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We work with an extension of Resolution, called Res(2), that allows clauses with conjunctions of
two literals. In this system there are rules to introduce and eliminate such conjunctions. We prove that
the weak pigeonhole principle PHPcn

n and random unsatisfiable CNF formulas require exponential-size
proofs in this system. This is the strongest system beyond Resolution for which such lower bounds are
known. As a consequence to the result about the weak pigeonhole principle, Res(log) is exponentially
more powerful than Res(2). Also we prove that Resolution cannot polynomially simulate Res(2)
and that Res(2) does not have feasible monotone interpolation solving an open problem posed by
Krajı́ček. C© 2002 Elsevier Science (USA)
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1. INTRODUCTION

The pigeonhole principle, PHPn+1
n , expresses that it is not possible to have a one-to-one mapping

from n + 1 pigeons to n holes. Since it can be formalized in propositional logic, it is natural to ask in
which propositional proof systems such a principle can be proved in polynomial-size, with respect to
the size of the encoding.

A fair amount of information is known about sizes of proofs of PHPn+1
n in various proof systems.

Haken [12] proved that this principle requires exponential-size proofs in Resolution. His proof tech-
niques were later extended and simplified [4, 5]. Also Beame et al. [2] proved that PHPn+1

n requires
exponential-size proofs in bounded-depth Frege systems. Regarding upper bounds, Buss [8] gave
polynomial-size proofs of PHPn+1

n in unrestricted Frege systems.
The pigeonhole principle can be formulated in more general terms, allowing the number of pigeons

to be greater than n + 1. We call this principle weak pigeonhole principle, or PHPm
n , when the number

of pigeons m is at least 2n. This simple principle is central to many mathematical arguments but quite
often it occurs implicitly only. See the introductions in [14, 16] for a nice discussion on this. The
proof techniques of Haken where extended in [9] to prove that PHPn2−ε

n requires exponential-size proofs
in Resolution. Recently, Pitassi and Raz [16] proved regular Resolution exponential lower bounds for
PHPm

n for any m. Finally Raz [18], and Razborov [19] simplifying [18], proved exponential lower bounds
for the same principle in Resolution. As a contrast, the techniques of [2] for proving lower bounds for
the pigeonhole principle in bounded-depth Frege systems can only prove lower bounds for PHPn+c

n ,
and it is open whether lower bounds can be proved when the number of pigeons is greater than n + c.
Regarding upper bounds, it is known that PHP2n

n has quasipolynomial-size proofs in bounded-depth
Frege [14, 15].

We work with the proof system Res(2), proposed by Krajı́ček [13], that can be viewed either as an
extension of Resolution or as a restriction of bounded-depth Frege. In this system the clauses do not only
contain literals, but can also have conjunctions of two literals. The resolution rule gets modified to be
able to eliminate a conjunction of two literals from a clause. We prove that PHPcn

n (and in fact PHPn9/8−ε

n )
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requires exponential-size proofs in Res(2). This is, to our knowledge, the first lower bound proof for the
weak pigeonhole principle in a subsystem of bounded-depth Frege that extends Resolution. We note
that the quasipolynomial upper bound for bounded-depth Frege mentioned above can be carried over in
depth-0.5 LK [14], which is equivalent to Res(log) (the analogue of Res(2) when we allow conjunctions
of up to polylog literals). As a consequence of our lower bound, there is an exponential separation
between Res(2) and Res(log).

We also consider the complexity of refuting random unsatisfiable k-CNF formulas. Chvátal and
Szemerédi [10] proved them hard to refute in Resolution, and the results were improved by Beame
et al. [3]. Combining our techniques with those of [3], we also obtain an exponential-size lower bound
for Res(2)-refutations of random unsatisfiable k-CNF formulas with clause density near the threshold.
Again, this is the strongest system beyond Resolution for which such a lower bound is known. This
result may be considered as a first step towards proving random k-CNF formulas hard for bounded-depth
Frege.

Our techniques are based on the method of random restrictions, combined with concentration bounds
on martingales. The use of such bounds is to our knowledge novel in the field. The main technical
contribution of our work consists in proving that a relatively short random restriction kills all large
formulas of a Res(2)-refutation. We note that this task is trivial in the case of Resolution because a large
clause is killed by setting a single literal to one. However, our formulas are disjunctions of conjunctions
of two literals, and this task becomes much more involved. The difficulty is in the fact that we must
keep the restriction short, otherwise the initial clauses of the refutation would become trivial. In other
words, we overcome the main difficulty in trying to apply switching-like lemmas to prove lower bounds
for the weak pigeonhole principle or random formulas.

Another important question to ask is whether Res(2) is more powerful than Resolution. Here we
prove that Resolution cannot polynomially simulate Res(2), and therefore Res(2) is superpolynomially
more efficient than Resolution. As a corollary, we see that Res(2) does not have feasible monotone
interpolation, proving this way a conjecture of Krajı́ček [13].

Another motivation for working with the system Res(2) is to see how useful it can be in automated
theorem proving. Given that it is more efficient than Resolution (at least there is a superpolynomial
separation), it might be a good idea to try to find good heuristics to find proofs in Res(2) to be able to
use it as a theorem prover.

2. DEFINITIONS AND OVERVIEW OF THE ARGUMENT

A k-term is a conjunction of up to k literals. A k-disjunction is an (unbounded fan-in) disjunction
of k-terms. If F is a k-disjunction, a 1-term of F is also called a free literal. The refutation system
Res(k), defined by Krajı́ček [13], works with k-disjunctions. There are three inference rules in Res(k):
Weakening, ∧-Introduction, and Cut

A

A ∨ ∧
i∈I li

A ∨ ∧
i∈I li B ∨ ∧

i∈J li

A ∨ B ∨ ∧
i∈I∪J li

A ∨ ∧
i∈I li B ∨ ∨

i∈I l̄i

A ∨ B
,

where A and B are k-disjunctions, I, J are sets of indices such that |I ∪ J | ≤ k, and the li ’s are literals.
As usual, if l is a literal, l̄ denotes its negation. Observe that Res(1) coincides with Resolution with the
Weakening rule. The size of a Res(k)-refutation is the number of symbols in it. Mainly, we will work
with Res(2).

As we mentioned in the Introduction, our arguments are based on random restrictions. In general
terms, what we do is the following. Given an unsatisfiable CNF formula F, and an alleged small Res(2)-
refutation P of F , we apply a random restriction ρ, from a suitable distribution, and we get a refutation
P|ρ of F |ρ . The distribution on restrictions that we choose will satisfy the following two properties:

(i) F |ρ satisfies certain expansion properties,

(ii) Every 2-disjunction in P|ρ is short measured by the number of literals that occur.

The argument will be complete since these two conditions will be shown to be contradictory.
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As a contrast with the lower bound arguments for Resolution, the most difficult part of our proof
is showing that property (ii) is satisfied. The conjunctions make this task more involved. In order to
overcome this, we split the restriction into two parts ρ = ρ1ρ2. Then, the main contribution is showing
that every large clause in P|ρ1 contains many free literals. That allows us show, by a standard argument,
that no large clause remains in P|ρ1ρ2 .

