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Abstract

Background: In-vivo single voxel proton magnetic resonance spectroscopy (SV 1H-MRS), coupled with

supervised pattern recognition (PR) methods, has been widely used in clinical studies of discrimination of brain

tumour types and follow-up of patients bearing abnormal brain masses. SV 1H-MRS provides useful biochemical

information about the metabolic state of tumours and can be performed at short (<45ms) or long (>45ms)

echo time (TE), each with particular advantages. Short-TE spectra are more adequate for detecting lipids, while

the long-TE provides a flat baseline in between peaks but also provides negative signals, for metabolites such as

lactate. Both, lipids and lactate, are respectively indicative of specific metabolic processes taking place. Ideally,

the information provided by both TE should be of use for clinical purposes. In this study, we characterise the

performance of a range of Non-negative Matrix Factorisation (NMF) methods in two respects: first, to derive

sources correlated with the mean spectra of known tissue types (tumours and normal tissue); second, taking the

best performing NMF method for source separation, we compare its accuracy for class assignment when using

the mixing matrix directly as a basis for classification, as against using the method for dimensionality reduction

(DR). For this, we used SV 1H-MRS data with positive and negative peaks, from a widely tested SV 1H-MRS

human brain tumour database.
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Results: The results reported in this paper reveal the advantage of using a recently described variant of NMF,

namely Convex-NMF, as an unsupervised method of source extraction from SV 1H-MRS. Most of the sources

extracted in our experiments closely correspond to the mean spectra of some of the analysed tumour types. This

similarity allows accurate diagnostic predictions to be made both in fully unsupervised mode and using

Convex-NMF as a DR step previous to standard supervised classification. The obtained results are comparable

to, or more accurate than those obtained with supervised techniques.

Conclusions: The unsupervised properties of Convex-NMF place this approach one step ahead of classical

label-requiring supervised methods for the discrimination of brain tumour types, as it accounts for their

increasingly recognised molecular subtype heterogeneity. The application of Convex-NMF in computer assisted

decision support systems is expected to facilitate further improvements in the uptake of MRS-derived

information by clinicians.

Background
Introduction

The clinical investigation of an abnormal mass in the brain frequently starts with its non-invasive

characterisation (localisation, infiltration, etc.), normally with a magnetic resonance imaging (MRI) study.

Magnetic resonance spectroscopy (MRS) is another MR technique that, unlike MRI, provides insight into

the biochemistry of tissue through a discrete signal in the frequency domain (a spectrum) containing

information about the relative abundance of several low molecular weight metabolites, lipids and

macromolecules in the millimolar range of concentration.

This MR modality has been used in computer-based systems for diagnostic decision support [1], building

on the increasing availability of data in electronic format [2, 3]. However, for brain tumours and, more

specifically, glial tumours, the computer-based discrimination of the grade or the specific subtype of

tumour still leaves a “gray zone” of uncertainty between class labels [4–6]. Therefore, it would be desirable

to define decision support systems that were able to provide accurate discrimination of tumour types from

the spectra without prior information regarding tumour type and grade. From the PR viewpoint, this is an

unsupervised modelling task.

2



The MRS data analysed in the current work are single-voxel. That is, for each patient we have a single

spectrum corresponding to a small volume located within the tumour core. The aim of this study is to

separate the constituent source signals on the assumption that they are mixed linearly in each single-voxel

spectral measurement. This is because, even within a single voxel, an heterogeneous mix of tissue types

may be expected. In this way, the main constituents of the voxel could be separately identified and

quantified, providing, in turn, a quantification of class (tumour type or healthy tissue) membership for the

sources of each single voxel spectrum, as an alternative to the class labelling of the spectrum as a whole.

Linear unsupervised feature extraction PR techniques are commonly used in neuro-oncology for data

preprocessing and dimensionality reduction (DR) previous to the diagnostic classification of brain tumours.

The usual choices are principal component analysis (PCA) [7–9] and independent component analysis

(ICA) [10–12]. PCA has mostly been used within a DR framework, and the extracted features lack a direct

interpretation. In a recent study [13], PCA was applied in an alternative manner to represent each tumour

type through mean and variability spectra for ulterior classification using an LCModel [14]. ICA, instead,

goes beyond DR to provide source extraction, by identifying the sources that add together to form the

measured MRS signal. As stated in [10], though, in analysing these type of data, ICA will often yield

components that “would correspond with identifying the independent degrees of freedom in MRS, not with

individual metabolites, but with characteristic tissue generators”, or, in other words, constituent tissues

that are present in different proportions in each of the voxels where MRS is measured. There is no

guarantee that these tissue generators will be tumour type-specific and, therefore, there is little a priori

evidence to support that these sources will suffice to infer accurate tumour type predictions [11]. The

alternative to feature extraction for DR is feature selection [15–17]. Here, the interpretability of the results

fully depends on the correspondence between the selected features (MRS frequencies) and known

metabolites.

In this study, we characterise the performance of a range of variants of an unsupervised method of the

matrix factorisation family, namely Non-negative Matrix Factorisation (NMF, [18,19]), in two respects:

first, to derive sources correlated with the mean spectra of known tissue types; second, taking the best

performing NMF method for source separation, we compare its accuracy for class assignment when using

the mixing matrix directly as a basis for classification, as against using the method for DR. This method is

unsupervised in the sense that labelled cases are not required to create a model of the analysed MRS data

(i.e., to find the MRS sources). Conceptually, it lies somewhere in between PCA and ICA. In the

spectroscopy-related bioinformatics domain, standard NMF has previously been used for disease
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classification from infrared spectroscopy blood serum data [20] and the related nonnegative PCA (NPCA)

technique has been applied to the classification of different tumours from mass spectroscopy serum

proteomic data [21]. Also within the oncology field, NMF has recently been used for DR in large scale gene

expression data [22] and for recovering constituent sources from MR chemical shift imaging (CSI) of the

brain, in a variant called constrained NMF [23].

The results reported in the current paper reveal the advantage of using one of the recently described NMF

variants, namely Convex-NMF [24], as an unsupervised method of source extraction from SV 1H-MRS. In

contrast with ICA, most of the sources extracted by the proposed technique closely correspond to the mean

spectra of some of the analysed tumour types. This similarity allows accurate diagnostic predictions to be

made for each patient (that is, for each SV spectrum) both in fully unsupervised mode or using

Convex-NMF as a DR step previous to standard supervised classification. These predictions are

comparable to or more accurate than those obtained with supervised techniques.

The remaining of the paper is organised as follows. The Materials subsection describes the data used in

this study, while the Methods subsection summarises existing approaches for the application of NMF, then

discusses how they are used with MRS data, presents different model initialisation methods, and also

explains how to use the obtained information to label cases and to reduce data dimensionality. The

Experimental Results section compiles and presents all the experimental results, with the objective of

assessing NMF in fully unsupervised mode, and to investigate the use of NMF as a DR method previous to

standard supervised classification. These results are later discussed and some conclusions are drawn.

Materials

The data analysed in this study were extracted from INTERPRET, an international multi-centre

database [2] resulting from the INTERPRET European research project1 [8]. Class labelling was

performed according to the World Health Organization system for diagnosing brain tumours by

histopathological analysis of a biopsy sample. These are single-voxel proton MRS (SV-1H-MRS) data

acquired at 1.5T and at two different echo times (short, 20-32 ms (STE) and long, 135-144 ms (LTE)) from

brain tumour patients and healthy controls (that is, two spectra, one at STE and another at LTE, are

available for each individual).

The importance of using two different signal acquisition conditions (STE and LTE) lies in the different

metabolites that are detectable at each of them. STE is more sensitive to those with short T2 (an MR

1http://gabrmn.uab.es/interpret
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relaxation time parameter) values (it is, for example, more adequate to detect mobile lipids) and, in

addition, all signal peaks are positive. On the other hand, in LTE spectra we can find both positive and

negative peaks, where the negative peak is due to the inverted Alanine or Lactate doublets. The analysed

data set included, at LTE, 20 astrocytomas grade II (A2), 78 glioblastomas (GL), 31 metastases (ME), 55

low-grade meningiomas (MM) and 15 normal brain parenchyma measurements from healthy controls (NO);

at STE, it included 22 A2, 86 GL, 38 ME, 58 MM, and 22 NO. Data were processed as in [1]. A total of 195

clinically-relevant frequency intensity values measured in parts per million (ppm) were sampled from each

spectrum in the [4.24,0.50]ppm interval. Unit length normalisation (UL2) of the spectra was performed.

A further test data set (not used for source extraction, but only for the validation of the obtained results)

was gathered from three medical centres: Centre Diagnòstic Pedralbes (CDP), Institut d’Alta Tecnologia

(IAT) and Institut de Diagnòstic per la Imatge (IDI)-Badalona in Barcelona, Spain. It was processed in

the same conditions as the rest of the data, and consists of STE and LTE spectra from 56 patients and

healthy controls: 10 A2, 40 high-grade aggressive tumours (30 GL + 10 ME), 3 MM, and 3 NO subjects.

Methods

As stated in the introduction, NMF can be seen as a DR technique, functionally similar to source

extraction. This section summarily describes some of the existing NMF methods and the different

alternatives for their initialisation. The choice of initialisation technique turns out to be a key feature for

the success of NMF as a tumour type classification method. The specific way in which these techniques are

used and interpreted in the context of MRS data analysis is also described in this section. We later explain

how the data can be labelled a posteriori, once the sources have been extracted, with the purpose of

helping us to understand the extent to which obtained sources are able to represent the data. Finally, the

way sources can be used strictly for DR is also described.

