕0, and ⊕1. (Thk(x)
is true if and only if the number of 1’s in x is at least k, and ⊕i(x) is true if and only
if the number of 1’s in x is i mod 2.)

Our system is essentially the one introduced in [MP], (which is, in turn, an ex-
tension of the system PTK introduced by Buss and Clote [BC, section 10]).

Intuitively, a family of formulas f1, f2, f3, . . . has polynomial-sized TC0-Frege
proofs if each formula has a proof of size polynomial in the size of the formula, and
such that every line in the proof is a TC0 formula.

Definition 2.1. Formulas are built up using the connectives ∧, ∨, Thk, ⊕1, ⊕0,
¬. All connectives are assumed to have unbounded fan-in. Thk(A1, . . . , An) is inter-
preted to be true if and only if the number of true Ai’s is at least k; ⊕j(A1, . . . , An)
is interpreted to be true if and only if the number of true Ai’s is equal to j mod 2.

The formula ∧(A1, . . . , An) denotes the logical AND of the multiset consisting of
A1, . . . An, and similarly for ∨, ⊕j , and Thk. Thus commutativity of the connectives
is implicit. Our proof system operates on sequents which are sets of formulas of the
form A1, . . . , Ai → B1, . . . , Bj . The intended meaning is that the conjunction of the
Ai’s implies the disjunction of the Bj ’s. A proof of a sequent S in our logic system
is a sequence of sequents, S1, . . . , Sq, such that each sequent Si either is an initial
sequent or follows from previous sequents by one of the rules of inference, and the
final sequent, Sq, is S. The size of the proof is

∑
1≤i≤q size(Si), and its depth is

max1≤i≤q(depth(Si)).
The initial sequents are of the form (1) A → A, where A is any formula; (2) → ∧()

; ∨() →; (3) ⊕1() → ; → ⊕0(); and (4) Thk() → for k ≥ 1 ; → Th0(A1, . . . , An) for
n ≥ 0. The rules of inference are as follows. Note that the logical rules are defined for
n ≥ 1 and k ≥ 1. First we have simple structural rules such as weakening (formulas
can always be added to the left or to the right), contraction (two copies of the same
formula can be replaced by one), and permutation (formulas in a sequent can be
reordered). The remaining rules are the cut rule and logical rules, which allow us to
introduce each connective on both the left side and the right side. The cut rule allows
the derivation of Γ,Γ′ → ∆,∆′ from Γ, A → ∆, and Γ′ → A,∆′.

The logical rules are as follows.
1. (Negation-left) From Γ → A,∆, (for consistency) derive ¬A,Γ → ∆.
2. (Negation-right) From A,Γ → ∆, derive Γ → ¬A,∆.
3. (And-left) From A1,∧(A2, . . . , An),Γ → ∆, derive ∧(A1, . . . , An),Γ → ∆.
4. (And-right) From Γ → A1,∆ and Γ → ∧(A2, . . . , An),∆, derive

Γ → ∧(A1, . . . , An),∆.
5. (Or-left) From A1,Γ → ∆ and ∨(A2, . . . , An),Γ → ∆, derive ∨(A1, . . . , An),Γ

→ ∆.
6. (Or-right) From Γ → A1,∨(A2, . . . , An),∆, derive Γ → ∨(A1, . . . , An),∆.
7. (Mod-left) From A1,⊕1−i(A2, . . . , An),Γ → ∆ and ⊕i(A2, . . . , An),Γ → A1,

∆, derive ⊕i(A1, . . . , An), Γ → ∆.
8. (Mod-right) FromA1,Γ → ⊕1−i(A2, . . . , An),∆ and Γ → A1,⊕i(A2, . . . , An),
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∆, derive Γ → ⊕i(A1, . . . , An),∆.
9. (Threshold-left) From Thk(A2, . . . , An),Γ → ∆ and A1,Thk−1(A2, . . . , An),

Γ → ∆, derive Thk(A1, . . . , An),Γ → ∆.
10. (Threshold-right) From Γ → A1,Thk(A2, . . . , An),∆, and Γ →

Thk−1(A2, . . . , An),∆, derive Γ → Thk(A1, . . . , An),∆.
A TC0 proof is a bounded-depth proof in our system of polynomial size. More

formally, we have the following definitions.
Definition 2.2. Let F = {(Γn → ∆n) : n ∈ N} be a family of sequents. Then

{Rn : n ∈ N} is a family of TC0 proofs for F if there exist constants c and d such
that the following conditions hold: (1) each Rn is a valid proof of (Γn → ∆n) in our
system; (2) for all i, the depth of Rn is at most d; and (3) for all n, the size of Rn is
at most (size(Γn → ∆n))c.

We note that we have defined a specific proof system for clarity; our result still
holds for any reasonable definition of a TC0-Frege proof. (It can be shown that our
system polynomially simulates any Frege-style system.) The difference between a
polynomial-sized proof in our system and a polynomial-sized TC0 proof is similar to
the difference between NC1 and TC0.

3. The TC0-formulas. In this section, we will describe some of the TC0-
formulas needed to formulate and to refute the Diffie–Hellman formula. For simplicity
of the description, let us assume that we have a fixed number N which is an upper
bound for the length of all numbers used in the refutation of the Diffie–Hellman for-
mula. The number N will be used to define some of the formulas below. After seeing
the statement and the refutation of the Diffie–Hellman formula, it will be clear that
it is enough to take N to be a small polynomial in the length of the number P used
for the Diffie–Hellman formula.

3.1. Addition and subtraction. We will use the usual carry-save AC0-formulas
to add two n-bit numbers. Let x = xn, . . . , x1 and y = yn, . . . , y1 be two numbers.
Then x + y will denote the following AC0-formula: There will be n + 1 output bits,
zn+1, . . . , z1. The bit zi will equal the mod 2 sum of Ci, xi, and yi, where Ci is
the carry bit. Intuitively, Ci is 1 if there is some bit position less than i that gen-
erates a carry that is propagated by all later bit positions until bit i. Formally, Ci

is computed by OR(Ri(i−1), . . . , Ri1), where Rij = AND(Pi−1, . . . , Pj+1, Gj), where
Pk = Mod2(xk, yk), and Gj = AND(xj , yj). (Gj is 1 if the jth bit position generates
a carry, and Pk is 1 if the kth bit position propagates but does not generate a carry.)

As for subtraction, let us show how to compute z = |x − y|. Think of x, y as
N -bit numbers. Let s = x + y + 1, and similarly let t = y + x + 1, where y is the
complement (modulo 2) of the N bits of y, and x is the complement of the N bits of
x. Denote s = sN+1, sN , . . . , s1, and note that s is equal to 2N +(x−y), and similarly
t is equal to 2N + (y − x). If sN+1 = 1, then we know that x− y ≥ 0 and thus s = z.
Otherwise, if sN+1 = 0, then we know that y − x > 0 and thus t = z. Thus, for any
i, we can compute zi by (sN+1 ∧ si) ∨ (¬sN+1 ∧ ti).

3.2. Iterated addition. We will now describe the TC0-formula SUM [x1, . . . ,
xm] that inputs m numbers, each n bits long, and outputs their sum x1+x2+ · · ·+xm

(see [CSV]). We assume that m ≤ N . The main idea is to reduce the addition
of m numbers to the addition of two numbers. Let xi be xi,n, . . . , xi,1 (in binary
representation). Let l = �log2 N�. Let r = n

2l , and assume (for simplicity) that r is
an integer.

Divide each xi into r blocks, where each block has 2l bits, and let Si,k be the
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number in the kth block of xi. That is,

Si,k =

2l∑
j=1

xi,(k−1)·2l+j · 2j−1.

Now, each Si,k has 2l bits. Let Li,k be the low-order half of Si,k, and let Hi,k be the
high-order half. That is, Si,k = Hi,k · 2l + Li,k.

Denote

H =

m∑
i=1

r∑
k=1

Hi,k · 2l · 2(k−1)2l,

L =

m∑
i=1

r∑
k=1

Li,k · 2(k−1)2l.