For the sake of clarity of exposition, we explain this outline again in the particular case of the Weak
Pigeonhole Principle. Let G = (U ∪ V, E) be a bipartite graph on the sets U and V of cardinality m and
n respectively, where m > n. The G-PHPm

n , defined by Ben-Sasson and Wigderson [5], states that there
is no matching of U into V . For every edge (u, v) ∈ E , let xu,v be a propositional variable meaning that
u is mapped to v. The principle is then formalized as the conjunction of the following set of clauses:

xu,v1 ∨ · · · ∨ xu,vr u ∈ U, NG(u) = {v1, . . . , vr } (1)

x̄u,v ∨ x̄u′,v v ∈ V, u, u′ ∈ NG(v), u �= u′. (2)

Here, NG(w) denotes the set of neighbors of w in G. Observe that if G is the complete bipartite graph
K m

n , then G-PHPm
n coincides with the usual pigeonhole principle PHPm

n . It is easy to see that a lower
bound for the size of Res(2)-refutations of G-PHPm

n implies the same lower bound for the size of
Res(2)-refutations of PHPm

n .
Ben-Sasson and Wigderson proved that whenever G is expanding in a sense defined next, every

Resolution refutation of G-PHPm
n must contain a clause with many literals. We observe that this result

is not unique to Resolution and holds in a more general setting. Before we state the precise result, let
us recall the definition of expansion:

DEFINITION 2.1 [5]. Let G = (U ∪ V, E) be a bipartite graph where |U | = m and |V | = n. For
U ′ ⊂ U , the boundary of U ′, denoted by ∂U ′, is the set of vertices in V that have exactly one neighbor
in U ′; that is, ∂U ′ = {v ∈ V : |N (v)∩U ′| = 1}. We say that G is (m, n, r, f )-expanding if every subset
U ′ ⊆ U of size at most r is such that |∂U ′| ≥ f · |U ′|.

The proof of the following statement is the same as in [5] for Resolution.

THEOREM 2.1 [5]. Let S be a sound refutation system with all rules having fan-in at most two. Then,
if G is (m, n, r, f )-expanding, every S-refutation of G-PHPm

n must contain a formula that involves at
least r f/2 distinct literals.

With these definitions, we are ready to outline the argument of the lower bound proof. In Section 3.1,
we will prove the existence of a bipartite graph G = (U ∪ V, E) with |U | = cn′ and |V | = n′ such
that if we remove a small random subset of nodes from V , and the corresponding edges, the resulting
graph is (m, n, r, f )-expanding for certain m, n, r , and f . Then we will argue that G-PHPcn′

n′ requires
exponential-size Res(2)-refutations as follows. Assume, for contradiction, that � is a small refutation
of G-PHPcn′

n′ . We say that a 2-disjunction in � is large if it contains at least d = r f/2 distinct literals.
We apply a random restriction ρ1 to the refutation such that for every large C either C |ρ1 contains many
free literals or the total number of literals in C |ρ1 is less than d. Then we extend ρ1 to a new random
restriction ρ ⊇ ρ1 that knocks out all those large C such that C |ρ1 contains many free literals, ignoring
those that are not free. After applying ρ, we obtain a refutation of G(ρ)-PHPm

n where all 2-disjunctions
have less than r f/2 literals and G(ρ) is (m, n, r, f )-expanding. This contradicts Theorem 2.1.

3. LOWER BOUND FOR THE WEAK PIGEONHOLE PRINCIPLE

3.1. Random Graphs and Restrictions

In this section we will prove the existence of a bipartite graph G as claimed in Section 2. The principle
G-PHPm

n will require exponential size Res(2)-proofs.
LetG(m, n, p) denote the distribution on bipartite graphs on sets U and V of sizes m and n respectively,

with edge probability p independently for each edge.
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LEMMA 3.1. Pr[∀v ∈ V : mp/2 < degG(v) < 2mp] ≥ 1−2ne−mp/8 when G is drawn fromG(m, n, p).

Proof. Fix a vertex v ∈ V . Then, degG(v) ∼ Bin(m, p), so that E[degG(v)] = mp. By Chernoff
bounds, Pr[degG(v) ≥ 2mp] ≤ e−mp/3 and Pr[degG(v) ≤ mp/2] ≤ e−mp/8. By a union bound, Pr[∃v ∈
V : degG(v) ≤ mp/2∨degG(v) ≥ 2mp] ≤ ne−mp/3+ne−mp/8 ≤ 2ne−mp/8, and so Pr[∀v ∈ V : mp/2 <

degG(v) < 2mp] ≥ 1 − 2ne−mp/8.

LEMMA 3.2. Let m = kn, p = 48k ln(m)/m, α = 1/mp, and f = np/6. Let G be drawn from G(m, n,

p). Then, Pr[G is (m, n, αm, f )-expanding] ≥ 1/2.

Proof. Fix U ′ ⊆ U of size s ≤ αm and v ∈ V . Then, Pr[v ∈ ∂U ′] = sp(1 − p)s−1. Let q = Pr[v ∈
∂U ′]. Let Xv be the indicator random variable for the event that v ∈ ∂U ′. Then, |∂U ′| = ∑

v∈V Xv . Ob-
serve that Xv and Xv′ are independent whenever v �= v′. Hence, |∂U ′| ∼ Bin(n, q), so that E[|∂U ′|] = nq .
By Chernoff bound, Pr[|∂U ′| ≤ nq/2] ≤ e−nq/8. On the other hand, nq = nsp(1−p)s−1 ≥ snp(1−p)αm .
Moreover, (1 − p)αm = (1 − p)1/p approaches 1/e for sufficiently large m. Therefore, nq ≥ snp/3.
It follows that nq/2 ≥ s f and e−nq/8 ≤ e−snp/24. We conclude that Pr[|∂U ′| < f · |U ′|] ≤ Pr[|∂U ′| ≤
nq/2] ≤ e−nq/8 ≤ e−snp/24. Finally, we bound the probability that G is not (m, n, αm, f )-expanding by

αm∑
s=1

(
m
s

)
e−snp/24 ≤

αm∑
s=1

mse−snp/24 ≤
αm∑
s=1

(
me−np/24

)s
. (3)

Recall that p = 48k ln(m)/m and m = kn. So me−np/24 ≤ me−2 ln(m) = m−1 < 1/4. Hence the sum in
(3) is bounded by

∑∞
s=1

1
4s ≤ 1

2 .

Let G be a fixed bipartite graph on {1, . . . , m} and {1, . . . , n}. A restriction (for G) is a sequence of
pairs ρ = ((u1, v1), . . . , (ur , vr )) such that (ui , vi ) ∈ E(G) and all vi ’s are distinct. We let Rr (G) be the
set of restrictions of length r . We define a distribution Rr (G) on Rr (G) as follows: Let V0 = {1, . . . , n};
for every i ∈ {1, . . . , r} in increasing order, choose a holevi uniformly at random in Vi−1, choose a pigeon
ui uniformly at random in NG(vi ), and let Vi = Vi−1−{vi }. The final restriction is ((u1, v1), . . . , (ur , vr )).
We let ran(ρ) = {v1, . . . , vr }.

We define a distribution D(m, n, p, r ) on the set of pairs (G, ρ) with ρ ∈ Rr (G): the graph G is drawn
from G(m, n + r, p) first, and then ρ is drawn from Rr (G). In other words, if (H, π ) is a fixed pair with
π ∈ Rr (H ), then

Pr[G = H ∧ ρ = π ] = pe(H )(1 − p)m(n+r )−e(H )|Rr (H )|−1.

If G is a bipartite graph on the vertex sets {1, . . . , m} and {1, . . . , n + r}, and ρ is a restriction
((u1, v1), . . . , (ur , vr )) ∈ Rr (G), then G(ρ) denotes the graph that results from deleting v1, . . . , vr from
G and renaming nodes in an order-preserving way. With these definitions we are ready to prove:

LEMMA 3.3. Let m = kn, p = 48k ln(m)/m, α = 1/mp, and f = np/6. Let (G, ρ) be drawn from
D(m, n, p, r ). Then, Pr[G(ρ) is (m, n, αm, f )-expanding] ≥ 1/2.

Proof. Let A be the event that G(ρ) is (m, n, αm, f )-expanding. Let us define S = {R ⊆ {1, . . . ,

n + r} : |R| = r}. Then, splitting by disjoint cases we have that Pr[A] = ∑
R∈S Pr[A | ran(ρ) =

R] Pr[ran(ρ) = R]. Replacing V by V − R, the proof that Pr[A | ran(ρ) = R] ≥ 1/2 is the same
as in Lemma 3.2. The result follows.