Non-negative Matrix Factorisation methods for source extraction

In the standard NMF description [18], a non-negative matrix V of observed data (d× n, where d is the

data dimensionality and n is the number of observations), is approximately factorised into two

non-negative matrices, W (of dimensions d× k, where k is the number of data basis or sources, and k < d)

and H (of dimensions k × n, each of whose columns provides the encoding of a data point: a SV spectrum

in this study). The product of these two matrices provides a good approximation to the original matrix,

that is, V ≈WH. The conventional approach to find the two factors is by minimising the divergence
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between V and WH:

min
W,H

f(W,H) =
1

2
∥V −WH∥2F

subject to the non-negativity constraints mentioned above, where ∥ · ∥F is the Frobenius norm. In this

study, the following divergence minimization methods, which cover a wide palette of algorithmic

alternatives, were considered:

� Euclidean distance update equations (herein referred to as euc) [19]

The objective function is optimised with multiplicative update rules for W and H:

W ←W
VHT

WHHT
; and H ← H

WTV

WTWH

Monotonic convergence of the algorithm can be proven [19]. These update equations preserve the

nonnegativity of W and H, and constrain the columns of W to sum to unity.

� Alternating least squares (als) [18]

This technique alternately fixes one matrix and improves the other.

W ← argmin
W≥0

f(W,H); H ← argmin
H≥0

f(W,H)

where W and H are updated as follows:

W ← ((HHT )−1HV T )T ; and H ← (WTW )−1WTV

setting all negative elements in W and H to zero.

� Alternating non-negative least squares using projected gradients (alspg) [25]

The equations for W and H in the alternating least squares method above are solved here using

projected gradients. For H, this entails:

H ← P [H − α∇f(H)]

where α is the step size, and P [·] is a bounding function that ensures that the solution remains

within the boundaries of feasibility. The gradient function is solved as:

∇f(H) = WT (WH − V )

The same approach is used to calculate W .
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� Alternating least squares with Optimal Brain Surgeon (OBS) [26] (alsobs) [27,28]

Similar to alternating least squares, this algorithm alternately solves the least squares equations for

W and H. The negative elements in W and H are set to zero and the rest are adjusted using the

OBS method, through second-order derivatives. The update rules for W and H are:

W ← ((HHT )−1HV T )T + δW ; and H ← (WTW )−1WTV + δH

where, δW and δH act as regularization terms and are responsible for eliminating the less important

elements of W and H, respectively (the original OBS was used as a weight pruning mechanism in

artificial neural networks), thus re-adjusting the remaining elements optimally. More implementation

details can be found in [28].

� Convex-NMF (convex ) [24]

To achieve interpretability, this method imposes a constraint that the vectors (columns) defining W

must lie within the column space of V , i.e. W = V A (where A is an auxiliary adaptative weight

matrix that fully determines W ), so that V ≈ V AH. By restricting W to convex combinations of the

columns of V we can, in fact, understand each of the basis or sources as weighted sums of data

points. Unlike the previous ones, this NMF variant applies to both nonnegative and mixed-sign data

matrices. The factors H and A are updated as follows:

HT ← HT

√
(V TV )+A+HTAT (V TV )−A

(V TV )−A+HTAT (V TV )+A
; A← A

√
(V TV )+HT + (V TV )−AHHT

(V TV )−HT + (V TV )+AHHT

where (·)+ is the positive part of the matrix, where all negative values become zeros; and (·)− is the

negative part of the matrix, where all positive values become zeros.

All the algorithms, for all initialisations, were allowed to achieve convergence. Such convergence was

qualified as the lack of variation in the reconstruction error, from one iteration to the next, over a common

set small threshold of value 10−5.

Interpretation of the methods

In NMF for the analysis of MRS data, the rows in H can be understood as estimates of the

concentration/abundance of the constituent signals or sources, while the columns in W are the

corresponding constituent signals or sources of the spectra themselves. In conventional NMF methods

(such as the first four previously described), the matrices V , W and H are constrained to be non-negative,
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thus permitting the interpretation of the mixing matrix entries as quantitative estimates of the amount of

source tissue in the sample. The source can, as a result, be assigned to the class (tumour type or healthy

tissue) with whose template it shows a higher correlation. If non-negativity is also imposed on the signals

and sources, then it is commonplace truncating the negative values to zero, therefore losing potentially

relevant information (for instance, Lactate, Alanine, and Glutamine + Glutamate (Glx) in LTE spectra,

which are expected to be especially relevant for discrimination between tumour types). Some of the

methods described above impose the constraint of non-negativity only on the mixing elements representing

the constituent tissue fractions. Where non-negative signals are also required, we propose using absolute

values instead, in order to reduce data loss from the negative peaks.

Convex-NMF, instead, enforces this non-negative constraint only on H, while V and W are allowed to be

of mixed sign. Given that the observed MRS data are of mixed sign, their sources should also be of mixed

sign. Thus, understanding W as the source spectra matrix, the sources will be intuitively interpretable and

no pre-processing of the spectra is required in order to make them non-negative, thus preventing any

unnecessary loss of information (in the case of our database, losing the information in the negative peaks of

the SV 1H-MRS LTE spectra). As in the previous methods, H can be understood as estimates of the

concentration/abundance of the constituent signals.

NMF initialisations

NMF methods unavoidably converge to local minima. As a result, the NMF bases will be different for

different initialisations. In this study, six forms of initialisation were considered (with some variations

depending on the method). Although a standard procedure to justify the choice of NMF initialisation does

not exist, the six alternatives considered here cover a wide array of approaches: from random initialisation,

to prototype-based clustering methods (K-means and Fuzzy C-Means, which provide a data density-based

sample of initial data locations), and feature extraction techniques (PCA, ICA and NMF itself, which

initialise the algorithm according to the basic eigenstructure of the data).

� Random:

[all methods]: W and H are initialised as dense matrices of random values between 0 and 1.

� K-means clustering:

[euc, alspg, als, alsobs]: W is initialised with the cluster centroids, and H with the distances from

each point (MR spectrum) to every centroid.
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[convex ]: H is initialised as H(0) = C + 0.2E, where E is a matrix with all its elements equal to one,

and C = (c1, . . . , cn) is filled with the cluster indicators, which are based on the cluster indices of

each point, such that Cik = {0, 1} and the ones indicate cluster membership. A is initialised as

A(0) = (C + 0.2E)D−1, where D is a diagonal matrix with each element being the number of points

in each cluster [24].

� Fuzzy C-Means (FCM):

[euc, alspg, als, alsobs]: W is initialised with the cluster centres, and H with the fuzzy partition

matrix (or membership function matrix); as in [29].

[convex ]: H is initialised as H(0) = C + 0.2E, where C here is filled with the fuzzy partition values,

and E is a matrix with all its elements equal to one. A is initialised as A(0) = (C + 0.2E)D−1, where

D is a diagonal matrix with each element being the number of points in each cluster.

� PCA:

[euc, alspg, als, alsobs]: The mean vector is subtracted from the complete dataset, and this is followed

by the computation of its eigenvectors and eigenvalues. The matrix W is initialised with the

whitened data (the corresponding projection of the eigenvectors), and H with the de-whitening

matrix. In order to use the initial W and H matrices obtained from PCA in NMF, the negative

values are truncated, as proposed in [29].

[convex ]: H is initialised as H(0) = C + 0.2E, where C is the de-whitening matrix, calculated, as in

the rest of methods, after calculating PCA, and also truncating the negative values. For the

initialisation of A, and as suggested in [24], first we compute A = HT (HHT )−1, and then

A(0) = (A)+ + 0.2E ⟨(A)+⟩ so that the negative elements are removed, where

⟨X⟩ =
∑

n,k |Xn,k|/||Xn,k||0 , and where ||Xn,k||0 is the number of nonzero elements in X.

� ICA (FastICA [30] algorithm):

[euc, alspg, als, alsobs]: The independent components extracted using FastICA are used to initialise

W , and H is initialised with the resulting mixing matrix. Then, to meet the non-negativity condition

of NMF, the negative values are truncated.

[convex ]: H and A are initialised as in the PCA (for convex ) initialisation, with the only difference

that H is filled with the sources or independent components from FastICA.
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� Non-negative Matrix Factorisation (NMF, als algorithm):

[euc, alspg, als, alsobs]: W is initialised with the sources extracted with NMF (als), and H is

initialised with the resulting mixing matrix. In the case of als method, initialising with the same

method is equivalent to duplicating the number of iterations, which does not necessarily mean that

the results will improve.

[convex ]: H and A are initialised as in the PCA and FastICA (for convex ) initialisations, with the

only difference that H is filled with the sources from NMF (als).

In principle, we might expect the different initialisation strategies to behave as follows. Random

initialisation might be considered as an uninformed first estimate for NMF methods, which may lead to

different outcomes given different initialisation conditions [29,31]. We might expect K-means and FCM

initialisations to make all methods perform better, but the results may depend on the initial selection of

clusters; therefore, different results could be obtained depending on such selection. PCA and ICA, instead,

can provide a unique solution, although perhaps too biased, while, in the case of NMF, the existence of a

unique solution will depend on its own initialisation. All these methods will converge to local optima, so

there is no guarantee that the solution obtained will be the best possible.

Tumour type labelling using the mixing matrix and the sources

As explained in the introduction section, NMF is used in this study as an unsupervised method in the

sense that labelled MRS cases are not used to create the data model. The obvious advantage of this

approach is that the labelling procedure can be made independent of any specific labelled (or mislabelled)

MRS dataset that might bias the generalisation capabilities of the model.

In order to determine how well the sources obtained through NMF represent the data, we propose to infer

the labels of the data only on the basis of the mixing matrix and the source signals calculated, which will

give us an idea of the extent to which the sources contribute to the reconstruction of each MRS observation

(or patient case). The calculation of the contribution C of each source k to each case i is:

C(i,k) = V T
i WkH(k,i)

where V the data matrix, W is the matrix of sources, and H is the mixing matrix. The predicted label can

then be inferred from the values in C as follows: for each case i, the label is provided by the source k that

has the highest value of contribution for that case.
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Source extraction as a dimensionality reduction procedure prior to classification

The description of the MR spectra through a limited number of extracted sources also entails a DR process

in the form of feature extraction. As previously mentioned, the use of DR methods in the form of feature

selection or extraction is commonplace in the analysis of MRS. The extracted features can then be used for

traditional classification, within a standard supervised framework using labelled cases. This was

accomplished in the current study using the Gram-Schmidt process [32] for orthonormalising the set of

obtained source signals. This method takes a finite, linearly independent set W = W1, . . . ,Wk for k ≤ n,

where k is the number of sources and n is the number of samples, and generates an orthogonal set

W ′ = U1, . . . , Uk that spans the same k-dimensional subspace of ℜn as W .

