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Abstract

Propositional Proof Complexity is an active area of research whose main focus is the study of the

length of proofs in propositional logic. There are several motivations for such a study, the main of

which is probably its connection to the P vs NP problem in Computational Complexity.

The experience in the field has revealed that the most interesting parameter of a proof system

is the set of allowed formulas. The exact set of rules and axioms of the system is often irrelevant

as long as they remain sound and reasonable. This parameterization by the set of allowed formulas

establishes a link with the field of Boolean complexity where bounds are imposed on different

computational resources as a classification tool. This idea is adopted in the proof complexity

setting too. In this thesis we study the complexity of several ’resource-bounded’ proof systems.

The first set of results of the thesis is about a resource-bounded proof system that we call the

Monotone Sequent Calculus (MLK). This is the standard propositional Gentzen Calculus (LK)

when negation is not allowed in the formulas. The main result is that the use of negation does not

yield exponential savings in the length of proofs. More precisely, we show that MLK quasipoly-

nomially simulates LK on monotone sequents. We also show that, as refutation systems, MLK

is polynomially bounded if and only if LK is. These results are in sharp contrast with the sit-

uation in Boolean complexity where the use of negations provably yields an exponential gap in

computational power.

The second set of results is about a proof system extending Resolution by allowing disjunc-

tions of conjunctions of two literals and not only disjunctions of literals. We prove that the Weak

Pigeonhole Principle with twice as many pigeons than holes, and random 3-CNF formulas, require

exponential-size proofs in this system. The interest of our results is that we break the barrier of

one alternation of disjunctions and conjunctions in the context of the weak pigeonhole principle

and random 3-CNF formulas for the first time. The techniques that we employ combine old ideas

with new arguments using powerful tools from probability theory.

The third and final set of results is about the exact complexity of the Weak Pigeonhole Principle

with twice as many pigeons than holes. We show that all previously known quasipolynomial-size

proofs of bounded-depth are not optimal in terms of size. As a consequence of our result, we obtain

Bounded Arithmetic proofs that there are infinitely many primes from ’large number assumptions’

that are provably weaker than previously needed.
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Chapter 1

Introduction

1.1 Background

Since Boole turned logic into a mathematical discipline, its influence in modern mathematics has

been tremendous. Hilbert identified Mathematical Logic as the tool with which to establish the

foundations of mathematics through his well-known Consistency Program. Unfortunately, Gödel’s

Incompleteness Theorems showed that the program could not work. Nonetheless, the failure of

Hilbert’s program was reinterpreted by logicians in their own benefit: although mathematics cannot

be mechanized, logic is the tool to approximate that goal as much as possible. A first step towards

this is understanding the incompleteness phenomenon in its full strength. In a sense, Computability

Theory is the result of such a quest.

With the possibility of building actual computers, Computability Theory was refined into a

number of different subdisciplines. Among them is Complexity Theory, whose development shares

a number of similarities with the history of the consistency program. Von Neumann, among others,

turned Boolean logic into the calculus of actual computers. Later on, with the empirical observa-

tion that many algorithmic problems seemed intractable in real life, Cook identified logic, again,

as the tool with which to establish the foundations of computer intractability. Cook’s conjecture

that
������ � is often interpreted as an incompleteness phenomenon down to real life computabil-

ity. Needless to say, any form of logic, be it (Feasible) Proof Theory, (Finite) Model Theory, or

(Efficient) Computability Theory, plays a fundamental role in today’s research towards
������ � .

We focus here in Feasible Proof Theory, also called Proof Complexity.

1.2 Propositional Proof Complexity

Proof systems for propositional logic should be sound, which means that every provable formula

should be a tautology, and complete, which means that every tautology should be provable. More-
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over, it is desirable that proofs be easy to check and, if possible, short. While most usual proof

systems appearing in textbooks satisfy the first three requirements, it is not clear at all whether they

satisfy the condition that every tautology has a short proof. Informally, the aim of Propositional

Proof Complexity is to study this phenomenon mathematically.

Following Cook and Reckhow [CR79], a propositional proof system � is a polynomial-time

computable function from the set of words over a finite alphabet ��� onto ������� , the set of

propositional tautologies reasonably encoded in a finite alphabet. If �
	��� ��� for ������� and
� ��������� , we say that � is a proof of � in � . From its very definition, we see that a propo-

sitional proof system is sound, complete, with easy to check proofs: soundness follows from the

fact that its range is the set of tautologies, completeness follows from the fact that the function

is onto the set of tautologies, and proofs are easy to check since the function is polynomial-time

computable. Moreover, all usual proof systems for propositional logic such as Resolution, Hilbert

Style Axiomatic Systems, or Gentzen Calculus fit into this definition. As mentioned before, the

aim of Propositional Proof Complexity is to study the length of proofs. There are at least three

sources of motivation for such an enterprise.

Cook’s Program: towards �
�������� � � . The goal of Computational Complexity Theory is to

classify algorithmic problems according to the amount of resources that are required to compute

them on formal models of computation. In a seminal paper, Cook [Coo71] identified
�

and �
�

as fundamental complexity classes delineating the boundary between computer tractability and

intractability. The main result of Cook’s work implied that ������� does not belong to
�

unless
� � � � . Whether

� � � � has become one of the most challenging problems in mathematics

[Coo00].

In view of Cook’s results above, it is not surprising that the complexities of proofs and compu-

tations be tightly related. In a later article, Cook and Reckhow [CR79] proved that �
� ������ � �

if and only if no propositional proof system is polynomially bounded, that is, if and only if for

every propositional proof system � there exists a family of tautologies whose shortest proofs in

� are not bounded by a polynomial in the size of the tautologies. Thus, if we identify short with

polynomially bounded, we see that the question of whether propositional proof systems always

have short proofs is a fundamental one.

Clearly, proving that increasingly powerful proof systems are not polynomially bounded is

partial progress towards proving �
� ������ � � . This approach is known as Cook’s Program and

has been adopted by a number of researchers in recent years.

Feasible Mathematics. While the fundamental question is: Is it provable?, the practical ques-

tions are: Does it have a short proof? Do we need all that machinery to prove it? Although we

classify these questions as practical, truly fundamental questions are hidden in them. Indeed, the
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more elementary the machinery we use is, the more constructive the proof usually becomes. As a

slogan, constructive proofs tell us more than simply the truth. For example, a truly feasible proof

that every number has a prime factor would give an (as yet unknown) efficient algorithm to factor

large numbers, and so cryptography would not be possible as conceived today. Of course, this very

remark can be turned upside down: knowing that certain statements do not have feasible proofs is

also valuable information.

There are tight connections between provability in weak theories of arithmetic and the lengths

of proofs in a propositional setting. Thus, proving that certain propositional tautologies do not have

short proofs implies that certain arithmetical statements do not have feasible proofs. Although the

converse is not always true, in cases of interest it usually is. There is a particularly interesting case

that has been considered recently by Razborov [Raz95b, Raz95a, Raz96, RR97]. This concerns the

metamathematics of fundamental questions such as
� ���� � . Razborov proves a certain degree of

unfeasibility of its proof (if it can be proved) assuming a widely believed cryptographic conjecture.

Algorithmic Aspects of Proof Complexity. Automated Theorem Provers implement algorithms

that find proofs in particular proof systems. Their actual running complexity is often unknown

since they implement sophisticated heuristics to guide the search. However, if one is able to show

that a tautology of interest requires large proofs in the underlying proof system, that is a proof of

the inefficiency of the theorem prover since the output itself is already large. Hence, the results of

proof complexity serve as a tool of analysis, as well as a source of test cases.

On the other hand, one may ask a different kind of question regarding proof systems. For

example, one may be interested in efficiently finding short proofs only when such proofs exist.

A proof system that admits an algorithm to perform such a task is called automatizable. It turns

out that in an attempt to prove a lower bound for a certain proof system, one may find a battery

of interesting properties that may show useful to develop theorem provers. The most prominent

example is a weak form of automatizability of Resolution that was discovered recently by Ben-

Sasson and Wigderson [BSW01].

1.3 Resource-Bounded Proof Systems

As mentioned in Section 1.2, proving strong lower bounds for arbitrary proof systems is a task

at least as difficult as proving that
� �� � � . Therefore, similar to the approach taken in the

field of Boolean Circuit Complexity where severe restrictions are imposed on circuits in order to

prove lower bounds, it is natural to focus on restricted classes of proof systems. Although Cook’s

program explicitly proposes studying well-known proof systems, the experience in the field has

revealed that the most interesting parameter of a proof system is the class of allowed formulas. It

is often the case that the particular set of axioms and rules is not important as long as they remain
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sound, complete and reasonable. In this thesis, we will be mainly interested in studying the effect

of restricting the class of allowed formulas. A different sort of restriction that one can impose on

a proof system is requiring some particular structural form in the derivation, such as being a tree.

This approach has been widely studied and will not be adopted here (see [Gal00]).

The less stringent restriction on the type of formulas is allowing arbitrary Boolean circuits.

Typical proof systems using such a class of formulas are the Extended Frege systems. An ap-

parently stronger restriction is requiring that the allowed formulas of the system be true Boolean

formulas, that is, Boolean circuits of fan-out one (each gate feeds no more than one gate). Again,

typical proof systems of this type are Frege Systems and the propositional Gentzen Calculus. Prob-

ably, the most stringent restriction of interest is requiring the allowed formulas to be clauses, that

is, disjunctions of literals. The typical example of a proof system with such a requirement is

Resolution. We note that in order to deal with arbitrarily complex tautologies, even if stringent

restrictions are imposed on the allowed formulas, we often consider the refutational version of the

proof system, in which the negation of the tautology is represented as a set of contradictory clauses,

and the goal is to derive a contradiction from them.

Between Extended Frege systems and Resolution, there is a whole spectrum of resource-

bounded proof systems. One may impose formulas with a limited number of alternations of con-

junctions and disjunctions (the so-called depth of the formula), a limited use of some Boolean

connective (such as negation), a limited size measured by the number of distinct literals that occur,

a limited degree when expressed as a polynomial over some ground field, or any combination of

these and other possibilities thereof.

There are several restrictions that are motivated from the field of Boolean Circuit Complexity.

Restricting the depth of Boolean formulas is particularly interesting. On the one hand, this restric-

tion generalizes Resolution whose allowed formulas have depth 0. On the other hand, the current

understanding of bounded-depth circuits led to the discovery of quite spectacular lower bounds in

Proof Complexity. Moreover, it has turned out that proof systems with formulas of bounded-depth

are, in a precise technical sense, tightly related to weak theories of arithmetic such as ����� . We

will work with these proof systems and weak theories of arithmetic in this thesis.

A second example of particular interest is restricting the use of negations in formulas. In the

realm of Boolean Circuit Complexity, restrictions of these sort have lead to the most successful

lower bounds. In Proof Complexity, there is a nice approach towards introducing such monotonic-

ity restrictions. Pudlák [Pud99] proposed studying the propositional Gentzen Calculus without

negation. The proof system is also called Geometric Logic. It turns out that several tautologies

of interest can be written as sequents without negation. The typical example is the Pigeonhole

Principle which can be expressed as follows. If variable ���	� 
 means that pigeon � sits in hole � , the

sequent says that if ���� pigeon sit in  holes, some hole must contain two different pigeons. In
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symbols: � ����
��� �

��

�� � � �	� 

	

��� � �
� ������ ����������� � �	� �
� � 
 � ���

This proof system will also be thoroughly studied in this thesis.

Finally, we want to warn the reader that the so-called algebraic proof systems will not be

considered in this thesis. Those systems have quite a different flavor. In particular, the allowed

set of axioms and rules often make a difference there. Needless to say, the type of problems and

techniques one encounters with these systems are of primary interest too (see [Pit97] for a survey).

1.4 Some Interesting Tautologies

1.4.1 The Weak Pigeonhole Principle

Informally, the Pigeonhole Principle (PHP) states that if  � � pigeons sit in  holes, then some

hole must contain at least two pigeons. In general, and more formally, the ��������
with  ! 

states that there is no one-to-one mapping from a set of  elements into a set of  elements.

When  is significantly larger than  (say  #"%$  ), the principle is called the Weak Pigeonhole

Principle (WPHP). Although one may tend to think that it is a trivial statement, the PHP states

a fundamental property of cardinality of sets and appears recurrently in mathematical arguments,

notably in combinatorics, probability theory, and number theory. To begin with, the induction

principle is a special case of the pigeonhole principle. We present the argument in [Kra95] since

we find it instructive. Suppose that & 	 �  is a property of the natural numbers that violates the

induction principle, that is, suppose that there exists a natural number  such that '(& 	   but& 	*)� � 	,+��  	-& 	 � /. & 	 � ���   holds. Then, it is easy to see 1 that the function

0 	 �  � 12 3 � if & 	 � 
�54 � if '(& 	�� 

maps 67)98 �:�:� 8 <; one-to-one into 67)=8 �>�:� 8 ?4 �@; . This violates the pigeonhole principle and we are

done.

WPHP in Mathematics and the Theory of Computation. The WPHP is a combinatorial state-

ment expressing a basic Ramsey-type property of mappings: any mapping from a large set into

a small set contains unavoidable patterns (a collision). Therefore, we expect arguments in Finite

1Indeed, suppose that A=B�C�D(EFA9B�G�D but CIHEFG . Necessarily, either CJEFGLKNM or G
EOC�KPM since A=B�C�D(EFA9B�G�D .
Without loss of generality, CQENG�KRM . Now A9B�G�D<ENA9BSC�DUTIC(VIMWENG and so A=BXG�DYENG since A9B�G�DUZRG . Hence, [
BXG�D
holds and so does [
BXG\K]M^D since B�_a`bD�BX[cBX`bDedf[cBX`(K]M^DgD . Therefore A9BSChD<ENA=BXGYK]M^DeENG�KRMiE]C . We conclude

that A9BSC�DiHERA=BXG-D ; contradiction. Note that this argument is really elementary (it could be formalized in jlk�m@npo , say).
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Combinatorics to make use of the WPHP more or less explicitly. As a matter of fact, counting

arguments usually do, and these are everyday’s tools in combinatorics.