LEMMA 3.4. Let m = kn, p = 48k ln(m)/m, α = 1/mp, and f = np/6. For every r ≤ n, there
exists a bipartite graph H on {1, . . . , m} and {1, . . . , n + r} such that

(i) mp/2 ≤ degH (v) ≤ 2mp for every v ∈ {1, . . . , n + r} and

(ii) Pr[H (ρ) is (m, n, αm, f )-expanding] ≥ 1/3,

when ρ is drawn from Rr (H ).
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Proof. Let (G, ρ) be drawn from distribution D(m, n, p, r ). By Lemma 3.3 we have Pr[G(ρ) is
(m, n, αm, f )-expanding] ≥ 1/2. Moreover by Lemma 3.1 we have that Pr[∀v ∈ V : mp/2 < degG(v) <

2mp] ≥ 1 − (n + r )e−mp/9 ≥ 5/6. Let E(G, ρ) be the event that G(ρ) is expanding and every
right-node in G has degree between mp/2 and 2mp. Combining both equations above we have that
Pr[E(G, ρ)] ≥ 1/3. On the other hand, Pr[E(G, ρ)] = ∑

H Pr[E(G, ρ) | G = H ] Pr[G = H ] where H
ranges over all bipartite graphs on m and n + r nodes. Therefore, there exists some fixed H such
that Pr[E(G, ρ) | G = H ] ≥ 1/3. Moreover, Pr[E(G, ρ) | G = H ] equals Pr[E(H, π )] when π is
drawn from Rr (H ). Finally, since this probability is strictly positive, it must be the case that H satisfies
property (i) in the lemma since it is independent of π .

3.2. The Lower Bound Argument

Before we state and prove our main theorem, we will give some definitions and lemmas.
Let us first give a normal form for Res(2)-refutations of G-PHPm

n . We claim that every Res(2)-
refutation of G-PHPm

n can be turned into a Res(2)-refutation of similar size in which no 2-term is of the
form xu,v ∧ xu′,v with u �= u′. To check this, observe that such a 2-term must have been introduced at
some point by the rule of ∧-introduction with, say, A ∨ xu,v and B ∨ xu′,v . Cutting them with the axiom
x̄u,v ∨ x̄u′,v we get A∨ B that can be used to continue the proof because it subsumes A∨ B ∨(xu,v ∧xu′,v).

Let C be a 2-disjunction, and let (u, v) ∈ E(G). We let C |(u,v) be the result of assigning xu,v = 1 and
xu′,v = 0 for every u′ ∈ NG(v) − {u} to C and simplifying as much as possible. This includes replacing
subformulas of the form l ∨ (l ∧ l ′) by l and subformulas of the form l̄ ∨ (l ∧ l ′) by l̄ ∨ l ′ in some
specified order; here l and l ′ are literals. Given a restriction ρ = ((u1, v1), . . . , (ur , vr )), we let C |ρ be
the result of applying (u1, v1), . . . , (ur , vr ) successively in this order. For every i ∈ {1, . . . , r}, we let
ρi = ((u1, v1), . . . , (ui , vi )).

Let us now study in more detail the result of applying a pair of a restriction to a 2-disjunction. First
we give some definitions that will be central to the argument.

DEFINITION 3.1. We say that (u, v) ∈ E(G) hits C if either xu,v occurs positively in C or xu′,v occurs
negatively in C for some u′ ∈ NG(v) − {u}. We say that (u, v) ∈ E(G) knocks C if C |(u,v) ≡ 1. We say
that (u, v) ∈ E(G) is a bad choice for C if it does not knock it and there exists u′ ∈ NG(v) − {u} such
that (u′, v) knocks C .

Note that an equivalent definition for hits is that (u, v) sets some literal of C to true. Observe that if
the literal is free, it knocks the 2-disjunction, and if the literal is part of a conjunction, it will locally
create a free literal. Finally, notice that a bad choice may or may not be a hit.

LEMMA 3.5. Let C be a simplified 2-disjunction and (u, v) ∈ E(G). If (u, v) hits C and is not a
knock or a bad choice, then C |(u,v) has more free literals than C.

Proof. First notice that the literals that (u, v) sets to 1 are in a conjunction, otherwise (u, v) is a
knock. Such literals can appear positive or negative. We will discuss the two cases:

(i) The literal is xu,v and appears in a conjunction of the form xu,v ∧ y. The pair (u, v) does not
set y to 1, otherwise we would have a knock. Also, it does not set it to 0 either, otherwise y = xu′,v
and such a conjunction is not allowed in the normal form. On the other hand, y does not appear free
because C is a simplified 2-disjunction. Finally no free literal of C disappears when we apply (u, v) to
C , otherwise (u, v) would be a bad choice.

(ii) The literal is x̄u′,v , and it appears in a conjunction of the form x̄u′,v ∧ y. Because (u, v) is not
a knock, it does not set y to 1. Also, (u, v) does not set y to 0 either, otherwise it would be a bad choice,
given that the indegree of v is 3 or more. As in the previous case and for the same reasons, y does not
appear free in C , and no free literal of C disappears when we apply (u, v).

The lemma follows.

THEOREM 3.1. Let c > 1 be a constant. For all sufficiently large n, every Res(2)-refutation of PHPcn
n

has size at least en/(log n)14
.
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Proof. Let k = c + 1, r = n/c, n′ = n + r , and m = kn = cn′. By Lemma 3.4 there exists a graph
G = (U ∪ V, E) with |U | = m and |V | = n + r such that

Pr
ρ∼Rr (G)

[G(ρ) is (m, n, αm, f )-expanding] ≥ 1/3,

for p = 48k ln(m)/m, α = 1/mp, and f = np/6, and moreover mp/2 ≤ degG(v) ≤ 2mp for every
v ∈ {1, . . . , n + r}.

For such a graph G, we show that every Res(2)-refutation of G-PHP has size at least en/(log n)14
.

This will imply the theorem since a Res(2)-refutation of PHPcn′
n′ gives a Res(2)-refutation of G-PHP

of no bigger size. Let us assume, for contradiction, that G-PHP has a Res(2)-refutation � of size
S < en/(log n)14

.
We will use the following concepts. We say that C is large if it contains at least d = n/12 distinct

literals; otherwise, C is small. We say that C is wide if it contains at least s = n/(log n)5 free literals;
otherwise, C is narrow.

In all probabilities that follow, ρ is drawn from the distribution Rr (G). Our main goal is to prove that
the probability that a fixed 2-disjunction C of � remains large is exponentially small; that is, we aim
for a proof that

Pr[C |ρ is large] ≤ e−n/(log n)13
. (4)

This will suffice because then Pr[∃C ∈ � : C |ρ is large] ≤ Se−n/(log n)13
< 1/3, and also Pr[G(ρ) not

(m, n, αm, f )-expanding] ≤ 2/3. This means that there exists a restriction ρ ∈ Rr (G) such that G(ρ)
is (m, n, αm, f )-expanding and every 2-disjunction in �|ρ has less than d = αm f/2 literals. This is a
contradiction with Theorem 2.1.

For i ∈ {1, . . . , r}, let Ai be the event that C |ρi is large and let Bi be the event that C |ρi is narrow.
Recall that ρi = ((u1, v1), . . . , (ui , vi )). Observe that Ar implies A j for every i ∈ {1, . . . , r}. Then,

Pr[C |ρ is large] ≤ Pr

[
Ar ∧

∨
j≥r/2

B j

]
+ Pr

[
Ar ∧

∧
j≥r/2

B j

]

≤
r∑

j=r/2

Pr[A j ∧ B j ] + Pr

[
Ar ∧

∧
j≥r/2

B j

]
.

We will show that every term in this expression is exponentially small. The bound on terms of the form
Pr[A j ∧ B j ] will be proven in Lemma 3.7. For the last term, we use an argument similar in spirit to the
one by Beame and Pitassi [4]:

LEMMA 3.6. Pr[Ar ∧ ∧
j≥r/2 B j ] ≤ e−n/(log n)8

.

