ALGORITHMIC COMPLEXITY OF CERTIFIED UNSATISFIABILITY

Albert Atserias

Universitat Politècnica de Catalunya

Barcelona

I.E., COMPLEXITY OF PROOF SEARCH

Albert Atserias

Universitat Politècnica de Catalunya Barcelona

SAT-solvers revolution (since early 2000's)

SAT-solvers "routinely" find:

satisfying assignments
or
proofs of unsatisfiability

For formulas with 1000's of variables:

" 200 TB maths proof is largest ever"

[Nature 2016]

Theorem [Heule, Kullmann, Marek 2016]
The numbers $1, \ldots, 7825$ cannot be partitioned into two parts each without Pythagorean triples. But the numbers $1, \ldots, 7824$, can.

$$
a^{2}+b^{2}=c^{2}
$$

For 7825, it doesn't exist.

AUTOMATABILITY

Definition of automatability

> Def: P is AUTOMATABLE in polynomial time if
> an algorithm finds P-proofs in time polynomial in the size of smallest P-proof
> [Bonet, Pitassi, Raz 97]

SAT-solver vs PROOF-searcher

evaluated through
benchmarking
evaluated through
provable guarantees

Moshe Vardi "For the SAT revolution to continue unabated, we must focus also on understanding, not only on benchmarking."
[Vardi, CACM 2014] restated by [Sakallah, Simons 2023]

Tree-like Resolution

Theorem [Beame, Pitassi 98]

Tree-like Resolution is automatable in time $n^{O(\log s)}$

General Resolution

Theorem [Ben-Sasson, Wigderson 99]

Resolution is automatable in time $n^{O}(\sqrt{n \log s}+k)$
for $s=\operatorname{poly}(n), k=3$
this is $\exp \left(n^{1 / 2} \log (n)^{3 / 2}\right)$.
Compare with ETH.
width of initial clauses

Beame-Pitassi Algorithm

Algorithm

Given F and s.
Guess i and b and recurse on $F\left[x_{i}=b\right]$ and $s / 2$. Then recurse on $\mathrm{F}\left[\mathrm{x}_{\mathrm{i}}=1-\mathrm{b}\right]$ and $\mathrm{s}-1$.

Subtle: Don't know
if the guess that worked

is the root of the optimal tree!

Proof Searchers

Restatment: There is a proof-searcher for tree-like Resolution with quasipolynomial-time $n^{O(\log s)}$ guarantee.

Restatement: There is a proof-searcher for Resolution with subexponential-time $n O(\sqrt{n \log s})$ guarantee.

Indeed, CDCL (with enough restarts, enough
random decisions, and full memory) achieves this!
[AFT'2011]

FEASIBLE INTERPOLATION

Craig Interpolants

$$
F(X, Y) \wedge G(X, Z) \longleftarrow \quad \begin{aligned}
& \text { suppose this is } \\
& \text { unsatisfiable. }
\end{aligned}
$$

$$
\neg \operatorname{INT}(x) \rightarrow \neg F(x, y)
$$

$$
\operatorname{INT}(x) \rightarrow \neg G(x, z)
$$

Then these are tautologies.

INT(x) tells which one is unsatisfiable, for each given x.

Interpolants in graph theory

$\operatorname{CLIQUE}_{k+1}(x, y):=" y$ codes a $k+1$-clique of x " $\operatorname{COL}_{k}(x, z)$:= " z codes a proper k-coloring of $x "$

x codes a graph

$$
\operatorname{CLIQUE}_{k+1}(x, y) \wedge \operatorname{COL}_{k}(x, z)
$$

unsatisfiable (by the PHP)

What are its interpolants?