The Probabilistic Method was introduced by Erdös as a method to prove non-emptiness of

sets. The method consists in assigning a probability measure on sets of interest, and prove that our

particular set has non-null measure. In finite combinatorics, the probabilistic method reduces to a

counting argument, which in turn reduces typically to the WPHP. As a second example, the lower

bounds on the size of circuits are typically counting arguments. The clearest example of this fact

is Shannon’s lower bound for almost all Boolean functions [Sha49]: the argument formalizes the

observation that there are many more Boolean functions on  variables than small circuits with

 inputs. Similarly, the new proof of Hastad’s Switching Lemma due to Razborov [Raz95a] is a

counting argument that can be formalized using the WPHP. For a more indirect and sophisticated

use of the WPHP, we mention Paris, Wilkie and Woods [PWW88] feasible proof of the infinitude

of primes: they find a proof in the bounded arithmetic theory � � � that there are infinitely many

primes assuming the ������� �� as an axiom for every N!F) .
There are also some connections between the complexity of proving the WPHP and the hard-

ness of computational problems. Krajı́cek, Pudlák and Takeuti [KPT91] proved that if �
� ��

����� ���
	 , then the bounded arithmetic theory &�� does not prove the �(� � � �� . More recently,

Krajı́cek and Pudlák [KP95] proved that if the cryptosystem RSA is secure against polynomial

attacks, then the bounded arithmetic theory  �� does not prove �(� � � �� . We note, by the way, that a

result of Paris, Wilkie and Woods [PWW88] as refined by Krajı́cek [Kra95] implies that �(� ��� �� is

provable in ��� .
Finally, Razborov has connected the complexity of proving WPHP with the metamathematics

of fundamental problems in Complexity Theory such as
� �� � � . Indeed, Razborov argued that

the problem
� �� � � can encode a certain WPHP [Raz98]. Hence, proving that such a WPHP

requires unfeasible proofs would be telling us that any proof of
���� � � must be unfeasible.

WPHP in Proof Complexity. In the setting of propositional proofs, the complexity of the Weak

Pigeonhole Principle has been and remains to be a challenge for the community. In a sense, it is one

of those classical problems whose partial solutions have stimulated the advance of the field with

the introduction of new methods and techniques. In the context of Resolution, its exact complexity

has remained open until very recently, and that contributed to the introduction of new methods.

Here is a short account of this history. Haken [Hak85] proved an exponential lower bound for

the size of Resolution proofs of the Pigeonhole Principle ����� � ���� . Later, Buss and Turán [BT88]

extended his technique to obtain exponential lower bounds for �(� � �� when  ��� 	  � ������� 	    .
The complexity of �(� � ���� in Resolution remained widely open: the method failed badly. This

indicated that, in spite of having already proved exponential lower bounds for Resolution, the

strength of the proof system was not completely understood yet. The introduction of the Width
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Method for Resolution by Ben-Sasson and Wigderson [BSW01], following the work of Beame

and Pitassi [BP96], shed some more light to the understanding of Resolution. Unfortunately, the

width method still failed for a number of tautologies including the ����� � �� . The work of Bonet and

Galesi [BG99], showing the intrinsic limitations of the width method, ratifyied this point.

Researchers started at least three new lines of attack. The first line of attack consisted in restrict-

ing the form of Resolution proofs in order to gain understanding on the problem. Tree Resolution

was considered by Buss and Pitassi [BP97] who proved exponential lower bounds for �(� �Q�� . This

lower bound can also be obtained through the width method, though. A notion of rectangular Res-

olution proof was introduced by Razborov, Wigderson and Yao [RWY97], and exponential lower

bounds were also proved. Regular Resolution was considered by Pitassi and Raz [PR01] who

proved exponential lower bounds too. Each of these papers introduced some new ingredient to the

final solution of the problem which is of independent interest. The second line of attack consisted

in looking at tautologies sharing some of the properties of the Weak Pigeonhole Principle. The typ-

ical example is the Mutilated Chess Board Tautology stating that a squared grid with two opposite

corners cut off cannot be covered by non-overlapping pieces each covering two adjacent squares

of the grid. The difficulty in proving lower bounds for this tautology was, again, the failure of the

width method. The problem was solved by Aleknovich [Ale00] and Dantchev and Riis [DR00]

independently. This result, while being progress towards the problem on the Weak Pigeonhole

Principle, is interesting in its own right. The third line of attack was suggested by Krajicek. He

realized that exponential lower bounds for �(� � � ��� �� in a system stronger than Resolution would

imply exponential lower bounds for �(� � ���� in Resolution. This system, called Res(2) by Krajicek,

consists in augmenting the set of allowed formulas to disjunctions of conjunctions of two literals.

He suggested studying the Res(2)-systems by themselves, and that motivated the work and the new

techniques of Chapter 4 of this thesis. As expected, the interest of these result will go beyond the

problem of the Weak Pigeonhole Principle. Finally, Raz [Raz01a] completely solved the problem

by proving an exponential lower bound for Resolution proofs of �(� � �� for any  !  . Later

Razborov [Raz01b] improved Raz’s results in various aspects.

In view of this, we can say that it has been quite a successful approach for the field to have

the Weak Pigeonhole Principle as a challenge. Although the problem has been finally solved for

Resolution, there is still the challenge of knowing its exact complexity in systems with formulas

of bounded-depth. Part of the work of this thesis is motivated by this problem, and we will return

to it later in this introduction.

1.4.2 Random CNF Formulas

We already pointed out in Section 1.3 that tautologies will often be represented by their nega-

tion, as contradictory sets of clauses, or as we say, unsatisfiable CNF formulas. It turns out that
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researchers of various fields have been interested in defining a probability distribution on CNF

formulas analogous to the random graph model of Erdös and Renyi [ER60]. The goal is, as usual,

to gain understanding on the structure of these complex combinatorial objects. However, some

researchers like to make emphasis on the interest of studying the complexity of the satisfiability

problem on the average case.

The most commonly used probability distribution on CNF formulas is defined as follows. For

a fixed number of propositional variables  , a fixed number of clauses  , and a fixed number of

literals per clause
�

, a random
�

-CNF formula is produced by choosing exactly  clauses, each

drawn independently from the uniform distribution on clauses of exactly
�

literals on distinct vari-

ables. This probability distribution is denoted � � � ��
. Several empirical and theoretical results are

known about these distributions. A crucial parameter is the ratio of clauses to variables � �  �  .

The most basic and interesting fact is the observation that when � is below a certain threshold � � ,
the CNF formula is almost surely satisfiable, and when � is above � � , the formula is almost surely

unsatisfiable. Experimental results suggest that � �
��� � $ , while theoretical results can prove that� � ) ��� � � � � �
	 if � � exists at all [CS88, CF90, CR92, FS90, KKKS98].

4.2

1.0

0.0

Figure 1.1: The probability that a random 3-CNF is unsatisfiable as a function of the ratio �������� .

Interestingly enough, there is an observed degree of difficulty in deciding satisfiability when

� is near the threshold. This empirical result was later supported by a result of Chvátal and

Szeméredi [CS88] saying that for � near the threshold, every Resolution refutation of a random 3-

CNF formula is almost surely of size $���� ��� . These results were later extended by Beame and Pitassi

[BP96], and Beame, Karp, Pitassi and Saks [BKPS98]. At the time of writing, it is not known if

random 3-CNF formulas are almost surely hard to refute in arbitrary strong proof systems. One

of the results of this thesis is proving lower bounds for random 3-CNF formulas in a proof system

strictly stronger than Resolution.
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1.5 Overview of the Results of the Thesis

The goal of this thesis is to study the size of propositional proofs when the allowed formulas have

some specified bound on a resource. The two primary resources of interest are (1) negations and

(2) alternations of conjunctions and disjunctions. We elaborate a little bit more on the motivations

while we discuss the results.

The Monotone Calculus Boolean circuits that do not use negations are called Monotone. This is

motivated by the fact that such circuits compute Boolean functions that are monotone with respect

to the componentwise partial order. More formally, a Boolean function
0�� 67)=8 �@; � . 67)=8 ��; is

called monotone if for every � � � � �:�:� � � � 67)=8 �@; � and � � � � �:�:� � � � 67)98 �@; � , if � � � � � for

every � �O6 �b8 �:�>� 8  ; , then
0 	 �  � 0 	��  . It is easy to see that every Boolean circuit over the basis6 � 8���8 )=8 �@; computes a monotone Boolean function, and that every monotone Boolean function is

computed by a Boolean circuit over 6 � 8���8 )98 �@; . For this reason, such circuits are called Monotone

Circuits.

Since many interesting Boolean functions are monotone, it is natural to ask for their monotone

complexity, that is, the size of the minimal monotone circuits computing them. Several lower

bounds are known for this model. The most important of all is Razborov’s [Raz85a] lower bound

for the size of monotone circuits computing the Clique function, as improved by Alon and Boppana

[AB87]. The same techniques led to the proof that the use of negation can make a difference for

computing monotone functions: Razborov [Raz85b] proved that the Perfect Matching function

requires quasipolynomial-size monotone circuits while polynomial-size circuits (with negation)

exist for this function. The gap between monotone and non-monotone circuits was later improved

to an exponential by Tardos [Tar87] for a different function. Monotone formulas, that is, Boolean

formulas over the basis 6 � 8���8 )=8 �@; , have also been considered and several lower bounds are known

[KW90, RW92].

Since the restriction to the monotone basis 6 � 8���8 )=8 �@; has been so fruitful in proving lower

bounds, Pudlák [Pud99] suggested a similar approach in Proof Complexity. He proposed studying

the propositional Monotone Gentzen Calculus MLK which is obtained from the standard propo-

sitional Gentzen Calculus LK when negations are not allowed (see Section 1.3). In view of the

results mentioned above for monotone circuit complexity, one would expect an exponential gap in

the complexity of proofs in MLK and LK.

Contrary to this intuition, our main result of Chapter 3 proves that the gap is at most quasipoly-

nomial. More precisely, we show that if a sequent of monotone formulas has a proof of size  in

LK, then the same sequent has a proof of size  � � �	��
 � � � � in MLK. We say that MLK quasipolyno-

mially simulates LK on monotone sequents. Moreover, if only the number of lines is considered,

instead of the size, the simulation is then polynomial. A weakness of the result, as stated here,
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is that the simulation makes sense only on sequents of monotone formulas. To overcome this

weakness, we propose to translate each sequent into a set of contradictory clauses (with additional

variables), and then use the refutational version of our result which is still true. The reader will

observe that each clause may be written as a monotone sequent by putting all negated variables to

the left of the sequent (without negation) and all positive variables to the right of the sequent.

Ideally, one would like to prove that MLK polynomially simulates LK on monotone sequents

(or on contradictory sets of clauses). Although we are not able to prove this result, we are able

to prove an important consequence of it. Namely, that MLK is polynomially bounded if and only

if LK and all Frege systems are polynomially bounded. This surprising result indicates that a

superpolynomial gap between monotone and non-monotone LK, if any, will be very hard to prove.

The techniques we use to prove these results come from the field of circuit complexity, which is

even more surprising since the result goes in the opposite direction there. We use the techniques of

slice functions and pseudocomplements. A
�

-slice function is a Boolean function that is identically) on inputs with less than
�

ones, and identically � on inputs with more than
�

ones. Slice functions

have the property that monotone and non-monotone circuits for it have essentially the same size.

The reason is that each negated variable can be replaced by a pseudocomplement formula which is

monotone and behaves properly on inputs with the right number of ones. We adopt these ideas to

prove our result.

The main technical step of the proof is showing that certain explicitly given monotone formulas

that compute the Boolean threshold functions have short MLK proofs of their basic properties.

The
�

-th Boolean threshold function �
� �� � 67)=8 ��; � . 67)=8 ��; returns � on � � � � �:�:� � � �67)=8 �@; � if and only if �
�
��� � � � " �

. One of the basic properties with short MLK proofs is that

the �
� �� are symmetric functions. Namely, that for every permutation � on 6 �78 �:�:� 8  ; , we have

that �
� �� 	�� � 8 �:�:� 8 � �  � �
� �� 	���� � � � 8 �:�:� 8 ��� � ���  . Since the size of the explicitly given formulas is

quasipolynomial 
� � �	� 
 �

� � �
, the whole simulation will be quasipolynomial.

Some other results that we obtain concern the size of proofs of certain specific tautologies.

We exhibit a quasipolynomial-size proof of the Pigeonhole Principle sequent ����� � ����
in MLK.

This proof does not use the simulation result and is of independent interest as an alternate to the

well-known polynomial upper bound of Buss [Bus97] in Frege systems. In fact, as a byproduct

to the generality in which we state our results, we obtain a subexponential-size $ � � � � ��� � proof of�(� � � �e�� in depth- � MLK. Although non-monotone upper bounds of this type should easily follow

from Buss’ techniques, we are not aware of any explicit statement of this even weaker result.

Note, on the other hand, that the best lower bound for ����� � ����
in depth- � Frege systems is of

the form $ ��� � � ��� � � [PBI93, KPW95]. We also prove that some specific versions of the Pigeonhole

Principle, such as the Onto or the Functional versions, have polynomial-size MLK proofs. We also

consider the Matching and Clique-Coclique principles. We show that all these have polynomial-

size MLK proofs. As corollaries, we obtain exponential separations between MLK and bounded-
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depth systems, and MLK and Cutting Planes.

Lower Bounds Beyond Resolution Understanding the expressive power of alternating conjunc-

tions and disjunctions is one of the most important and recurrent themes of Complexity Theory.

In Proof Complexity, one considers proof systems whose allowed formulas have a bound on the

number of alternations. The extreme case is Resolution which is a depth- ) system. While strong

lower bounds are known for proof systems allowing depth- � formulas for small � , the techniques

seem unable to produce lower bounds for some important tautologies. The most interesting cases

are the Weak Pigeonhole Principle �(� � � �� and Random CNF formulas. These two families of

tautologies have been proven hard for Resolution, but resist to be proven hard for depth- � systems

for small �5" � . In the case of �(� � � �� , it should be noted that quasipolynomial-size depth- � proofs

exist, and so “hard” means non-polynomial in this case.

The main result of Chapter 4 breaks the psychological barrier of one alternation for the Weak

Pigeonhole Principle and Random CNF formulas with clause density near the threshold. We con-

sider proof systems whose allowed formulas are disjunctions of conjunctions of two literals. A

concrete system of this type was introduced by Krajı́cek [Kra00] under the name Res(2) as an ob-

vious generalization of Resolution. We make an abuse of language and say that a sound proof sys-

tem with rules of fan-in two whose allowed formulas are of this type is a Res(2)-system. We prove

that ����� � �� requires exponential-size $ ��� ��� � �	� 
 � ��� � ��� � refutations in every Res(2)-system. Similarly,

Random CNF formulas with clause density near the threshold (  ���  , say), require refutations

of size $ ��� � � � � � � �	��
 � ��� � � � in all Res(2)-systems. We note that these are the strongest lower bounds for

the Weak Pigeonhole Principle and Random CNF formulas known to date.