Proof. Let Ki be the indicator random variable for the event that (ui , vi ) knocks C |ρi−1 . Then,

Pr

[
Ar ∧

∧
j≥r/2

B j

]
≤ Pr

[ ∧
i>r/2

Ki = 0 ∧
∧

j≥r/2

B j

]

=
∏

i>r/2

Pr

[
Ki = 0 ∧

∧
j≥r/2

B j

∣∣∣∣∣
∧

r/2< j<i

K j = 0

]

≤
∏

i>r/2

Pr

[
Ki = 0 ∧ Bi−1

∣∣∣∣∣
∧

r/2< j<i

K j = 0

]

≤
∏

i>r/2

Pr

[
Ki = 0

∣∣∣∣∣ Bi−1 ∧
∧

r/2< j<i

K j = 0

]
.
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Fix i ∈ {r/2 + 1, . . . , r} and let H be the set of holes that occurs in a free literal of C |ρi−1 . Given that
Bi−1 holds, C |ρi−1 is wide which means that there are at least s free literals. Therefore |H | ≥ s/2�,
where � = 2mp is an upper bound on the right-degree of G. Moreover, every v ∈ H gives a possible
knock, and different holes give different knocks. The reason is the following: if xu,v is a free literal,
then (u, v) is a knock; and if x̄u,v is a free literal, then (u′, v) is a knock for every u′ ∈ NG(v) − {u},
which is nonempty since the right-degree of G is at least two. Therefore,

Pr

[
Ki = 1

∣∣∣∣∣ Bi−1 ∧
∧

r/2< j<i

K j = 0

]
≥ |H |

�(n + r − i + 1)
≥ s

3�2n
.

Therefore,

Pr

[
Ar ∧

∧
j≥r/2

B j

]
≤

(
1 − s

3�2n

)r/2

≤ e− sr
6�2n ≤ e−n/(log n)8

.

LEMMA 3.7. Let j be such that r/2 ≤ j ≤ r . Then, Pr[A j ∧ B j ] ≤ e−n/(log n)11
.

Proof. Recall that A j is the event that C |ρ j is large, and B j is the event that C |ρ j is narrow. We let Si

be the indicator random variable for the event that (ui , vi ) hits C |ρi−1 , where ρi−1 = ((u1, v1), . . . , (ui−1,

vi−1)). Let S = ∑ j
i=1 Si and h = n/(log n)4. Then,

Pr[A j ∧ B j ] = Pr[A j ∧ B j ∧ S < h] + Pr[A j ∧ B j ∧ S ≥ h]

≤ Pr[A j ∧ S < h] + Pr[A j ∧ B j ∧ S ≥ h].

We show that each term in this expression is exponentially small. More precisely, we show that Pr[A j ∧
S < h] ≤ e−n/(log n)3

and Pr[A j ∧ B j ∧ S ≥ h] ≤ e−n/(log n)10
which is clearly enough to prove Lemma 3.7.

CLAIM 3.1. Pr[A j ∧ S < h] ≤ e−n/(log n)3
.

Proof. Let Y = {(a1, . . . , a j ) ∈ {0, 1} j :
∑ j

i=1 ai < h}. Observe that A j implies Ai for every i ≤ j
because if C |ρ j is large, so is C |ρi for every i ≤ j . Then,

Pr[A j ∧ S < h] = Pr

[
j∑

i=1

Si < h ∧ A j

]

=
∑
ā∈Y

Pr

[
j∧

i=1

Si = ai ∧ A j

]

=
∑
ā∈Y

j∏
i=1

Pr

[
Si = ai ∧ A j

∣∣∣∣∣
i−1∧
k=1

Sk = ak

]

≤
∑
ā∈Y

j∏
i=1

Pr

[
Si = ai ∧ Ai−1

∣∣∣∣∣
i−1∧
k=1

Sk = ak

]

≤
∑
ā∈Y

j∏
i=1

Pr

[
Si = ai

∣∣∣∣∣ Ai−1 ∧
i−1∧
k=1

Sk = ak

]
.

Fix i ∈ {1, . . . , j}. Let H be the set of holes that occurs in C |ρi−1 . We have |H | ≥ d/2� given that Ai−1

holds. Again, � = 2mp is an upper bound to the right-degree of G. Moreover, every v ∈ H gives a
possible hit, and different holes give different hits (the reason is the same as in Lemma 3.6 for knocks).
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Therefore,

Pr

[
Si = 1

∣∣∣∣∣ Ai−1 ∧
i−1∧
k=1

Sk = ak

]
≥ |H |

�(n + r − i + 1)
≥ d

3�2n
.

Since there are at least j − h zeros in (a1, . . . , a j ), we obtain

Pr[A j ∧ S < h] ≤
∑
ā∈Y

(
1 − d

3�2n

) j−h

≤
∑
i<h

(
j

i

)
e− d( j−h)

3�2n ≤ hjhe− d( j−h)
3�2n

≤ exp

(
− j − h

36�2
+ h log( j) + log(h)

)
≤ e−n/(log n)3

.

CLAIM 3.2. Pr[A j ∧ B j ∧ S ≥ h] ≤ e−n/(log n)10
.

Proof. During this proof we will drop the subindex j in A j and B j since it will always be the same.
For every i ∈ {1, . . . , r}, let Ti ∈ {k, b, n} be a random variable indicating whether (ui , vi ) is a knock,
a bad choice, or none of the previous respectively for C |ρi−1 . For t ∈ {k, b, n}, let St

i be the indicator
random variable for the event that Ti = t , and let St = ∑ j

i=1 St
i . Thus, Sk is the number of knocks and

Sb is the number of bad choices of ρ j .
Fix ρ = ((u1, v1), . . . , (ur , vr )) such that A ∧ B ∧ S ≥ h holds under ρ. Observe that (ui , vi ) does

not knock C |ρi−1 for any i ∈ {1, . . . , j} since C |ρ j must be large. Hence, Sk = 0 under ρ. Let b =
(h − s)/(2�+ 1). We now claim that Sb ≥ b. Suppose for contradiction that the number of bad choices
is less than b. Every bad choice (ui , vi ) removes at most 2� free literals since at most those many literals
about hole vi may appear. Moreover, since there are no knocks, every hit (ui , vi ) that is not a bad choice
increases the number of free literals by at least one (see Lemma 3.5). It follows that the number of free
literals in C |ρ j is at least (S − Sb) − 2�Sb > h − (2� + 1)b = s, a contradiction with the fact that B
holds under ρ. We have proved that Pr[A ∧ B ∧ S ≥ h] ≤ Pr[Sk = 0 ∧ Sb ≥ b]. The intuition behind
why this probability is small is that every bad choice could have been a knock. This makes it unlikely
that ρ produces many bad choices and no knocks. In what follows, we will prove this intuition using
martingales.

Let Pt
i denote the random variable Pr[Ti = t | ρ0, . . . , ρi−1] where t ∈ {k, b, n} and i ∈ {1, . . . , j}.

We define a martingale X0, . . . , X j with respect to ρ0, . . . , ρ j as follows: Let X0 = 0, and Xi+1 = Xi +
Sb

i+1 − Pb
i+1. Recall that Sb

i+1 is the indicator random variable for the event that Ti+1 =
b. So

E[Xi+1 | ρ0, . . . , ρi ] = (
Xi + 1 − Pb

i+1

) · Pb
i+1 + (

Xi − Pb
i+1

) · (
1 − Pb

i+1

)
= (

Xi − Pb
i+1

)(
Pb

i+1 + 1 − Pb
i+1

) + Pb
i+1 = Xi .

Hence, {Xi }i is a martingale with respect to {ρi }i . Observe also that X j = Sb − ∑ j
i=1 Pb

i . Similarly, we
define Y0, . . . , Y j as follows: Let Y0 = 0 and Yi+1 = Yi + Sk

i+1 − Pk
i+1. It is also easy to see that {Yi }i

is a martingale with respect to {ρi }i . Again, Y j = Sk − ∑ j
i=1 Pk

i .