" y is $k+1$-clique of $x " \wedge$ " z is k-coloring of $x "$
$\neg \mathrm{INT}_{\mathrm{k}}(\mathrm{x}) \rightarrow " \omega(\mathrm{x}) \leq \mathrm{k}$ "
$\mathrm{INT}_{\mathrm{k}}(\mathrm{x}) \rightarrow$ " $\chi(\mathrm{x})>\mathrm{k} "$
E.g. Lovász's Theta " $\vartheta(\mathrm{x})>\mathrm{k}$ "

Interpolants in Cryptography

$$
\begin{aligned}
& \mathrm{ONE}_{\mathrm{i}}(\mathrm{x}, \mathrm{y}):=" \mathrm{f}(\mathrm{y})=\mathrm{x} \text { and } \mathrm{y}_{\mathrm{i}}=1 " \\
& \mathrm{ZERO}_{i}(\mathrm{x}, \mathrm{z}):=" \mathrm{f}(\mathrm{z})=\mathrm{x} \text { and } \mathrm{z}_{\mathrm{i}}=0 "
\end{aligned}
$$

a permutation that is easy to compute hard to invert
unsatisfiable
since f is 1-to-1
$\operatorname{ONE}_{i}(x, y) \wedge Z E R O_{i}(x, z)$

What are its interpolants?

$$
" f(y)=x \text { and } y_{i}=1 " \wedge " f(z)=x \text { and } z_{i}=0 "
$$

$\neg \mathrm{NT}_{\mathrm{i}}(\mathrm{x}) \rightarrow " \mathrm{f}-1(\mathrm{x})_{\mathrm{i}}=0 "$
$\operatorname{INT}_{i}(x) \rightarrow{ }^{\prime} f^{-1}(x)_{i}=1 "$
any interpolant inverts the function (its i-th bit)

Feasible Interpolation

Def: P has feasible interpolation:
all unsatisfiable $F(x, y) \wedge G(x, z)$ have interpolants of circuit-size polynomial in the size of their smallest P-refutations.

Resolution has feasible interpolation

Theorem: [Krajicek 1997]
Resolution has (monotone) feasible interpolation.

Implies lower bound on CLIQUE \& COL formulas
by monotone circuits lower bounds
[Razborov 1986], [Alon, Bopana 1987]

Interpolation algorithm: restrict \& split

INTERPOLATION AND AUTOMATABILITY

Automatability implies Interpolation

> Lemma: [Bonet, Pitassi, Raz 97]
> If a proof system is automatable, then it has feasible interpolation.

The BPR argument

suppose this
$F(x, y) \wedge G(x, z)$
$\operatorname{INT}\left(\mathrm{x}_{0}\right):=\operatorname{REF}_{\mathrm{p}, \mathrm{p}(\mathrm{s})}\left(<\mathrm{G}\left(\mathrm{x}_{0}, \mathrm{z}\right)>, \mathrm{A}\left(<\mathrm{G}\left(\mathrm{x}_{0}, \mathrm{z}\right)>\right)\right)$
verifier of
proof system P

If A is an automating algorithm for P then this is an interpolant

Strong systems lack feasible interpolation

Theorem [Krajicek, Pudlak 98]

Extended Frege does not have feasible interpolation unless RSA is broken by poly-size circuits

The Krajicek-Pudlak Argument

The statements
$" \operatorname{RSA}_{i}(y, k)=x$ and $y_{i}=1 " \wedge " R S A_{i}(z, k)=x$ and $z_{i}=0 "$
have poly-size Extended Frege refutations.
Q.E.D.

First Non-Automatability Result: EFrege

Corollary

Extended Frege is not automatable unless RSA is invertible in poly-time

Later improved to
Frege, TC 0-Frege, $A C^{0}$-Frege
[Bonet et al. 97, 99]

SOUNDNESS PROOFS AND AUTOMATABILITY

Interpolants of soundness statements

SAT $(x, y):=$ " y codes a satisfying assignment of x " REF $_{p, s}(x, z):=" z$ codes a P-refutation of x "
proof
system