Experimental Results

In this section, we compile and present all the experimental results. The objective of the experiments was

twofold: first, the assessment of NMF in fully unsupervised mode as a source extraction and tumour

type-labelling method and, second, the evaluation of NMF as a DR method prior to standard supervised

classification.

NMF as a source extraction method

Here, we provide the comparative results of the application of the five NMF methods for source extraction

outlined in the Methods section, for each of the six different initialisation strategies discussed. The goal

was to find the best combination of NMF method and initialisation for the type of data analysed.

Experiments were carried out for four different brain tumour diagnostic problems from MRS acquired both

at LTE and STE. In each of these classification problems, we attempted to discriminate between one or

two tumour types and healthy tissue, namely A2 vs. NO; A2 vs. ME vs. NO; A2 vs. GL vs. NO; and A2

vs. MM vs. NO.

A2 are low-grade (grade II on a scale I-IV of the WHO [33]) glial tumours with an infiltrating behaviour

(they grow by infiltrating normal brain tissue). They evolve (directly or through an intermediate

anaplastic glioma stage, WHO grade III) to GL, which are highly malignant, WHO grade IV tumours. ME

are also grade IV tumours, but they have a different origin: They are tumours originated at other parts of

the body that spread (they become metastatic) to distant sites, such as the brain. Grade IV tumours

usually have a necrotic pattern, with strong lipid signals that are most evident when obtaining MRS data

at short times of echo [34]. However, not all GL have this necrotic pattern, and some retain a spectral
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pattern which is overall similar to that of their low-grade glial counterparts, the A2, and might be

considered as atypical within their type, or class outliers [35,36]. MM are low grade tumours (WHO grade

I), from a completely different origin: meningeal cells. They have a distinct spectral pattern at LTE, with

an inverted alanine doublet at ca. 1.45 ppm [8]. Their spectral pattern is also easy to recognise at STE,

without necrosis, and it is different from the glial, metastatic, or normal patterns.

In summary, the choice of these specific problems at both time of echo acquisition conditions ultimately

aimed to find answers to the following questions: 1) (A2 vs. NO): Is normal brain correctly distinguished

from infiltrative tumour? 2) (A2 vs. ME vs. NO): Are grades (II vs. IV) well differentiated and distinct

from normal tissue? 3) (A2 vs. GL vs. NO): Are grades still well recognised when one of the classes is

heterogeneous? 4) (A2 vs. MM vs. NO): Can low grades (A2 vs. MM, or grade II vs. I, or infiltrative vs.

non-infiltrative) be differentiated?

Tables 1 and 2 compile the results of the correlation between the mean spectrum of each class (tumour type

or healthy tissue from controls) and the source signal, extracted with NMF, that best represents this class,

i.e. the source signal that has the highest correlation with the class. The number of sources calculated was

selected according to the number of classes involved in each diagnostic problem studied. Calculating the

correlation provides us with an indicator of to what extent each source is tumour-type specific.

Figure 1 is a graphical illustrative example of the obtained sources in the experiment A2 vs. MM vs. NO

at LTE, for all the methods, with the K-means initialisation. The last row of the figure shows the mean

spectra of the classes involved in this experiment, to be used as reference.

The computation times for the different methods used in this study, in a personal computer (memory

(RAM): 4GB, processor: Pentium Dual-Core T4400, 64-bit operating system), were less than one second in

almost all cases, with the exception of alsobs (euc: 0.2, als: 0.4, alspg : 0.9, alsobs: 2.9, and convex : 0.8).

The different initialisations added less than one second to the total computation time.

Labelling using Convex-NMF

The results summarised in tables 1 and 2 lead to one clear conclusion: Convex-NMF was, consistently, the

variant of NMF that yielded the highest correlations between the mean spectrum of the tumour types and

the corresponding extracted sources. Convex-NMF was, therefore, the method of choice for the subsequent

experiments.

We next report the results of the unsupervised labelling process: That is, the assignment of class labels

(tumour types and healthy tissue) to each of the cases using the extracted sources and without modelling
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explicitly the relationship between the sources and the class labels. Table 3 shows the accuracy results

(percentage of correct classification, total and by class) of the labelling process using Convex-NMF, for the

same four diagnostic problems used to assess source extraction. To further assess the performance of

Convex-NMF, we added here two more complex diagnostic problems with data acquired both at LTE and

STE: the discrimination between A2, GL+ME (a superclass of the aggressive grade IV tumours: AG), NO;

and A2, AG, MM. These are both classical discrimination problems in brain tumour diagnosis using

MRS [7,9, 37,38]. These two specific problems aim to answer the question: Are grades well recognised

when one of the classes (AG) is heterogeneous (i.e. spectral pattern sub-types)?

Convex-NMF was also initialised with K-means clustering, and a total of 4 source signals were calculated

for these two problems, given that 4 classes were involved. The predicted labels were then used to

determine to what extent each observation was correctly labelled, according to the INTERPRET database

information. The results of the six diagnostic problems are compiled in table 3, and figures 2 and 3.

In the next section we use the sources in the context of supervised classification, and compare the results

with equivalent classifiers, using the same settings.

NMF for Classification
Using Convex-NMF extracted source signals for dimensionality reduction prior to classification

We now switch to experiments that analyse the use of Convex-NMF as a dimensionality reduction

technique to preprocess the MRS data prior to standard classification. For this, we used the orthogonal set

corresponding to the source signals obtained, and projected the data onto this basis. The SpectraClassifier2

software [39] was used to develop standard Fisher Linear Discriminant Analysis (LDA) classifiers, which

were then evaluated through bootstrap with 1,000 repetitions. The results are shown in table 4.

In order to compare these results with those of a traditional feature extraction method, we replicated all

experiments using the SpectraClassifier software with PCA as data preprocessing feature extraction

method (extracting a number of principal components equal to the number of source signals calculated for

the corresponding NMF experiment). This was again followed by Fisher LDA classification and evaluated

through bootstrap with 1,000 repetitions, as in the experiments in table 4. The combination of PCA+LDA

has been widely used to develop MRS classifiers [7–9,37]. The results for experiments with PCA are

compiled in table 5. Results obtained using an independent test set are shown in table 6 for both FE

methods: PCA and Convex-NMF.

2http://gabrmn.uab.es/sc
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Determining the most adequate number of sources

One of the issues to which attention should be paid is the determination of the most appropriate number of

sources for each problem. For this, we investigate the effect of varying the number of extracted sources on

the classification results. For illustration, results for only one of the six previously investigated problems,

namely A2,AG,MM, are presented. This problem is the most complex of those studied since it encompasses

tumour type and grade, as well as extra or intra-axial origin discrimination: low grade neuroepithelial vs.

high grade neuroepithelial, plus metastasis vs. low grade meningeal.

Figures 4 and 5 show the different sources obtained, at LTE and STE, respectively, when we vary the

number of sources. The first four rows show the results of extracting 3, 4, 5 and 6 sources, while the last

rows show the percentage of contribution of each source to each tumour type, for each experiment. Tables

7 and 8 compile the classification results when varying the number of sources from 2 to 10, for the training

and the independent test set, respectively; and the plots in figure 6 summarise the results, at LTE and STE.

Discussion of the Results
NMF as a source extraction method

The results reported in tables 1 and 2 clearly indicate that, in terms of correlation, the Convex-NMF

method consistently outperforms the rest, yielding better results in nearly every experiment. The

advantage of Convex-NMF is especially striking at STE (results in table 2). Regarding the different

initialisation alternatives, correlation results do not show much dependence on the type of initialisation

strategy. Random and K-means-based initialisations seem to be, overall, the best choices at both times of

echo. Therefore, in all subsequent analyses, Convex-NMF with K-means initialisation was the selected

method.

The illustrative example of figure 1, in which the NMF-extracted sources are shown, reveals an effect

resulting from the fact that the best correlation value between the mean of the spectra of a class and the

sources is used as the indicator for selecting the source that best represents that class: for some types of

NMF, this approach results in situations in which each source does not necessarily correspond univocally to

a single class; sometimes, instead, a single source may encompass more than one class. This can be clearly

seen in figure 1, where the sources calculated with the first four methods (euc, als, alspg, and alsobs) can

be explained as follows: the ones in the leftmost column describe mostly the A2 and MM tumour types,

respectively (the correlation values can be seen in table 1); the ones in the rightmost column describe the

normal tissue; and the ones in the middle column have a low correlation with the three tumour types in the
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experiment, as evidenced if we compare them qualitatively to the mean spectra at the bottom of the figure.

In stark contrast, we can also conclude from figure 1 (and from further results not reported here, but which

are consistent with the high correlation values shown in tables 1 and 2) that Convex-NMF performs

class-specific source extraction far better than the other methods studied. It is remarkable how

Convex-NMF is able to extract sources that represent each class univocally. Here, A2 is represented by one

source (leftmost column in figure 1), meningiomas by another source (middle column of figure 1) and

normal tissue by a third one (rightmost column in figure 1). This way, Convex-NMF extremely simplifies

the interpretation of the source signals extracted. For example, while the sources produced by the euc, als,

alspg and alsobs methods show a doublet at about 1.5 ppm (Alanine), the two sources for A2 and MM in

the convex method clearly discriminate the contribution from the Lactate inverted doublet centred at 1.35

ppm, typical of A2, from the Alanine inverted doublet centred at 1.45 ppm, which is typical from

meningioma.