To appreciate the strength of Res(2)-systems, one should examine the behavior of the known

techniques to prove lower bounds in depth- � systems. The only known technique for depth- �
systems is essentially the random restriction method. It turns out that such a technique, by itself, is

unable to produce any lower bound for the Weak Pigeonhole Principle and Random CNF formulas.

The reason is that, in order to simplify a formula that involves a single alternation of conjunctions

and disjunctions, one needs to apply a relatively large restriction that may trivialize the initial set of

clauses. This is better seen in the case of Random CNF formulas. In order to switch a disjunction

of conjunctions of two literals into a small conjunction of disjunctions with an exponentially small

probability of failure, one needs to apply a restriction of length ��	   , and that would falsify an

initial
�
-clause almost surely. The precise details will be provided in Chapter 42.

The way out we suggest is to combine the method of random restrictions with the width method

for Resolution. The main observation, whose proof is the main technical contribution of Chapter 4,

2For the anxious reader, consider Hastad’s Switching Lemma as stated in the Handbook [BS90]. Switching a � -

DNF into an � -CNF requires m ZRM
	��� ZNM
	@M
� . This means that each variable is set to � or M with probability at least� 	���� , which implies a constant probability of falsifying a � -clause.
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is that a disjunction of conjunctions of two literals whose total number of literals is large (whose

width is large), is significantly shortened almost surely by a relatively short random restriction.

This holds even when restrictions have dependencies among variables, as in the ones used for the

Weak Pigeonhole Principle. This is the most difficult and interesting case. In order to prove this

claim, we have to resort to the use of martingales and strong concentration bounds such as Azuma’s

Inequality. To our knowledge, this is the first time this technique is used in the field. Our proof

also requires us to show the existence of certain bipartite graphs with strong expansion properties

that are robust to a random removal of a small set of nodes and their edges.

Finally, it is known that Res(2) is a system strictly stronger in power than Resolution. Indeed,

one can prove a quasipolynomial  ��� �	��
 � � � � � �	��
 �	� 
 � � � � separation [ABE01]3. A consequence of

this result is that our lower bounds would not follow from the known exponential $ ��� ��� lower

bounds for the Weak Pigeonhole Principle �(� � � �� in Resolution [BT88] and an alleged efficient

simulation of Res(2) in Resolution. Indeed, any such simulation should be quasipolynomial, and

that would yield lower bounds of the form $ ��� ��� � , instead of the stronger $ ��� ��� � �	� 
 � ��� ��� � that we

obtain. We see this observation as an indication that our techniques are really different and stronger

than those used for Resolution.

We close Chapter 4 with a result that relates Res(2) to a proof system based on Cutting Planes

and the calculus of Lovász-Schrijver introduced by Pudlák [Pud99]. The latter system works with

quadratic inequalities. The aim of this result is to shed more light on the observation that the al-

lowed formulas of Res(2) are the Boolean analogue of quadratic inequalities, just as clauses are

the Boolean analogue of linear inequalities. To be more precise, we show that the calculus of

Lovász-Schrijver augmented with the division rule for quadratic inequalities polynomially simu-

lates Res(2). This should be compared with the known result that Cutting Planes polynomially

simulates Resolution. We also introduce a proof system that works with quadratic inequalities but

avoids divisions of any type. This system is called � and we show that it polynomially simulates

Res(2) too.

Improved Bounds on WPHP and Infinitely Many Primes We outlined some of the reasons for

being interested in the complexity of proofs of the Weak Pigeonhole Principle in Section 1.4. The

list is not complete, however. One of the most important challenges in propositional proof com-

plexity is understanding the complexity of proof systems whose allowed formulas have bounded-

depth. In a major breakthrough, Ajtai [Ajt88] proved that �(� � � ����
requires superpolynomial-size

proofs in bounded-depth systems. The lower bound was significantly strengthened by Pitassi,

Beame and Impagliazzo [PBI93] and Krajicek, Pudlák and Woods [KPW95] independently. They

proved a lower bound of the form $ ��� � � � � � � for depth- � systems.

3We note that this is in an article co-authored by the author [ABE01], but this result will not be part of this thesis.

Actually, a slightly subexponential separation has been proven recently by the author and Bonet [AB01].
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For the Weak Pigeonhole Principle ����� � �� , the situation is quite different. While Buss and

Turán [BT88] showed that ������� �� requires exponential-size proofs in Resolution, Paris, Wilkie

and Woods [PWW88, Kra95] proved that it has quasipolynomial-size 
� � �	��
 �

� � �
proofs in bounded-

depth systems. More recently, Maciel, Pitassi and Woods [MPW00] gave a new quasipolynomial-

size proof of optimal depth. Their system is essentially Res(log), where the allowed formulas are

disjunctions of conjunctions of up to
����� 	   � � � � literals. Both papers left open, however, whether

depth could be traded for size; that is, whether allowing more depth in the proof would allow

us reduce the size below 
�	� 
 �

� �
. We note that such a trade-off is known for the even weaker

Pigeonhole Principle ����� � �� [PWW88].

The proofs of Paris, Wilkie and Woods [PWW88] and Maciel, Pitassi and Woods [MPW00]

consist in reducing ������� �� to �(� � � �� . In both cases, they build an injective map from 67)98 �:�:� 8  � 4
�@; to 67)98 �:�:� 8 ]4��@; by repeatedly composing a supposedly injective map from 67)=8 �:�:� 8 $ ]4 �@;
to 67)=8 �:�:� 8 R4 ��; . The difference in their proofs is, essentially, in the proof of ����� � �� . Our new

contribution is showing that the repeated composition technique can be made more efficient in

terms of size. That is, we reduce �(� � � �� to �(� � � �� in size �� � �	��
 �
� � �

(notice the small oh). The

price we need to pay for that is an increase in depth. More precisely, we show that ����� � �� reduces

to �(� � � �� in size 
� � � � �	��
 �

��� � � ��� �
and depth � . This gives us the desired size-depth trade-off upper

bound for ����� � �� since �(� � � �� is provable in size 
� � �	��
��

���
�
��� �

and depth
� 	 �  [PWW88, Kra95].

The most interesting particular case of our size-depth trade-off is when � � � 	 �  since it

proves that the previously known upper bound in bounded-depth Frege is not optimal. Indeed,


� � � � �	��
 �

� � � � � � �
grows slower than ��

�	��
 �
���

for any constants � ! $ and 	 ! ) . Thus, any lower

bound proof will have to focus on a bound weaker than 
�	� 
 �

��� �
for any 
 !%) . We believe this is

valuable information. The other interesting particular case is when � � � 	 ����� � � � 	    . In that case

we obtain a proof of size 
� � �	��
 �	� 
 �

� � �
and depth

� 	 � � ����� � 	    . The bound 
� � �	� 
 �	��
 �

� � �
is new in

the context of �(� � � �� .

The method that we use to reduce the size of the composition technique is inspired from the

theory of automata. We observe that checking whether � is the image of � under repeated compo-

sition of a function
0

is a reachability problem in a graph. Therefore, one can use (an analogue of)

Savitch’s Theorem to efficiently solve the reachability problem. We are more ambitious and we

use ideas from an old theorem of Nepomnjaščij that achieves a size-depth trade-off for the same

problem [Nep70]. We formalize the ideas in Nepomnjaščij’s Theorem into a theorem of Bounded

Arithmetic with an automatic translation into propositional Gentzen Calculus. This formalization

may be of independent interest. We note that Nepomnjaščij’s Theorem has received a renewed

deal of attention recently in the context of time-space trade-off lower bounds for the satisfiability

problem [For97, LV99, FvM00].

The new bounds on the Weak Pigeonhole Principle that we obtain have some consequences

for Feasible Number Theory whose aim is to develop as much number theory as possible without
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exponentiation. The main open problem of the field is whether the bounded arithmetic theory �����
can prove that there are unboundedly many primes [PWW88, MM89, BI91]. The theory ��� � is

Peano Arithmetic with induction restricted to � � -formulas, that is, formulas whose quantifiers are

of the form 	 +�� � �  and 	�� � � �  . Of course, Euclides’ proof cannot be carried over in � � � since

exponentially large numbers are required in the proof. In a major breakthrough, Woods [Woo81]

showed that exponentiation can be replaced by a combinatorial argument using the Pigeonhole

Principle �(� � � ���� , and Paris, Wilkie and Woods [PWW88] realized that the Weak Pigeonhole

Principle ����� � �� was enough for that proof. As a corollary to their results, they show that � � �
augmented with the statement that � �	��
 ���

�
exists proves that 	�� �  	��]! � � prime 	 �   . Our results

improve this to show that, for every standard natural number
�

, the theory ����� augmented with the

statement that � �	��
 ���
� � ���

exists proves that 	�� �  	 � ! � � prime 	��   . Therefore, the large number

assumption “ � �	��
 ���
�

exists” is not optimal. Indeed, for
� ! � , one can build a model of � � � with a

non-standard element � such that �
�	��
 ���

� � ���
exists in the model but �

�	��
 ���
�

does not.
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Chapter 2

Preliminaries

2.1 Main Definitions

All propositional proof systems we will deal with can be seen as restrictions of the popular Gentzen

Calculus, also called Sequent Calculus in some textbooks. For this reason, we find it useful to

define the propositional Gentzen Calculus, denoted LK, in its full generality first.

All our formulas are over the basis 6 � 8���8�'(; with propositional variables � � 8�� � 8 �:�:� and con-

stants ) and � . Formulas may be defined recursively: propositional variables and constants are

formulas, if
�

and � are formulas then 	-' �  , 	 � � �  and 	 � ���  are also formulas, and nothing

else is a formula. Alternatively, one may define formulas to be Boolean circuits in tree-form, that

is, circuit in which every gate is used at most once. Since we view � and � as associative and

commutative connectives, we omit unecessary parentheses. Thus, for us,
� � � ��� , 	 � � �  ��� ,

� � 	 � � �  , ... will all be the same formula. We will also omit some parentheses by giving the

higher priority to ' . Thus, ' � � � really means 	-' �  � � , and not ' 	 � � �  .
We may normalize Boolean formulas by pushing the negation to the variables using the De

Morgan rules, and collapsing consecutive levels of connectives of the same type into a connective

of larger fan-in, that is, with a larger number of operands. With this approach, the depth of a for-

mula is the maximal nesting of conjunctions and disjunctions in a path of the normalized Boolean

formula. Thus, literals (propositional variables or negations of propositional variables) have depth) , conjunctions or disjunctions of literals have depth � , and so on. The bottom fan-in of a formula

is the maximum fan-in of a conjunction or disjunction at depth � .
In the following, Roman uppercase letters such as

� 8 ��� 8	�58 �:�:� represent formulas, and Greek

uppercase letters letters such as 
/8	
 � 8 � 8 �>�:� represent sequences of formulas that we interpret as

multisets of formulas.
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Axioms:

� 	 � ) 	 
 
 	 �
Weakening Rules:


 	 �

/8 � 	 � 
 	 �


 	 � 8 �
Cut Rule:


 	 � 8 � 

� 8 � 	 � �


/8	
 � 	 �I8 � �
Left Logical Rules:


/8 � 8 � 	 �

/8 	 � � �  	 � 
/8 � 	 � 


� 8	� 	 � �

/8	
 � 8 	 � � �  	 �I8 � � 
 	 � 8 �


/8�' � 	 �
Right Logical Rules:


 	 � 8	�58 �

 	 	 � � � p8 � 
 	 � 8 � 


� 	 �58 � �

/8	
 � 	 	 � � � p8 �I8 � � 
/8 � 	 �


 	 ' � 8 �
An LK-proof of 
 	 � is a sequence of lines ending with 
 	 � , each of which is either an

axiom of LK, or has been obtained by a rule of LK from previous lines in the sequence. Each line

of the proof is called a sequent. An LK-refutation of 6 
 � 	 � � � � � �9; is an LK-proof of the empty

sequent 	 when each 
 � 	 � � may be used as an axiom. When we restrict the proof in such a

way that each derived sequent can be used only once as a premise in a rule, we say that the proof

is tree-like. The same definition applies to refutations. The size of the proof or refutation is the

overall number of symbols used in it. In this definition, each occurrence of a propositional variable

counts one, and each connective also counts one. Parentheses do not count in the size. The depth

of a proof is the maximum depth of a formula appearing in it.

2.2 Resolution

One of the most popular proof systems is Resolution. This system works with clauses, that is,

disjunctions of variables or negated variables which are also called literals. The goal is to refute a

given set of clauses by deriving the empty clause. There is a unique rule of inference, the so-called

Resolution rule:

Resolution Rule: � � � ���R' �� � � 8
where

�
and � are clauses, and � is a propositional variable. As in LK, a Resolution refutation is

tree-like if every clause in the refutation is used at most once as the premise of a rule. The length
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of a Resolution refutation is the number of clauses in it, and the size is the total number of symbols

in it.

Resolution may be seen as the restriction of LK when all formulas in the sequents are variables.

For a given clause � of the form ' � � � �:�:� � ' � � � � � �e� � �:�:� � ��� , let � 	 �  be the sequent

� � 8 �>�:� 8 � � 	 � � ��� 8 �>�:� 8 � � . Similarly for a given sequent  of the form � � 8 �>�:� 8 � � 	 � � ��� 8 �>�:� 8 � � ,
let 	 	   be the clause ' � � � �:�>� �]' � � � � � ��� � �:�>� � ��� .
Proposition 1 Let

� � 6 � � 8 �:�:� 8 � � ; be a set of clauses and let � � 6  � 8 �:�:� 8  � ; be a set of

sequents such that � 	 � �  � �� and 	 	 ��  � � � . If
�

has a Resolution refutation of size  , then �
has an LK refutation of size

� 	   in which every formula is a propositional variable. Conversely,

if � has an LK refutation of size  in which every formula is a propositional variable, then
�

has

a Resolution refutation of size
� 	   .

Proof : The first implication is very easy: replace each clause in the Resolution refutation by its

translation into a sequent, and replace each application of the Resolution rule by a cut.

