ALGORITHMIC COMPLEXITY OF CERTIFIED UNSATISFIABILITY

Albert Atserias

Universitat Politècnica de Catalunya Barcelona

I.E., COMPLEXITY OF PROOF SEARCH

Albert Atserias

Universitat Politècnica de Catalunya Barcelona

SAT-solvers revolution (since early 2000's)

SAT-solvers "routinely" find:

satisfying assignments

or

proofs of unsatisfiability

For formulas with 1000's of variables: search space is RIDICULOUSLY **BIG**!

[MS'99, Chaff 2001, ...]

"200 TB maths proof is largest ever" [Nature 2016]

Theorem [Heule, Kullmann, Marek 2016] The numbers 1,...,7825 cannot be partitioned into two parts each without Pythagorean triples. But the numbers 1,...,7824, can.

 $a^2 + b^2 = c^2$

AUTOMATABILITY

Definition of automatability

Moshe Vardi "For the SAT revolution to continue unabated, we must focus also on understanding, not only on benchmarking."

> [Vardi, CACM 2014] restated by [Sakallah, Simons 2023]

Tree-like Resolution

General Resolution

Theorem [Ben-Sasson, Wigderson 99] Resolution is automatable in time $n^{O(\sqrt{n \log s} + k)}$ for s = poly(n), k = 3 width of this is $exp(n^{1/2} \log(n)^{3/2})$. initial clauses Compare with ETH.

Algorithm

Given F and s. Guess i and b and recurse on $F[x_i=b]$ and s/2. Then recurse on $F[x_i=1-b]$ and s-1.

> Subtle: Don't know if the guess that worked is the root of the optimal tree!

Analysis

Solution: n^{O(log s)}

Proof Searchers

Restatment: There is a proof-searcher for tree-like Resolution with quasipolynomial-time $n^{O(\log s)}$ guarantee.

Restatement: There is a proof-searcher for Resolution with subexponential-time $n^{O(\sqrt{n \log s})}$ guarantee.

Indeed, CDCL (with enough restarts, enough random decisions, and full memory) achieves this! [AFT'2011]

FEASIBLE INTERPOLATION

INT(x) tells which one is unsatisfiable, for each given x.

Interpolants in graph theory

CLIQUE_{k+1}(x, y) := "y codes a k+1-clique of x" COL_k(x, z) := "z codes a proper k-coloring of x" x codes a graph

$CLIQUE_{k+1}(x, y) \land COL_k(x, z)$

What are its interpolants?

"y is k+1-clique of x" ∧ "z is k-coloring of x"

$$\neg INT_{k}(x) \rightarrow ``\omega(x) \leq k''$$
$$INT_{k}(x) \rightarrow ``\chi(x) > k''$$
E.g. Lovász's Theta " $\vartheta(x) > k''$

 $ONE_i(x, y) \land ZERO_i(x, z)$

What are its interpolants?

"f(y) = x and $y_i = 1$ " \land "f(z) = x and $z_i = 0$ "

$$\neg INT_{i}(x) \rightarrow "f^{-1}(x)_{i} = 0"$$

$$INT_{i}(x) \rightarrow "f^{-1}(x)_{i} = 1"$$
any interpolant inverts

the function (its i-th bit)

Feasible Interpolation

Def: P has feasible interpolation:

all unsatisfiable $F(x,y) \wedge G(x,z)$ have interpolants of circuit-size polynomial in the size of their smallest P-refutations.

[Krajicek 1997]

Resolution has feasible interpolation

Theorem: [Krajicek 1997] Resolution has (monotone) feasible internolatic

Resolution has (monotone) feasible interpolation.

