
ALGORITHMIC COMPLEXITY
OF CERTIFIED UNSATISFIABILITY

Universitat Politècnica de Catalunya
Barcelona

Albert Atserias

I.E., COMPLEXITY OF
PROOF SEARCH

Universitat Politècnica de Catalunya
Barcelona

Albert Atserias

SAT-solvers revolution (since early 2000’s)

SAT-solvers “routinely” find:

satisfying assignments
or

proofs of unsatisfiability

For formulas with 1000’s of variables:
search space is RIDICULOUSLY BIG! [MS’99, Chaff 2001, ...]

“200 TB maths proof is largest ever”

Theorem [Heule, Kullmann, Marek 2016]
The numbers 1,...,7825 cannot be partitioned

into two parts each without Pythagorean triples.
But the numbers 1,...,7824, can.

a2 + b2 = c2

[Nature 2016]

a valid red/blue coloring (white = either)
of the numbers 1,2,...,7824.

For 7825, it doesn’t exist. [Source: Wikipedia]

a2 + b2 ≠ c2

a2 + b2 ≠ c2

AUTOMATABILITY

Def: P is AUTOMATABLE in polynomial time
if

an algorithm finds P-proofs in time polynomial in
the size of smallest P-proof

[Bonet, Pitassi, Raz 97]

Definition of automatability

Moshe Vardi “For the SAT revolution to continue
unabated, we must focus also on understanding,

not only on benchmarking.”

SAT-solver vs PROOF-searcher

[Vardi, CACM 2014]
restated by [Sakallah, Simons 2023]

evaluated through
benchmarking

evaluated through
provable guarantees

Theorem [Beame, Pitassi 98]
Tree-like Resolution is automatable in time 𝑛!(#$% &)

size of smallest
tree-like refutation

number of
variables

Tree-like Resolution

Theorem [Ben-Sasson, Wigderson 99]
Resolution is automatable in time 𝑛!((#$% &)*)

for 𝑠 = poly 𝑛 , 𝑘 = 3
this is exp(𝑛!/# log 𝑛 $/#).
Compare with ETH.

width of
initial clauses

General Resolution

xi
0 1

xi ¬xi

∅

Ci

Cj

Ci

Cj

decision tree for
the falsified clause

search problem
tree-like Resolution
refutation of size s

flipover

< s/2

< s/2

Beame-Pitassi Algorithm

xi
1-b b

Ci

Cj

< s/2

Algorithm

Given F and s.
Guess i and b and recurse on F[xi=b] and s/2.
Then recurse on F[xi=1-b] and s-1.

Subtle: Don’t know
if the guess that worked
is the root of the optimal tree!

xi
1-b b

Ci

Cj

< s/2

Analysis

R(n, s) = 2n R(n-1, s/2) + R(n-1, s-1) + nO(1)

number of
variables target

size

Solution: nO(log s)

number of
choices in guess

Proof Searchers

Restatment: There is a proof-searcher for tree-like Resolution
with quasipolynomial-time 𝑛!(#$% &) guarantee.

Restatement: There is a proof-searcher for Resolution
with subexponential-time 𝑛!((#$% &) guarantee.

Indeed, CDCL (with enough restarts, enough
random decisions, and full memory) achieves this!

[AFT’2011]

FEASIBLE
INTERPOLATION

￢INT(x)➝ ￢F(x, y)

INT(x) ➝ ￢G(x, z)

Craig Interpolants

F(x, y) ∧ G(x, z) suppose this is
unsatisfiable.

INT(x) tells which one
is unsatisfiable,
for each given x.

Then these are
tautologies.

Interpolants in graph theory

CLIQUEk+1(x, y) := “y codes a k+1-clique of x”
COLk(x, z) := “z codes a proper k-coloring of x”

x codes a graph

CLIQUEk+1(x, y) ∧COLk(x, z)
unsatisfiable
(by the PHP)

¬INTk(x) ➝ “𝜔(x) ≤ k”

INTk(x) ➝ “𝜒(x) > k”

What are its interpolants?

“y is k+1-clique of x” ∧ “z is k-coloring of x”

E.g. Lovász’s Theta “𝜗(x) > k”

ONEi(x, y) := “f(y) = x and yi = 1”

ZEROi(x, z) := “f(z) = x and zi = 0”

Interpolants in Cryptography

ONEi(x, y) ∧ZEROi(x, z)

a permutation that is
easy to compute
hard to invert unsatisfiable

since f is 1-to-1

¬INTi(x) ➝ “f -1 (x)i = 0”

INTi(x) ➝ “f -1 (x)i = 1”

What are its interpolants?

“f(y) = x and yi = 1” ∧ “f(z) = x and zi = 0”

any interpolant inverts
the function (its i-th bit)

Feasible Interpolation

Def: P has feasible interpolation:

all unsatisfiable F(x,y) ∧ G(x,z) have
interpolants of circuit-size polynomial in
the size of their smallest P-refutations.

[Krajicek 1997]

Resolution has feasible interpolation

Theorem: [Krajicek 1997]
Resolution has (monotone) feasible interpolation.