SUBCLAIM 3.1. Pk
i (ρ) ≥ Pb

i (ρ)/� for every ρ ∈ Rr (G) and i ∈ {1, . . . , j}.
Proof. Fix i ∈ {1, . . . , j} and a restriction ρ = ((u1, v1), . . . , (ur , vr )). Our goal is to show that

Pk
i (ρ) ≥ Pb

i (ρ)/�. First we define the following three sets: let Q = {(u, v) ∈ E(G) : v �∈ {v1, . . . , vi−1}},
let Qk be the set of knocks for C |ρi−1 in Q, and let Qb be the set of bad choices for C |ρi−1 in Q. Observe
that Pb

i (ρ) = |Qb| · |Q|−1 and Pk
i (ρ) = |Qk| · |Q|−1. On the other hand, every bad choice (u, v) ∈ Qb

gives a possible knock (u′, v) ∈ Qk by definition. Moreover, bad choices with different hole components
give different possible knocks. Grouping Qb by holes, we have that |Qk| ≥ |Qb|/�. Consequently,
Pk

i (ρ) ≥ Pb
i (ρ)/� as required.
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To complete the proof of Claim 3.2 we will need the following form of Azuma’s inequality: Let
X0, . . . , Xn be a martingale such that |Xi − Xi−1| ≤ 1; then, Pr[|Xn − X0| ≥ λ] ≤ 2e−λ2/n for every
λ > 0 [11]. Now,

Pr[Sk = 0 ∧ Sb ≥ b] = Pr[Sk = 0 ∧ Sb ≥ b ∧ X j ≥ b/2] + Pr[Sk = 0 ∧ Sb ≥ b ∧ X j < b/2].

The first summand is bounded by Pr[X j ≥ b/2] ≤ 2e−b2/4 j by Azuma’s inequality. The second summand
is bounded by

Pr

[
Sk = 0 ∧

j∑
i=1

Pb
i ≥ b/2

]
≤ Pr

[
Sk = 0 ∧

j∑
i=1

Pk
i ≥ b/2�

]

≤ Pr[Y j ≤ −b/2�] ≤ 2e−b2/4�2 j .

The first inequality follows from Subclaim 3.1, and the third follows from Azuma’s inequality again.
The addition of the two summands is then bounded by e−n/(log n)10

as required. This ends the proof of
Claim 3.2 and Lemma 3.7.

We are ready to complete the proof of our goal: equation (4). We have shown that

Pr[C |ρ large] ≤
r∑

j=r/2

e−n/(log n)11 + e−n/(log n)8 ≤ e−n/(log n)13
.

This ends the proof of Theorem 3.1.

By a different setting of parameters, it is easy to see that the strongest lower bound for PHPm
n is

of the form en9/(m log m)8 log3 n . Namely, put r = n/8, h = n3/((m log m)2 log n), and s = h/2 for that
calculation. Therefore the best result is an exponential lower bound for PHPn9/8−ε

n .
We conclude this section with a separation result. Given that Res(log) and depth-0.5 LK are poly-

nomially equivalent, and given that PHP2n
n has quasipolynomial-size proofs in depth-0.5 LK [14], we

obtain:

COROLLARY 3.1. There is an exponential separation between Res(2) and Res(log).

4. LOWER BOUND FOR RANDOM CNF FORMULAS

4.1. Random Formulas and Restrictions

The model of random k-CNF formulas that we use is the one considered in [3, 10]. The distribution is
denoted F k,n

m and consists in choosing m clauses of exactly k literals independently with replacement.
Most of the next definitions are taken and adapted from [3].

DEFINITION 4.1. Let F be a CNF formula. We say that a literal l is pure in F if some clause of F
contains l and no clause of F contains l̄. For a real number n, F is n-sparse if |F | ≤ n|v(F)| where
v(F) is the set of variables appearing in F .

For s ≥ 1 and ε ∈ (0, 1), the following properties are defined for F :

• A(s): Every set of r ≤ s clauses of F is 1-sparse.

• Bε(s): For r such that s/2 < r ≤ s, every subset of r clauses of F has at least εr pure literals.

For a given refutation system S, we say that an S-refutation is k-bounded if all formulas of the
refutation involve at most k distinct literals.
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THEOREM 4.1 (3). Let S be a sound refutation system with all rules of fan-in at most two. Let s > 0
be an integer and F be a CNF formula. If properties A(s) and Bε(s) both hold for F, then F has no
εs/2-bounded S-refutation.

A restriction is a sequence of pairs (x, v) where x is a variable and v is either true or false. We will
consider two probability distributions.

• At chooses a permutation of the variables uniformly at random and then chooses each variable
with probability t/n in the order of the permutation. The values assigned to the variables are chosen
uniformly at random from true and false.

• Bt chooses r , the length of the restriction, with a binomial distribution of parameters t/n and
n and then chooses uniformly at random any sequence of variables of length r without repetitions. The
values assigned to the variables are chosen uniformly at random from true and false.

We prove thatAt andBt are the same distribution of probability. Obviously both distributions produce
exactly the same restrictions. We only must show that any restriction ρ has the same probability in both
distributions of probability.

LEMMA 4.1. For every x1, . . . , xr and v1, . . . , vr ,

Pr
ρ∼At

[ρ = ((x1, v1), . . . , (xr , vr ))] = Pr
ρ∼Bt

[ρ = ((x1, v1), . . . , (xr , vr ))].

Proof. The probability Prρ∼Bt [ρ = ((x1, v1), . . . , (xr , vr ))] is easy to find:

(
n
r

) (
t

n

)r (
1 − t

n

)n−r 1

n2(n − 1)2 . . . (n − r + 1)2
. (5)

The first part corresponds to the probability of choosing the value r from a binomial distribution.
Remember that r is the length of the restriction. The rest of the expression is the probability of choosing
the r correct pairs (xi , vi ).

The probability Prρ∼At [ρ = ((x1, v1), . . . , (xr , vr ))] is a little trickier. We will compute the probability
of finding a permutation of the variables that is compatible with (x1, . . . , xr ), that is, the variables
{x1, . . . , xr } appear in that order. Then we multiply this probability by the probability of choosing the
exact places where the variables in ρ are and choosing the right value for them:

(n
r

)
(n − r )!

n!

(
t

n

)r (
1 − t

n

)n−r 1

2r
. (6)

We first choose r places to put the variables in ρ and then we fill the gaps with the permutations of the
other n − r variables. These are the favorable cases, those that are compatible. With straightforward
manipulations it is easy to see that (5) and (6) are equal.

The following is adapted from [3], with a minor change in the probability distribution.

LEMMA 4.2. For each integer k ≥ 3 and ε > 0, there are constants ck, ck,ε, such that the following
holds. Let m, n, s, t with m = �n for � ≥ 1. Let F ∼ F k,n

m and ρ ∼ At .

(i) If t ≤ ckn/m1/k and s ≤ ckn/�1/(k−2), then F |ρ satisfies A(s) with probability 1 − o(1) in s.

(ii) If s, t ≤ ck,εn/�2/(k−2−ε), then F |ρ satisfies Bε(s) with probability 1 − o(1) in s.

A restriction is a sequence of pairs (x, v) where x is a variable and v is either true or false. For a 2-
disjunction C let |C | be the number of distinct literals occurring in it. Let R be a probability distribution
on restrictions. We say that R satisfies property R(d, M) if and only if for every 2-disjunction C ,
Pr[|C |ρ | ≥ d] ≤ 1/M .



146 ATSERIAS, BONET, AND ESTEBAN

THEOREM 4.2. Let F be a distribution over k-CNF formulas. Let s, M ≥ 1, and ε > 0 and let R be
a distribution over restrictions that satisfies R(εs/2, M). Then,

Pr
F∼F

[res 2(F) < M/2] ≤ 2 Pr
F∼F,ρ∼R

[F |ρ does not satisfy A(s)]+2 Pr
F∼F,ρ∼R

[F |ρ does not satisfy Bε(s)],

where res 2(F) is the minimum size of a Res(2)-refutation of F.