For the second implication, first replace each sequent by its translation into a clause. Observe

that the logical rules of introduction of ' , � and � cannot be used in the LK proof since all formulas

there are propositional variables. Similarly, the axioms about the constants ) and � cannot be used

since these are not variables. Thus, all axioms are of the form � 	 � for some variable � , and the

only rules that are left are the weakening rules and cut. By induction on the length of the proof,

one can easily show how to eliminate each weakening rule by standard proof-theoretic techniques.

Similarly, one can ignore all cuts with an axiom � 	 � since that would not change the sequent.

The resulting sequence of clauses is a Resolution refutation. � �

In view of this Proposition, the restriction of LK so that the only allowed formulas in the

sequents are propositional variables is equivalent to Resolution for all practical purposes.

2.3 Extensions of Resolution.

Krajı́ček introduced a refutational proof system called Res(
�

) that works with
�

-disjunctions, that

is, disjunctions of conjunctions of up to
�

literals. The goal, again, is to derive the empty clause

from a given set of clauses. There are three inference rules in Res(
�

): Weakening, Introduction of� and Cut.

Weakening: �
� � �

Introduction of � : � � 	
	 � �N�:�>�@� 	��  � � 		�� ��� � �:�:�b� 	 � � � � � 		 � �N�:�:��� 	 � 
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Cut: � � 	
	 � � �:�>�@� 	 �  ���R' 	 � � �:�:� �N' 	 �� � � 8
where

�
and � are

�
-disjunctions, � � ����� � �

, and the 	 � ’s are literals. We also allow axioms

of the form � �I' � . The length of a Res(
�

) refutation is the number of
�

-disjunctions in it, and the

size is the number of symbols in it.���
	 	 �  may be seen as the restriction of LK so that all formulas in the sequents are depth- �
formulas with fan-in at most

�
. That is, all formulas in the sequents are either conjunctions of up

to
�

literals, or disjunctions of up to
�

literals. Given a
�

-disjunction � of the form ����� ��� 
���� � 		�	� 
 ,
let � 	��  be the sequent 	 ����� ��� 
���� � 		�	� 
 . Similarly, given a sequent  of the form � � 8 �:�:� 8 � � 	
� � ��� 8 �:�:� 8 � � where each � � is a depth- � formula of fan-in at most

�
, let � 	   be the

�
-disjunction

� ���� � ' � ����� ���� � ��� � � , where ' � stands for ' 	 � � �:�:� � ' 	  if � � 	 � �J�:�>� � 	  , and for ' 	 � �J�:�>� � ' 	 
if � � 	 � � �:�>� � 	  .

Proposition 2 Let
� � 6 � � 8 �:�:� 8 � � ; be a set of clauses and let � � 6  � 8 �:�:� 8  � ; be a set of

sequents so that � 	 � �  � �� and � 	 ��  � � � . If
�

has a Res(
�

) refutation of size  , then � has an

LK refutation of size
� 	   in which every formula in the sequent is a depth- � formula of fan-in at

most
�

. Conversely, if � has an LK refutation of size  in which every formula is a depth- � formula

of fan-in at most
�

, then
�

has a Res(
�

) refutation of size
� 	   .

Proof : The first implication is almost immediate. First, translate each
�

-disjunction into a sequent.

Each application of the weakening rule gets translated into an application of weakening and a right

introduction of � . Each application of introduction of � gets translated into an application of right

introduction of � followed by right introduction of � . Do the same for each cut. Finally, the

axioms � �R' � become 	 � �N' � , and these have pretty short proofs in LK.

For the second implication, first replace each sequent by its translation into a
�

-disjunction. In

the LK proof, the rule of introduction of ' was only used over literals since all formulas must be

depth- � formulas of fan-in at most
�

. By the translation, these rules may be ignored. The rule of

right introduction of � may be simulated by a weakening. Similarly, the rule of left introduction of� may be simulated by a weakening since left conjunctions turn into disjunction by the translation.

The rule of right introduction of � may be simulated by an introduction of � . Similarly, the rule

of left introduction of � may be simulated by an introduction of � since left disjunctions turn into

conjunctions by the translation. Cuts may very well be translated by cuts, and weakening rules

may be simulated or ignored. Finally, we need to simulate an axiom of the form
� 	 � . Suppose

�
is 	 � �N�>�:�@� 	 � . The sequent

� 	 � becomes ' 	 � � �>�:� �R' 	 � � 		 � �N�:�:��� 	 �  . Start with ' 	 � � 		�
and introduce

�
conjunctions. This completes the simulation. � �

As it is the case in Resolution, the refutation system Res(
�

) and LK in which all formulas have

depth � and fan-in at most
�

are equivalent for all practical purposes.
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2.4 Bounded-Depth Gentzen Calculus.

Depth-
�

LK is the proof system that results from LK when we restrict all formulas in the sequents

to have depth at most
�

. The corresponding refutation system is also called Depth-
�

LK. It will be

explicitly said whether we are talking about proofs or refutations.

We note that refutational Depth- ) LK is equivalent to Resolution. The reason is that Depth- )
LK is equivalent to the restriction of LK to sequents whose formulas are propositional variables

only. To see this, simply ignore introductions of negation, and invert some weakenings if necessary.

On the other hand, Depth- � LK is equivalent to Res(  ) when  is the total number of propositional

variables in the formulas. Some authors use the notation Depth- 	 � � ) � �  LK to mean the restriction

of LK to sequents whose formulas have depth bounded by � � � and bottom fan-in bounded by

a polylogarithm of the number of variables. The system refutational Depth- ) � � LK is particularly

interesting since it coincides with Res(
� � �

) in the notation of Krajı́cek [Kra00]. There, Res(
� � �

) is

meant to be � ��� � � � 	 	 	 � � �   �  where  is the number of variables in the formulas.

2.5 Monotone Gentzen Calculus and Intuitionistic LK.

Pudlák [Pud99] introduced a monotone version of the propositional calculus. He suggested to

restrict LK to monotone formulas only, that is, to formulas that do not use negation. The resulting

proof system was called MLK in [AGG01]. Observe that Resolution is equivalent to a subsystem

of refutational MLK. Indeed, if only propositional variables are allowed as formulas, these are

necessarily monotone.

The Intuitionistic Calculus JK is the proof system that results from LK when we restrict all

sequents to have at most one formula on its right-hand side. For this system to make good sense,

one needs to redefine the rule of Right Weakening. The new rule is as follows:

Right Weakening Rule of JK:

 	 �


 	 	 � � � 
It is known that JK is interpretable in LK in the sense that there exists a translation of propo-

sitional formulas
���. � 	 �  so that if 	 �

has an LK-proof, then 	 � 	 �  has a JK-proof (see

[Tak87], for example). Moreover, the sizes of the proofs are polynomially related. On the other

hand, every MLK-proof of a monotone sequent whose right-hand side consists of a single formula

may be translated into a JK-proof of roughly the same size. This result is due to Bı́lková [B0́1].

Thus, MLK is a subsystem of JK.
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Chapter 3

The Monotone Calculus

3.1 Threshold Formulas

The goal of this section is twofold. First, we define some explicit monotone formulas for the

Boolean threshold functions with a nice size-depth trade-off property. Second, we show that these

formulas admit reasonably short monotone proofs of their basic properties. In particular, we prove

that they define symmetric functions.

For every  and
� � 67)=8 �:�>� 8 <; , let �
� �� � 67)=8 �@; � . 67)98 �@; be the Boolean function that

returns � on � � � � �:�>� � � � 67)=8 ��; � if and only if �
�
��� � � �Q" �

. Each �
� �� is called a threshold

function. Valiant [Val84] proved that every threshold function �
� �� is computable by a mono-

tone formula of size polynomial in  . The proof is probabilistic, and so the construction is not

explicit. In the same paper, Valiant mentioned that a divide and conquer strategy leads to explicit

quasipolynomial-size monotone formulas for all threshold functions. The same construction ap-

pears in the book by Wegener [Weg87], and in the more recent book by Vollmer [Vol99]. Here we

revisit that construction with a minor modification to achieve a size-depth trade-off.

Theorem 1 Let � 8 � ����� and  � � � . For every
� � 67)98 �:�:� 8  ; , there exist monotone formulas��� �� � � 	�� � 8 �:�>� 8 � �  computing �
� �� 	 � � 8 �:�:� 8 � �  of size  �

�	��
�� �
� �

and depth $ ��� � � 	   .
Proof : In the following, we use the notation � to denote a sequence 	 � � 8 �:�:� 8 �	�  . The length 	 of the

sequence will be clear from context. Define
��� �� � � 	 �  � � and

��� �� � � 	 �  � � . For every
� �  , we

let
��� �� � � 	 � � 8 �>�:� 8 � �  be the formula

�
� ��
��  �

��

�� � ���

��� �� � � � 	 � � 
�� � �S� � � ��� 8 �:�:� 8 � 
 � � � p8
where �

�� � � � 6 	 � � 8 �:�:� 8 �
� ������ � � ) � � 
 �  � � 8 � 
 � 
J" � ; . It is straightforward to prove, by

induction on  , that the formula
��� �� � � 	�� � 8 �:�:� 8 � �  computes the boolean function �
� �� . The depth
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of
��� �� � � 	 � � 8 �>�:� 8 � �  is bounded by $ ����� � 	   . Moreover, the maximum size of

��� �� � � 	�� � 8 �:�:� 8 � �  ,
say  	 U8 �  , satisfies the recurrence

 	 /8 �  �  �  	  � � 8 � p8
so we have  	 /8 �  �  � �	��
�� � ��� . � �

Observe that when � � $ , the depth is bounded by $ ��� � � 	   and the size is bounded by

 �
�	��
 � �

� �
, and that when � �  �

� �
for a constant � ! $ , the depth is bounded by � and the size

is bounded $ � ����� .
We establish a number of lemmas stating that the elementary properties of the threshold for-

mulas admit short MLK-proofs. The first property is about monotone formulas in general.

Let
�

and � � 8 �>�:� 8 � � be formulas, and let � � 8 �:�:� 8 � � be propositional variables that may or

may not occur in
�

. We let
� 	�� � � � � 8 �:�:� 8 � � � � �  denote the formula that results from

�
when

all occurrences of � � (if any) are replaced by � � (replacements are made simultaneously). Observe

that if
�

and � are monotone formulas, then
� 	�� � �  is also monotone. The non-monotone version

of the following lemma appears in [BDG
�

99, Bus95] (monotonicity is only needed in part (v)).

Lemma 1 If
�

is a monotone formula, the sequents (i)
� 8 � 	 � 	 � � �  , (ii)

� 	 �<8 � 	�� � )  , (iii)
� 	�� � � p8 � 	 � , (iv)

� 	�� � )  	 �<8 � , and (v)
� 	 � � )� 	 � 	 � � �  , have MLK-proofs of size quadratic

in the size of
�

and the same depth as
�

.

Proof : We will only prove (i) and (v). The rest are similar. If
�

does not contain the variable

� , there is nothing to prove since then
� � � 	 � � )� � � 	 � � �  . Suppose then that � appears

in
�

. We proceed by induction on the construction of
�

. If
�

is the propositional variable � ,

then
� 	 � � �  � � and so (i) and (v) are simply axioms. Suppose next that

� � � � � . By

induction hypothesis, we have �58 � 	 � 	�� � �  and � 8 � 	 � 	 � � �  . Right � -introduction gives

�58 � 8 � 	 � 	 � � �  ��� 	�� � �  , and left � -introduction gives the result. Similarly, � 	 � � )  	 � 	�� � � 
and � 	 � � )� 	 � 	�� � �  by induction hypothesis. So right � -introduction and left � -introduction

gives the desired result. The case
� � � � � is no less trivial. � �

To simplify notation, in this and following sections we omit the subscript � in proofs, as it is

always the same. The first properties are easy:

Lemma 2 Let � � ��� and let  � ��� be an exact power of � . Let ) � � � 8 �:�:� 8 �
� �  � � , let� � � 
 � 
 , and let
� 8 	 � ��� with N" � " 	 . The sequents

(i) 	 ��� �� � � 	�� � 8 �:�>� 8 � �  ,
(ii)

��� �� � � 	 � � 8 �:�>� 8 � �  	 � ���� � � � ,
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(iii) � �
 � � ��� � � �� � � � 	�� � 
�� � ����� � ��� 8 �:�>� 8 � 
 � � �  	 ��� �� � � 	�� � 8 �:�:� 8 � �  ,
(iv)

��� �
� � � 	�� � 8 �:�:� 8 � �  	 ��� �� � � 	 � � 8 �:�:� 8 � �  ,

have MLK-proofs of size polynomial in  �
�	� 
 � �

� �
and depth $ ����� � 	   .

In the next lemmas we give MLK-proofs of the basic properties relative to the symmetry of the

threshold formulas (Theorem 2 below).

Lemma 3 Let � ����� and let  � ��� be an exact power of � . Let  N8 � 8 	 ����� with ) �  �  ,) � � �  , and � � 	 �  . The sequents

(i)
��� �� ��� � � 	 � � 8 �:�:� 8 � � � �78 �:�:� 8 � �  	 ��� �� � � 	�� � 8 �:�:� 8 � � � )=8 �>�:� 8 � � 

(ii)
��� �� � � � � 	 � � 8 �:�>� 8 � � � )98 �:�:� 8 � �  	 ��� �� � � 	 � � 8 �:�:� 8 � � � �78 �:�:� 8 � � 

have MLK-proofs of size polynomial in  �
�	� 
 � �

� �
and depth $ ����� � 	   .

Proof : In the following, let � 
 � 	 � � 
�� � �S� � � �e� 8 �:�:� 8 � 
 � � �  for every � � 6 �b8 �>�:� 8 � ; , and let � �
 be

the result of replacing � � by ) in � 
 . We first show (i). We use induction on  , where the base case

is
��� �� 	 �  	 ��� �� 	*)� . Assume without loss of generality that 	 �  � � , that is, � � is in the first block

of variables � � . Recall the definition of
��� �� ��� 	 � � 8 �:�>� 8 � �  :
�
� � 
 ���� �

��

�� � ���

� � �� � 	 � 
  �
Fix 	 � � 8 �:�:� 8 � � �� � �� �e� . If � � � ) , then � �
 � � � 
 " � � � so that ���J!%) for some � � 67$=8 �:�:� 8 � ; .
Then,

��� � � ���� 	 � �  	 ��� � � ����� � 	 � �  by part (iv) of Lemma 2. On the other hand, clearly
��� � � �� � 	 � 
  	��� ��� �� � 	 � 
  for every �
� 67$=8 �:�>� 8 � ; 4F6���; . Moreover, we have 	 ��� � � �� 	 � � �  by part (i) of Lemma 2.

