AUTOMATING RESOLUTION IS NP-HARD

Albert Atserias

Moritz Müller

Universitat Politècnica de Catalunya

Satisfiability Problem and Resolution : Timeline 1960-1986

Satisfiability Problem and Resolution : Timeline 1987-today

Variables, Literals, Clauses, and CNF Formulas

Resolution Rule: Derives New Clauses From Old

Resolution Refutations, a.k.a. Proofs of Unsatisfiability

Proof Search Problem for Resolution

Given an unsatisfiable CNF formula F find a Resolution refutation of F

by Haken's Theorem,
the complexity is necessarily exponential in the size of F

Proof Search Problem for Resolution

Q1: Could we find short proofs
under the promise that they exist?

Q2: Could the problem be solvable

in time polynomial n, m, and $s=\operatorname{Res}(F)$?

> We would say that Resolution is AUTOMATABLE in poly time, quasipoly time, etc. [Bonet, Pitassi, Raz 97]

Main Result

Theorem:

Resolution is not automatable in polynomial-time unless $P=N P$

Main Result

Theorem:

Resolution is not automatable in polynomial-time unless $P=N P$ nor in subexponential-time unless ETH fails

Main Result (contd)

Indeed, we find a map from CNFs to CNFs:

$$
F \xrightarrow{\text { polytime }} G
$$

F is satisfiable
F is unsatisfiable

$$
\Longrightarrow \quad \operatorname{Res}(G) \leq|G|^{1+\varepsilon}
$$

$\operatorname{Res}(G) \geq \exp \left(|G|^{\frac{1}{2}-\varepsilon}\right)$

BIG

Corollary:

Minimum Resolution proof-length
is not approximable
within subexponential error in polynomial-time
unless $P=N P$

HISTORY OF THE PROBLEM

History of the problem

- Some partial POSITIVE results.
- Some partial NEGATIVE results.

Stronger and Weaker Proof Systems

arbitrary formulas, circuits, etc.
given $C \vee A$ and $D \vee \neg A$ infer $C \vee D$
:

Frege
formulas
TC ${ }^{0}$-Frege - ----------------- \quad threshold formulas of bounded depth
AC ${ }^{0}$-Frege - ------------------- formulas of bounded depth
k-DNF-Frege $\equiv \operatorname{Res}(k) \quad \leftarrow------\quad k$-DNFs
Resolution s----------------- clauses
tree-like Resolution
clauses, but proof-graphs are trees

Partial POSITIVE Result 1: Tree-like Resolution in quasi-poly time

Theorem [Beame-Pitassi 98]

Tree-like Resolution is automatable in time $n^{O(\log s)}$

- Intuitively: tree-like proofs \equiv decision trees, and divide \& conquer works.
- It says: upper bound $\operatorname{Res}(G) \leq$ SMALL cannot be tree-like (unless ETH fails).

Partial POSITIVE Result 2: Resolution in subexponential time

Theorem [Ben-Sasson-Wigderson 99]

 Resolution is automatable in time $n^{O(\sqrt{n \log s}+k)}$

- For $s=\operatorname{poly}(n)$, this is $\exp \left(n^{1 / 2} \log (n)^{3 / 2}\right)$.
- It puts some limits on the efficiency of our reduction (unless ETH fails).

Partial NEGATIVE Result 1: Stronger Proof Systems

Theorem [Krajicek-Pudlak 98]

Extended Frege is not automatable in poly time unless RSA is broken by poly-size circuits

- Assumption is crypto, and far from optimal.
- Later improved to Frege, TC 0-Frege and AC^{0}-Frege [Bonet et al. 97, 99]
- Still crypto and very far from Resolution.

Partial NEGATIVE Result 2: Weaker Hardness, Stronger Assumption

Theorem [Alekhnovich-Razborov 01] Resolution is not automatable in polynomial time unless $\mathrm{W}[\mathrm{P}]$ is tractable

- Says nothing about automatability in, say, quasipoly-time.
- Best lower bound: time $n^{\log \log (n)^{0.14}}$, under ETH [Mertz-Pitassi-Wei 19]
- Applies to tree-like Resolution!

THE NEW CONSTRUCTION

$$
F \xrightarrow{\text { polytime }} G
$$

F is satisfiable	\Longrightarrow	$\operatorname{Res}(G) \leq$ SMALL
F is unsatisfiable	\Longrightarrow	$\operatorname{Res}(G) \geq$ BIG

Reflection Principle for Resolution [Cook 75]

(Our G will be $\operatorname{REF}(F, Z)$, essentially)

Reflection Principle for Resolution (cntd)

$\operatorname{SAT}(X, Y) \wedge R E F(X, Z)$

$X(i, q, b) \quad$: variable x_{q} appears in clause C_{i} with sign b
$Y(q) \quad$: variable x_{q} evaluates to 1 under the truth assignment
$\mathrm{Z}(l, j, k, q)$: clause D_{l} is inferred from D_{j} and D_{k} by resolving on x_{q}
$\mathrm{Z}(i, q, b) \quad$: variable x_{q} appears in clause D_{i} with sign b

Reflection Principle for Resolution (cntd)

building on

Theorem [Atserias-Bonet 02]
$\operatorname{SAT}(X, Y) \wedge R E F(X, Z)$ has poly-size 2-DNF Frege refs.

Reflection Principle for Resolution (cntd)

Proof (idea):
clauses of $\operatorname{SAT}(X, Y)$
clauses of $\operatorname{REF}(X, Z)$

$$
\begin{aligned}
& \uparrow \\
& \downarrow
\end{aligned} \left\lvert\, \begin{aligned}
& \mathrm{V}_{q=1}^{n}(Y(q) \wedge Z(1, q, 1)) \vee \mathrm{V}_{q=1}^{n}(\neg Y(q) \wedge Z(1, q, 0)) . \\
& \ldots \\
& \mathrm{V}_{q=1}^{n}(Y(q) \wedge Z(s, q, 1)) \vee \vee_{q=1}^{n}(\neg Y(q) \wedge Z(s, q, 0)) .
\end{aligned}\right.
$$

But $R E F$ says that this last one is $\emptyset!$

First Half of the New Construction

Corollary
 F is satisfiable $\Longrightarrow \quad \operatorname{Res}(\underbrace{R E F(F, Z)}_{G}) \leq$ SMALL

Proof (idea):

- Suppose Y satisfies F G
- $\operatorname{SAT}(F, Y) \wedge R E F(F, Z) \equiv \operatorname{REF}(F, Z)$
- $\vee_{q=1}^{n}(Y(q) \wedge Z(i, q, 1)) \vee \vee_{q=1}^{n}(\neg Y(q) \wedge Z(i, q, 0))$ is a clause!
F is satisfiable
F is unsatisfiable
$\Longrightarrow \quad \operatorname{Res}\left(\begin{array}{l}G E F(F, Z))\end{array} \leq\right.$ SMALL
$\operatorname{Res}(R E F(F, Z)) \geq \mathbf{B I G}$

for poly length Z

Indistinguishability Argument for Unsatisfiable F

TO CONCLUDE

Satisfiability Problem and Resolution : Timeline 1987-today

Satisfiability Problem and Resolution : Timeline 1987-today