Then,

x1 + · · · + xm =

m∑
i=1

r∑
k=1

Si,k · 2(k−1)2l

=

m∑
i=1

r∑
k=1

Hi,k · 2l · 2(k−1)2l +

m∑
i=1

r∑
k=1

Li,k · 2(k−1)2l = H + L.

Hence, we just have to show how to compute the numbers H,L. Let us show how to
compute L; the computation of H is similar.

Denote Lk =
∑m

i=1 Li,k. Then

L =
r∑

k=1

Lk · 2(k−1)2l.

Since each Li,k is of length l, each Lk is of length at most l + log2 m, which is at
most 2l. Hence, the bits of L are just the bits of the Lk’s combined. That is,
L = Lr, Lr−1, . . . , L1.

As for the computation of the Lk’s, note that since each Lk is a polysize sum of
logarithmic length numbers, it can be computed using polysize threshold gates.

3.3. Modular arithmetic. Next, we describe our TC0-formulas that compute
the quotient and remainder of a number z modulo p, where z is of length n. The
remainder and the inputs for the remainder and the quotient formulas are as follows:

1. the number z,
2. numbers p1, p2, . . . , pn,
3. numbers ki and ri for all 1 ≤ i ≤ n.

The intended values for the variables ki and ri are such that 2i = p · ki + ri, where
0 ≤ ri < p for all 1 ≤ i ≤ n. The intended values for the variables pi are i · p.

Suppose that z = kp + r, where 0 ≤ r < p, and assume that the input variables
ki, ri, and pi take the right values. Then our formula [z]p will output r, and our
formula divp(z) will output k. The formulas are computed as follows.
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Let z = zn, . . . , z1; i.e., z =
∑n

i=1 2i−1zi. Suppose that the ki, ri, and pi variables
satisfy 2i = ki · p + ri, where 0 ≤ ri < p, and pi = i · p for all 1 ≤ i ≤ n. Then z
satisfies

z =
n∑

i=1

2i−1zi =

n∑
i=1

(p · ki−1 + ri−1)zi

= p ·
n∑

i=1

ki−1 · zi +

n∑
i=1

ri−1 · zi.

Denote s =
∑n

i=1 ri−1 · zi, and let l be such that l · p ≤ s < (l + 1) · p. Then
[z]p = s− l · p and can therefore be computed by

[z]p = SUMn
i=1[ri−1 · zi] − p · l.

divp(z) is computed by SUMn
i=1[ki−1 · zi] + l.

Notice that if the ki, ri, and pi’s are not such that 2i = ki · p + ri, 0 ≤ ri < p,
and pi = i · p, then the formulas are not required to compute the correct values of the
quotient or remainder and can give an arbitrary answer.

3.4. Product and iterated product. We will write x · y to denote the for-
mula SUMi,j [2

i+j−2xiyj ], computing the product of two n-bit numbers x and y. By
2i+j−2xiyj , we mean 2i+j−2 if both xi and yj are true, and 0 otherwise.

Last, we will describe our TC0-formula for computing the iterated product of m
numbers. This formula is basically the original formula of [BCH] and is articulated
as a TC0-formula in [M].

The iterative product PROD[z1, . . . , zm] gives the product of z1, . . . , zm, where
each zi is of length n, and we assume that m,n are both bounded by N . The basic
idea is to compute the product modulo small primes using iterated addition and then
to use the constructive chinese remainder theorem to construct the actual product
from the product modulo small primes.

Let Q be the product of the first t primes q1, . . . , qt, where t is the first integer
that gives a number Q of length larger than N2. Since q1, . . . , qt are all larger than 2,
t is at most N2, and by the well-known bounds for the distribution of prime numbers
the length of each qj is at most O(logN). For each qj , let gj be a fixed generator
for Z∗

qj . Also, for each qj , let uj ≤ Q be a fixed number with the property that
uj mod qj = 1 and for all i �= j, uj mod qi = 0 (such a number exists by the Chinese
remainder theorem). PROD[z1, . . . , zm] is computed as follows.

1. First we compute ri,j = [zi]qj for all i, j. This is calculated using the modular
arithmetic described earlier.

2. For each 1 ≤ j ≤ t we will compute rj = (
∏m

i=1 ri,j) mod qj as follows.
a. Compute aij such that (g

aij

j ) mod qj = ri,j . This is done by a table
lookup.

b. Calculate cj = SUMm
i=1[aij ](qj−1).

c. Compute rj such that g
cj
j mod qj = rj . This is another table lookup.

3. Finally, compute

PROD[z1, . . . , zm] = SUM t
j=1[uj · rj ]Q.

We will hardwire the values uj · k for all k ≤ qj . Thus, this computation is
obtained by doing a table lookup to compute uj · rj followed by an iterated
sum followed by a mod Q calculation.
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3.5. Equality and inequality. Often we will write x = y, where x and y are
both vectors of variables or formulas: x = x1, . . . , xn, and y = y1, . . . , yn. When we
write x = y, we mean the formula ∧i((¬xi ∨ yi) ∧ (xi ∨ ¬yi)). We apply the same
conventions when writing �=, <,≤, >,≥.

4. The Diffie–Hellman formula. We are now ready to formally define our
propositional statement DH. DH will be the conjunction of A0 and A1. The common
variables for the formulas will be

(a) P and g representing n-bit integers, and for every i ≤ 2n, we will also add

common variables for g2i

mod P .
(b) X,Y , and for every i ≤ 2n, we will also add common variables for X2i

mod P

and for Y 2i

mod P .
(c) We also add variables for P2, . . . , PN , and for k1, . . . , kN and r1, . . . , rN . These

variables are needed to define arithmetic modulo P (see section 3.3).

For e ∈ {0, 1}, denote by g2i·e (respectively, X2i·e, Y 2i·e) the following: the

common variable g2i

mod P (respectively, X2i

mod P , Y 2i

mod P ) if e = 1, and 1
if e = 0. The formula A0(P, g,X, Y, a, b) will be the conjunction of the following
TC0-formulas:

1.

PRODi

[
g2i·ai

]
P

= X,

which means ga mod P = X.
2. For every j ≤ n,

PRODi

[
g2i+j ·ai

]
P

= X2j

mod P,

which means (g2j

)amodP = X2j

modP . Note that from this, it is easy to
prove for e ∈ {0, 1},

PRODi

[
g2i+j ·ai·e

]
P

= X2j ·e.

3. Similar formulas for gb mod P = Y , and for (g2j

)b mod P = Y 2j

mod P .

4. PRODi,j [g
2i+j ·ai·bj ]P is even, which means gab mod P is even.

5. For every i ≤ N , formulas expressing 2i = P · ki + ri, 1 ≤ ri < P , and
Pi = i · P . (These formulas are added to guarantee that the modulo P
arithmetic is computed correctly.)

Similarly, the formula A1(P, g,X, Y, c, d) will be the conjunction of the above
formulas, but with a replaced by c, b replaced by d, and the fourth item stating that
gcd mod P is odd.

Note that the definition of the iterated product (PROD) requires the primes
q1, . . . , qt (as well as their product Q, and the numbers u1, . . . , ut), which are fixed
for the length n. So we are going to hardwire the numbers q1, . . . , qt, Q, u1, . . . ut, as
well as the correct values for the ri’s and ki’s needed for the modulo qj arithmetic for
each one of these numbers.

5. A TC0-Frege refutation for DH. We want to describe a TC0-Frege refu-
tation for DH. As mentioned above, the proof proceeds as follows.

1. Using A0, show that gab mod P = Xb mod P .
2. Using A1, show that Xb mod P = gcb mod P .
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3. Show that gcb mod P = gbc mod P .
4. Using A0, show that gbc mod P = Y c mod P .
5. Using A1, show that Y c mod P = gdc mod P .
6. Show that gdc mod P = gcd mod P .

We can conclude from the above steps that A0 and A1 imply that gab mod P =
gcd mod P , but now we can reach a contradiction since A0 states that gab mod P is
even, while A1 states that gcd mod P is odd.

We formulate gab mod P as

PRODi,j

[
g2i+j ·ai·bj

]
P

and Xb mod P as

PRODj

[
X2j ·bj

]
P
.