Labelling using Convex-NMF

The results reported in table 3, and figures 2 and 3 show that normal brain (NO) is perfectly discriminated

in all of the comparisons carried out, as it might be expected due to the metabolic differences of healthy

tissue with respect to brain tumours in general. Furthermore, the differential discrimination among

meningeal, glial (A2) and control is reasonably good for both times of echo (89-97%). On the other hand,

the trilateral discrimination between the aggressive tumours (ME or GL), A2 and NO is far less accurate,

reaching a low 71% for the A2, GL, NO at LTE. The detailed interpretation of the last two diagnostic

problems, involving the aggressive grade IV superclass is as follows:

� Problem A2 vs. AG vs. NO at LTE: A2 is fully represented by one of the sources (figure 2, first row,

column S1), which correlates at 0.98 with the mean spectrum of A2; AG is labelled with an accuracy

of 70.6% and it is mostly represented by two sources (figure 2, first row, columns S3 and S4), which

correlate at 0.97 and 0.67 with the mean spectrum of AG; finally, NO is also fully represented by one

of the sources (figure 2, first row, column S2), which fully correlates (1.0) with the mean spectrum of

NO. The accuracy for the groups A2 and NO is 100%, while it falls to 70% for AG, which totals

77.8% of correctly labelled samples.

� Problem A2 vs. AG vs. NO at STE: A2 is labelled with an accuracy of 81.8% and it is represented

almost exclusively by one of the sources (figure 2, second row, column S1), which correlates at 0.99
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with the mean spectrum of A2; AG is labelled with an accuracy of 92.7% and it is mostly represented

by two sources (figure 2, second row, columns S3 and S4), which correlate at 0.94 and 0.98 with the

mean spectrum of AG; and NO is fully represented by one of the sources (figure 2, second row,

column S2), which fully correlates (1.0) with the mean spectrum of NO. At STE, the highest

accuracy for AG raises the overall accuracy to 92.3%. The higher accuracy for short echo time

classifiers is also common in other studies based in supervised analisis of data (i.e. [1]).

� Problem A2 vs. AG vs. MM at LTE: A2 is labelled with an accuracy of 95% and it is represented

almost exclusively by one of the sources (figure 3, first row, column S1), which correlates at 0.99 with

the mean spectrum of A2; AG is labelled with an accuracy of 64.2% and it is mostly represented by

two sources (figure 3, first row, columns S3 and S4), which correlate at 0.96 and 0.66 with the mean

spectrum of AG; finally MM is labelled with an accuracy of 85.5% and represented almost in full by

one of the sources (figure 3, first row, column S2), which correlates at 0.99 with the mean spectrum

of MM. The overall accuracy is 73.9%.

� Problem A2 vs. AG vs. MM at STE: A2 is labelled with an accuracy of 90.9% and it is represented

almost exclusively by one of the sources (figure 3, second row, column S1), which correlates at 0.98

with the mean spectrum of A2; AG is labelled with an accuracy of 85.5% and it is mostly represented

by two sources (figure 3, second row, columns S3 and S4), which correlate at 0.94 and 0.93 with the

mean spectrum of AG; finally MM is labelled with an accuracy of 86.2% and represented almost in

full by one of the sources (figure 3, second row, column S2), which correlates at 0.97 with the mean

spectrum of MM. The overall accuracy is 86.3%. Again, at STE the accuracy for AG is higher than

at LTE.

The results for the AG superclass illustrate that Convex-NMF is not always successful in extracting

tumour type-specific sources. Two inherent characteristics of AG may explain this: first, AG has been

artificially built using two tumour types (ME and GL) and, second, GL by itself is a rather heterogeneous

type in which plenty of substructure can be found [35,40–43].

This does not preclude the interpretation of the sources. According to the signal profile and its metabolic

interpretation, one of the sources representing AG (figure 2, first row, column S3) seems to correspond to

the necrotic core (high mobile lipids, ML) [34,44]; while the other (figure 2, first row, column S4) seems to

correspond to the cellular part of the tumour (high total choline, indicating high proliferation rate [45]).

Note that this dichotomy is valid for both echo times, and the two problems above, in which one source
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represents the cellular part while the other represents the necrotic core, and both are needed to accurately

recognise SV patterns of GL or ME.

Convex-NMF as DR Method Prior to Classification

The comparison of the results of tables 4 and 5 reveals that at STE the classification results for the

training dataset improve in all the experiments when using Convex-NMF for feature extraction instead of

PCA, prior to standard supervised classification. This pattern was repeated for LTE, with the exception of

the A2,AG,MM problem, which yielded a poorer result; in any case, the difference is rather small and not

significant. Interestingly, the unsupervised labelling results reported in table 3, though worse than those of

their supervised counterparts reported in table 4, are still comparable to those obtained with PCA and

LDA in fully supervised mode (in fact, they are consistently better for STE, while worse for LTE).

An independent test set was then used to further validate the robustness of the developed classifiers for

data preprocessed with both FE methods: PCA and the orthogonal Convex-NMF sources. Table 6

contains the accuracy results (total and by tumour type), as well as the corresponding balanced error rate

(BER) [9]. Again, at STE, the use of Convex-NMF orthogonal sources yields results that clearly

outperform those of PCA-based classification. However, at LTE the results are more mixed: similar in the

cases of A2,NO; A2,ME,NO and A2,GL,NO; better in the case of A2,AG,NO; and worse in remaining two:

A2,AG,MM (with a small difference) and A2,MM,NO, with a more noticeable difference.

Other studies have addressed similar problems in the existing literature, for similar data. We report next

some of these results for comparative purposes, although the techniques and the evaluation criteria

involved are not always the same.

� In [7], as first step of a multiclass classifier for data acquired at LTE, aggressive tumours (AG) were

discriminated from A2 with an accuracy of 84.7%. In our experiments, which also include the healthy

tissue class, an 85.1% accuracy was achieved from the extracted sources. For the same problem, with

data acquired at STE, an accuracy of 90.9% was reported in [38], to be compared with a 92.3%

obtained in our study from the sources.

� In [1], when classifying low-grade meningiomas (MM) vs. low-grade glial tumours (A2, plus

oligodendrogliomas and oligoastrocytomas, two tumour types not analysed in our experiments) vs.

high-grade aggressive tumours (AG), the reported accuracies for the training set were 84.2% at LTE

and 89.0% at STE, while the accuracies for an independent test set were, in turn, 69.8% and 82.5%.
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The results obtained in our experiments when separating A2 from AG and MM, using the sources,

were 79.4% at LTE and 87.7% at STE, for training; and 64.2% at LTE and 83.0% at STE, for the

independent test set.

Determining the most adequate number of sources

Figures 4 and 5 show the different sources obtained, at LTE and STE, respectively, when varying the

number of sources. In both figures, the first columns of sources are representing mostly the A2 type; the

second columns represent mostly the MM type; and, finally, the third columns are mainly representing

necrotic tissue, which should only be found in GL and ME. It is interesting to see how, when calculating 4

sources, the first 3 sources remain, while the new one seems to correspond to actively proliferating tumour

(high total choline at ca. 3.21 ppm).

The bar plots for 4 sources, at both times of echo, show the extent to which sources 3 (necrotic tissue) and

4 (proliferative tumour) are representing the AG superclass. At LTE, when calculating 5 sources, the first

4 look very similar to the ones calculated in the experiment with 4 sources, while the new one seems to

express part of the AG superclass, which is now in fact split into the last three sources. The non-necrotic

4th and 5th sources would show an inverted trend for total choline (ca. 3.21 ppm) versus ML/Lactate (ca.

1.3 ppm). Then, decreasing choline would be matched by increased ML/Lactate, suggesting sampling of

aggressive tumour subtypes with variable proliferation rate (total Choline), with concomitant effects on the

lactate and ML accumulation. At STE, when calculating 5 sources, the first four also look very similar to

those obtained in the experiment with only 4 sources, but the new one is not only part of AG, but also

partly of MM.

Six sources at LTE already seem to be too many, given that the contribution of the last one is

comparatively very small and completely unspecific. Six sources at STE also seem to be too many. In this

case, the MM class is less represented by the second source, while the 5th does contribute both to AG and

MM. This could have contributions from class outlier cases (atypical meningiomas), for which mobile lipids

could be starting to increase. The last one could contain some artefactual bad water suppression artefact

above 3.7 ppm. Up to this point, and based solely on the patterns of the sources, and the percentages of

contribution of these to each class, choosing 4 or 5 sources seems to be best option, at both times of echo,

to maintain the correspondence between source, or set of sources, and individual tumour types.

Tables 7 and 8 compile the classification results corresponding to the varying number of sources (from 2 to

10), both for the training and the independent test set, respectively. The plots in figure 6 summarise these
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results. The leftmost column in this figure contains the results at LTE, and the rightmost column, the

results at STE. Strictly in terms of classification, the use of 5 sources seems to be a good choice at LTE,

given the accurate results obtained with the independent test set, and its low BER value. At STE,

choosing 4 sources seems to be a good compromise, for which the accuracies for the training and the

independent test set are high, while the BER for the test set stays the lowest.

Conclusions

The unsupervised analysis of SV 1H-MRS data from human brain tumours using Convex-NMF has been

shown to produce a reduced number of sources that can be confidently recognised as representing brain

tumour types or healthy tissue in a way that other source extraction methods, including other NMF

variants, cannot. Importantly, this result allows us to produce class assignments for unlabelled spectra in

fully unsupervised mode, using the mixing matrix directly as a basis for classification, with results that are

comparable to those obtained in fully supervised mode. The use of the sources extracted by Convex-NMF

for dimensionality reduction leads to simple LDA-based classifiers with independent test performances that

are comparable with, and are often better than previously described strategies. In summary, the

unsupervised properties of Convex-NMF place this approach one step ahead of classical label-requiring

supervised methods for detection of the increasingly recognised molecular subtype heterogeneity within

human brain tumours. The application of Convex-NMF in computer assisted decision support systems is

expected to facilitate further improvements in the uptake of MRS-derived information by clinicians.
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12. Wright AJ, Arús C, Wijnen JP, Moreno-Torres A, Griffiths JR, Celda B, Howe FA: Automated quality
control protocol for MR spectra of brain tumors. Magnetic Resonance in Medicine 2008,
59(6):1274–1281.

