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Llúıs A. Belanche and Alessandra Tosi
belanche@lsi.upc.edu, atosi@lsi.upc.edu

Soft Computing Research Group

Computer Science School

Technical University of Catalonia Barcelona, Spain

European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning

Bruges (Belgium), 25 - 27 April 2012



Motivation

Kernels generally (and informally) seen as similarity measures

1. Similarities and kernels are two-place symmetric functions ...

2. Are all kernels similarities? No (boundedness, transitivity, ...)

3. Are all similarities kernels? No (PSD)

We deal with averaging kernels as (if they were) similarities



The notion of similarity

1. Human beings use the notion of similarity for problem solving: induc-

tive reasoning, analogical thinking...

2. Computer Science: Case Based Reasoning, Data Mining, Information

Retrieval, Pattern Matching, Neural Networks, SVMs, ...



The notion of similarity

1. For atomic elements the exist many similarity measures

2. For vectors of elements, a way is needed to combine the partial simi-

larities sk for each variable k to get a meaningful value

3. The combination has an important semantic role and it is not a trivial

choice.

4. Intuition says “combine by averaging”



Characterization of kernels

Probably the simplest characterization for a symmetric function K : H×
H → R being a kernel is via the matrix it generates on finite subsets:

Definition 1 In the real case, the symmetric matrix An×n is positive semi-

definite (PSD) if and only if, for all vectors z ∈ Rn, z′Az ≥ 0.

Theorem 1 The function K : H×H → R is a kernel in H if and only if for

any positive p ∈ N and every choice of finite subsets {x1, x2, ..., xp} ⊂ H,

the associated matrix Kp×p = (kij), where kij = K(xi, xj) is a symmetric

PSD matrix.



The concept of an A-average

To capture the notion of averaging, we adopt the concept of an A-

average, defined as:

Definition 2 Let [a, b] be a non-empty real interval. Call A(x1, . . . , xn) the

A-average of x1, ..., xn ∈ [a, b] to every n-place real function A fulfilling:

Axiom A1. A is continuous, symmetric and strictly increasing in each xi.

Axiom A2. A(x, . . . , x) = x.

Axiom A3. For any k ≤ n: A(x1, . . . , xn) = A(yk, . . . , yk︸ ︷︷ ︸
k times

, xik+1
, . . . , xin)

where yk = A(xi1, , . . . , xik) and (i1, ..., in) is a permutation of (1, . . . , n).



The concept of an A-average

Some derived properties: ḿınxi ≤ A(x1, . . . , xn) ≤ máxxi

Theorem 2 Let f : [a, b] −→ R be a continuous, strictly monotone map-

ping. Let g be the inverse function of f . Then,

A(x1, ..., xn) ≡ g

1

n

n∑
i=1

f(xi)



is a well-defined A-average for all n ∈ N and xi ∈ [a, b].



The concept of an A-average
An important class of A-averages is formed by choosing f(z) = zq:

Mq(x1, ..., xn) =

1

n

n∑
i=1

(xi)
q

1
q

, q ∈ R

These are usually called generalized or quasi-linear means:

arithmetic mean for q = 1

geometric mean for q = 0

harmonic mean for q = −1

root mean square or RMS mean for q = 2



A-averages as kernel aggregators

The arithmetic average (function M1) is a valid kernel aggregator.

The product of kernels is also a kernel. However, the product is not

an average.

Is there any other generalized mean guaranteeing the kernel property?



A-averages as kernel aggregators

Notation

It is convenient to express the aggregation of m kernels in terms of their

PSD matrices:

for k = 1, . . . ,m, let Ak = (akij) represent a n× n PSD real matrix.

Given f : Rm → R, define the n× n real matrix Ā = (f(a1ij, . . . a
m
ij )).



A-averages as kernel aggregators

FitzGerald, Micchelli and Pinkus (1995)

Theorem 3 Let f : Rm −→ R. Then a matrix Ā generated by f as above

is PSD if and only if:

1. f is a real entire function

2. f is of the form

f(x) =
∑

α∈Zm
+

cαxα, x ∈ Rm, where cα ≥ 0 for all α ∈ Zm
+.



Some implications and application examples

Generalized means The matrix Ā is in general not PSD because Mq is

not a real entire function. Indeed, the partial derivatives

∂Mq(x1, . . . , xm)

∂xi
= (xi)

q−1

 1

m

m∑
j=1

(xj)
q

1
q−1

, i = 1, . . . ,m

are never defined in 0 ∈ Rn (except for q = 1).

Hyperbolic sine mean A real entire A-average can be defined as:

Msinh(x1, x2) := arcsinh

(
sinh(x1) + sinh(x2)

2

)
However, its Taylor expansion has negative coefficients:

Msinh(x1, x2) =
1

2
x1+

1

2
x2+

1
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Generalized means as kernel generators

A different perspective is obtained if we look at the generalized means

as a way to generate new kernels.

It turns out that the harmonic (M−1), geometric (M0) and inverse

RMS (M−2) means generate valid kernels within their domains.

Remarkable, since this is not true for the arithmetic mean.



Generalized means as kernel generators

Theorem 4 The following functions are PSD kernels.

(i) kgeom := M0(x, y) =
√
xy (the geometric kernel)

(ii) kharm := M−1(x, y) = 2xy
x+y (the harmonic kernel)

(iii) kIRMS := M−2(x, y) =
(
x−2+y−2

2

)−1
2
=

√
2xy√

x2+y2
(the IRMS kernel)



Conclusions

1. We have proven that the only feasible average for kernel learning is

the arithmetic average.

2. Is this a negative result? Yes and no.

3. For the wide family Mq of generalized means, defining Q = {q ∈
R /Mq is a kernel}, we have proven that {−2,−1,0} ⊂ Q (and certainly

1 /∈ Q). What exactly Q is remains an open question.