Thus, step 1 is formulated as

PRODi,j

[
g2i+j ·ai·bj

]
P

= PRODj

[
X2j ·bj

]
P
,

and so on.
Steps 1, 2, 4, and 5 are all virtually identical. Steps 3 and 6 follow easily because

our formulas defining gab make symmetry obvious. Thus the key step is to show step
1; that is, to show how to prove gab mod P = Xb mod P . As mentioned above, this
is formulated as follows:

PRODi,j

[
g2i+j ·ai·bj

]
P

= PRODj

[
X2j ·bj

]
P
.

We will build up to the proof that gab mod P equals Xb mod P by proving many
lemmas concerning our basic TC0-formulas. The final lemma that we need is the
following.

Lemma 5.1. For every z1,1, . . . , zm,m′ and p, there are TC0-Frege proofs of

PRODi,j [zi,j ]p = PRODi[PRODj [zi,j ]p]p.

The proof of the lemma is given in section 7.
Using Lemma 5.1 for the first equality and point 2 from section 4 for the second

equality, we can now obtain

PRODi,j

[
g2i+j ·ai·bi

]
P

= PRODj

[
PRODi

[
g2i+j ·ai·bj

]
P

]
P

= PRODj

[
X2j ·bj

]
P
,

which proves step 1.
Hence, the main goal of section 7 is to show that the statement

PRODi,j [zi,j ]p = PRODi[PRODj [zi,j ]p]p

has a short TC0-Frege proof. This is not trivial because our TC0-Frege formulas are
quite complicated (and in particular the formulas for iterated product and modular
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arithmetic). In order to prove the statement, we will need to carry out a lot of the
basic arithmetic in TC0-Frege. Before we go on to the technical part, we will try to
give some intuition on how the proof of the main lemma is built.

We organized the proof as a sequence of lemmas that show how many basic facts
of arithmetic can be formulated and proved in TC0-Frege (using our TC0-formulas).
The proofs of these lemmas require careful analysis of the exact formula used for
each operation. The proofs of some of these lemmas are straightforward (using the
well-known TC0-formulas), while the proofs of other lemmas require some new tricks.

In short, the main lemmas that are used for the TC0-Frege proof of the final
statement (Lemma 5.1) are the following:

1. (Lemma 7.34) For every x, y, and p, there are TC0-Frege proofs of

[x · y]p = [x · [y]p]p.
2. (Lemma 7.37) For every z1, . . . , zm, and every 1 ≤ k ≤ m, there are TC0-

Frege proofs of

PROD[z1, . . . , zm] = PROD[z1, . . . , zk−1, PROD[zk, . . . , zm]].

3. (Lemma 7.43) For every z1, z2, there are TC0-Frege proofs of

PROD[z1, z2] = z1 · z2.
First, we prove some basic lemmas about addition, subtraction, multiplication,

iterative-sum, less-than, and modular arithmetic. Among these lemmas will be Lemma
7.34.

The proof of Lemma 7.37 is cumbersome, but it is basically straightforward, given
some basic facts about modular arithmetic. Recall that to do the iterated product we
have to first compute the product modulo small primes and then combine all these
products to get the right answer using iterated sum. Therefore, many basic facts of
the modulo arithmetic need to be proven in advance, as well as some basic facts of
the iterated sum.

Once this is done, we need to obtain the same fact modulo p (Lemma 7.44).
At this point it is easier to go through the regular product, where the basic facts
of modular arithmetic are easier to prove. Therefore it is important to show that
TC0-Frege can prove

PROD[z1, z2] = z1 · z2
(Lemma 7.43). In our application, z1 and z2 will themselves be iterated products.

To show this fact we use the Chinese remainder theorem. We first prove the
equality modulo small primes. This is relatively easy, since the sizes of these primes
are sufficiently small (O(logN)), and we can basically check all possible combinations.
Once this is done, we apply the Chinese remainder theorem to obtain the equality
modulo the product of the primes, and since this product is big enough, we obtain
the desired result.

Our TC0-Frege proof of the Chinese remainder theorem is different than the
standard textbook one. The main fact that we need to show is that if for every j,
[R]qj = [S]qj , then there are TC0-Frege proofs of [R]Q = [S]Q (Q = q1 · . . . · qt).
The usual proofs use some basic facts of division of primes that would be hard to
implement here. Instead we prove by induction on i < t that [R]Qi

= [S]Qi
, where

Qi =
∏i

j=1 qj . This method allows us to work with numbers smaller than the qi’s,
and again since these numbers are sufficiently small, we can verify all possibilities.



ON INTERPOLATION AND AUTOMATIZATION 1951

6. Discussion and open problems. We have shown that TC0-Frege does not
have feasible interpolation, assuming that the factoring of Blum integers is not effi-
ciently computable. This implies (under the same assumptions) that TC0-Frege as
well as any system that can polynomially simulate TC0-Frege is not automatizable.
It is interesting to note that our proof and even the definition of the Diffie–Hellman
formula itself is nonuniform, essentially due to the nonuniform nature of the iterated
product formulas that we use. It would be interesting to know to what extent our
result holds in the uniform TC0 proof setting.

A recent paper [BDGMP] extends our results to prove that bounded-depth Frege
does not have feasible interpolation assuming factoring Blum integers is sufficiently
hard (actually their assumptions are stronger than ours). As a consequence bounded-
depth Frege is not automatizable under somewhat weaker hardness assumptions.

An important question that is still open is whether resolution, or some restricted
forms of it, is automatizable. A positive answer to this question would have important
applied consequences.

7. Formal proof of the main lemma. The goal of this section is to prove
Lemma 5.1. As mentioned earlier, we will build up to the proof of this lemma by
showing that basic facts concerning arithmetic, multiplication, iterated multiplication,
and modulus computations can be efficiently carried out in our proof system. Before
we begin the formal presentation, we would like to note that we will be giving a
precise description of a sequence of lemmas that are sufficient in order to carry out
a full, formal proof of Lemma 5.1. However, since there are many lemmas and many
of them have obvious proofs, we will describe at a meta-level what is required in
order to formalize the argument in TC0-Frege, rather than give an excessively formal
TC0-Frege proof of each lemma.

In what follows, x, y, and z will be numbers. Each one of them will denote a
vector of n variables or formulas (representing the number), where n ≤ N and xi

(respectively, yi, zi) denotes the ith variable of x (representing the ith bit of the
number x). When we need to talk about more than three numbers, we will write
z1, . . . , zm to represent a sequence of m n-bit numbers, (where m,n ≤ N), and now
zi,j is the jth variable of zi (representing the jth bit in the ith number).

Recall that whenever we say below “there are TC0-Frege proofs,” we actually
mean to say “there are polynomial-sized TC0-Frege proofs.” Some trivial properties
like x = y ∧ y = z → x = z are not stated here.

7.1. Some basic properties of addition, subtraction, and multiplication.

Lemma 7.1. For every x, y, there are TC0-Frege proofs of x + y = y + x.

Proof of Lemma 7.1. The proof is immediate from the fact that the addition
formula was defined in a symmetric way.

Lemma 7.2. For every x, y, z, there are TC0-Frege proofs of x + (y + z) =
(x + y) + z.

Proof of Lemma 7.2. By the definition of the addition formula, the ith bit of
((x + y) + z) is equal to ⊕1(⊕1(xi, yi, Ci(x, y)), zi, Ci((x + y), z)), where Ci(x, y) is
the carry bit going into the ith position, when we add x and y, and Ci((x + y), z) is
similarly defined to be the carry bit going into the ith position when we add (x + y)
and z.

Using basic properties of ⊕1 and the above definitions, there is a simple TC0-
Frege proof that if ⊕1(Ci(x, y), Ci((x + y), z)) = ⊕1(Ci(y, z), Ci(x, (y + z))), then it
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follows that ((x+ y)+ z) = (x+(y+ z)). Thus it is left to show that for all i ≤ n+2,

⊕1(Ci(x, y), Ci((x + y), z)) = ⊕1(Ci(y, z), Ci(x, (y + z))).