20



13. Raschke F, Fuster-Garcia E, Opstad KS, Howe FA: Classification of single voxel 1H spectra of brain
tumours using LCModel. NMR in Biomedicine 2011, In press. DOI:10.1002/nbm.1753.

14. Provencher SW: Estimation of metabolite concentrations from localized in vivo proton NMR
spectra. Magnetic Resonance in Medicine 1993, 30(6):672–679.
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41. Majós C, Bruna J, Julià-Sapé M, Cos M, Camins A, Gil M, Acebes J, Aguilera C, Arús C: Proton MR
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Figures
Figure 1 - Sources extracted in the experiment A2,MM,NO at LTE

The first five rows show the source signals obtained in the experiments with A2, MM and NO at LTE, for

all the methods under study and K-means clustering initialisation. The last row shows, from left to right,

the mean spectra of A2, MM and NO, at LTE. Horizontal axis, for all plots: frequency in ppm scale.

Vertical axis, for all plots: UL2 normalised intensity. The range of the vertical scales is fixed for each

experiment and they are the same as those of the mean spectra of the last row, for comparative purposes.

22



Figure 2 - Sources extracted in the experiment A2,AG,NO at LTE and STE

Source signals obtained in the experiments with A2, AG (GL+ME) and NO at LTE (first row) and STE

(second row), calculated with Convex-NMF, and initialised with K-means clustering. The sources in the

first column (S1) represent A2, the ones in the second column (S2) represent NO, and the ones in the last

two columns (S3 and S4) mainly represent AG. Axes labels and representation as in figure 1.

Figure 3 - Sources extracted in the experiment A2,AG,MM at LTE and STE

Source signals obtained in the experiments with A2, AG (GL+ME) and MM at LTE (first row) and STE

(second row), calculated with Convex-NMF, and initialised with K-means clustering. The sources in the

first column (S1) again represent A2, the ones in the second column (S2) represent MM, and the ones in

the last two columns (S3 and S4) again mainly represent AG. Axes labels and representation as in previous

figures.

Figure 4 - Problem A2,AG,MM at LTE, varying the number of sources calculated

Sources of the problem A2,AG,MM at LTE in different experiments with varying number of extracted

sources. The first 4 rows show the sources corresponding to experiments in which 3, 4, 5 and 6 sources

were calculated. Horizontal axis in the first four rows: frequency in ppm scale. The last row shows the

percentage of contribution of each source to each tumour type, for each experiment. Horizontal axis in the

last row: source signals. Vertical axes labels and representation of the sources as in previous figures.

Figure 5 - Problem A2,AG,MM at STE, varying the number of sources calculated

Sources of the problem A2,AG,MM at STE in different experiments with varying number of extracted

sources. The first 4 rows show the sources corresponding to experiments in which 3, 4, 5 and 6 sources

were calculated. Horizontal axis in the first four rows: frequency in ppm scale. The last row shows the

percentage of contribution of each source to each tumour type, for each experiment. Horizontal axis in the

last row: source signals. Axes labels and representation as in previous figures.

Figure 6 - Classification results for the problem A2,AG,MM at LTE and STE

Plot for the comparison of the classification results for the problem A2,AG,MM at both LTE and STE,

when using either PCA or Convex-NMF for DR, previous to classification with Fisher LDA. The left-hand

side column corresponds to LTE results, and the right-hand side column to STE results. The first row
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displays the accuracy of the classification for all the methods, for training and test data sets. The second

row displays the balanced error rate (BER) estimates for the test data sets. Horizontal axis: number of

principal components or source signals. Vertical axis: accuracy and BER, respectively.
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Tables
Table 1 - Summary of the results for LTE.

Summary of the correlations values for the sources most highly correlating with each type of tissue as

expressed by its mean spectrum, for different diagnostic problems at LTE, and for all the NMF methods

and initialisation conditions in the study. The diagnostic problems are: A2,NO; A2,ME,NO; A2,GL,NO;

and A2,MM,NO.
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Experiment: LTE. A2,NO. (2 sources)
Random K-means FCM PCA FastICA NMF (als)

euc A2: 0.98 A2: 0.97 A2: 0.98 A2: 0.91 A2: 0.98 A2: 0.97
NO: 0.96 NO: 0.99 NO: 0.99 NO: 0.98 NO: 0.87 NO: 0.95

als A2: 0.97 A2: 0.97 A2: 0.97 A2: 0.97 A2: 0.97 A2: 0.97
NO: 0.98 NO: 1.00 NO: 1.00 NO: 1.00 NO: 0.95 NO: 0.96

alspg A2: 0.97 A2: 0.97 A2: 0.97 A2: 0.97 A2: 0.97 A2: 0.97
NO: 0.96 NO: 1.00 NO: 1.00 NO: 1.00 NO: 0.95 NO: 0.96

alsobs A2: 0.97 A2: 0.97 A2: 0.97 A2: 0.97 A2: 0.97 A2: 0.97
NO: 0.96 NO: 1.00 NO: 1.00 NO: 1.00 NO: 0.95 NO: 0.99

convex A2: 1.00 A2: 1.00 A2: 1.00 A2: 0.99 A2: 1.00 A2: 1.00
NO: 1.00 NO: 1.00 NO: 1.00 NO: 1.00 NO: 1.00 NO: 1.00

Experiment: LTE. A2,ME,NO. (3 sources)
Random K-means FCM PCA FastICA NMF (als)

euc A2: 0.94 A2: 0.94 A2: 0.94 A2: 0.88 A2: 0.94 A2: 0.94
ME: 0.85 ME: 0.85 ME: 0.85 ME: 0.78 ME: 0.86 ME: 0.85
NO: 0.95 NO: 1.00 NO: 0.99 NO: 0.90 NO: 0.92 NO: 0.93

als A2: 0.94 A2: 0.94 A2: 0.94 A2: 0.94 A2: 0.94 A2: 0.94
ME: 0.85 ME: 0.84 ME: 0.84 ME: 0.85 ME: 0.85 ME: 0.85
NO: 0.92 NO: 0.99 NO: 0.99 NO: 0.92 NO: 0.91 NO: 0.91

alspg A2: 0.94 A2: 0.94 A2: 0.94 A2: 0.94 A2: 0.94 A2: 0.94
ME: 0.85 ME: 0.85 ME: 0.85 ME: 0.85 ME: 0.85 ME: 0.85
NO: 0.99 NO: 0.99 NO: 0.99 NO: 0.95 NO: 0.93 NO: 0.92

alsobs A2: 0.94 A2: 0.94 A2: 0.94 A2: 0.94 A2: 0.94 A2: 0.94
ME: 0.85 ME: 0.85 ME: 0.85 ME: 0.85 ME: 0.85 ME: 0.85
NO: 0.96 NO: 0.99 NO: 0.99 NO: 0.95 NO: 0.95 NO: 0.95

convex A2: 0.99 A2: 0.99 A2: 0.98 A2: 0.98 A2: 0.98 A2: 0.98
ME: 0.88 ME: 0.88 ME: 0.90 ME: 0.86 ME: 0.87 ME: 0.87
NO: 1.00 NO: 1.00 NO: 1.00 NO: 1.00 NO: 1.00 NO: 1.00

Experiment: LTE. A2,GL,NO. (3 sources)
Random K-means FCM PCA FastICA NMF (als)

euc A2: 0.91 A2: 0.91 A2: 0.91 A2: 0.87 A2: 0.92 A2: 0.91
GL: 0.75 GL: 0.76 GL: 0.75 GL: 0.92 GL: 0.78 GL: 0.76
NO: 0.99 NO: 0.99 NO: 0.99 NO: 0.96 NO: 0.94 NO: 0.99

als A2: 0.92 A2: 0.92 A2: 0.92 A2: 0.92 A2: 0.92 A2: 0.92
GL: 0.76 GL: 0.76 GL: 0.76 GL: 0.76 GL: 0.76 GL: 0.76
NO: 0.95 NO: 0.99 NO: 0.99 NO: 0.99 NO: 0.95 NO: 0.98

alspg A2: 0.91 A2: 0.91 A2: 0.91 A2: 0.91 A2: 0.91 A2: 0.91
GL: 0.75 GL: 0.75 GL: 0.75 GL: 0.75 GL: 0.75 GL: 0.75
NO: 0.99 NO: 0.99 NO: 0.99 NO: 0.99 NO: 0.97 NO: 0.96

alsobs A2: 0.91 A2: 0.91 A2: 0.91 A2: 0.91 A2: 0.91 A2: 0.91
GL: 0.75 GL: 0.75 GL: 0.75 GL: 0.75 GL: 0.75 GL: 0.75
NO: 0.99 NO: 0.99 NO: 0.99 NO: 0.99 NO: 0.98 NO: 0.99

convex A2: 0.94 A2: 0.97 A2: 0.95 A2: 0.94 A2: 0.96 A2: 0.96
GL: 0.80 GL: 0.73 GL: 0.77 GL: 0.81 GL: 0.75 GL: 0.74
NO: 0.98 NO: 1.00 NO: 1.00 NO: 0.99 NO: 1.00 NO: 1.00

Experiment: LTE. A2,MM,NO. (3 sources)
Random K-means FCM PCA FastICA NMF (als)

euc A2: 0.96 A2: 0.88 A2: 0.89 A2: 0.97 A2: 0.88 A2: 0.88
MM: 0.92 MM: 0.97 MM: 0.97 MM: 0.91 MM: 0.99 MM: 0.97
NO: 0.95 NO: 0.98 NO: 0.98 NO: 0.72 NO: 0.89 NO: 0.98

als A2: 0.88 A2: 0.88 A2: 0.88 A2: 0.88 A2: 0.88 A2: 0.88
MM: 0.97 MM: 0.97 MM: 0.97 MM: 0.97 MM: 0.97 MM: 0.97
NO: 0.98 NO: 0.97 NO: 0.97 NO: 0.98 NO: 0.97 NO: 0.98

alspg A2: 0.88 A2: 0.88 A2: 0.88 A2: 0.88 A2: 0.88 A2: 0.88
MM: 0.97 MM: 0.97 MM: 0.97 MM: 0.97 MM: 0.97 MM: 0.97
NO: 0.97 NO: 0.98 NO: 0.98 NO: 0.98 NO: 0.96 NO: 0.98

alsobs A2: 0.88 A2: 0.88 A2: 0.88 A2: 0.88 A2: 0.88 A2: 0.88
MM: 0.98 MM: 0.98 MM: 0.97 MM: 0.97 MM: 0.97 MM: 0.98
NO: 0.98 NO: 0.98 NO: 0.98 NO: 0.98 NO: 0.97 NO: 0.98

convex A2: 0.98 A2: 0.99 A2: 0.98 A2: 0.98 A2: 0.99 A2: 0.88
MM: 1.00 MM: 0.99 MM: 0.99 MM: 0.99 MM: 1.00 MM: 0.98
NO: 1.00 NO: 1.00 NO: 1.00 NO: 1.00 NO: 1.00 NO: 0.99

Table 2 - Summary of the results for STE.