Interpolants of soundness statements

$$
\operatorname{SAT}(x, y) \wedge \operatorname{REF}_{p, s}(x, z)
$$

$\neg \operatorname{INT}(x) \rightarrow \neg S A T(x, y)$
$\operatorname{INT}(x) \rightarrow \neg \operatorname{REF}_{p, s}(x, z)$
interpolant exists by
the soundness
of P

$\operatorname{SAT}(x, y) \wedge \operatorname{REF}_{p, s}(x, z)$
If P is automatable
then there is a poly-time interpolant

$\operatorname{INT}(x):=\neg \operatorname{REF}_{\mathrm{p}, \mathrm{p}(\mathrm{s})}(\mathrm{x}, \mathrm{A}(\mathrm{x}))$

polynomial runtime of automating algorithm
automating algorithm of P

$\operatorname{SAT}(x, y) \wedge \operatorname{REF}_{p, s}(x, z)$

If $\mathrm{Q} p$-simulates P and Q is automatable then there is a poly-time interpolant

$\operatorname{INT}(x):=\neg R E F_{Q, p(q(s))}(x, A(x))$

polynomial loss
in automating algorithm
polynomial loss algorithm of Q
in p -simulation

Weak Automatability

Theorem [Pudlák 2001]:
The following are equivalent:
(1) SAT \& REF formulas for P have polytime interpolants
(2) there exists an automatable Q that p -simulates P
l.e., P is weakly automatable in Q
[A., Bonet 2003]

Resolution proofs of own soundness?

Theorem [A., Bonet 2003]

Resolution proofs of its own soundness must be of superpolynomial in size but poly-size Res(2)-proofs do exist!

Lower bound by reduction from CLIQUE \& COL formulas

Resolution with 2-DNFs instead of clauses

AUTOMATING RESOLUTION IS HARD

The Alekhnovich-Razborov Theorem

Theorem [Alekhnovich-Razborov 2001]

Resolution is not automatable
unless W[P] is tractable

- relies on a strong assumption.
- best lower bound: time $n^{\log \log (n)^{0.14}}$, under ETH [Mertz-Pitassi-Wei 19]
- applies to tree-like Resolution!

Automating Resolution is NP-hard

Theorem [A., Müller 2019]
Resolution is not automatable in polynomial-time unless $\mathrm{P}=\mathrm{NP}$
nor in subexponential-time unless ETH fails
\searrow

- optimal assumption
- new method
- based on soundness proofs!

A glimpse at the proof

Find a map that takes CNFs into CNFs

$$
F \xrightarrow{\text { polytime }} G
$$

F is sat $\quad \Longrightarrow \quad$ min-ref-size $(G) \leq|G|^{1+\varepsilon}$
F is unsat \Longrightarrow min-ref-size $(G) \nsubseteq \exp \left(|G|^{\frac{1}{2}-\varepsilon}\right)$
minimum Resolution
refutation size

The easy/hard formula

$\mathrm{G}:=\operatorname{RREF}(<\mathrm{F}\rangle, z)$

a minor variant of REF

Upper bound : Uses the small soundness proof of Resolution in Res(2)!
Lower bound : Adversary argument to mimic the exponentially big refutation.

Beyond Resolution?

Thm: [Goos-Koroth-Metz-Pitassi'20]
Resolution is not weakly automatable in
Cutting Planes unless $P=N P$

Thm: [de Rezende-Goos-Nordström-Pitassi-Robere-Sokolov'21] Resolution is not weakly automatable in Nullstelensatz or Polynomial Calculus unless $P=N P$

Below Resolution?

Thm: [de Rezende'21]
Tree-like Resolution is not automatable in less than quasipolynomial time unless ETH fails

F is sat $\quad \Longrightarrow$ min-tree-size $(G) \leq 2^{c \sqrt{N}}$
F is unsat \Longrightarrow min-tree-size $(G) \nsubseteq 2^{d N}$

THE BIG REMAING PROBLEM

Is Resolution Weakly Automatable?

Difficulty:
Equivalent to distinguishing:

THE END