We will show how to prove the stronger equality

Ci(x, y) + Ci((x + y), z) = Ci(y, z) + Ci(x, (y + z)).

(It can be verified that this is the strongest equality possible for the four quantities
Ci(x, y), Ci((x+y), z), Ci(y, z), Ci(x, (y+z)). That is, all six assignments for Ci(x, y),
Ci((x+ y), z), Ci(y, z), Ci(x, (y + z)) that satisfy the above equality are actually pos-
sible.)

We will prove this by induction on i. For i = 1, the carry bits going into the first
position are zero, so the above identity holds trivially. To prove the above equality for
i, we assume that it holds for i− 1. We will prove the equality by considering many
cases, where a particular case will assume a fixed value to each of the following seven
quantities: xi−1, yi−1, zi−1, Ci−1(x, y), Ci−1(y, z), Ci−1((x + y), z), Ci−1(x, (y + z)),
subject to the condition that Ci−1(x, y)+Ci−1((x+y), z) = Ci−1(y, z)+Ci−1(x, (y+
z)). It is easy to check that the number of cases is 48 since there are 2 choices for
xi−1; 2 choices for yi−1; 2 choices for zi−1; and 6 choices in total for Ci−1(x, y),
Ci−1((x + y), z), Ci−1(y, z), and Ci−1(x, (y + z)).

Each case will proceed in the same way. We will first show how to compute
Ci(x, y), Ci(y, z), Ci((x+y), z), and Ci(x, (y+z)) using the above seven values. Then
we simply verify that in all 48 cases where the inductive hypothesis holds, the equality
is true.

First, we will show that

Ci(x, y) = 1 ↔ xi−1 + yi−1 + Ci−1(x, y) ≥ 2.

This requires a proof along the following lines. If xi−1 = yi−1 = 1, then the left-hand
side of the above statement is true since position i − 1 generates a carry, and the
right-hand side of the statement is also true. Similarly, if xi−1 = yi−1 = 0, then both
sides of the above statement are false (since position i − 1 absorbs a carry). The
last case is when xi−1 = 1 and yi−1 = 0 (or vice-versa). In this case, position i − 1
propagates a carry, so the ith carry bit is 1 if and only if there exists a j < i− 1 such
that the jth position generates a carry and all positions between j and i−1 propagate
carries—but this is exactly the definition of Ci−1(x, y). Thus, we have in this last
case that both sides of the statement are true if and only if Ci−1(x, y) is true.

Using the above fact and also that (x + y)i = xi ⊕ yi ⊕ Ci(x, y), we have that
Ci((x+y), z) = 1 if and only if zi−1 +(xi−1⊕yi−1⊕Ci−1(x, y))+Ci−1((x+y), z) ≥ 2.
Identical arguments show that Ci(y, z) = 1 and Ci(x, (y+z)) = 1 can also be computed
as simple formulas of the seven pieces of information.

Lemma 7.3. For every x, y, there are TC0-Frege proofs of (x + y) − y = x.
Proof of Lemma 7.3. (x + y) − y is computed by taking the first N bits of

(x + y) + y + 1. Note that by the definition of the addition formula it follows easily
that all bits of (y + y) are 1, and hence that ((y + y) + 1) = 2N . Thus,

(x + y) + y + 1 = x + ((y + y) + 1) = x + 2N ,

and hence the first N bits of this number are the same as the first N bits of x.
Lemma 7.4. For every x, y, there are TC0-Frege proofs of x ≥ y → (x− y)+ y =

x.
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Proof of Lemma 7.4. (x− y) is computed by taking the first N bits of x+ y + 1.
By the definition of the addition formula, and since x ≥ y, it can be proved that the
(N + 1)th bit of x + y + 1 is 1, and hence that

(x− y) + 2N = x + y + 1.

Therefore, as in Lemma 7.3,

(x− y) + y + 2N = x + y + y + 1 = x + 2N .

In particular, the first N bits of (x − y) + y + 2N are the same as those of x + 2N .
Thus, (x− y) + y = x.

Lemma 7.5. For every x, y, z, there are TC0-Frege proofs of x + z = y + z →
x = y.

Proof of Lemma 7.5. The proof follows immediately from Lemmas 7.3 and 7.2 as
follows: x = (x + z) − z = (y + z) − z = y.

Lemma 7.6. For every z, there are TC0-Frege proofs of

z = SUMi[2
i−1zi].

Proof of Lemma 7.6. We need to show that for every j,

zj = [SUMi[2
i−1zi]]j .

This is shown by a rather tedious but straightforward proof following the definition
of the formula SUM for iterated addition. Namely, we show first that

H = zn..zn−l+10..0zn−2l..zn−3l+10..0.....z2l..zl+10..0

and, similarly, that

L = 0..0zn−l..zn−2l+10..0zn−3l..zn−4l+1.....0..0zl..z1.

Secondly, we show that [H + L]j = zj , using the definition of +. This second step is
not difficult because all carry bits are zero.

Lemma 7.7. For every z1, . . . , zm, and every fixed permutation α, there are TC0-
Frege proofs of

SUM [z1, . . . , zm] = SUM [zα(1), ...., zα(m)].

(That is, the iterated sum is symmetric.)
Proof of Lemma 7.7. The proof is immediate from the fact that the formula SUM

was defined in a symmetric way.
Lemma 7.8. For every z, there are TC0-Frege proofs of

SUM [z] = z.

Proof of Lemma 7.8. By definition of the iterated addition formula SUM , it is
straightforward to prove that

H = zn..zn−l+10..0zn−2l..zn−3l+10..0.....z2l..zl+10..0

and, similarly, that

L = 0..0zn−l..zn−2l+10..0zn−3l..zn−4l+1.....0..0zl..z1.
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Then it is also straightforward to show, using the definition of the formula for +, that
[H + L]j = zj for every j. (Again, all carry bits are zero.)

Lemma 7.9. For every z1, . . . , zm, there are TC0-Frege proofs of

SUM [z1, . . . , zm] = z1 + SUM [z2, . . . , zm].

Proof of Lemma 7.9. Recall that SUM [z1, . . . , zm] is computed by adding two
numbers H,L. Recall that L is computed by first computing the numbers Lk =∑m

i=1 Li,k, where Li,k is the low-order half of the kth block of zi. The first equality
follows from Lemma 7.9, and similarly, SUM [z2, . . . , zm] is computed by H ′ + L′,
where L′ is computed by first computing the numbers L′

k =
∑m

i=2 Li,k. We can also
write z1 = H ′′+L′′, where H ′′ =

∑r
k=1 H1,k ·2l ·2(k−1)2l and L′′ =

∑r
k=1 L1,k ·2(k−1)2l.

In both Lk, L
′
k the sum is computed using polysize threshold gates, e.g., by using

the unary representation of each Li,k. It is therefore straightforward to prove for each
k, Lk = L′

k + L1,k, (e.g., by trying all the possibilities for L′
k, L1,k, and proving the

formula separately for each possibility).
Now consider the formula L′ + L′′. Since in this addition there is no carry flow

from one block to the next one, and since the bits of L,L′, L′′ in each block are just
the bits of Lk, L

′
k, L1,k (respectively), we can conclude that L = L′ + L′′. Since in a

similar way we can prove that H = H ′ + H ′′, we are now able to conclude

SUM [z1, . . . , zm] = H + L

= (H ′′ + L′′) + (H ′ + L′) = z1 + SUM [z2, . . . , zm].

Lemma 7.10. For every z1, . . . , zm, there are TC0-Frege proofs of

SUM [z1 + z2, z3, . . . , zm] = SUM [z1, z2, . . . , zm].

Proof of Lemma 7.10. The lemma can be proved easily from Lemmas 7.9 and 7.2
as follows:

SUM [z1, . . . , zm] = z1 + SUM [z2, . . . , zm]

= z1 + (z2 + SUM [z3, . . . , zm]) = (z1 + z2) + SUM [z3, . . . , zm]

= SUM [z1 + z2, z3, . . . , zm].