Note, by the way, that � �
 � � 
 for every � �P67$=8 �>�:� 8 � ; . Right � -introduction, left weakening, and

left � -introduction gives then

��

 � � ���

� � �� � 	 � �
  	 ��� � � �� 	 � � �  � �
�
	 
�
 �

��� ��� �� � 	 � �
  � ��� ��� �� � � � 	 � ��  � �
� 
 
 	 �

��� ��� �� � 	 � �
  �
A cut with part (iii) of Lemma 2 gives � �
 � � ��� � � �� � 	 � �
  	 ��� �

 � � 	 � � � 8 �>�:� 8 � � �  , where � � � �
�� � � 
 .
Finally, since �/4 � " � � � 4 � � � , a cut with part (iv) of Lemma 2 gives the result.

If � � ! ) , we use the induction hypothesis on  to get
��� � � �� 	 � � �  	 ��� � � �� � � 	 � � �  . Easy manipulation

as before gives ��

 � � ���

� � �� � 	 � �
  	 ��� � � �� � � � 	 � � �  � �
�
	 
 	 �

��� ��� �� � 	 � �
  �
Finally an application of parts (iii) and (iv) of Lemma 2 gives the desired result. The proof of (ii)

is very similar. � �
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Lemma 4 Let � � ��� and let  � ��� be an exact power of � . Let  N8 � 8 	 � ��� with � � � � 	 �  ,

and  �  , the sequents

(i)
��� �� � � 	 � � 8 �:�>� 8 � � � �78 �:�:� 8 � � � )=8 �:�>� 8 � �  	 ��� �� � � 	 � � 8 �:�>� 8 � � � )98 �:�:� 8 � � � �b8 �:�>� 8 � � 

(ii)
��� �� � � 	 � � 8 �:�>� 8 � � � )98 �:�:� 8 � � � �b8 �:�>� 8 � �  	 ��� �� � � 	 � � 8 �:�>� 8 � � � �78 �:�:� 8 � � � )=8 �:�>� 8 � � 

have MLK-proofs of size polynomial in  �
�	� 
�� �

� �
and depth $ ����� � 	   .

Proof : We use the same notation as in the proof of Lemma 3. Both proofs are identical. It is

enough to prove (i) when � � and � � fall in different blocks of variables. The complete proof of

(i) would then be a simple induction on the recursive definition of
��� �� 	�� � 8 �:�:� 8 � �  whose base

case is when that happens. Notice that the base case is eventually reached, at latest, when  � � .

So assume � � and � � fall in blocks � and � respectively. In the following, let � �
� � be the result

of replacing � � by � in � � , and define the notation � �
� ) , ��� � � and ��� � ) analogously. Recall the

definition of
��� �� 	 � � 8 �:�:� 8 � �  : �

� � 
 ��

��

 � � ���

� � �� � 	 � 
  �
Fix 	 � � 8 �:�>� 8 ��  � � �� . If � � ! ) , then Lemma 3 shows that

��� � � ���� 	 � � � �  	 ��� ��� ���� � � 	 � � � )  . Similarly,

whenever � � �  � � we have
��� � � ���� 	 � � � )  	 ��� � � ���� ��� 	 � � � �  . From these two sequents, the result

follows easily when � � !#) and � � �  � � . Consider next the case in which either � �
� ) or

� � �  � � . If � � �  � � , then
��� ��� ���� 	 � � � )  is just provably false by part (ii) of Lemma 2, and the

result follows easily. If � �
� ) , then

��� � � ���� 	 � � � � �  is just provably true by part (i) of Lemma 2. On

the other hand,
��� � � ���� 	 � � � )  	 ��� ��� ���� 	 � � � �  follows by part (v) of Lemma 1, and the result follows

too. � �

Lemma 5 Let � � ��� and let  ����� be an exact power of � . Let  N8 � 8 � ����� , with  �  and

� � � � � �  . The sequent

��� �� � � 	�� � 8 �:�>� 8 � ��8 �:�:� 8 � 
>8 �>�:� 8 � �  	 ��� �� � � 	 � � 8 �:�:� 8 � 
>8 �:�:� 8 � ��8 �>�:� 8 � � 
has an MLK-proof of size polynomial in  �

�	��
�� �
� �

and depth $ ��� � � 	   .
Proof : We split the property according to the four possible truth values of � � and � 
 . Namely, we

will give proofs of the following four sequents from which the lemma is immediately obtained by

the cut rule.

(i)
��� �� � � 	 � � 8 �:�>� 8 � � 8 �:�:� 8 � 
>8 �:�:� 8 � �  8 � �*8 � 
 	 ��� �� � � 	 � � 8 �>�:� 8 � 
>8 �>�:� 8 � � 8 �:�:� 8 � �  ,

(ii)
��� �� � � 	 � � 8 �:�>� 8 � � 8 �:�:� 8 � 
>8 �:�:� 8 � �  8 � � 	 � 
>8 ���

�
� � � 	 � � 8 �>�:� 8 � 
>8 �>�:� 8 � � 8 �:�:� 8 � �  ,

(iii)
��� �� � � 	 � � 8 �:�>� 8 � � 8 �:�:� 8 � 
>8 �:�:� 8 � �  8 � 
 	 � � 8 ���

�
� � � 	 � � 8 �>�:� 8 � 
>8 �>�:� 8 � � 8 �:�:� 8 � �  ,
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(iv)
��� �� � � 	 � � 8 �:�>� 8 � � 8 �:�:� 8 � 
>8 �:�:� 8 � �  	 � �*8 � 
>8 ���

�
� � � 	 � � 8 �>�:� 8 � 
>8 �>�:� 8 � � 8 �:�:� 8 � �  .

We only show sequent (ii), the rest of sequents have similar proofs. Two applications of

Lemma 1 give

��� �� 	 � � 8 �>�:� 8 � ��8 �:�:� 8 � 
:8 �:�:� 8 � � p8 � � 	 � 
>8 ���
�
� 	�� � 8 �:�:� 8 �b8 �>�:� 8p)=8 �:�>� 8 � �  �

Lemma 4 gives

��� �� 	 � � 8 �>�:� 8 � � 8 �:�:� 8 � 
 8 �:�:� 8 � � p8 � �Y	 � 
 8 ���
�
� 	�� � 8 �:�:� 8 )=8 �>�:� 8 �b8 �:�>� 8 � �  �

Two more applications of Lemma 1 give

��� �� 	 � � 8 �>�:� 8 )98 �:�:� 8 �b8 �:�:� 8 � �  8 � � 	 � 
>8 ���
�
� 	 � � 8 �:�:� 8 � 
>8 �:�>� 8 � � 8 �:�:� 8 � �  �

Finally, a cut between the last two sequents gives (ii). � �

Since every permutation on 6 �78 �:�:� 8  ; can be obtained as the composition of (polynomially

many) permutations in which only two elements are permuted (transpositions), Lemma 5 easily

implies the following theorem.

Theorem 2 Let � � ��� and let  � ��� be an exact power of � . Let  � ��� , with  �  , and let �
be a permutation over 6 �b8 �:�>� 8  ; . The sequent

��� �� � � 	 � � 8 �:�:� 8 � �  	 ��� �� � � 	 � � � � � 8 �:�:� 8 � � � ��� 
has an MLK-proof of size polynomial in  �

�	��
�� �
� �

and depth $ ��� � � 	   .
The next two properties state that the smallest threshold formulas are provably equivalent to

their usual formulas.

Lemma 6 Let � � ��� and let  � ��� be an exact power of � . The sequents

(i) � � � � � 	 ��� � � � � 	�� � 8 �:�:� 8 � �  ;
(ii) � ���� 
 	 � � � � 
  � 	 ��� �

� � � 	��
� 8 �:�:� 8 � �  ;

have MLK-proofs of size polynomial in  �
�	� 
�� �

� �
and depth $ ����� � 	   .

Proof : All proofs are by induction on  . For (i. 	 ), reason as follows. Clearly, � � 	 ��� �� 	 � � 
so that the base case holds. Assume then  ! � , and that the claim holds for smaller  . Fix
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� ��� 6 �b8 �:�>� 8 � ; . Since 	 ��� ��� �� 	�� � 
�� � �S� � � ��� 8 �>�:� 8 � 
 � � �  by part (i) of Lemma 2, right � -introduction

on the induction hypothesis for
��� ��� �� 	 � � 
���� � �S� � � ��� 8 �:�:� 8 � 
�� � � �  gives��� ��

��� � � � 
���� � ����� � � � 	
��������-��>�
�

��� � � �� 	�� � 
�� � ����� � ��� 8 �:�>� 8 � 
 ��� �  � ��� ��� �� 	 � � 
���� � �S� � � �e� 8 �:�:� 8 � 
�� � � �  �
A cut with part (iii) of Lemma 2 gives

��� � � 	�� � 8 �:�:� 8 � �  on the right. Left � -introduction for

each � � � 6 �b8 �:�>� 8 � ; gives then (i). The proof of (i.
�

) is also by induction on  . In fact, we

prove the slightly stronger statement:
��� �� 	 � � 8 �:�>� 8 � �  	 � � � � for every

� � 6 �b8 �:�:� 8 <; . Fix

	 � � 8 �:�>� 8 �
�  � �
�� , so that � 
 " � for some � � 6 �b8 �>�:� 8 � ; . Then, by induction hypothesis,��� ��� �� � 	�� � 
�� � �S� � � ��� 8 �:�:� 8 � 
 � � �  	 � ���� � � � 
�� � ����� � � � . Left weakening, left � -introduction, right weak-

ening, and right � -introduction gives

��

 � � ���

��� �� � 	 � � 
�� � �S� � � �e� 8 �:�:� 8 � 
 � � �  	
��
��� � � � �

Since this was true for an arbitrary 	 � � 8 �:�:� 8 �
�  � � �� , the result follows by left � -introduction. The

proof of (ii) is similar and relies on part (i). � �

The next lemma states that threshold functions split by cases:

Lemma 7 Let � � ��� and let  � ��� be an exact power of � . Let  � ��� be an exact multiple of �

with  �  . The sequents

(i)
��� �� ��� � � 	 � � 8 �:�>� 8 � �  	 ��� ��� �� � � ��� � � 	 � �  8 �>�:� 8 ���

� � �� � � ��� � � 	 ���  ,
(ii)

��� �� � � 	 � � 8 �:�>� 8 � �  	 ��� ��� �� � � ��� � � 	 � �  8 �>�:� 8 ���
� � �� � � ��� � � 	 � � � �  8 ���

��� �� � � � � 	 ���  ,
where � 
 � 	 � � 
�� � �S� � � ��� 8 �:�:� 8 � 
 � � �  , have MLK-proofs of size polynomial in  �

�	��
 � �
���

and depth$ � � � � 	   .
Proof : We first prove (i). Fix 	 � � 8 �:�>� 8 � �  � � �� ��� . Since  is an exact multiple of � , there must

exist a � � 6 �b8 �>�:� 8 � ; such that � � "  � � � � for otherwise � �
 � � � 
 �  . Then,
��� ��� �� � 	 � �  	��� ��� �� � � ��� 	 � �  by part (iv) of Lemma 2. The sequent

��

 � � ���

� � �� � 	 � 
  	 ��� ��� �� � � ��� 	 � �  8 �:�:� 8 ���
� � �� � � �e� 	 ��� 

follows by right weakening, left weakening, and left � -introduction. Since this happens for every

��� �
�
� �e� , the result follows by left � -introduction. The proof of (ii) is extremely similar. Given

	 � � 8 �:�>� 8 �
�  � � �� , either � � "  � � � � for some � � 6 �b8 �>�:� 8 � 4 ��; , or �
�?"  � � for otherwise

� �
 � � � 
 �  . Manipulation as in part (i) gives property (ii). � �
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3.2 The Pigeonhole Principle

In this section we exhibit a monotone proof of the Pigeonhole Principle using the explicit monotone

threshold formulas, and their properties. The Pigeonhole Principle states that if ���� pigeons go

into  holes, then there is some hole with more than one pigeon. If � � � 
 is a propositional variable

meaning that pigeon � sits in hole � , the principle is encoded by the following monotone sequent:� ����
��� �

��

�� � � �	� 
 	

��� � �
� ����
�	� 
�� ����� 
 	 � �	�

� � � 
 � �  �
From now on we refer to the left part of the sequent as

� ����� , and to the right part of the sequent

as
� ����� . The sequent itself is denoted �(� � � ����

. We need a technical lemma saying that �(� � � ����
can be reduced to the case in which  is an exact power of � .

Lemma 8 There exists a polynomial � 	   such that, for every  N8  � ��� , if the sequent �(� �Q� ����
has an MLK-proof of size  , then, for every  �  , the sequent �(� � � �e��

has an MLK-proof of size

at most  � � 	   .

Proof : Suppose that there is a monotone proof � � 8�� � 8 �:�>� 8 �(� � � ���� of size at most  , where each� � is a monotone sequent � � 	 
�� . We get a proof of �(� � � ����
from the proof of �(� � � ���� by

replacing some variables by constants as follows. Define a partial truth assignment � as indicated

next. Let � 		� � ��� � �  � � for every
� � 6  � �b8 �:�:� 8  ]; . Similarly, for every

� �P6  �I$98 �:�:� 8  � �@;
and � � 6 �b8 �:�:� 8 � 4 $ ; , let � 		� � � �  � ) ; and for every � � 6  ���b8 �>�:� 8  ]; and

� � 6 �b8 �>�:� 8 �-; , let� 		� � � �  � ) . Any other variable remains undefined by � . Given a sequent � 	 
 , let � � 	 
������	�
be the result of replacing each occurrence of the variable � ��
 �� 	��  in � or 
 by � 	 �  . The

sequence � � � 	 
 � �����	� 8�� � � 	 
 � �����	� 8 �:�:� 8�� �(� � � ���� �����	� is a valid proof of � �(� � � ���� �����	� . To see

this, observe that the initial axioms of the form � �	� 
 	 � � � 
 become ) 	 ) , � 	 � , or stay � �	� 
 	 � �	� 
 ,
which are all true sequents. Moreover, it is not difficult to give a proof of�� � ����

��� �
��

 � � � �	� 
 	 �

����
��� � ��


�� � � �	� 
�������	�
and ���� ��� � � � �e���	� 
 � �
 �� � 		� �	�

� � � 
 � �  	
��� � �

� �e��
� � 
�� �
 �� � 	 � �	�

� � � 
 � �  ����� ���	�
from the axioms ) 	 and 	 � . For example, � 	 � �
 � � � � � � � 
������	� is derivable since � 	 � � � � � � ���  � � .
Two cuts give a proof of �(� � � ����

of size at most  � � 	   for some polynomial � 	   , as desired.