Proof. For a fixed unsatisfiable k-CNF F , let P be a minimal-size Res(2)-refutation of F . Let
ρ ∼ R.

Pr[F |ρ satisfies A(s) ∧ Bε(s)] ≤ Pr[P|ρ is not εs/2 bounded]

≤ Pr[∃C ∈ P : |C |ρ | > εs/2]

≤ res 2(F)
1

M
.

The first inequality follows by Theorem 4.1, the second is immediate, and the third follows by union
bound and the fact that R satisfies R(εs/2, M).

To finish, let

p(F) = Pr
ρ

[F |ρ does not satisfy A(s)] + Pr
ρ

[F |ρ does not satisfy Bε(s)].

Then, res 2(F) < M/2 implies that Prρ[F |ρ satisfies A(s) ∧ Bε(s)] < 1/2, and so p(F) > 1/2. There-
fore, PrF [res 2(F) < M/2] ≤ PrF [p(F) > 1/2] ≤ 2EF [p(F)] by Markov’s inequality. The result fol-
lows.

4.2. The Lower Bound Argument

For simplicity, we only state the lower bound for the case F3,n
5n .

THEOREM 4.3. Let F ∼ F3,n
5n . Then almost surely Res(2)-refutations of F require size 2�(n1/3/(log(n))2).

Proof. Let m = 5n and k = 3, fix an arbitrary ε ∈ (0, 1), and put t = c3n/(5n)1/3 = c′n2/3 and s =
min(c3n/5, c3,εn/52/1−ε). Observe that these numbers satisfy the two hypothesis in Lemma 4.2. Let
M = 2n1/3/(log(n))3

. If we could prove thatBt satisfies property R(εs/2, M), then PrF [res2(F) < M/2] <

2p(F) by Theorem 4.2. Since p(F) is o(1) according to Lemma 4.2, the theorem would follow.
It remains to prove that Bt satisfies property R(εs/2, M). In the following, we think of ρ as drawn

from Bt . We let ρ = ((x1, v1), . . . , (xr , vr )).
The whole argument is very similar to the one for Theorem 3.1. Some definitions need to be adapted,

however. A 2-disjunction is large if it contains at least d = εs/2 literals, otherwise it is small. A
2-disjunction is wide if it contains at least w = t/2(log(t))2 free literals, otherwise it is narrow. We say
that (xi , vi ) knocks a 2-disjunction if it makes it true. We say that (xi , vi ) hits a 2-disjunction if it makes
true a literal in it. We say that (xi , vi ) is a bad choice if it does not knock the 2-disjunction but could have
knocked it just by giving the opposite value to the variable. For i ≤ r , we let ρi be ((x1, v1), . . . , (xi , vi )).
When possible we simplify 2-disjunctions: we substitute subformulas of the form l ∨ (l ∧ l ′) by l and
subformulas of the form l̄ ∨ (l ∧ l ′) by l̄ ∨ l ′. We aim for a proof that

Pr[C |ρ is large] ≤ e
− n1/3

(log(n))4 , (7)

where C is an arbitrary simplified 2-disjunction.
Let Ai be the event that C |ρi contains at least d distinct literals. Let A be the event A|ρ|.

Pr[A] = Pr[A ∧ |ρ| < t/2] + Pr[A ∧ |ρ| ≥ t/2]. (8)
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Obviously Pr[A ∧ |ρ| < t/2] ≤ Pr[|ρ| < t/2] which is smaller than e−t/8 by Chernoff bounds, so

(8) ≤ e− n2/3

log(n) + Pr[A | |ρ| ≥ t/2].

We show now that Pr[A | |ρ| ≥ t/2] is exponentially small. For every i such that t/4 ≤ i ≤ t/2, let
Bi be the event that C |ρi is narrow; that is, it contains less than w free literals. Let D be the event that
|ρ| ≥ t/2. Then,

Pr[A | D] = Pr

[
A ∧

t/2∨
j=t/4

B j

∣∣∣∣∣ D

]
+ Pr

[
A ∧

t/2∧
j=t/4

B j

∣∣∣∣∣ D

]
. (9)

We show that both terms in (9) are exponentially small. For every i such that t/4 ≤ i ≤ t/2, let Ki be
the indicator random variable for the event that (xi , vi ) is a knock. Then, as in the proof of Theorem 3.1,
the second term in (9) is

Pr

[
A ∧

t/2∧
j=t/4

B j

∣∣∣∣∣ D

]
≤

t/2∏
i>t/4

Pr

[
Ki = 0

∣∣∣∣∣ Bi−1 ∧
i−1∧

j>t/4

K j = 0 ∧ D

]
≤ e

− n1/3

(log(n))3 .

We will show that the first term in (9) is also exponentially small. First observe that

Pr

[
A ∧

t/2∨
j=t/4

B j

∣∣∣∣∣ D

]
= Pr

[
t/2∨

j=t/4

(A ∧ B j )

∣∣∣∣∣ D

]
(10)

≤
t/2∑

j=t/4

Pr[A j ∧ B j | D]. (11)

The last inequality is true because A implies A j for any j ≤ t/2.

LEMMA 4.3. If j is such that t/4 ≤ j ≤ t/2, then Pr[A j ∧ B j | D] ≤ e−n2/3/(log(n))6
.

Proof. For every i ≤ j let Si be the indicator random variable for the event that (xi , vi ) hits C |ρi−1 ,
that is, that (xi , vi ) gives value true to a literal in C |ρi−1 . Let S = ∑ j

i=1 Si . We divide the calculation
in two parts: what happens when the number of hits is less than a certain h = t/(log(t))2 and what
happens otherwise.

Pr[A j ∧ B j | D] = Pr[A j ∧ B j ∧ S < h | D] + Pr[A j ∧ B j ∧ S ≥ h | D]

We start by the easiest part. The intuition is that if the 2-disjunction is large it would be extremely
difficult to hit it only a few times.

CLAIM 4.3. Pr[A j ∧ S < h | D] ≤ e−n2/3/(log(n))2
.

Proof. Let Y = {(a1, . . . , a j ) ∈ {0, 1} j :
∑ j

i=1 ai < h}. Observe that A j implies Ai for every i ≤ j
because if C |ρ j is large, so is C |ρi . Then, as in the proof of Theorem 3.1,

Pr[A j ∧ S < h | D] ≤
∑
ā∈Y

j∏
i=1

Pr

[
Si = ai

∣∣∣∣∣ Ai−1 ∧
i−1∧
k=1

Sk = ak ∧ D

]
.

Fix i ∈ {1, . . . , j}.

Pr

[
Si = 1

∣∣∣∣∣ Ai−1 ∧
i−1∧
k=1

Sk = ak ∧ D

]
≥ d

2(n − i + 1)
≥ d

2n
.
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Since there are at least j − h zeros in (a1, . . . , a j ), we obtain

Pr[A j ∧ S < h | D] ≤
∑
ā∈Y

(
1 − d

2n

) j−h

≤
∑
i<h

(
j

i

)
e− d( j−h)

2n ≤ hjhe− d( j−h)
2n

≤ exp

(
−d( j − h)

2n
+ h log( j) + log(h)

)

≤ e− dt
10n + t

log(t) ≤ e
− n2/3

(log(n))2 .

Now we will see what happens when the number of hits is big.

CLAIM 4.4. Pr[A j ∧ B j ∧ S ≥ h | D] ≤ e−n2/3/(log(n))5
.