Lemma 7.11. For every z1, . . . , zm, and every 1 ≤ k ≤ m, there are TC0-Frege
proofs of

SUM [z1, . . . , zk−1, SUM [zk, . . . , zm]] = SUM [z1, . . . , zm].

Proof of Lemma 7.11. By Lemmas 7.9, 7.10, and 7.7, we have

SUM [z1, . . . , zk−1, SUM [zk, . . . , zm]]

= SUM [z1, . . . , zk−1, zk + SUM [zk+1, . . . , zm]]

= SUM [z1, . . . , zk−1, zk, SUM [zk+1, . . . , zm]].
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The proof now follows by repeating the same argument m−k times, where Lemma 7.8
is used for the base case.

Lemma 7.12. For every x, y, there are TC0-Frege proofs of

x · y = y · x.

Proof of Lemma 7.12. The proof is immediate from the fact that the product
formula was defined in a symmetric way.

Lemma 7.13. For every x, y, z, where x is a power of 2, there are TC0-Frege
proofs of

x · (y + z) = x · y + x · z.

Proof of Lemma 7.13. It is straightforward to prove that 2i · y, where y is
any sequence of bits, consists of adding to the end of y, i 0’s. The lemma easily
follows.

Lemma 7.14. For every z1, . . . , zm, and every x where x is a power of 2, there
are TC0-Frege proofs of

x · SUM [z1, . . . , zm] = SUM [x · z1, . . . , x · zm].

Proof of Lemma 7.14. The proof of this lemma is like the proof of Lemma 7.17
but uses Lemma 7.13 instead of 7.16.

Lemma 7.15. For every x, y, z, where x, y are powers of 2, there are TC0-Frege
proofs of

x · (y · z) = (x · y) · z.

Proof of Lemma 7.15. The proof is the same as the proof of Lemma 7.13.
The following three lemmas are generalizations of the previous three lemmas.
Lemma 7.16. For every x, y, z there are TC0-Frege proofs of

x · (y + z) = x · y + x · z.

Proof of Lemma 7.16. By definition of the product formula,

x · (y + z) = SUMi,j [2
i+j−2xi(y + z)j ].

Similarly,

x · y + x · z = SUMi,j [2
i+j−2xiyj ] + SUMi,j [2

i+j−2xizj ].

By iterative application of Lemma 7.11 (also using Lemma 7.7),

SUMi,j [2
i+j−2xi(y + z)j ] = SUMi[SUMj [2

i+j−2xi(y + z)j ]].

Similarly (also using Lemmas 7.9 and 7.10),

SUMi,j [2
i+j−2xiyj ] + SUMi,j [2

i+j−2xizj ]

= SUMi[SUMj [2
i+j−2xiyj + 2i+j−2xizj ]],



1956 MARIA LUISA BONET, TONIANN PITASSI, AND RAN RAZ

and in the same way (using the same lemmas)

SUMi[SUMj [2
i+j−2xiyj + 2i+j−2xizj ]]

= SUMi[SUMj [2
i+j−2xiyj ] + SUMj [2

i+j−2xizj ]].

Thus, we have to prove

SUMi[SUMj [2
i+j−2xi(y + z)j ]] = SUMi[SUMj [2

i+j−2xiyj ] + SUMj [2
i+j−2xizj ]].

We will prove this by proving that for every i,

SUMj [2
i+j−2xi(y + z)j ] = SUMj [2

i+j−2xiyj ] + SUMj [2
i+j−2xizj ].

If xi = 0, this is trivial. Otherwise, xi = 1, and using Lemmas 7.15, 7.14, and 7.6
we have

SUMj [2
i+j−2xi(y + z)j ] = 2i−1SUMj [2

j−1(y + z)j ] = 2i−1 · (y + z).

In the same way (also using Lemma 7.13),

SUMj [2
i+j−2xiyj ] + SUMj [2

i+j−2xizj ] = 2i−1SUMj [2
j−1yj ] + 2i−1SUMj [2

j−1zj ]

= 2i−1 · y + 2i−1 · z = 2i−1 · (y + z).

Lemma 7.17. For every z1, . . . , zm, and every x, there are TC0-Frege proofs of

x · SUM [z1, . . . , zm] = SUM [x · z1, . . . , x · zm].

Proof of Lemma 7.17. We will show that for every i,

x · SUM [z1, . . . , zi] + SUM [x · zi+1, . . . , x · zm] = x ·SUM [z1, . . . , zi+1]

+ SUM [x · zi+2, . . . , x · zm].

The lemma then follows by the combination of all these equalities. The case i = 0 is
proven as follows:

SUM [x · z1, . . . , x · zm] = x · z1 + SUM [x · z2, . . . , x · zm]

= x · SUM [z1] + SUM [x · z2, . . . , x · zm].

The first equality follows by applying Lemma 7.9, and the second equality by applying
Lemma 7.8.

For the general step,

x · SUM [z1, . . . , zi] + SUM [x · zi+1, . . . , x · zm]

= x · SUM [z1, . . . , zi] + x · zi+1 + SUM [x · zi+2, . . . , x · zm]

= x · (SUM [z1, . . . , zi] + zi+1) + SUM [x · zi+2, . . . , x · zm]

= x · SUM [z1, . . . , zi+1] + SUM [x · zi+2, . . . , x · zm].

The first equality follows from Lemmas 7.9, the second equality follows from Lemma
7.16, and the third equality follows from Lemma 7.9.
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Lemma 7.18. For every x, y, z, there are TC0-Frege proofs of

x · (y · z) = (x · y) · z.

Proof of Lemma 7.18. We will show that x·(y·z) is equal to SUMi,j,k[2
i+j+k−3xiyjzk].

The same will be true for (x · y) · z, and the lemma follows.
By the definition of the product,

y · z = SUMj,k[2
j+k−2yjzk].

Hence, by Lemma 7.6 and two applications of Lemma 7.17 (and freely using Lemma 7.12),

x · (y · z) = SUMi[2
i−1xi] · SUMj,k[2

j+k−2yjzk]

= SUMi[(2
i−1xi) · SUMj,k[2

j+k−2yjzk]]

= SUMi[SUMj,k[(2
i−1xi) · 2j+k−2yjzk]].

Since it can be easily verified that (2i−1xi) · 2j+k−2yjzk = 2i+j+k−3xiyjzk, the above
is equal to

SUMi[SUMj,k[2
i+j+k−3xiyjzk]],

and by an iterative application of Lemma 7.11 (using also Lemma 7.7) the above is
equal to

SUMi,j,k[2
i+j+k−3xiyjzk].

7.2. Some basic properties of less-than.
Lemma 7.19. For every x, y, there are TC0-Frege proofs of x > y∨y > x∨x = y

and also of x > 0 ∨ x = 0.
Proof of Lemma 7.19. Either there is a bit i such that i is the most significant bit

where x and y differ, or not. If all bits are equal, then x = y. But if there is i such
that it is the most significant bit where they differ, then if xi = 1 and yi = 0, then
x > y, and if xi = 0 and yi = 1, then y > x.

Lemma 7.20. For every x, y, there are TC0-Frege proofs of x > y → (x−y) > 0.
Proof of Lemma 7.20. By Lemma 7.19, (x− y) = 0 ∨ (x− y) > 0. Suppose for a

contradiction that x− y = 0. Then x = (x− y) + y = y, and we get x > x (which is
easily proved to be false). So x− y > 0.

Lemma 7.21. For every x, y, z, there are TC0-Frege proofs of x > y ∧ y ≥ z →
x > z; and also x ≥ y ∧ y > z → x > z.

Proof of Lemma 7.21. If y = z, then the proof of the first statement is obvious.
Otherwise, suppose that i is the most significant bit where xi �= yi and that xi = 1
and yi = 0. Similarly, suppose that j is the most significant bit where yj �= zj and
that yj = 1 and that zj = 0. If i ≥ j, then it is easy to show that i is the most
significant bit where xi �= zi, xi = 1, zi = 0, and thus x > z. Similarly, if j > i, then
j is the most significant bit where xj �= zj , xj = 1, zj = 0, and thus x > z. Similar
reasoning also implies the second statement in the lemma.