� �
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Theorem 3 Let � � ��� and let  � ��� be such that � �  . The sequents �(� � � �e��
have MLK-proofs

of size polynomial in  �
�	��
 � �

� �
and depth $ ����� � 	   .

Proof : We first outline the idea of the proof. From the antecedent
� ����� of ����� � �e�� we imme-

diately derive that for each pigeon � there is at least one variable � �	� 
 that is true. In symbols,��� � ���� 		� �	� � 8 �:�>� 8 � �	� �  . We deduce that among all variables grouped by pigeons, at least  � � are

true. In symbols,
��� � � � ��� �� ��� 	 � � � � 8 �:�>� 8 � � � � 8 �:�>� 8 � � �e� � � 8 �:�:� 8 � � �e� � �  . The symmetry of the threshold

allows us to show that the same holds when the variables are grouped by holes. In symbols,��� � � � ��� �� ��� 		� � � � 8 �:�:� 8 � � �e� � � 8 �:�:� 8 � � � � 8 �:�:� 8 � � ��� � �  . From this, at least one hole contains two pigeons.

In symbols,
��� � ���
� 		� � � �*8 �:�>� 8 � � �e� � �  for some � �P6 �b8 �:�:� 8  ; . This implies

� ����� .

According to Lemma 8, we may assume that �� � is an exact power of � since there always

is such a number between  and �  . So let us assume that  � � � 4 � for some
� � ��� . For

technical reasons in the proof we will consider a squared form (instead of rectangular form) of�(� � � �e��
where we assume the existence of an 	  ���  -st hole in which no pigeon can go. So, we

introduce  � � new symbols � � � � �e� 8 �:�:� 8 � � ��� � � ��� that will stand for the constant ) . For every � �6 �b8 �:�:� 8  ����; , let � � � 		� �	� � 8 �:�:� 8 � �	� � �e�  , and let � � � 		� � � � 8 �:�:� 8 � � ��� � �  . Hence �
� �e� � 	 )=8 �>�:� 8 )�

is the sequence of  � � zeros. Consider the following four sequents.� ����� 	 � � �e���� � ��� � ���� 		� �  (3.1)

�
� ���
��� � ��� � ���� 	 � �  	 ��� �

� ��� � �� ��� 		� � 8 �:�:� 8 � � ���  (3.2)
��� �

� ��� � �� �e� 		� � 8 �:�:� 8 � � ���  	 ��� �
� �e� � �� ��� 	�� � 8 �:�:� 8 � � ���  (3.3)

��� �
� ��� � �� �e� 	�� � 8 �:�:� 8 � � �e�  	 � �(� � (3.4)

In the next lemmas we show how to prove these sequents in MLK. An MLK-proof of
� �(� � 	� ����� will follow by three applications of the cut rule. � �

Lemma 9 Sequent (3.1) has MLK-proofs of size polynomial in  �
�	��
 � �

� �
and depth $ � � � � 	   .

Proof : For each � � 6 �78 �:�:� 8  � �@; derive the sequents �
�

 � � � �	� 
 	 �

�

 � � � �	� 
 � ) using right

weakening and right � -introduction. Then,  right � -introductions and  left � -introductions give� �(� � 	 � � ������ � ��� � ���� 		� �  by the definition of
� �(� � and cuts on part (i) of Lemma 6. � �

Lemma 10 Sequent (3.2) has MLK-proofs of size polynomial in  �
�	��
 � �

� �
and depth $ � � � � 	   .

Proof : Recall that  ��� � � � . Let � � 	 ����  � . The idea of this proof is to successively pack

the conjuncts of the antecedent into a unique threshold formula, following a complete � -ary tree

structure of height
� � �

� 	  � �  � �
. Let � � 67)98 �:�:� 8 � 4 ��; . For every ��� � � , let ��� � � � , where

� is the position of � in the lexicographical order on � � . Thus, � ��� � � � and � � � � � � � � � � ��� . For
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every � � � 
 � , let ��� � 		��� � 8 �:�>� 8 � � � � � � �  . Observe that �
� � 		� � 8 �:�:� 8 � � ���  , where

�
is the

empty word. For each � � 6 �b8 �:�>� 8 � ; , we exhibit an MLK-proof of�
� �����

����� � � �
�
� ��� ��� �	� 	 � �  	 �

� �
� ���
� ����

� � ��� �
�
� ��� ��� � ��� � 		� �  � (3.5)

Once we have all these proofs, we only have to cut sequentially to obtain the lemma. We prove

sequent (3.5). For a fixed � � 6 �78 �:�:� 8 � ; and a fixed � � �  � � , an application of part (iii) of

Lemma 2 gives � � ��
��� � �����

� � �
�
� �e� � � ��� 		� � �  	 ����� � � ��� �

�
� ��� ��� � ��� � 		� �  �

We put all these formulas in a unique conjunction using � -introduction to get sequent (3.5). � �

Lemma 11 Sequent (3.3) has MLK-proofs of size polynomial in  �
�	��
�� �

� �
and depth $ � � � � 	   .

Proof : Immediate from Theorem 2 because � � 8 �:�:� 8 � � ��� is a permutation of � � 8 �>�:� 8 � � ��� . � �

Lemma 12 Sequent (3.4) has MLK-proofs of size polynomial in  �
�	��
 � �

� �
and depth $ � � � � 	   .

Proof : The idea of this proof is to unfold the threshold formula in the antecedent into disjunctions

of threshold formulas computing the number of pigeons going into each hole. The unpacking

process follows the structure of a complete � -ary tree of height
� � �

� 	  � �  � �
in reverse order of

that of Lemma 10. We use properties (i) and (ii) of Lemma 7 to perform this process.

Recall that  � � � � � . Let � � 	  � �  � . Let � � 67)=8 �>�:� 8 � 4 �@; . Define � � � � � for

every � � � � , where � is defined as in the proof of Lemma 10. For every � � � 
 � , define

� � � 	�� � � 8 �:�:� 8 � � � � � � �  . Observe that �
� � 	�� � 8 �:�:� 8 � � ���  . For every � � 67)=8 �:�:� 8 � 4 �@; and

��� �  , properties (ii) and (i) of Lemma 7 give

��� � � � �
�
� ��� ��� � � 	�� �  	 ��� � � � � � �

�
� ��� ��� ��� � � ��� 	�� � � p8 �:�:� 8 ��� � � � � � ��

� ��� ��� ��� � � ��� 	�� � � � � � �  8 ��� � � � � � ��
� ��� ��� �	� � � 	�� � � � � � � 

����� � � �
�
� ��� ��� � � ��� 	�� �  	 ����� � � � � �

�
� ��� ��� � � � � ��� 	�� � � p8 �:�:� 8 ����� � � � � ��

� ��� ��� � � � � ��� 	�� � � � � � �  �
Appropriate cuts and the definition of � � for ��� � � show then that

��� �� ��� 	�� �  	 ��� � ���
� 	�� �  8 ��� � �e�� 	�� � p8 �:�:� 8 ��� � ���� 	�� � p8 ��� � ���� 	�� � ���  �

Since �
� �e� � 	 )=8 �:�>� 8 )  , we immediately have that

��� � ���� 	�� � ���  	 ) by part (i) of Lemma 6, so that

the result follows by a cut on ) 	 , successive cuts on part (ii) of Lemma 6, and right � -introduction.

The size of the proof is again quasipolynomial in  . � �

Setting � � $ and � �  �
� �

in Theorem 3, we obtain the main results of this section.

Corollary 1 The sequent �(� � � �e��
has MLK-proofs of size 

� � �	��

���

.
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Corollary 2 The sequent �(� � � �e��
has depth- � MLK-proofs of size $ � � � ��� � � for every constant

� ! $ .
Corollary 2 obviously holds for (non-monotone) bounded-depth LK too. The lower bound for

the size of depth- � LK proofs of the Pigeonhole Principle is $ ��� � � ��� � � [PBI93, KPW95]. Thus, the

dependence on � is an exponential higher than in Corollary 2. This makes a noticeable difference:

Corollary 2 implies that there are proofs of quasipolynomial size and depth
� 	 � � � 	   ������� � � � 	    ;

the lower bound implies only that proofs of quasipolynomial size must have depth ��	 ����� ����� 	    .
It would be interesting to narrow this gap.

3.3 The General Simulation

It is not by chance that the Pigeonhole Principle has quasipolynomial-size MLK-proofs. Indeed,

we show that any monotone sequent with LK-proofs of size  has MLK-proofs of size  � � �	��
 � � � � .
We also show that the same result holds in the refutational version of the system.

We say that a formula is in De Morgan normal form if all the negations occur in front of the

variables. For every formula � , let � 	��  be a formula in De Morgan normal form that is equivalent

to � . Observe that � 	��  is uniformly obtained from � by pushing the negations to the atoms

according to the De Morgan rules. Observe that � 	-'('��  � � 	��  , and that the size of � 	��  is

linear in the size of � . We let LK-De Morgan be the subsystem of LK restricted to formulas in De

Morgan normal form. In particular, the negation rules are only allowed over variables.

Recall that a proof is called tree-like if every sequent is used at most once as a premise of a

rule.

Lemma 13 The sequents 	 � 	��  8 � 	-'��  and � 	��  8 � 	-'��  	 have tree-like LK-De Morgan proofs

of size quadratic in the size of � .

Proof : The proof is by induction on the structure of � . If � is atomic, say � , then the sequents	 �<8�' � and �<8�' � 	 are derivable in one step from the axiom � 	 � . Suppose next that � is

of the form � � � . By induction hypothesis, the sequents 	 � 	��  8 � 	-'��  and 	 � 	 �� 8 � 	-' �  have

tree-like LK-De Morgan proofs of size quadratic in the sizes of � and � respectively. By means

of weakening we derive 	 � 	�� p8 � 	�'��  8 � 	-' �� and 	 � 	 �� 8 � 	-'�� p8 � 	�' �� . Right � -introduction

followed by right � -introduction gives 	 � 	��  � � 	 �� 8 � 	-'��  � � 	�' �  . The size of the proof is

clearly quadratic in the size of � . The sequent � 	��  � � 	 �� 8 � 	-'��  � � 	-' �  	 is derived similarly.

When � is of the form � � � reason dually. Finally, suppose that � is of the form '�� . By induction

hypothesis, the sequent 	 � 	��  8 � 	-'��  has a tree-like LK-De Morgan proof of size quadratic in

the size of � . Since � 	-'('��  � � 	��  , we immediately have a tree-like LK-De Morgan proof of	 � 	-'�� p8 � 	�'('��  of the same size. Reason similarly for the sequent � 	-'��  8 � 	-'('��  	 . � �
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In the following, if � is a sequence of formulas � � 8 �:�:� 8 � � , we let � 	 �  be the sequence

� 	�� �  8 �:�:� 8 � 	�� �  . If
�

is a set of sequents, we let � 	 �  be the result of applying � to all formulas

in
�

.

Theorem 4 Let � and 
 be sequences of formulas and
�

a set of sequents. If � 	 
 has a tree-like

LK-proof from
�

of size  , then � 	 �  	 � 	 
  has a tree-like LK-De Morgan proof from � 	 �  of

size  � � � � .
Proof : Suppose that � 	 
 has a tree-like LK-proof & from

�
of size  . Consider the following

transformation of & . First, replace each formula � in & by � 	��  . For each right ' -introduction

rule in & of the form � � 8 � 	 
 �
� � 	 '���8	
 � 8

we simulate the inference � 	 � �  8 � 	��  	 � 	 
 � 
� 	 � �  	 � 	-'��  8 � 	 
 � 

in the new proof by means of a cut with 	 � 	�� p8 � 	�'��  , which can be derived in
� 	  �  steps

according to Lemma 13. Similarly, each left ' -introduction rule in & is replaced by an inference

involving a cut with � 	��  8 � 	-'��  	 . The rest of inferences remain valid as one can easily check.

The size of the new proof is clearly  � � � � . � �

The following result will be the crucial step of the simulation. Suppose for a moment that in a

specified set of truth assignments
�

, each negated variable ' � � is equivalent to a monotone formula

� � . In such a case, we can treat � � as a pseudocomplement of � � with respect to
�

, and reduce each

non-monotone formula to a monotone formula. The interpretation will remain sound as soon as

we keep within the set
�

of truth assignments. Suppose next that � 	 
 is a sequent, and that the

sequents � 8l' � � 	 � �*8 
 and � 8 � � 	 ' � �*8	
 hold. In such a case, � � is the pseudocomplement of

� � with respect to the set of truth assignments that satisfy all formulas of � and falsify all formulas

of 
 . In this situation, we can turn non-monotone proofs into monotone proofs.

Theorem 5 Let � and 
 be sequences of monotone formulas and
�

a set of monotone sequents

with all variables within � � 8 �:�:� 8 � � . Suppose that for every � � 6 �b8 �:�>� 8 <; there exists a monotone

formula � � such that the sequents � 	 � � 8 � � 8	
 and � 8 � �*8 � � 	 
 have tree-like MLK-proofs from
�

of size at most � . Then, if � 	 
 has a tree-like LK-proof from
�

of size  , then it has a tree-like

MLK-proof from
�

of size �  � � � � .
Proof : Suppose that � 	 
 has a tree-like LK-proof from

�
of size  . Since � and 
 are sequences

of monotone formulas, we have that � 	 �  � � and � 	 
  � 
 . Similarly, � 	 �  � �
. Therefore,

by Theorem 4, the sequent � 	 
 has a tree-like LK-De Morgan proof & from
�

of size  � � � � .
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Consider the following transformation on & . First, add � to the left of each sequent and 
 to

the right of each sequent by weakening on the axioms and initial sequents. Then, replace each

occurrence of ' � � in & by � � . It remains to see how to simulate the rules of ' -introduction.