Proof. For every 1 ≤ i ≤ t/2, let Ti ∈ {k, b, n} be a random variable indicating whether (xi , vi ) is
a knock, a bad choice, or none of the previous respectively for C |ρi−1 . For t ∈ {k, b, n}, let St

i be
the indicator random variable for the event that Ti = t , and let St = ∑ j

i=1 St
i . Thus, Sk is the number

of knocks and Sb is the number of bad choices of ρ j . For the rest of the proof we will skip the
condition on D and the subindices from A and B. Fix ρ satisfying A ∧ B ∧ S ≥ h. Note that the number
of knocks is 0 because the 2-disjunction still exists, so Sk = 0. Now let be b = (h − w)/2; we now
claim that Sb ≥ b. Suppose for contradiction that the number of bad choices is less than b. Every
bad choice (xi , vi ) removes at most one free literal. Moreover, since there are no knocks, every hit
(xi , vi ) that is not a bad choice increases the number of free literals by at least one. The reason is that
such a hit turns a conjunction into a free literal. Remember that we simplify the 2-disjunction when
possible and so the literal was not free before the hit (xi , vi ) is applied. It follows that the number of
free literals in C |ρ j is at least (S − Sb) − Sb > h − 2b = w, a contradiction with the fact that B holds
under ρ.

So far we have proved that Pr[A ∧ B ∧ S ≥ h] ≤ Pr[Sk = 0 ∧ Sb ≥ b]. The intuition behind why
this probability is small is that every bad choice could have been a knock. This makes it unlikely
that ρ produces many bad choices and no knocks. In what follows, we will prove this intuition using
martingales.

SUBCLAIM 4.2. Pr[Sk = 0 ∧ Sb ≥ b] ≤ e−n2/3/(log(n))5
.

Proof. For t ∈ {k, b, n} and i ∈ {1, . . . , j}, let Pt
i denote the random variable Pr[Ti = t | ρ0, . . . ,

ρi−1]. We define a martingale X0, . . . , X j with respect to ρ0, . . . , ρ j as follows: Let X0 = 0 and
Xi+1 = Xi + Sb

i+1 − Pb
i+1. Recall that Sb

i+1 is the indicator random variable for the event that Ti+1 = b.
As in the proof of Theorem 3.1, it is easy to see that {Xi }i is indeed a martingale with respect to {ρi }i .
Observe also that X j = Sb − ∑ j

i=1 Pb
i . Similarly, we define Y0, . . . , Y j as follows: Let Y0 = 0 and

Yi+1 = Yi + Sk
i+1 − Pk

i+1. It is also easy to see that {Yi }i is a martingale with respect to {ρi }i . Again,

Y j = Sk − ∑ j
i=1 Pk

i .
In the next calculation we will use the fact that Pk

i (ρ) = Pb
i (ρ) for every ρ and i ∈ {1, . . . , j}.

Pr[Sk = 0 ∧ Sb ≥ b] = Pr[Sk = 0 ∧ Sb ≥ b ∧ X j ≥ b/2] + Pr[Sk = 0 ∧ Sb ≥ b ∧ X j < b/2].

The first summand is bounded by Pr[X j ≥ b/2] ≤ 2e−b2/4 j by Azuma’s inequality. The second
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summand is bounded by

Pr

[
Sk = 0 ∧

j∑
i=1

Pb
i ≥ b/2

]
≤ Pr

[
Sk = 0 ∧

j∑
i=1

Pk
i ≥ b/2

]

≤ Pr[Y j ≤ −b/2]

≤ 2e−b2/4 j ,

by Azuma’s inequality again. Therefore, the sum is bounded by 4e−t/32(log(t))4 ≤ e−n2/3/(log(n))5
as re-

quired. This ends the proof of Subclaim 4.2 and Claim 4.4.

With both sublemmas proved, so is Lemma 4.3. We are ready to complete the proof of our goal (7).
We have shown that

Pr[C |ρ is large] ≤ e− n2/3

log(n) + e
− n1/3

(log(n))3 +
t/2∑

i=t/4

e
− n2/3

(log(n))6 ≤ e
− n1/3

(log(n))4 .

This ends the proof of Theorem 4.3.

We give another proof of Subclaim 4.2 that does not require martingales.

SUBCLAIM 4.3. Pr[Sk = 0 ∧ Sb ≥ b] ≤ 2−b

Proof. Let us call a restriction favorable if it has b or more bad choices and no knocks. By mod-
ifying a favorable restriction, we can get 2b − 1 restrictions with one knock or more just by chang-
ing the value of the variables that forms the set of bad choices. Let us call these restrictions knock
restrictions.

We will show now that no different favorable restrictions generate the same knock restrictions. Let
us consider two favorable restrictions, say f1 and f2. Both restrictions must have the same variables
in the same order, otherwise they cannot form the same knock restriction. Now, let us call x the first
variable such that f1(x) �= f2(x). Let us suppose that x is a bad choice for f1. This is impossible
because f1 and f2 are equal up to the variable preceding x , so if x is a bad choice for f1, then x is
a knock for f2, so f2 is not favorable. The same argument applies for f2. If x is a bad choice neither
for f1 nor for f2 then the value of x must coincide if we intend to build the same knock restriction,
because we are only changing the value of variables that produces bad choices. We must conclude
f1 = f2.

Now let us call F the set of favorable restrictions and K the set of knock restrictions generated by
the restrictions in F . So

Pr[Sb = 0 ∧ Sb ≥ b] = #favorable

#possible
≤ |F |

|F | + |K |

= 1

1 + |K |/|F | = 1

1 + 2b − 1
= 1

2b
.

5. SEPARATION BETWEEN RES(2) AND RESOLUTION

In this section we prove that Resolution cannot polynomially simulate Res(2). More precisely, we
prove that a certain Clique-Coclique principle, as defined by Bonet et al. in [6], has polynomial-size
Res(2)-refutations, but every Resolution refutation requires quasipolynomial size.
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The Clique-Coclique principle that we use, CLIQUEn
k,k ′ , is the conjunction of the following set of

clauses:

xi,1 ∨ · · · ∨ xi,n 1 ≤ l ≤ k (12)

x̄l,i ∨ x̄l, j 1 ≤ l ≤ k, 1 ≤ i, j ≤ n, i �= j (13)

x̄l,i ∨ x̄l ′,i 1 ≤ l, l ′ ≤ k, 1 ≤ i ≤ n, l �= l ′ (14)

y1,i ∨ · · · ∨ yk ′,i 1 ≤ i ≤ n (15)

ȳl,i ∨ ȳl ′,i 1 ≤ l, l ′ ≤ k ′, 1 ≤ i ≤ n, l �= l ′ (16)

x̄l,i ∨ x̄l ′, j ∨ ȳt,i ∨ ȳt, j 1 ≤ l, l ′ ≤ k, 1 ≤ t ≤ k ′, 1 ≤ i, j ≤ n, l �= l ′, i �= j. (17)

We start with a reduction from CLIQUEn
k,k ′ to PHPk

k ′ that can be carried over in Res(2):

THEOREM 5.1. Let k ′ < k ≤ n. If PHPk
k ′ has Resolution refutations of size S, then CLIQUEn

k,k ′ has
Res(2)-refutations of size Snc for some constant c > 0.

Proof. We use the following Res(2)-reduction to transform the formula CLIQUEn
k,k ′ into PHPk

k ′ .
The meaning of variable pi, j is that pigeon i sits in hole j . We perform the following substitutions:

pi, j ≡
n∨

l=1

(xi,l ∧ y j,l) p̄i, j ≡
n∨

l=1, j ′ �= j

(xi,l ∧ y j ′,l).

We show in detail how to get clauses (1) from clauses (12) and (15), and just sketch how to get the
initial clauses (2) and how to simulate a resolution step.

For the first part, if we expand clause (1) for a certain i we have:

(xi,1 ∧ y1,1) ∨ (xi,2 ∧ y1,2) ∨ (xi,3 ∧ y1,3) ∨ · · · ∨ (xi,n ∧ y1,n)∨
(xi,1 ∧ y2,1) ∨ (xi,2 ∧ y2,2) ∨ (xi,3 ∧ y2,3) ∨ · · · ∨ (xi,n ∧ y2,n)∨
(xi,1 ∧ y3,1) ∨ (xi,2 ∧ y3,2) ∨ (xi,3 ∧ y3,3) ∨ · · · ∨ (xi,n ∧ y3,n)∨

. . .