Lemma 7.22. For every x, z, there are TC0-Frege proofs of x + z ≥ x; and also
z > 0 → x + z > x.
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Proof of Lemma 7.22. If z = 0, then it is clear that x+ z = x. For z > 0, we will
show inductively for decreasing k that

x + SUMi≥k[2
i−1zi] > x.

Then when k = 1, we have x + SUMi[2
i−1zi] = x + z > x, by Lemma 7.6.

Assuming that z > 0, let zi′ be the most significant bit such that zi′ = 1. The
base case of the induction will be to show that x + SUMi≥i′ [2

i−1zi] > x. Because
zi = 0 for all i > i′, and applying Lemma 7.8, it suffices to show that x + z′ >
x, where z′ = 2i

′−1zi′ . There are two cases. If xi′ = 0, then x + z′ is equal to
xnxn−1 · · ·xi′+11xi′−1 · · ·x1, and so clearly x + z′ > x. The other case is when
xi′ = 1. Let j be the most significant bit position greater than i′ such that xj = 0.
One clearly exists because xn+1 = 0. Then (x + z′)j = 1, xj = 0, and all higher bits
are equal, and thus x + z′ > x as desired.

For the inductive step, we assume that x + SUMi≥k[2
i−1zi] > x and want to

show that x+ SUMi≥k−1[2
i−1zi] > x. Using the same argument as in the base case,

one can prove that (a) x + SUMi≥k[2
i−1zi] + 2k−2zk−1 ≥ x + SUMi≥k[2

i−1zi]. By
the inductive hypothesis, (b) x + SUMi≥k[2

i−1zi] > x. Applying Lemma 7.21 to (a)
and (b), we obtain x+ SUMi≥k[2

i−1zi] + 2k−2zk−1 > x. By Lemma 7.9, this implies
x + SUMi≥k−1[2

i−1zi] > x, as desired.
Lemma 7.23. For every x, y, z there are TC0-Frege proofs of x > y → x+z > y.
Proof of Lemma 7.23. If z = 0, then x+z = x > y. Otherwise, z > 0 → x+z > x

by Lemma 7.22. Then by Lemma 7.21, x + z > y as desired.
Lemma 7.24. For every x, y, z there are TC0-Frege proofs of x > y → x + z >

y + z.
Proof of Lemma 7.24.

x + z = (x− y) + y + z

> y + z.

The first equality follows from Lemma 7.4, and the second follows from Lemma 7.22
and the fact that x > y → x− y > 0.

Lemma 7.25. For every x, y, there are TC0-Frege proofs of y > 0 → x ≤ x · y.
Proof of Lemma 7.25. x ·y = SUMi,j [2

i+j−2xiyj ] by definition. Also, since y > 0,
there is a bit of y that is 1, and suppose that it is yl. Then

x · y = SUMi,j [2
i+j−2xiyj ]

= SUMi[2
i+l−2xiyl] + SUMi,j,j �=l[2

i+j−2xiyj ]

≥ SUMi[2
i+l−2xiyl]

= 2l−1SUMi[2
i−1xi]

= 2l−1 · x ≥ x.

7.3. Some basic properties of modular arithmetic. Recall that the for-
mulas for [z]p and divp(z) take as inputs not only the variables p and z, but also
variables ki, ri (for every 1 ≤ i ≤ n), and variables p1, . . . , pn. The formulas give the
right output if 2i = p ·ki+ri, ri < p, and pi = i ·p (for all 1 ≤ i ≤ n). So the following
theorems will all have the hypothesis that the values for the variables ki, ri, and pi
are correct, and that there are short TC0-Frege proofs for 2i = p · ki + ri, ri < p, and
pi = i · p. We will state this hypothesis for the first lemma and omit it afterwards



ON INTERPOLATION AND AUTOMATIZATION 1959

for simplicity. For simplicity, we will also use the notations k0 = 0 and r0 = 1, thus
20 = p · k0 + r0.

The lemmas will be used with either p = P , where P is the number used for the
DH formula, or with p = q, where q is some fixed hardwired value (e.g., q = qj or
q = Q, where qj is one of the primes used for the iterated product formula, and Q is the
product of all these primes). If p = q for some hardwired q, then ki, ri, and p1, . . . pn
can also be hardwired. Hence, their values are correct and it is straightforward to
check (i.e., to prove) that the nonvariable formulas 2i = p ·ki+ri, ri < p, and pi = i ·p
are all correct. If p = P , then ki, ri, and p1, . . . , pn are inputs for the DH formula
itself, and the requirements 2i = p · ki + ri, ri < p, and pi = i · p are part of the
requirements in the DH formula.

Lemma 7.26. Let z and p be n-bit numbers. Then there are TC0-Frege proofs of

2i = ki·p+ri, 0 ≤ ri < p, pi = i·p (for all 0 ≤ i ≤ n) −→ z = SUMi[(ri−1+p·ki−1)zi].

Proof of Lemma 7.26. From Lemma 7.6, and if 2i = ri + p · ki,
z = SUMi[2

i−1zi] = SUMi[(ri−1 + p · ki−1)zi].

Lemma 7.27. For every z and p, there are TC0-Frege proofs of

z = [z]p + divp(z) · p.
Also, the following uniqueness property has a TC0-Frege proof: If z = x+ y · p where
0 ≤ x < p, then x = [z]p and y = divp(z).

Proof of Lemma 7.27. From the previous lemma, we can express z as SUMi[(ri−1+
p · ki−1)zi]. Let l be the same as in the definition of the modulo formulas. Then

[z]p + p · divp(z) = (SUMi[ri−1zi] − p · l) + p · (SUMi[ki−1zi] + l)

= (SUMi[ri−1zi] − p · l) + (p · SUMi[ki−1zi] + p · l)
= ((SUMi[ri−1zi] − p · l) + p · l) + p · SUMi[ki−1zi]

= SUMi[ri−1zi] + p · SUMi[ki−1zi]

= SUMi[ri−1zi] + SUMi[p · ki−1zi]

= SUM [SUMi[ri−1zi], SUMi[p · ki−1zi]]

= SUM [r0z1, .., rn−1zn, p · k0z1, .., p · kn−1zn]

= SUMi[(ri−1 + p · ki−1)zi]

= z.

The first equality follows from the definitions of the formulas [z]p and divp(z). The
remaining equalities follow from Lemmas 7.16, 7.2, 7.4, 7.17, 7.9, 7.11, 7.10, and 7.26.

Let us now prove the uniqueness part. Suppose z = [z]p + divp(z) · p = x + y · p,
where 0 ≤ x, [z]p < p. If divp(z) = y, then we are finished. But if divp(z) > y, then
by the claim below x ≥ p, which is a contradiction. (A similar argument holds when
divp(z) < y.)

Claim 7.28. If x + y · p = u + v · p and v > y, then x ≥ p.
Proof of the claim. Since v > y, by Lemmas 7.4 and 7.20, y + (v − y) = v, and

v − y > 0. Then x + y · p = u + (y + (v − y)) · p, and by Lemma 7.16, x + y · p =
u + y · p + (v − y) · p. By Lemma 7.5 we get that x = u + (v − y) · p. Therefore by
Lemmas 7.25 and 7.22,

p ≤ (v − y) · p ≤ u + (v − y) · p = x,
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and by Lemma 7.21 we get p ≤ x.

Lemma 7.29. For every z, k, and p, there are TC0-Frege proofs of

[z]p = [z + k · p]p.

Proof of Lemma 7.29. Let x = z + k · p. Then x = [x]p + divp(x) · p, and
z = [z]p + divp(z) · p (by Lemma 7.27).

So, z + k · p = x = [x]p + divp(x) · p. Therefore, [z]p + divp(z) · p + k · p =
[x]p + divp(x) · p. By the uniqueness part of Lemma 7.27 applied to x, [z]p =
[x]p.

Lemma 7.30. For every x, y, z, and p, there are TC0-Frege proofs of

[x + y]p = [[x]p + [y]p]p,

[x + y]p = [[x]p + y]p,

and

[x + y + z]p = [[x]p + [y]p + z]p.