Summary of the values for the sources most highly correlating with each type of tissue as expressed by its

mean spectrum, for different diagnostic problems at STE, and for all the NMF methods and the

initialisation conditions in the study. The diagnostic problems are: A2,NO; A2,ME,NO; A2,GL,NO; and
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A2,MM,NO.

Experiment: STE. A2,NO. (2 sources)
Random K-means FCM PCA FastICA NMF (als)

euc A2: 0.94 A2: 0.94 A2: 0.94 A2: .83 A2: 0.96 A2: 0.92
NO: 0.87 NO: 0.97 NO: 0.96 NO: 0.93 NO: 0.76 NO: 0.75

als A2: 0.92 A2: 0.95 A2: .95 A2: .92 A2: 0.93 A2: 0.92
NO: 0.75 NO: 0.96 NO: 0.96 NO: 0.96 NO: 0.83 NO: 0.75

alspg A2: 0.93 A2: 0.95 A2: .95 A2: .92 A2: 0.95 A2: 0.92
NO: 0.75 NO: 0.96 NO: 0.96 NO: 0.96 NO: 0.75 NO: 0.75

alsobs A2: 0.92 A2: 0.94 A2: .94 A2: .92 A2: 0.95 A2: 0.92
NO: 0.76 NO: 0.96 NO: 0.96 NO: 0.96 NO: 0.75 NO: 0.75

convex A2: 0.99 A2: 0.99 A2: .99 A2: .98 A2: 0.99 A2: .99
NO: 0.99 NO: 1.00 NO: 1.00 NO: 1.00 NO: 0.99 NO: 1.00

Experiment: STE. A2,ME,NO. (3 sources)
Random K-means FCM PCA FastICA NMF (als)

euc A2: 0.93 A2: 0.94 A2: 0.93 A2: 0.91 A2: 0.94 A2: 0.93
ME: 0.98 ME: 0.98 ME: 0.98 ME: 0.86 ME: 0.99 ME: 0.98
NO: 0.83 NO: 0.80 NO: 0.89 NO: 0.87 NO: 0.86 NO: 0.74

als A2: 0.93 A2: 0.94 A2: 0.94 A2: 0.94 A2: 0.94 A2: 0.93
ME: 0.98 ME: 0.98 ME: 0.98 ME: 0.98 ME: 0.98 ME: 0.98
NO: 0.75 NO: 0.74 NO: 0.74 NO: 0.74 NO: 0.74 NO: 0.74

alspg A2: 0.94 A2: 0.93 A2: 0.93 A2: 0.94 A2: 0.94 A2: 0.94
ME: 0.98 ME: 0.98 ME: 0.98 ME: 0.98 ME: 0.98 ME: 0.98
NO: 0.69 NO: 0.73 NO: 0.73 NO: 0.69 NO: 0.70 NO: 0.74

alsobs A2: 0.94 A2: 0.94 A2: 0.94 A2: 0.94 A2: 0.94 A2: 0.94
ME: 0.98 ME: 0.98 ME: 0.98 ME: 0.98 ME: 0.98 ME: 0.98
NO: 0.69 NO: 0.69 NO: 0.72 NO: 0.69 NO: 0.71 NO: 0.69

convex A2: 0.98 A2: 0.99 A2: 0.99 A2: 0.91 A2: 0.99 A2: 0.99
ME: 1.00 ME: 1.00 ME: 1.00 ME: 0.99 ME: 0.99 ME: 0.99
NO: 0.99 NO: 1.00 NO: 1.00 NO: 0.93 NO: 0.99 NO: 0.99

Experiment: STE. A2,GL,NO. (3 sources)
Random K-means FCM PCA FastICA NMF (als)

euc A2: 0.94 A2: 0.91 A2: 0.91 A2: 0.70 A2: 0.95 A2: 0.91
GL: 0.95 GL: 0.91 GL: 0.94 GL: 0.56 GL: 0.96 GL: 0.95
NO: 0.81 NO: 0.92 NO: 0.92 NO: 0.65 NO: 0.85 NO: 0.80

als A2: 0.91 A2: 0.90 A2: 0.90 A2: 0.90 A2: 0.91 A2: 0.90
GL: 0.95 GL: 0.95 GL: 0.95 GL: 0.95 GL: 0.95 GL: 0.95
NO: 0.76 NO: 0.90 NO: 0.89 NO: 0.83 NO: 0.79 NO: 0.82

alspg A2: 0.90 A2: 0.91 A2: 0.91 A2: 0.90 A2: 0.93 A2: 0.90
GL: 0.95 GL: 0.93 GL: 0.93 GL: 0.95 GL: 0.95 GL: 0.95
NO: 0.84 NO: 0.93 NO: 0.93 NO: 0.85 NO: 0.72 NO: 0.83

alsobs A2: 0.93 A2: 0.91 A2: 0.91 A2: 0.91 A2: 0.92 A2: 0.92
GL: 0.95 GL: 0.95 GL: 0.93 GL: 0.95 GL: 0.95 GL: 0.95
NO: 0.72 NO: 0.80 NO: 0.93 NO: 0.80 NO: 0.72 NO: 0.74

convex A2: 0.95 A2: 0.98 A2: 0.94 A2: 0.94 A2: 0.99 A2: 0.99
GL: 0.98 GL: 0.98 GL: 0.98 GL: 0.98 GL: 0.98 GL: 0.98
NO: 0.94 NO: 1.00 NO: 0.94 NO: 0.95 NO: 0.99 NO: 1.00

Experiment: STE. A2,MM,NO. (3 sources)
Random K-means FCM PCA FastICA NMF (als)

euc A2: 0.93 A2: 0.91 A2: 0.95 A2: 0.83 A2: 0.94 A2: 0.92
MM: 0.57 MM: 0.56 MM: 0.54 MM: 0.74 MM: 0.64 MM: 0.57
NO: 0.83 NO: 0.95 NO: 0.73 NO: 0.89 NO: 0.77 NO: 0.79

als A2: 0.93 A2: 0.93 A2: 0.93 A2: 0.92 A2: 0.93 A2: 0.92
MM: 0.57 MM: 0.57 MM: 0.57 MM: 0.57 MM: 0.57 MM: 0.57
NO: 0.76 NO: 0.79 NO: 0.77 NO: 0.75 NO: 0.76 NO: 0.75

alspg A2: 0.92 A2: 0.93 A2: 0.91 A2: 0.91 A2: 0.92 A2: 0.92
MM: 0.57 MM: 0.57 MM: 0.57 MM: 0.57 MM: 0.57 MM: 0.57
NO: 0.77 NO: 0.80 NO: 0.81 NO: 0.81 NO: 0.80 NO: 0.75

alsobs A2: 0.92 A2: 0.92 A2: 0.92 A2: 0.92 A2: 0.92 A2: 0.92
MM: 0.57 MM: 0.57 MM: 0.57 MM: 0.57 MM: 0.57 MM: 0.57
NO: 0.77 NO: 0.80 NO: 0.80 NO: 0.80 NO: 0.76 NO: 0.77

convex A2: 0.95 A2: 0.98 A2: 0.93 A2: 0.96 A2: 0.98 A2: 0.98
MM: 0.98 MM: 0.90 MM: 0.91 MM: 0.79 MM: 0.86 MM: 0.85
NO: 0.91 NO: 1.00 NO: 0.95 NO: 0.98 NO: 0.99 NO: 0.98

Table 3 - Labelling accuracy results obtained using Convex-NMF.

Summary of the labelling accuracy using Convex-NMF with K-means initialisation for A2,NO; A2,ME,NO;

A2,GL,NO; A2,MM,NO; A2,AG,NO; and A2,AG,MM, at LTE and STE. They include the accuracy (total
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and by tumour type), and the number of correctly labelled samples from the total, in parentheses. The

number of source signals (SS) used in the experiments is indicated in parentheses..

LTE
A2,NO(2SS) A2,ME,NO(3SS) A2,GL,NO(3SS) A2,MM,NO(3SS) A2,AG,NO(4SS) A2,AG,MM(4SS)
Total:100%(35/35) Total:84.8%(56/66) Total:71.1%(81/113) Total:96.7%(87/90) Total:77.8%(112/144) Total:73.9%(136/184)
A2:100%(20/20) A2:100%(20/20) A2:100%(20/20) A2:100%(20/20) A2:100%(20/20) A2:95.0%(19/20)
NO:100%(15/15) ME:67.7%(21/31) GL:59.0%(46/78) MM:94.5%(52/55) AG:70.6%(77/109) AG:64.2%(70/109)

NO:100%(15/15) NO:100%(15/15) NO:100%(15/15) NO:100%(15/15) MM:85.5%(47/55)
STE
A2,NO(2SS) A2,ME,NO(3SS) A2,GL,NO(3SS) A2,MM,NO(3SS) A2,AG,NO(4SS) A2,AG,MM(4SS)
Total:93.2%(41/44) Total:91.5%(75/82) Total:88.5%(115/130) Total:89.2%(91/102) Total:92.9%(156/168) Total:86.3%(176/204)
A2:86.4%(19/22) A2:77.3%(17/22) A2:81.8%(18/22) A2:77.3%(17/22) A2:81.8%(18/22) A2:90.9%(20/22)
NO:100%(22/22) ME:94.7%(36/38) GL:87.2%(75/86) MM:89.7%(52/58) AG:93.5%(116/124) AG:87.9%(109/124)

NO:100%(22/22) NO:100%(22/22) NO:100%(22/22) NO:100%(22/22) MM:81.0%(47/58)

Table 4 - Classification results using Convex-NMF for DR prior to classification with Fisher LDA.