Implies lower bound on CLIQUE & COL formulas
by monotone circuits lower bounds
[Razborov 1986], [Alon, Bopana 1987]

Interpolation algorithm: restrict & split

Y v Z v zi Y’ v Z’ v ¬zi

Y v Y’ v Z v Z’

Y Y’

Y v Y’

Z v zi Z’ v ¬zi

Z v Z’

F(x,y) ∧ G(x,z)

weakening cut

∅

cut (z case)

F’(y) ∧ G’(z)

∅
restrict

split

INTERPOLATION
AND

AUTOMATABILITY

Automatability implies Interpolation

Lemma: [Bonet, Pitassi, Raz 97]
If a proof system is automatable,
then it has feasible interpolation.

The BPR argument

F(x, y) ∧ G(x, z)

INT(x0) := REFP,p(s)(<G(x0, z)>, A(<G(x0, z)>))

suppose this
has P-refutation
of size s

If A is an automating algorithm for P
then this is an interpolant

verifier of
proof system P

Theorem [Krajicek, Pudlak 98]
Extended Frege does not have feasible interpolation

unless RSA is broken by poly-size circuits

Strong systems lack feasible interpolation

The Krajicek-Pudlak Argument

The statements

“RSAi(y,k)=x and yi = 1” ∧ “RSAi(z,k)=x and zi = 0”

have poly-size Extended Frege refutations.

Q.E.D.

Corollary
Extended Frege is not automatable
unless RSA is invertible in poly-time

Later improved to
Frege, TC0-Frege, AC0-Frege
[Bonet et al. 97, 99]

First Non-Automatability Result: EFrege

SOUNDNESS PROOFS
AND

AUTOMATABILITY

Interpolants of soundness statements

SAT(x, y) := “y codes a satisfying assignment of x”
REFP,s(x, z) := “z codes a P-refutation of x”

proof
system the size

s = |z|

SAT(x, y) ∧ REFP,s(x, z)

a contradiction
since P is sound

codes a CNF

¬INT(x) ➝ ¬SAT(x, y)
INT(x) ➝ ¬REFP,s(x, z)

Interpolants of soundness statements

interpolant
exists by
the soundness
of P

Sort of dual to
what a SAT-solver does!

SAT(x, y) ∧ REFP,s(x, z)

INT(x) := ￢REFP,p(s)(x, A(x))

automating
algorithm of P

polynomial runtime
of automating algorithm

If P is automatable
then there is a poly-time interpolantSAT(x, y) ∧ REFP,s(x, z)

If Q p-simulates P
and Q is automatable
then there is a poly-time interpolant

INT(x) := ￢REFQ,p(q(s))(x, A(x))

automating
algorithm of Qpolynomial loss

in p-simulation

polynomial loss
in automating algorithm

[Pudlák 2001]

SAT(x, y) ∧ REFP,s(x, z)

Theorem [Pudlák 2001]:
The following are equivalent:

(1) SAT & REF formulas for P have polytime interpolants
(2) there exists an automatable Q that p-simulates P

Weak Automatability

I.e., P is weakly automatable in Q
[A., Bonet 2003]

Resolution proofs of own soundness?

Theorem [A., Bonet 2003]
Resolution proofs of its own soundness

must be of superpolynomial in size
but poly-size Res(2)-proofs do exist!

Lower bound by reduction from
CLIQUE & COL formulas

Resolution with 2-DNFs
instead of clauses

AUTOMATING
RESOLUTION

IS HARD

Theorem [Alekhnovich-Razborov 2001]
Resolution is not automatable

unless W[P] is tractable

- best lower bound: time 𝑛loglog(&)!.#$, under ETH [Mertz-Pitassi-Wei 19]
- applies to tree-like Resolution!

The Alekhnovich-Razborov Theorem

- relies on a strong assumption.

Theorem [A., Müller 2019]
Resolution is not automatable

in polynomial-time unless P = NP
nor in subexponential-time unless ETH fails

Automating Resolution is NP-hard

- optimal assumption
- new method
- based on soundness proofs!

𝐹
polytime

𝐺

F is sat min-ref-size(𝐺) ≤ |𝐺|!"#

F is unsat min-ref-size(𝐺) ≰ exp(𝐺
(
)$#)

Find a map that takes CNFs into CNFs

SMALL

BIG

A glimpse at the proof

minimum Resolution
refutation size

for poly length z

The easy/hard formula

Upper bound : Uses the small soundness proof of Resolution in Res(2)!
Lower bound : Adversary argument to mimic the exponentially big refutation.

a minor variant of REF

G := RREF(<F>, z)

Beyond Resolution?

Thm: [de Rezende-Goos-Nordström-Pitassi-Robere-Sokolov’21]
Resolution is not weakly automatable in

Nullstelensatz or Polynomial Calculus unless P = NP

Thm: [Goos-Koroth-Metz-Pitassi’20]
Resolution is not weakly automatable in

Cutting Planes unless P = NP

Below Resolution?

Thm: [de Rezende’21]
Tree-like Resolution is not automatable

in less than quasipolynomial time
unless ETH fails

F is sat min-tree-size(𝐺) ≤ 2% &

F is unsat min-tree-size(𝐺) ≰ 2'&

THE BIG REMAING PROBLEM

Is Resolution Weakly Automatable?

Difficulty:
Equivalent to distinguishing:
 satisfiable formulas (SAT)
 from
 shortly refutable formulas (REFpoly)

both
are

problems
in NP

THE END