Proof of Lemma 7.30. By Lemma 7.27, x = [x]p + divp(x) · p and y = [y]p +
divp(y) · p. Hence,

[x + y]p = [[x]p + [y]p + (divp(x) + divp(y)) · p]p,

and by Lemma 7.29,

[x + y]p = [[x]p + [y]p]p.

A similar argument shows that [x + y]p = [[x]p + y]p and [x + y + z]p = [[x]p + [y]p
+ z]p.

Lemma 7.31. For every z1, . . . , zm and p, there are TC0-Frege proofs of

SUM [z1, . . . , zm]p = [[z1]p + SUM [z2, . . . , zm]p]p.

Proof of Lemma 7.31. The lemma follows easily from Lemmas 7.9 and 7.30.

Lemma 7.32. For every x, y, and p, there are TC0-Frege proofs of

[x]p = [y]p −→ [x + z]p = [y + z]p.

Proof of Lemma 7.32.

[x + z]p = [[x]p + [z]p]p = [[y]p + [z]p]p = [y + z]p.

The first equality follows from Lemma 7.30, the next equality follows from the as-
sumption that [x]p = [y]p, and the third equality follows from Lemma 7.30.

Lemma 7.33. For every x, y, z, and p, there are TC0-Frege proofs of

[x + z]p = [y + z]p −→ [x]p = [y]p.
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Proof of Lemma 7.33. Assuming that [x+z]p = [y+z]p, it follows from the above
Lemma 7.32 that [x + z + (p − [z]p)]p = [y + z + (p − [z]p)]p. The left side of the
equation is equal to

[x + z + (p− [z]p)]p = [[x]p + [z]p + (p− [z]p)]p

= [[x]p + p]p

= [x]p.

The first equality follows from Lemma 7.30; the second equality follows from Lem-
mas 7.1, 7.2, and 7.3; and the third equality follows from Lemma 7.29. Similarly, it
can be shown that [y + z + (p− [z]p)]p = [y]p and thus the lemma follows.

Lemma 7.34. For every x, y, and p, there are TC0-Frege proofs of

[x · y]p = [x · [y]p]p.

Proof of Lemma 7.34.

[x · y]p = [x · ([y]p + divp(y) · p)]p
= [x · [y]p + x · divp(y) · p]p
= [x · [y]p]p,

where the last equality follows from Lemma 7.29.
Lemma 7.35. Let A,B,C be fixed numbers such that A = BC. Then for every

z, there are TC0-Frege proofs of

[z]B = [[z]A]B .

This lemma will be used in situations where A = Q and B = qi for some i. Recall
that the numbers Q, q1, . . . qt are hardwired, along with their corresponding ki, ri,
and the variables for the j · qi’s. Hence, we think of A,B,C as hardwired.

Proof of Lemma 7.35. Using Lemmas 7.27, 7.29, and 7.18, we get

[z]B = [[z]A + A · divA(z)]B = [[z]A + B · (C · divA(z))]B = [[z]A]B .

7.4. Some basic properties of iterative product.
Lemma 7.36. For every z1, . . . , zm and every fixed permutation α, there are

TC0-Frege proofs of

PROD[z1, . . . , zm] = PROD[zα(a), . . . , zα(m)].

(That is, the iterated product is symmetric.)
Proof of Lemma 7.36. The proof of this lemma is immediate from the symmetric

definition of PROD.
Lemma 7.37. For every z1, . . . , zm and every 1 ≤ k ≤ m, there are TC0-Frege

proofs of

PROD[z1, . . . , zm] = PROD[z1, . . . , zk−1, PROD[zk, . . . , zm]].

Proof of Lemma 7.37. Recall that we have hard-coded the numbers uj , such that
uj mod qj = 1 and for all i �= j, uj mod qi = 0. For all primes qj dividing Q and for
all m, 1 ≤ m ≤ qj , we can verify the following statements: [uj · m]qj = m, and for
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all i �= j, [uj ·m]qi = 0. (Note that these statements are variable-free and hence they
can be easily proven by doing a formula evaluation.)

Recall that for any k, the iterated product of the numbers zk, . . . , zm is calculated
as follows:

PROD[zk, . . . , zm] = SUM t
j=1[uj · r[k,..,m]

j ]Q,

where r
[k,...,m]
j is computed like rj as defined in section 3.4 but using rij only for i

such that k ≤ i ≤ m.
In the same way,

PROD[z1, . . . , zk−1, PROD[zk, . . . , zm]]

= SUM t
j=1[uj · r[1,...,k−1,[k,...,m]]

j ]Q,

where r
[1,...,k−1,[k,...,m]]
j is calculated as before by the following steps:

1. For i < k, calculate ri,j = [zi]qj , and also calculate r∗,j = PROD[zk, . . . , zm]qj .
2. For i < k, calculate ai,j such that (g

ai,j

j ) mod qj = ri,j , and also a∗,j such

that (g
a∗,j
j ) mod qj = r∗,j by table lookup.

3. Calculate c′j = SUM [a1,j , . . . , ak−1,j , a∗,j ](qj−1).

4. Calculate r
[1,...,k−1,[k,...,m]]
j such that gc

′
j mod qj = r

[1,...,k−1,[k,..,m]]
j by table

lookup.
Therefore, all we have to do is to show that

SUM t
j=1[uj · r[1,...,m]

j ]Q = SUM t
j=1[uj · r[1,...,k−1,[k,...,m]]

j ]Q.

Hence, all we need to do to prove Lemma 7.37 is to show the following claim.

Claim 7.38. For every j, there are TC0-Frege proofs of r
[1,...,k−1,[k,...,m]]
j =

r
[1,...,m]
j .

The first step is to prove the following claim:

Claim 7.39. There are TC0-Frege proofs of PROD[zk, . . . , zm]qj = r
[k,...,m]
j .

Claim 7.39 is proven as follows.

PROD[zk, . . . , zm]qj

= [SUM t
i=1[ui · r[k,...,m]

i ]Q]qj = SUM t
i=1[ui · r[k,...,m]

i ]qj

= [[uj · r[k,...,m]
j ]qj + SUMi �=j [ui · r[k,...,m]

i ]qj ]qj

= [r
[k,...,m]
j + 0]qj = r

[k,...,m]
j .

The second equality follows by Lemma 7.35; the third equality follows by Lemmas 7.31

and 7.7. To prove the fourth equality, we need to use the fact that [uj · r[k,...,m]
j ]qj =

r
[k,...,m]
j , and also for all i �= j, [ui · r[k,...,m]

i ]qj = 0. These facts can be easily proved

just by checking all possibilities for r
[k,...,m]
i (proving the statement for each possibility

is easy, because these statements are variable-free and hence they can be easily proven
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by doing a formula evaluation). In order to prove the fourth equality formally, we can

show that SUMi �=j [ui · r[k,...,m]
i ]qj equals zero by induction on the number of terms in

the sum.
We can now turn to the proof of Claim 7.38. The quantity r

[1,...,m]
j is ob-

tained by doing a table lookup to find the value equal to g
cj
j modqj , where cj =

SUMm
i=1[ai,j ](qj−1). Similarly, the quantity r

[1,...,k−1,[k,...,m]]
j is obtained by doing a

table lookup to find the value equal to g
c′j
j modqj , where

c′j = SUM [a1,j , a2,j , .., ak−1,j , a∗,j ](qj−1).

Hence, it is enough to prove that cj = c′j . Using previous lemmas,

cj = [SUMk−1
i=1 [ai,j ](qj−1) + SUMm

i=k[ai,j ](qj−1)](qj−1),

c′j = [SUMk−1
i=1 [ai,j ](qj−1) + a∗,j ](qj−1).

Thus, it suffices to show that

SUMm
i=k[ai,j ](qj−1) = a∗,j .

Recall that a∗,j is the value obtained by table lookup such that (g
a∗,j
j ) mod qj =

r∗,j , and by Claim 7.39, we have that r∗,j = r
[k,...,m]
j . Now r

[k,...,m]
j , in turn, is the

value obtained by table lookup to equal (gdj ) mod qj , where d = SUMm
i=k[ai,j ](qj−1).