Classification results (accuracy ± standard deviation) obtained with Fisher LDA (implemented in

SpectraClassifier) for six diagnostic problems, from the source signals obtained by Convex-NMF, for data

acquired at LTE and STE. Classifier results were validated through bootstrap. The number of source

signals (SS) used in the experiments is indicated in parentheses.

LTE
A2,NO(2SS) A2,ME,NO(3SS) A2,GL,NO(3SS) A2,MM,NO(3SS) A2,AG,NO(4SS) A2,AG,MM(4SS)
Total:100% ±0.0 Total:92.6% ±3.3 Total:85.1% ±3.4 Total:97.7% ±1.6 Total:90.9% ±2.4 Total:79.4% ±3.0
A2:100% ±0.0 A2:100% ±0.0 A2:84.9% ±8.5 A2:94.8% ±5.0 A2:100% ±0.0 A2:94.9% ±5.2
NO:100% ±0.0 ME:84.1% ±6.8 GL:82.3% ±4.3 GL:98.2% ±1.9 AG:88.0% ±3.1 AG:72.5% ±4.3

NO:100% ±0.0 NO:100% ±0.0 NO:100% ±0.0 NO:100% ±0.0 MM:87.5% ±4.3
STE
A2,NO(2SS) A2,ME,NO(3SS) A2,GL,NO(3SS) A2,MM,NO(3SS) A2,AG,NO(4SS) A2,AG,MM(4SS)
Total:95.5% ±3.1 Total:94.0% ±2.6 Total:91.0% ±2.5 Total:92.2% ±2.7 Total:92.3% ±2.0 Total:87.7% ±2.3
A2:91.2% ±6.0 A2:86.3% ±7.4 A2:82.5% ±8.1 A2:86.3% ±7.7 A2:81.9% ±8.2 A2:95.5% ±4.6
NO:100% ±0.0 ME:95.0% ±3.5 GL:90.9% ±3.1 GL:91.5% ±3.7 AG:92.8% ±2.3 AG:86.3% ±3.2

NO:100% ±0.0 NO:100% ±0.0 NO:100% ±0.0 NO:100% ±0.0 MM:87.7% ±4.3
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Table 5 - Classification results using PCA for DR prior to classification with Fisher LDA.

Classification results (accuracy ± standard deviation) obtained with Fisher LDA (implemented in

SpectraClassifier) for six diagnostic problems, from the source signals obtained by PCA, for data acquired

at LTE and STE. Classifier results were validated through bootstrap. The number of principal components

(PC) in the experiments is indicated in parentheses.

LTE
A2,NO(2PC) A2,ME,NO(3PC) A2,GL,NO(3PC) A2,MM,NO(3PC) A2,AG,NO(4PC) A2,AG,MM(4PC)
Total:100% ± 0.0 Total:93.8% ± 3.1 Total:82.1% ± 3.6 Total:95.4% ± 2.2 Total:84.6% ± 3.0 Total:80.2% ± 2.9
A2:100% ± 0.0 A2:100% ± 0.0 A2:100.0% ± 0.0 A2:95.0% ± 5.1 A2:100% ± 0.0 A2:100% ± 0.0
NO:100% ± 0.0 ME:86.9 ± 6.1 GL:75.4% ± 4.9 MM:94.4 ± 3.1 AG:79.7 ± 3.9 AG:75.9 ± 4.2

NO:100% ± 0.0 NO:93.2% ± 6.8 NO:100% ± 0.0 NO:100% ± 0.0 MM:81.6% ± 5.2
STE
A2,NO(2PC) A2,ME,NO(3PC) A2,GL,NO(3PC) A2,MM,NO(3PC) A2,AG,NO(4PC) A2,AG,MM(4PC)
Total:93.2% ± 3.9 Total:90.2% ± 3.3 Total:84.4% ± 3.2 Total:88.1% ± 3.2 Total:86.2% ± 2.7 Total:81.3% ± 2.7
A2:86.4% ± 7.4 A2:86.2% ± 7.5 A2:81.4% ± 8.4 A2:81.6% ± 8.4 A2:72.5% ± 9.6 A2:90.7% ± 6.4
NO:100% ± 0.0 ME:91.9 ± 4.4 GL:84.6% ± 3.8 MM:87.8 ± 4.2 AG:89.5 ± 2.8 AG:80.6 ± 3.5

NO:91.1% ± 6.0 NO:86.2% ± 7.5 NO:95.5% ± 4.5 NO:81.5% ± 8.6 MM:79.2% ± 5.3

Table 6 - Classification accuracies for the independent test set

Classification accuracies (total and by tumour type) and balanced error rates (BER) for the independent

test set, using all the classification settings from tables 4 and 5, for data at LTE and STE.

LTE, FE method:PCA
A2,NO(2PC) A2,ME,NO(3PC) A2,GL,NO(3PC) A2,MM,NO(3PC) A2,AG,NO(4PC) A2,AG,MM(4PC)
Total:92.3%(12/13) Total:82.6%(19/23) Total:65.1%(28/43) Total:81.3%(13/16) Total:64.2%(34/53) Total:67.9%(36/53)
A2:100%(10/10) A2:100%(10/10) A2:90%(9/10) A2:80.0%(8/10) A2:90%(9/10) A2:80.0%(8/10)
NO:66.7%(2/3) ME:70.0%(7/10) GL:53.3%(16/30) MM:66.7%(2/3) AG:57.5%(23/40) AG:62.5%(25/40)

NO:66.7%(2/3) NO:100%(3/3) NO:100%(3/3) NO:66.7%(2/3) MM:100%(3/3)
BER:0.17 BER:0.21 BER:0.19 BER:0.18 BER:0.29 BER:0.19
LTE, FE method:Convex-NMF
A2,NO(2SS) A2,ME,NO(3SS) A2,GL,NO(3SS) A2,MM,NO(3SS) A2,AG,NO(4SS) A2,AG,MM(4SS)
Total:92.3%(12/13) Total:82.6%(19/23) Total:67.4%(29/43) Total:68.8(11/16) Total:71.7%(38/53) Total:64.2%(34/53)
A2:90.0%(9/10) A2:90.0%(9/10) A2:70.0%(7/10) A2:50.0%(5/10) A2:70.0%(7/10) A2:60%(6/10)
NO:100%(3/3) ME:70.0%(7/10) GL:63.3%(19/30) MM:100%(3/3) AG:70.0%(28/40) AG:62.5%(25/40)

NO:100%(3/3) NO:100%(3/3) NO:100%(3/3) NO:100%(3/3) MM:100%(3/3)
BER:0.05 BER:0.13 BER:0.22 BER:0.17 BER:0.20 BER:0.26
STE, FE method:PCA
A2,NO(2PC) A2,ME,NO(3PC) A2,GL,NO(3PC) A2,MM,NO(3PC) A2,AG,NO(4PC) A2,AG,MM(4PC)
Total:92.3%(12/13) Total:73.9%(17/23) Total:76.7%(33/43) Total:75.0(12/16) Total:83.0%(44/53) Total:73.6%(39/53)
A2:90.0%(9/10) A2:80.0%(8/10) A2:60.0%(6/10) A2:60.0%(6/10) A2:80.0%(8/10) A2:70.0%(7/10)
NO:100%(3/3) ME:70.0%(7/10) GL:80.0%(24/30) MM:100%(3/3) AG:87.5%(35/40) AG:72.5%(29/40)

NO:66.7%(2/3) NO:100%(3/3) NO:100%(3/3) NO:33.3%(1/3) MM:100%(3/3)
BER:0.05 BER:0.28 BER:0.20 BER:0.13 BER:0.33 BER:0.19
STE, FE method:Convex-NMF
A2,NO(2SS) A2,ME,NO(3SS) A2,GL,NO(3SS) A2,MM,NO(3SS) A2,AG,NO(4SS) A2,AG,MM(4SS)
Total:92.3%(12/13) Total:91.3%(21/23) Total:90.7%(39/43) Total:87.5(14/16) Total:90.6%(48/53) Total:83.0%(44/53)
A2:90.0%(9/10) A2:90.0%(9/10) A2:90.0%(9/10) A2:80.0%(8/10) A2:90.0%(9/10) A2:90.0%(9/10)
NO:100%(3/3) ME:90.0%(9/10) GL:90.0%(27/30) MM:100%(3/3) AG:90.0%(36/40) AG:80.0%(32/40)

NO:100%(3/3) NO:100%(3/3) NO:100%(3/3) NO:100%(3/3) MM:100%(3/3)
BER:0.05 BER:0.07 BER:0.07 BER:0.07 BER:0.07 BER:0.10
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Table 7 - Classification results of A2,AG,MM for the training set, varying the number of extracted
features

Classification results (accuracy ± standard deviation) for the training set, at LTE and STE, obtained when

varying the number of extracted features (principal components -PC- and source signals -SS-) from 4 to 10,

for the problem A2,AG,MM. Fisher LDA was the classification method, and results were validated through

bootstrap. The second and fourth columns show the results for PCA, and the third and fifth columns the

results for Convex-NMF.