Consider such an application in &
� � 8 � � 	 
 �
� � 	 ' � � 8	
 � �

We need to simulate the inference � 8 � � 8 � �L	 
 � 8	

� 8 � � 	 � �*8 
 � 8	
 �

This is straightforward: derive � 	 ����8 � � 8	
 and cut on ��� . The simulation of a left ' -introduction

rule is symmetrical by means of a cut with � 8 � �*8 � � 	 
 . The size of the new proof is clearly

�  � � � � . � �

Recall the following definitions and lemmas from Section 3.1. For every  and
� �P67)98 �:�:� 8  ; ,

let �
� �� � 67)98 �@; � . 67)98 �@; be the Boolean function such that �
� �� 	 � � 8 �:�>� 8 � �  � � if and only if

�
�
��� � � �/" � , for every 	 � � 8 �:�>� 8 � �  �P67)=8 ��; � . Each �
� �� is called a threshold function.

Monotone threshold formulas are defined in the following way:
��� �� 	��  � � , ��� �� 	 �  � � ,��� �� 	��� � ) for every

� ! � , and for every  ! � and
� " ) , define the formula

��� �� 	�� � 8 �:�:� 8 � �  � � �
� �	� 

� ��
 ��
	 ���

���
�� 	 � � 8 �:�:� 8 � ��� �  � ��� � � � � �
 	 � � � � �e� 8 �:�>� 8 � �   8

where �
�� � 6 	 � 8 �  � ) � � �  � $98i) � � �  4  � $=8 � � �R" � ; and  � $ is an abbreviation for�  � $�� . It is straightforward to prove that

��� �� 	 � � 8 �:�:� 8 � �  computes the Boolean function �
� �� . On

the other hand, it is easy to prove, by induction on  , that the size of
��� �� 	 � � 8 �>�:� 8 � �  is bounded

by 
� � �	��


� �
.

The following lemma is essentially the same as Lemma 3 except for the case  �  ��� and

the polynomial bound in the number of lines.

Lemma 14 For every U8  N8 	�� ��� with ) �  �  � � and ) � 	 �  , the sequent

��� �� � � 	�� � 8 �:�>� 8 � � � )98 �:�:� 8 � �  	 ��� �� 	 � � 8 �>�:� 8 � � � �b8 �:�>� 8 � � 
has MLK-proofs with 

� � � � lines and size 
� � �	��


���
.

Proof : If ) �  �  , the lemma immediately follows from Lemma 3. The polynomial bound in

the number of lines is not explicitely stated there, but it is easy to check. Let us consider the case �  � � . Our goal is to prove the following sequent:

��� �� 	�� � 8 �:�:� 8 � � � )=8 �:�:� 8 � �  	 ) �
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We proceed by induction on  . The base case
��� �� 	*)  	 ) is immediate. Suppose next that O! � .

Let us assume without loss of generality that 	 �  � $ , that is, � � is in the first block of variables.

Recall the definition of
��� �� 	 � � 8 �:�:� 8 � �  :�
� �	� 

� ��
 ��

��� � � �� 	�� � 8 �:�>� 8 � ��� �  � ��� � � � � �
 	�� ��� � ��� 8 �:�:� 8 � �  �
Since �

��
is the singleton set 6 	  � $98 I4  � $� ; , the formula

��� �� 	 � � 8 �:�:� 8 � � � )=8 �:�:� 8 � �  is simply

��� � � �� � � 	 � � 8 �:�:� 8 � � � )98 �:�:� 8 � � � �  � ��� � � � � �� � � � � 	 � � � � �e� 8 �:�:� 8 � �  �
By induction hypothesis on  , we have

��� � � �� � � 	�� � 8 �:�:� 8 � � � )=8 �>�:� 8 � � � �  	 ) . Now left weakening

and left � -introduction gives ��� �� 	 � � 8 �:�:� 8 � � � )98 �:�:� 8 � �  	 )
as required. A cut with the axiom ) 	 ��� �� ��� 	 � � 8 �>�:� 8 � � � �b8 �:�>� 8 � �  gives the sequent of the lemma.

� �

The next lemma easily follows from the definitions of the threshold formulas.

Lemma 15 For every U8 � � ��� with
� !  , the sequents

(i)
��� �� 	�� � 8 �:�:� 8 � �  	 , and

(ii) 	 ��� �� 	�� � 8 �:�:� 8 � � 
have tree-like MLK proofs with 

� � � � lines and size 
� � �	��


���
.

Proof : Part (ii) of the lemma is simply part (i) in Lemma 2. For part (i), simply observe that

�
�� ��� for every

� !� , and so
��� �� 	�� � 8 �:�:� 8 � �  is ) by convention (the empty disjunction). Thus,��� �� 	 � � 8 �:�:� 8 � �  	 is just an axiom for

� !  . � �

For
� 8 � � ��� with ) � � �  and � � � �  , the

�
-pseudocomplement of � � is, by def-

inition, the monotone formula
��� �� 	�� � 8 �:�:� 8 � � � )=8 �:�>� 8 � �  . The next Lemma guarantees that the

hypothesis of Theorem 5 hold for any of the
�

-pseudocomplement formulas and any monotone se-

quent � 	 
 with variables within � � 8 �:�:� 8 � � such that � contains
��� �� 	 � � 8 �:�>� 8 � �  and 
 contains��� �� ��� 	�� � 8 �:�:� 8 � �  .

Lemma 16 For every
� 8 � � ��� with ) � � �  and � � � �  the sequents

(i)
��� �� 	�� � 8 �:�:� 8 � �  	 ��� �� ��� 	�� � 8 �:�>� 8 � �  8 ��� �� 	 � � 8 �>�:� 8 � � � )98 �:�:� 8 � �  8 � �

(ii) � �g8 ��� �� 	 � � 8 �>�:� 8 � � � )98 �:�:� 8 � �  8 ��� �� 	 � � 8 �:�:� 8 � �  	 ��� �� ��� 	�� � 8 �:�:� 8 � � 
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have tree-like MLK-proofs with 
� � � � lines and size 

� � �	� 

� �

.

Proof : The first sequent follows from right weakening on Lemma 1, part (ii). For the second

sequent observe that from Lemma 1, part (i) we have

� � 8 ��� �� ��� 	 � � 8 �>�:� 8 � � � �78 �:�:� 8 � �  	 ��� �� �e� 	�� � 8 �:�:� 8 � �  �
Moreover,

��� �� 	 � � 8 �:�:� 8 � � � )=8 �>�:� 8 � �  	 ��� �� ��� 	 � � 8 �>�:� 8 � � � �78 �:�:� 8 � �  by Lemma 14. The sequent in

(ii) is obtained by cutting and then adding
��� �� 	 � � 8 �:�:� 8 � �  by left weakening. � �

Theorem 6 Let � 	 
 be a monotone sequent and let
�

be a set of monotone sequents with 
variables. If � 	 
 has an LK-proof from

�
of size  , then � 	 
 has a tree-like MLK-proof from

�
with  � � � � lines and size  � � � ���  � � �	� 
 ��� .

Proof : By Theorem 4 and the well known result that tree-like LK polynomially simulates LK

[Kra95], it will be sufficient to simulate tree-like LK-De Morgan proofs by tree-like MLK-proofs.

Let & be a tree-like LK-De Morgan proof of � 	 
 from
�

of size  . By trivial weakening, the

sequent ��� �� 	�� � 8 �:�>� 8 � �  8 � 	 
/8 ��� �� ��� 	 � � 8 �:�:� 8 � � 
has tree-like LK-De Morgan proofs from

�
of size  . Moreover, by weakening on the previous

lemma, the formula
��� �� 	�� � 8 �:�:� 8 � � � )=8 �>�:� 8 � �  is the pseudocomplement of ��� on sequents having��� �� 	 � � 8 �:�:� 8 � �  on the left and

��� �� ��� 	 � � 8 �>�:� 8 � �  on the right. It follows by Theorem 5 that for

each
� � 67)98 �:�:� 8  ; there are tree-like MLK-proofs from

�
of the sequents

��� �� 	 � � 8 �:�:� 8 � �  8 � 	

/8 ��� �� ��� 	 � � 8 �:�:� 8 � �  each one with  � � � � lines and size  � � � ���  � � �	��
 � � . Finally,  consecutive cuts

give us a proof of the sequent
��� �� 	�� � 8 �:�:� 8 � �  8 � 	 
/8 ��� �� ��� 	�� � 8 �:�:� 8 � �  from which we obtain the

theorem using Lemma 15. � �

We say that a proof system  � quasipolynomially simulates a proof system  � if every  � -
proof of size  can be turned into an  � -proof of size  � � �	��
 � � . We have the following interesting

corollary.

Corollary 3 Tree-like MLK quasipolynomially simulates LK on monotone sequents. In particular,

tree-like MLK quasipolynomially simulates MLK.

The careful reader will notice that the proof of Theorem 6 shows that the number of lines of

the resulting MLK proof is polynomial in  and the number of lines of the original LK proof. This

observation reveals that any proof of a superpolynomial gap between LK and MLK, if any, should

focus on size and not on the number of lines.

Since every MLK-proof can be polynomially simulated by a proof in the intuitionistic calculus

JK (see [B0́1]) we get the following.
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Corollary 4 On monotone sequents, JK quasipolynomially simulates LK.

Note, however, that this is unlikely for intuitionistically valid nonmonotone sequents, see

[BP01].

We close this section with a result concerning the refutational version of MLK. A weakness of

the simulation result, as stated in Corollary 3, is that it only makes sense on monotone sequents.

Nonetheless, the simulation is somewhat stronger as it works for the refutational version of MLK.

Hence, since each tautology can be turned into a contradictory set of clauses of size polynomial in

the size of the tautology, and each clause can be written as a monotone sequent itself, the result is

in a sense general enough to deal with all tautologies. To state our result, we have to define the

translation of an arbitrary tautology into a contradictory set of clauses precisely.

Let � 	 
 be a valid sequent. Here, � and 
 are sequences of Boolean formulas � � 8 �:�>� 8 � �
and � � 8 �:�:� 8 � � . What this means is that the formula

��
��� � � � �

��
��� � '�� �

is a contradiction. This formula is sometimes written as � � � � ' 
 . We show how to turn each

contradictory Boolean formula into a contradictory set of clauses of polynomial-size in the size of

the formula. The translation is quite standard but we define it precisely since it will be needed in a

later section.

Given a Boolean formula � over the basis 6 � 8���8�'(; with variables � � 8 �:�:� 8 � � and constants )
and � , let � � be a new propositional variable for each subformula � of � (including � itself). We

define a set of clauses � 	��  by induction on the construction of � :

(i) If � is the constant ) , let � 	��  � 6�' ���=; .
(ii) If � is the constant � , let � 	��  � 6 � � ; .

(iii) If � is a variable � � , let � 	��  � 6�' � � � ���\8 � � �N' ���=; .
(iv) If � � '�� , let � 	��  � 6 ��� � � � 8�' ��� �R' � � ;�� � 	��  .
(v) If � � � �
	 , let � 	��  � 6�' ��� �R' ��� � � � 8 ��� �N' � � 8 ��� �]' � � ;�� � 	�� �� � 	 	  .

(vi) If � � � � 	 , let � 	��  � 6�' ��� � � � 8�' �� � � � 8 ��� � ��� �]' � � ;�� � 	�� �� � 	 	  .
The following lemma expresses the main property of � 	��  .

Lemma 17 The formula � is satisfiable if and only if the set of clauses � 	�� ��N6 ����; is.

Proof : View � as a Boolean circuit, and interpret each variable � � as giving a truth value to the

internal gate that corresponds to the root of � . Each � � is determined by the � � 8 �:�:� 8 � � . Moreover,

� � is the value of the subcircuit � on input � � 8 �:�>� 8 � � . Hence, if � satisfies � , then � can be
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extended to an assignment � � that satisfies � 	��  �I6 � � ; . Similarly, if � � satisfies � 	��  �I6 � � ; , the

restriction of � � to � � 8 �:�:� 8 � � satisfies � . � �

Observe that a clause � � � �:�>� � � � �]' � � � �>�:� �N' � � can be written as a monotone sequent:

� � 8 �:�:� 8 � � 	 � � 8 �:�>� 8 � � �
Now we can state our result in terms of refutations of sets of clauses. We just need to take � 	 

to be the empty sequent in Theorem 6.

Corollary 5 As refutation systems, tree-like MLK quasipolynomially simulates LK on contradic-

tory sets of clauses.

According to the observations preceeding the statement of this corollary, this result is more

general than Corollary 3.

3.4 Proving a Gap is Hard

In this section we prove the surprising result that, as refutation systems, MLK is polynomially

bounded if and only if LK is polynomially bounded. This shows that proving a superpolynomial

gap between MLK and LK is at least as hard as proving that LK and all Frege systems are not

polynomially bounded. This is a long-standing open problem.

Before we state our result, we need the following lemma due to Pudlák and appearing in

[AGP01] with only a sketch of the proof. For completeness, we provide a full proof.

Lemma 18 Let �

�� 	 � � 8 �>�:� 8 � �  be polynomial-size monotone formulas for �
� �� . If the sequents of

Lemmas 15 and 16 have polynomial-size LK-proofs with �

�� 	 � � 8 �:�:� 8 � �  instead of
��� �� 	�� � 8 �:�:� 8 � �  ,

then MLK polynomially simulates LK on monotone sequents, even as refutation systems.

Proof : Let � 	   be a bound on the size of �

�� 	 � � 8 �>�:� 8 � �  . Suppose we have LK-proofs of all

the sequents in Lemmas 15 and 16 in a single proof of size at most � 	   . These $ 	  � �   � $
sequents are called the pseudocomplement properties. We prove, by induction on  , that all $ 	  �
�   �I$ pseudocomplement properties of �

�� 	 � � 8 �>�:� 8 � �  can be obtained in a single MLK-proof of

polynomial-size. This will be enough since then we can apply the same argument as in Theorem 6

with �

�� 	 � � 8 �:�:� 8 � �  instead of
��� �� 	�� � 8 �:�:� 8 � �  .

We will obtain a recurrence � 	   for the size of the MLK-proofs of the pseudocomplement

properties of �

�� . For  � � , the proofs are just constant size and � 	   � � 	 �  . Suppose  !�� next.