Now it is easy to verify that our table lookup is one to one. That is, for every
x, y, z ≤ qj , if gxj mod qj = z, and gyj mod qj = z, then x = y. Using this property

(with x = SUMm
i=k[ai,j ](qj−1), y = a∗,j and z = r∗,j = r

[k,...,m]
j ), it follows that

SUMm
i=k[ai,j ](qj−1) = a∗,j .

7.5. The Chinese remainder theorem and other properties of iterative
product. The heart of our proof is a TC0-Frege proof for the following lemma, which
gives the hard direction of the Chinese remainder theorem (a TC0-Frege proof for the
other direction is simpler).

Lemma 7.40. Let R,S be two integers, such that for every j, [R]qj = [S]qj . Then
there are TC0-Frege proofs of

[R]Q = [S]Q,

where q1, . . . , qt are the fixed primes used for the PROD formula (i.e., the first t
primes), and Q is their product.

Proof of Lemma 7.40. Without loss of generality, we can assume that 0 ≤ R,S ≤
Q − 1, and prove that R = S. Otherwise, define R′ = [R]Q, and S′ = [S]Q, and use
Lemma 7.35 to show that for every j, [R′]qj = [S′]qj . Since 0 ≤ R′, S′ ≤ Q − 1, we
can then conclude that

[R]Q = R′ = S′ = [S]Q.

For every k, let Qk denote
∏k

j=1 qj . Note that the numbers Qk can be hard-
wired, and that one can easily prove the following statements. (These statements are
variable-free and hence they can be easily proven by doing a formula evaluation.)
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For every i, Qi+1 = Qi · qi+1.

The proof of the lemma is by induction on t (the number of qj ’s). For t = 1,
Q = q1, and the lemma is trivial. Assume therefore by the induction hypothesis that

[R]Qt−1 = [S]Qt−1 ,

and hence

[[R]Qt−1 ]qt = [[S]Qt−1 ]qt .

Denote, DR = divQt−1
[R], and DS = divQt−1 [S]. Then by Lemma 7.27,

R = DR ·Qt−1 + [R]Qt−1 ,

and

S = DS ·Qt−1 + [S]Qt−1 ,

and since we know that [R]qt = [S]qt , we have

[DR ·Qt−1 + [R]Qt−1
]qt = [DS ·Qt−1 + [S]Qt−1

]qt ,

and by [R]Qt−1 = [S]Qt−1 and Lemma 7.33,

[DR ·Qt−1]qt = [DS ·Qt−1]qt .

Since R,S are both lower than Q, it follows that DR, DS are both lower than qt.
Hence, by Claim 7.41, DR = DS . Therefore, we can conclude that

R = DR ·Qt−1 + [R]Qt−1
= DS ·Qt−1 + [S]Qt−1

= S.

Claim 7.41. For every i, there are TC0-Frege proofs of: if d1, d2 < qi, and
[d1 ·Qi−1]qi = [d2 ·Qi−1]qi ; then d1 = d2.

Proof. Since d1, d2 < qi, there are only O(log n) possibilities for d1, d2. Therefore,
one can just check all the possibilities for d1, d2. Proving the statement for each
possibility is easy, because these statements are variable-free and hence they can be
easily proven by doing a formula evaluation.

Alternatively, one can define the function f(x) = [x · Qi−1]qi , in the domain
{0, . . . , qi}, and prove that f(x) is onto the range {0, . . . , qi}. Then, by applying
the propositional pigeonhole principle, which is efficiently provable in TC0-Frege, it
follows that f is one to one.

We are now able to prove the following lemmas.

Lemma 7.42. For every z, there are TC0-Frege proofs of

PROD[z] = z.
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Proof of Lemma 7.42. Recall that PROD[z] is calculated as follows:

PROD[z] = SUM t
j=1[uj · rj ]Q,

where rj is computed by rj = [z]qj .
By Claim 7.39, for every i, PROD[z]qi = ri. We thus have for every i, PROD[z]qi =

[z]qi . The proof of the lemma now follows by Lemma 7.40.
Lemma 7.43. For every z1, z2, there are TC0-Frege proofs of

PROD[z1, z2] = z1 · z2.

Proof of Lemma 7.43. Let us prove that for every i,

[PROD[z1, z2]]qi = [z1 · z2]qi .

The proof of the lemma then follows by Lemma 7.40. By two applications of Lemma 7.34,
it is enough to prove for every i,

[PROD[z1, z2]]qi = [[z1]qi · [z2]qi ]qi .

Recall that PROD[z1, z2] is calculated as follows:

PROD[z1, z2] = SUM t
j=1[uj · r[1,2]

j ]Q,

where r
[1,2]
j is computed like rj as defined in section 3.4. By Claim 7.39, for every i,

PROD[z1, z2]qi = r
[1,2]
i .

Recall that [z1]qi = r1,i, and [z2]qi = r2,i. Therefore, all we have to prove is that
for every i,

r
[1,2]
i = [r1,i · r2,i]qi .

By the definitions: r1,i = (g
a1,i

i ) mod qi, and r2,i = (g
a2,i

i ) mod qi, and therefore,

[r1,i · r2,i]qi = [(g
a1,i

i ) mod qi · (ga2,i

i ) mod qi]qi .

Also,

r
[1,2]
i = (g

SUM [a1,i,a2,i](qi−1)

i ) mod qi.

Therefore, one can just check all the possibilities for a1,i, a2,i.
Using the previous lemmas, we are now able to prove the following.
Lemma 7.44. For every z1, . . . , zm, every k ≤ m − 1, and every p, there are

TC0-Frege proofs of

PROD[z1, . . . , zm]p

= PROD[z1, . . . , zk, PROD[zk+1, . . . , zm]p]p

(as before, given that 2i = ki · p + ri, 0 ≤ ri < p, pi = i · p for all i).
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Proof of Lemma 7.44.

PROD[z1, . . . , zk, PROD[zk+1, . . . , zm]p]p

= PROD[PROD[z1, . . . , zk], PROD[zk+1, . . . , zm]p]p

= [PROD[z1, . . . , zk] · PROD[zk+1, . . . , zm]p]p

= [PROD[z1, . . . , zk] · PROD[zk+1, . . . , zm]]p

= PROD[PROD[z1, . . . , zk], PROD[zk+1, . . . , zm]]p

= PROD[z1, . . . , zk, PROD[zk+1, . . . , zm]]p

= PROD[z1, . . . , zk, zk+1, . . . , zm]p.

The lemmas used for each equality in turn are Lemmas 7.37, 7.43, 7.34, 7.43,
7.37, and 7.37.

We are now ready to prove Lemma 5.1: For every z1,1, . . . , zm,m′ and p, there are
TC0-Frege proofs of

PRODi,j [zi,j ]p = PRODi[PRODj [zi,j ]p]p,

(given that 2i = ki · p + ri, 0 ≤ ri < p, pi = i · p for all i).
Proof of Lemma 5.1. This lemma is proved by an iterative application of the

previous lemma.
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Birkhäuser Boston, Cambridge, MA, 1995, pp. 57–90.

[BC] S. Buss and P. Clote, Cutting planes, connectivity and threshold logic, Arch. Math.
Logic, 35 (1996), pp. 33–62.

[CH] S. Cook and A. Haken, An exponential lower bound for the size of monotone real
circuits, J. Comput. System Sci., 58 (1999), pp. 326–335.

[CSV] A. K. Chandra, L. Stockmeyer, and U. Vishkin, Constant depth reducibility, SIAM
J. Comput., 13 (1984), pp. 423–439.

[DH] W. Diffie and M. Hellman, New directions in cryptography, IEEE Trans. Inform.
Theory, 22 (1976), pp. 644–654.

[IPU] R. Impagliazzo, T. Pitassi, and A. Urquhart, Upper and lower bounds for tree-like
cutting planes proofs, in Proceedings IEEE Symposium on Logic in Computer Sci-
ence, Paris, France, 1994, pp. 220–228.
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