PC/SS LTE. PCA LTE. Convex-NMF STE. PCA STE. Convex-NMF
2 Total:68.4% ± 3.4 Total:62.2% ± 3.6 Total:83.7% ± 2.6 Total:80.6% ± 2.7

A2:75.0% ± 9.8 A2:55.4% ± 11.7 A2:86.8% ± 7.6 A2:78.0% ± 8.9
AG:65.9% ± 4.1 AG:71.6% ± 4.2 AG:82.9% ± 3.3 AG:84.0% ± 3.3
MM:71.0% ± 6.1 MM:45.7% ± 7.0 MM:84.3% ± 4.9 MM:74.3% ± 5.7

3 Total:77.6% ± 3.0 Total:73.0% ± 3.2 Total:81.7% ± 2.8 Total:83.4% ± 2.6
A2: 95.0% ± 4.8 A2:90.2% ± 6.8 A2:85.7% ± 7.6 A2:95.4% ± 4.4
AG: 71.5% ± 4.3 AG:63.6% ± 4.6 AG:81.3% ± 3.5 AG:81.7% ± 3.6
MM: 83.5% ± 4.9 MM:85.4% ± 5.0 MM:80.8% ± 5.3 MM:82.7% ± 4.9

4 Total:80.2% ± 2.9 Total:79.4% ± 3.0 Total:81.3% ± 2.7 Total:87.7% ± 2.3
A2:100% ± 0.0 A2:94.9% ± 5.2 A2:90.7% ± 6.4 A2:95.5% ± 4.6
AG:75.9% ± 4.2 AG:72.5% ± 4.3 AG:80.6% ± 3.5 AG:86.3% ± 3.2
MM:81.6% ± 5.2 MM:87.5% ± 4.3 MM:79.2% ± 5.3 MM:87.7% ± 4.3

5 Total:83.6% ± 2.7 Total:82.2% ± 2.9 Total:81.8% ± 2.7 Total:86.3% ± 2.4
A2:100% ± 0.0 A2:100% ± 0.0 A2:90.8% ± 6.3 A2:90.6% ± 6.4
AG:79.7% ± 3.9 AG:80.0% ± 3.9 AG:80.5% ± 3.6 AG:86.3% ± 3.1
MM:85.5% ± 4.6 MM:80.3% ± 5.4 MM:81.2% ± 5.3 MM:84.6% ± 4.6

6 Total:84.8% ± 2.5 Total:84.9% ± 2.6 Total:92.1% ± 1.9 Total:91.8% ± 1.9
A2:100% ± 0.0 A2:100% ± 0.0 A2:95.3% ± 4.6 A2:95.7% ± 4.1
AG:81.7% ± 3.5 AG:82.8% ± 3.6 AG:92.7% ± 2.3 AG:91.2% ± 2.6
MM:85.4% ± 4.8 MM:83.7% ± 4.9 MM:89.7% ± 4.1 MM:91.4 ± 3.8

7 Total:84.0% ± 2.7 Total:83.2% ± 2.7 Total:92.5% ± 1.9 Total:92.3% ± 1.9
A2:100% ± 0.0 A2:100% ± 0.0 A2:95.6% ± 4.4 A2:91.2% ± 6.1
AG:80.6% ± 3.8 AG:79.0% ± 4.0 AG:92.6% ± 2.3 AG:92.1% ± 2.4
MM:85.2% ± 4.8 MM:85.7% ± 4.6 MM:91.2% ± 3.9 MM:93.0% ± 3.4

8 Total:83.0% ± 2.7 Total:85.3% ± 2.7 Total:93.5% ± 1.7 Total:92.2% ± 1.9
A2:100% ± 0.0 A2:100% ± 0.0 A2:95.3% ± 4.6 A2:95.6% ± 4.5
AG:78.7% ± 3.8 AG:80.7% ± 3.8 AG:93.0% ± 2.2 AG:91.2% ± 2.5
MM:85.4% ± 4.9 MM:89.0% ± 4.3 MM:92.9% ± 3.4 MM:93.2% ± 3.3

9 Total:84.3% ± 2.6 Total:85.3% ± 2.6 Total:93.5% ± 1.7 Total:94.2% ± 1.7
A2:100% ± 0.0 A2:100% ± 0.0 A2:95.3% ± 4.6 A2:95.5% ± 4.6
AG:80.7% ± 3.6 AG:82.6% ± 3.5 AG:93.5% ± 2.2 AG:95.2% ± 1.9
MM:85.5% ± 4.7 MM:85.5% ± 4.8 MM:92.9% ± 3.4 MM:91.4% ± 3.7

10 Total:82.7% ± 2.8 Total:88.4% ± 2.3 Total:92.6% ± 1.9 Total:93.7% ± 1.7
A2:100% ± 0.0 A2:100% ± 0.0 A2:95.5% ± 4.5 A2:95.7% ± 4.5
AG:79.1% ± 3.9 AG:87.0% ± 3.2 AG:91.9% ± 2.5 AG:93.5% ± 2.2
MM:83.6% ± 4.9 MM:87.1% ± 4.5 MM:93.1% ± 3.4 MM:93.1% ± 3.3
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Table 8 - Classification results of A2,AG,MM for the independent test set, varying the number of
extracted features

Classification accuracies (total and by tumour type) and BER for the independent test set, at LTE and

STE, using the corresponding classification settings from table 7. The second and fourth columns show the

results for PCA, and the third and fifth columns the results for Convex-NMF.

PC/SS LTE. PCA LTE. Convex-NMF STE. PCA STE. Convex-NMF
2 Total:54.7%(29/53) Total:54.7%(29/53) Total:73.6%(39/53) Total:71.7%(38/53)

A2:60.0%(6/10) A2:60.0%(6/10) A2:90.0%(9/10) A2:60.0%(6/10)
AG:52.5% (21/40) AG:50.0%(20/40) AG:67.5%(27/40) AG:72.5% (29/40)
MM:66.7% (2/3) MM:100% (3/3) MM:100% (3/3) MM:100% (3/3)
BER:0.40 BER:0.30 BER:0.14 BER:0.23

3 Total: 60.4%(32/53) Total:52.8%(28/53) Total:69.8%(37/53) Total:75.5%(40/53)
A2:70.0%(7/10) A2:60.0%(6/10) A2:80.0%(8/10) A2:80.0%(8/10)
AG:55.0% (22/40) AG:50.0%(20/40) AG:65.0%(26/40) AG:75.0%(30/40)
MM:100% (3/3) MM:66.7% (2/3) MM:100% (3/3) MM:66.7% (2/3)
BER:0.25 BER:0.41 BER:0.18 BER:0.26

4 Total:67.9%(36/53) Total:64.2%(34/53) Total:73.6%(39/53) Total:83.0%(44/53)
A2:80%(8/10) A2:60.0%(6/10) A2:70.0%(7/10) A2:90.0%(9/10)
AG:62.5%(25/40) AG:62.5%(25/40) AG:72.5%(29/40) AG:80%(32/40)
MM:100%(3/3) MM:100%(3/3) MM:100%(3/3) MM:100%(3/3)
BER:0.19 BER:0.26 BER:0.19 BER:0.10

5 Total:67.9%(36/53) Total:75.5%(40/53) Total:73.6%(39/53) Total:79.2%(42/53)
A2:80%(8/10) A2:70.0%(7/10) A2:70.0%(7/10) A2:80.0%(8/10)
AG:62.5%(25/40) AG:75.0%(30/40) AG:72.5%(29/40) AG:77.5%(31/40)
MM:100%(3/3) MM:100%(3/3) MM:100%(3/3) MM:100%(3/3)
BER:0.19 BER:0.18 BER:0.19 BER:0.14

6 Total:67.9%(36/53) Total:73.6%(39/53) Total:79.2%(42/53) Total:83.0%(44/53)
A2:80%(8/10) A2:70.0%(7/10) A2:70.0%(7/10) A2:90.0%(9/10)
AG:62.5%(25/40) AG:72.5%(29/40) AG:82.5%(33/40) AG:82.5%(33/40)
MM:100%(3/3) MM:100%(3/3) MM:66.7%(2/3) MM:66.7%(2/3)
BER:0.19 BER:0.19 BER:0.27 BER:0.20

7 Total:67.9%(36/53) Total:73.6%(39/53) Total:79.2%(42/53) Total:83.0%(44/53)
A2:80%(8/10) A2:70.0%(7/10) A2:70.0%(7/10) A2:90.0%(9/10)
AG:62.5%(25/40) AG:72.5%(29/40) AG:82.5%(33/40) AG:82.5%(33/40)
MM:100%(3/3) MM:100%(3/3) MM:66.7%(2/3) MM:66.7%(2/3)
BER:0.19 BER:0.19 BER:0.27 BER:0.20

8 Total:75.5%(40/53) Total:69.8%(37/53) Total:81.1%(43/53) Total:84.9%(45/53)
A2:80%(8/10) A2:70.0%(7/10) A2:80%(8/10) A2:90.0%(9/10)
AG:72.5%(29/40) AG:67.5%(27/40) AG:80%(32/40) AG:85%(34/40)
MM:100%(3/3) MM:100%(3/3) MM:100%(3/3) MM:66.7%(2/3)
BER:0.16 BER:0.21 BER:0.13 BER:0.19

9 Total:75.5%(40/53) Total:71.7%(38/53) Total:84.9%(45/53) Total:86.8%(46/53)
A2:80%(8/10) A2:70.0%(7/10) A2:90%(9/10) A2:90%(9/10)
AG:72.5%(29/40) AG:70.0%(28/40) AG:82.5%(33/40) AG:87.5%(35/40)
MM:100%(3/3) MM:100%(3/3) MM:100%(3/3) MM:66.7%(2/3)
BER:0.16 BER:0.20 BER:0.09 BER:0.19

10 Total:73.6%(39/53) Total:69.8%(37/53) Total:86.8%(46/53) Total:84.9%(45/53)
A2:80%(8/10) A2:70.0%(7/10) A2:90%(9/10) A2:90.0%(9/10)
AG:70%(28/40) AG:67.5%(27/40) AG:85%(34/40) AG:85%(34/40)
MM:100%(3/3) MM:100%(3/3) MM:100%(3/3) MM:66.7%(2/3)
BER:0.17 BER:0.21 BER:0.08 BER:0.19
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