(xi,1 ∧ yk ′,1) ∨ (xi,2 ∧ yk ′,2) ∨ (xi,3 ∧ yk ′,3) ∨ · · · ∨ (xi,n ∧ yk ′,n).

(18)

We apply successively for 1 ≤ j ≤ k ′ the ∧-introduction rule to clauses y1,1∨· · ·∨yk ′,1 and xi,1∨· · ·∨xi,n

along variables xi,1 and y j,1 and get:

(xi,1 ∧ y1,1) ∨ (xi,1 ∧ y2,1) ∨ · · · ∨ (xi,1 ∧ yk ′,1) ∨ xi,2 ∨ · · · ∨ xi,n. (19)

Observe that the conjuctions in (19) form the first column in (18). To add the second column of (18) to
(19) we apply successively for 1 ≤ j ≤ k ′ the ∧-rule to clauses y1,2 ∨· · ·∨ yk ′,2 and (19) along variables
xi,2 and y j,2 and get:

(xi,1 ∧ y1,1) ∨ (xi,1 ∧ y2,1) ∨ · · · ∨ (xi,1 ∧ yk ′,1)∨
(xi,2 ∧ y1,2) ∨ (xi,2 ∧ y2,2) ∨ · · · ∨ (xi,2 ∧ yk ′,2) ∨ xi,3 ∨ · · · ∨ xi,n.

(20)

Now it is clear how to get (18).
Now we will sketch how to get the initial clauses (2). Let us consider the clause p̄i,t ∨ p̄ j,t . We first

generate pi,1 ∨ · · · ∨ pi,k ′ and p j,1 ∨ · · · ∨ p j,k ′ as before. Let us rewrite them as

(xi,1 ∧ yt,1) ∨ (xi,2 ∧ yt,2) ∨ (xi,3 ∧ yt,3) ∨ · · · ∨ (xi,n ∧ yt,n) ∨ A (21)

(x j,1 ∧ yt,1) ∨ (x j,2 ∧ yt,2) ∨ (x j,3 ∧ yt,3) ∨ · · · ∨ (x j,n ∧ yt,n) ∨ B, (22)



PIGEONHOLE PRINCIPLE AND RANDOM FORMULAS 151

where A is pi,1 ∨ · · · ∨ pi,t−1 ∨ pi,t+1 ∨ · · · ∨ pi,k ′ and B is p j,1 ∨ · · · ∨ p j,t−1 ∨ p j,t+1 ∨ · · · ∨ p j,k ′ . It
is clear that p̄i,t ∨ p̄ j,t is A ∨ B. Now it is easy to see how to get A ∨ B from (21), (22), and (17).

It remains to sketch how to simulate a resolution step. We have pi, j ∨ A and p̄i, j ∨ B and we want
to get A ∨ B. We expand the first one:

(xi,1 ∧ y j,1) ∨ (xi,2 ∧ y j,2) ∨ (xi,3 ∧ y j,3) ∨ · · · ∨ (xi,n ∧ y j,n) ∨ A. (23)

If we get clauses x̄i,l ∨ ȳ j,l ∨ B for 1 ≤ l ≤ n, we cut them all with (23) and get A ∨ B as desired.
To get, for example, x̄i,1 ∨ ȳ j,1 ∨ B, we cut p̄i, j ∨ B with ȳ j,1 ∨ ȳl,1, l �= j of course, and with clauses
x̄i,1 ∨ x̄i,l , l �= 1.

In order to show that the CLIQUEn
k,k ′ principle requires superpolynomial size Resolution proofs, we

will use two results. One is the monotone interpolation theorem (see [17]) for Resolution. This theorem
allows us to build a monotone circuit computing a certain function (in this case the clique function),
from a Resolution refutation of a set of clauses that expresses contradictory facts about the minterms
and maxterms of the function. Also the size of the circuit is polynomial in the size of the proof. The
other result is Theorem 5.2 from [1] which is stated below in order to carry out the calculations. This
theorem establishes a lower bound on the size of monotone circuits that separate large cliques from small
cocliques. The general argument of our result is by contradiction. Assume there is a short Resolution
refutation of the clauses (12)–(17). By the monotone interpolation theorem there is a small monotone
circuit separating large cliques from small cocliques, which is impossible by Theorem 5.2. Now comes
the statement of the theorem:

Let F(m, k, k ′) be the set of monotone functions that separate k-cliques from k ′-cocliques on m nodes.

THEOREM 5.2 (1). If f ∈ F(m, k, k ′) where 3 ≤ k ′ ≤ k and k
√

k ′ ≤ m/(8 log m), then

S+( f ) ≥ 1

8

(
m

4k
√

k ′ log m

)(
√

k ′+1)/2

,

where S+( f ) is the monotone circuit size of f .

THEOREM 5.3. Let k = √
m and k ′ = (log m)2/8 log log m. Then (i) CLIQUEm

k,k ′ has Res(2)-
refutations of size polynomial in m, and (ii) every Resolution refutation of CLIQUEm

k,k ′ has size at
least exp(�((log m)2/

√
log log m)).

Proof. Regarding (i), we have that k ′ log k ′ ≤ 1
4 (log m)2, and so 2

√
k ′ log k ′ ≤ m1/2 = k. On the other

hand, Buss and Pitassi [7] proved that PHPk
k ′ has Resolution refutations of size polynomial in k when-

ever k ≥ 2
√

k ′ log k ′
. Therefore, by Theorem 5.1, CLIQUEm

k,k ′ has Res(2)-refutations of size polynomial
in m. Regarding (ii), suppose for contradiction that CLIQUEm

k,k ′ has a Resolution refutation of size
exp(o((log m)2/

√
log log m)). By the monotone interpolation theorem, we obtain a monotone circuit C

separating k-cliques from k ′-cocliques of size exp(o((log m)2/
√

log log m)). Note that

log m

3
√

log log m
≤

√
k ′ ≤ log m.

Therefore, by Theorem 5.2, the size of C is at least

1

8

(
m

4
√

m(log m)2

) log m
6
√

log log m

≥ 1

8

(
m

m3/4

) log m
6
√

log log m

,

which is exp(�((log m)2/
√

log log m)). This is a contradiction.

As a corollary, we solve an open problem posed by Krajı́ček [13].

COROLLARY 5.1. Res(2) does not have the feasible monotone interpolation property.
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6. DISCUSSION AND OPEN PROBLEMS

In the paper we proved that there is a quasipolynomial separation between Resolution and Res(2).
It is an open question whether the separation could be exponential or a quasipolynomial simulation of
Res(2) by Resolution exists. It is important to notice that our lower bound for PHP would not follow
from such a simulation. Indeed, the lower bound that would follow from that would be of the form 2nε

.
The previous separation was obtained using a lower bound for Resolution proved via the monotone

interpolation theorem. It is open whether the separation (or a stronger one) could be obtained via the
size–width trade-off [5] as a method for proving lower bounds for Resolution. It would also be interesting
to see what would that mean in terms of possible size–width trade-offs for Res(2). We conjecture that
Res(2) does not have a strong size–width trade-off. Notice that Res(log) does not have it. This is because
(a) Res(log) is equivalent to depth-0.5 LK, (b) PHP2n

n has quasipolynomial-size proofs in depth-0.5 LK
[14], and (c) PHP2n

n has �(n) width lower bounds for Res(log).
In this paper we extended the width lower bound technique beyond Resolution. A very interest-

ing open question is to see whether the technique can also be extended to give lower bounds for
Res(3), Res(4), . . . , Res(log). It seems that some new ideas need to be developed to do that. This
question is related to the optimality of the Res(log) upper bound for PHP2n

n .
Finally, we note that exponential-size lower bounds for PHPn1+ε

n in Res(k) implies lower bounds for
PHPnc

n in Resolution for some c. In particular lower bounds for PHPn1.5

n in Res(2) imply lower bounds
for PHPn2

n in Resolution.
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