Implies lower bound on CLIQUE & COL formulas by monotone circuits lower bounds [Razborov 1986], [Alon, Bopana 1987]

Interpolation algorithm: restrict & split

INTERPOLATION AND AUTOMATABILITY

Automatability implies Interpolation

Lemma: [Bonet, Pitassi, Raz 97] If a proof system is automatable, then it has feasible interpolation.

then this is an interpolant

proof system P

Strong systems lack feasible interpolation

Theorem [Krajicek, Pudlak 98] Extended Frege does not have feasible interpolation unless RSA is broken by poly-size circuits

The Krajicek-Pudlak Argument

The statements

"RSA_i(y,k)=x and
$$y_i = 1$$
" \wedge "RSA_i(z,k)=x and $z_i = 0$ "

have poly-size Extended Frege refutations.

Q.E.D.

First Non-Automatability Result: EFrege

Corollary

Extended Frege is not automatable unless RSA is invertible in poly-time

Later improved to Frege, TC⁰-Frege, AC⁰-Frege [Bonet et al. 97, 99]

SOUNDNESS PROOFS AND AUTOMATABILITY

Interpolants of soundness statements

Interpolants of soundness statements

SAT(x, y) \land REF_{P,s}(x, z)

$\neg INT(x) \rightarrow \neg SAT(x, y)$ $INT(x) \rightarrow \neg REF_{P,s}(x, z)$

interpolant exists by the soundness of P

Sort of dual to what a SAT-solver does!

SAT(x, y) \land REF_{P,s}(x, z)

If P is automatable then there is a poly-time interpolant

 $INT(x) := \neg REF_{P,p(s)}(x, A(x))$

polynomial runtime of automating algorithm automating algorithm of P

Weak Automatability

Theorem [Pudlák 2001]: The following are equivalent:

(1) SAT & REF formulas for P have polytime interpolants
 (2) there exists an automatable Q that p-simulates P
 I.e., P is weakly automatable in Q

[A., Bonet 2003]

Resolution proofs of own soundness?

Theorem [A., Bonet 2003] Resolution proofs of its own soundness must be of superpolynomial in size but poly-size Res(2)-proofs do exist!

Lower bound by reduction from CLIQUE & COL formulas

Resolution with 2-DNFs instead of clauses

AUTOMATING RESOLUTION IS HARD

The Alekhnovich-Razborov Theorem

Theorem [Alekhnovich-Razborov 2001] Resolution is not automatable unless W[P] is tractable

- relies on a strong assumption.
- best lower bound: time $n^{\log\log(n)^{0.14}}$, under ETH [Mertz-Pitassi-Wei 19]
- applies to tree-like Resolution!

Automating Resolution is NP-hard

Theorem [A., Müller 2019] Resolution is not automatable in polynomial-time unless P = NP nor in subexponential-time unless ETH fails

- optimal assumption
- new method
- based on soundness proofs!

A glimpse at the proof

Find a map that takes CNFs into CNFs $F \xrightarrow{\text{polytime}} G$ **SMALL** F is sat \implies min-ref-size $(G) \le |G|^{1+\varepsilon}$ F is unsat \implies min-ref-size $(G) \le \exp(|G|^{\frac{1}{2}-\varepsilon})$ minimum Resolution BIG refutation size

The easy/hard formula

for poly length z

Upper bound : Uses the small soundness proof of Resolution in Res(2)! Lower bound : Adversary argument to mimic the exponentially big refutation.

Beyond Resolution?

Thm: [Goos-Koroth-Metz-Pitassi'20] Resolution is not weakly automatable in Cutting Planes unless P = NP

Thm: [de Rezende-Goos-Nordström-Pitassi-Robere-Sokolov'21] Resolution is not weakly automatable in Nullstelensatz or Polynomial Calculus unless P = NP

Below Resolution?

Thm: [de Rezende'21] Tree-like Resolution is not automatable in less than quasipolynomial time unless ETH fails

F is sat \implies min-tree-size(G) $\leq 2^{c\sqrt{N}}$ F is unsat \implies min-tree-size(G) $\leq 2^{dN}$

THE BIG REMAING PROBLEM

Is Resolution Weakly Automatable?

THE END