Define auxiliary formulas as follows. Let � �� � � , � �� � �
�
��� � � � , and for every � � 6 �b8 �:�>� 8  4 �@; ,

let � �� be the formula

�

� � �� 	�� � 8 �:�:� 8 � � � �  � 	 �

� � �� � � 	 � � 8 �:�:� 8 � � � �  � � �  �
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Observe that the size of � �� is bounded by $ � 	 (4 �  � � . It is easy to get MLK-proofs of the sequents

of the pseudocomplement properties for � �� from those of �

� � �� . We sketch how in Lemma 19

below. The size of these proofs is at most 	 	   for some polynomial 	 	   . With these, we use

the argument of Theorem 6 with � �� 8 �:�:� 8 � �� as threshold formulas to turn the LK-proofs of the

properties of �

�
� into MLK-proofs of size � 	   � $�� 	   	 $ � 	 P4 �  � �  � � 	 N4 �  � 	 	   . To

see this bound on the size, observe that the proof is built as follows. For each
� � 67)98 �:�:� 8  ; ,

take the LK-De Morgan proofs of the $ 	  � �   � $ properties for �

�
� and add � �� to the left and� �� ��� to the right by weakening. This gives size � 	   � $�� 	   	 $ � 	 ]4 �  � �  . Then replace each

negated variable ' � � by � �� 	 � � � )  . This gives � 	   	*$ � 	  4 �  � �  additional symbols. Then derive

the pseudocomplement properties of �

� � �� monotonically in size � 	 R4 �  , and those of � �� from

these in 	 	   additional symbols. Finally, the rules of ' -introduction are simulated by cuts on these

sequents. This analysis gives us the recurrence � 	   � � 	   � � � 	   	*$ � 	  4 �  � �  � � 	  4 �  � 	 	  
which is easily seen to give a polynomial. We note that the proofs are not tree-like at all. � �

For the sake of completeness, we sketch how to get some pseudocomplement properties of � ��
from those of �

� � �� .

Lemma 19 There exists a polynomial 	 	   such that the pseudocomplement property

� �� 	 � �� ��� 8�� �� 	�� � � )� 8 � �
has an MLK-proof of size 	 	   from the pseudocomplement properties of �

� � �� 8 �:�>� 8 �

� � �� � � . Here,

� ��  .

Proof : By weakening on axioms, we trivially have

�

� � �� 	 �

� � �� 8 �

� � �� � � � � � (3.6)
�

� � �� � � � � � 	 �

� � �� 8 �

� � �� � � � � � � (3.7)

By left � -introduction we get � �� 	 �

� � �� 8 �

� � �� � � � � � � (3.8)

We have �

� � �� 	 �

� � �� ��� 8 �

� � �� 	 � � � ) p8 � � as an initial sequent. A cut with equation (3.8) gives

� �� 	 �

� � �� ��� 8 �

� � �� 	�� � � )� 8 � �*8 �

� � �� � � � � � � (3.9)

On the other hand, by weakening on an axiom and right � -introduction we have �

� � �� ��� 	 � �� �e� . A

cut with equation (3.9) gives

� �� 	 � �� ��� 8 �

� � �� 	 � � � )  8 � ��8 �

� � �� � � � � � � (3.10)
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Again for trivial reasons, we have �

� � �� 	 � � � )� 	 � �� 	�� � � )� . A cut with equation (3.10) gives

� �� 	 � �� ��� 8 � �� 	 � � � ) p8 � ��8 �

� � �� � � � � � � (3.11)

Trivially again, �

� � �� � � � � � 	 �

� � �� � � . Moreover, �

� � �� � � 	 �

� � �� 8 �

� � �� � � 	�� � � )� 8 � � is an initial sequent.

Together, a cut gives
�

� � �� � � � � � 	 �

� � �� 8 �

� � �� � � 	 � � � ) p8 � � � (3.12)

Still trivially �

� � �� 	 � �� . Moreover, by Lemma 1 we have � �� 	 � �� 	 � � � ) p8 � � . A cut gives �

� � �� 	� �� 	 � � � ) p8 � � , and a cut with equation (3.12) gives

�

� � �� � � � � � 	 � �� 	�� � � )� 8 � � 8 �

� � �� � � 	 � � � ) p8 � � � (3.13)

Trivially again, �

� � �� � � � � � 	 � � . Right introduction of conjunction and contraction gives then

�

� � �� � � � � � 	 � �� 	 � � � )� 8 � ��8 �

� � �� � � 	�� � � )� � � � � (3.14)

Again �

� � �� � � 	�� � � )� � � � 	 � �� 	�� � � )� trivially. A cut with equation (3.14) and contraction gives
�

� � �� � � � � � 	 � �� 	 � � � ) p8 � � . Finally, a cut with equation (3.11) and contraction gives

� �� 	 � �� ��� 8 � �� 	�� � � )� 8 � � � (3.15)

This is exactly what we needed. � �

Back to the problem of this section, the lemma we just proved will help us prove the first half

of our result. For the other half of the proof, we need another technical lemma. Intuitively, this

lemma will say that it is enough to have short LK-refutations of sets of clauses in order to have

short LK-proofs of arbitrary sequents.

Recall the definition of the set of clauses � 	��  for every Boolean formula � in Section 3.3.

Recall also the notation � � � � ' 
 defined there.

Lemma 20 Let � 	 
 be a sequent, let � be the formula � � � � ' 
 , and let
�

be the set of

sequents corresponding to the set of clauses � 	��  �O6 � � ; . If
�

has an LK-refutation of size  ,

then � 	 
 has an LK-proof of size  � � � � .
Proof : Let & be an LK-refutation of

�
. Replace each variable � � , with � a subformula of � , by the

formula � itself. The result is still a valid refutation from a set of sequents. Moreover, we claim

that all clauses in � 	��  become trivially derivable (note that we do not claim this for the additional

clause � � ). Indeed, if � � � 	��  is a clause that comes from a constant, this is trivial since it is

the clause � . If � is a clause that comes from a variable � � , the resulting sequent is ��� 	 � � , again

trivially derivable. If � comes from '�� , the resulting sequent is � 	 � , again trivial. If � comes
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from � �
	 , the resulting sequent is one of � 8 	 	 � �
	 , � �
	 	 � or � �
	 	 	 . All three cases

are trivial to derive. Similarly if � comes from � � 	 . Thus, what we really have is a refutation of

the sequent 	 � . Now build the proof of � 	 
 as follows.

Assume for simplicity that � and 
 are single formulas � and � . The general case is similar.

Start with the axioms � 	 � and '�� 	 '�� . Apply right � -introduction to obtain �Y8l'�� 	 � � '�� .

Observe that � � '�� is � . Simulate the LK-refutation of 	 � on �Y8�'�� 	 � . This gives a proof of

the sequent �Y8�'�� 	 . Finally, a cut with 	 �/8�'�� gives the sequent � 	 � . The size of this LK-proof

is obviously  � � � � . � �

The following is a converse to the previous Lemma.

Lemma 21 Let
� � 6�� � 	 
�� � � � �78 �:�:� 8 � ; be a set of sequents and for every � �P6 �78 �:�:� 8 � ; let

� � be the formula � � � � � ' 
 � . If the sequent 	 � � � � has an LK-proof of size  , then
�

has an

LK-refutation of size  � � � � .
Proof : Start with each initial sequent � � 	 
�� and derive the sequent � � � � � ' 
�� 	 by left

introduction of ' , and left introduction of � . Then apply left introduction of � to obtain the

sequent � � � � 	 . Finally, derive the sequent 	 � � � � in size  and cut to obtain the empty sequent.

� �

We are now ready to prove the main result of this section.

Theorem 7 As refutation systems, LK is polynomially bounded if and only if MLK is polynomially

bounded.

Proof : Suppose that LK is polynomially bounded as a refutation system. By Lemma 20, it is

also polynomially bounded as a direct proof system. Let �

�� be Valiant’s monotone formulas for

all threshold functions [Val84]. Any other polynomial-size monotone formulas computing �
� ��
would do as well. Since we are assuming that LK is polynomially bounded, the pseudocomple-

ment properties of �

�� have polynomial-size LK-proofs. Hence, by Lemma 18, MLK polynomially

simulates LK even as a refutation system. In particular, MLK is polynomially bounded as a refu-

tation system.

For the other direction, suppose that MLK is polynomially bounded as a refutation system. Let
�

be a contradictory set of sequents and let � � � � � � be the formula as in Lemma 21. Note

that 	 � is a valid sequent since � is a tautology. We obtain the set of clauses � 	�'��  � 6 � � ; .
Let

� �
be the resulting set of monotone sequents. Since MLK is polynomially bounded as a

refutation system,
� �

has a polynomial-size MLK-refutation. It follows by Lemma 20 that 	 �
has a polynomial-size LK-proof. Finally, apply Lemma 21 to obtain an LK-refutation of

�
of

polynomial-size. � �
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3.5 Some Specific Tautologies and Separation Results

The purpose of this section is to prove that certain monotone sequents of interest, such as the

Functional Pigeonhole Principle, the Onto Pigeonhole Principle and the Matching Principle admit

polynomial-size monotone proofs. In order to prove these upper bounds, we realize that each of

the variables has a polynomial-size monotone formula for its pseudocomplement function. This

will allow us simulate their polynomial-size Frege proofs with only a polynomial overhead in size.

We also consider the Clique-Coclique Principle, and in this case, we do a monotone reduction to

the Functional Pigeonhole Principle in order to obtain polynomial-size monotone proofs.

As corollaries to these results, we obtain exponential separations between MLK and Cutting

Planes, and MLK and Bounded-depth LK.

3.5.1 Pigeonhole Principles

As we already know, the PHP expresses the fact that there cannot be a one-to-one correspondence

from a set of  � � pigeons into a set of  holes. The term correspondence is used to emphasise that

we do not insist that pigeons be mapped to a unique hole. The Functional PHP, instead, expresses

the fact that there cannot be a one-to-one function from a set of  � � pigeons into a set of  holes.

Thus, the Functional PHP is a weaker statement. Finally, the Onto PHP expresses the fact that

there cannot be a one-to-one correspondence from a set of  � � pigeons onto a set of  holes.

We could also consider the Functional and Onto PHP expressing that there cannot be a one-to-one

functions from  � � pigeons onto  holes.

We consider the following propositional formulations of PHP, Onto PHP and Functional PHP:

We let ����� � �e��
be the sequent � ����

��� �
��

�� � � �	� 

	

��� � �
� ������ ����������� 	 � �	� �
� � 
 � �  �

We let � �(� � � ���� be the sequent� ����
��� �

��

 � � � �	� 
 �

��

 � �

� �e��
��� � � �	� 
 	

��� � �
� ������ ����������� 		� � � � � � 
 � �  �

Finally, we let �i�(� � � ����
be the sequent� �e��

��� �
��

�� � � �	� 
Q	

��� � �
� ������ ������X��>� 		� � � �c� � 
 � �  �

� ����� � �
���  �,�@��X���� 		� � � � � � � � 
  �

Using Corollary 4 and Buss’ polynomial size
���

proofs of the PHP we give another proof of

the main result of Section 3.2.
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Theorem 8 �(� � � ����
has MLK-proofs of size quasipolynomial in  .

We can improve this result showing that the principles ���(� � , �i�(� � and a Perfect Matching

Principle ��� that we introduce later admit polynomial size MLK proofs.

Theorem 9 �i�(� � � ���� and � �(� � � �e�� have tree-like MLK-proofs of size polynomial in  .

Proof : Buss proved that �(� � � ����
has a Frege proof of size polynomial in  , and therefore, so do

�i�(� � � ����
and ������� � ����

. Since tree-like
���

polynomially simulates any Frege system [Kra95],

they also have polynomial-size tree-like
���

-proofs. We first consider �i�(� � � ����
. For every � �6 �b8 �:�:� 8  � �@; and �
�P6 �b8 �:�:� 8 <; , let � � 
 be the formula � 
�� �� 
 � �	� 
 � where � � ranges over 6 �b8 �>�:� 8 <; .

Let
� �i�(� � � ����

be the left hand side of the sequent �i�(� � � ����
, and let

� �i�(� � � �e��
be the right hand

side of the sequent �i�(� � � ���� . We claim that the sequents� �i�(� � � ���� 	 � �	� 
 8 � � 
 8 � �W����� � ����
(3.16)� �i�(� � � ���� 8 � � 
:8 � �	� 
 	 � �W����� � ���� (3.17)

have tree-like MLK-proofs of size polynomial in  . The result will follow for �i�(� � � ����
by

Theorem 5. For sequent (3.16) reason as follows. For every � � � 6 �b8 �:�:� 8  ; , we have � � � 
 � 	
� � � � 8 �:�:� 8 � � � � 8 � �i�(� � � �e��

by right weakening on the axiom � �	� 
 � 	 � �	� 
 � and structural rules. By

left � -introduction we get �
�

�� � � �	� 
 	 � �	� � 8 �:�:� 8 � �	� � 8 � �i�(� � � ���� . Left weakening and left � -

introduction gives
� �W����� � ���� 	 � �	� � 8 �:�:� 8 � �	� � 8 � �i�(� � � ���� . Finally, some structural rules and

right � -introduction give sequent (3.16). For sequent (3.17) reason as follows. For every ��8 � � �6 �b8 �:�:� 8  � �@; such that � �� � � , we have � �	� 
 8 � �	� 
 � 	 � �	� 
 � � �	� 
 � easily. Left weakening, right

weakening and right � -introduction gives
� �i�(� � � ���� 8 � �	� 
>8 � �	� 
 � 	 � �W����� � ����

. Finally, left � -

introduction for every � � �� � gives sequent (3.17). As regards ������� � ���� , one simply needs define

� � 
 as � � � �� � � � � � 
 where � � ranges over 6 �78 �:�:� 8  � ��; , and reason analogously. � �

3.5.2 Matching Principle

Let us be given a graph � � 	 �i8��  on  � �  nodes. We consider the following matching

principle ��� �
formulated in [IPU94]. If � is a set of  edges forming a perfect matching in �

and � is an  4 � subset of � , then there is some edge 	
	<8�� ���� such that neither 	 nor � are

in � . To encode this principle as a monotone sequent we use variables � � � for � � 6 �b8 �:�>� 8  ]; and� � 6 �78 �:�:� 8 �  ]; whose intended meaning is that the node
�

is in the � -th edge of the matching,

and variables � � � for � �P6 �78 �:�:� 8  4 �@; and
� � 6 �b8 �:�>� 8 �  ]; whose intended meaning is that the

node
�

is NOT the � -th element in � . We will encode the fact that there is a perfect matching on
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 edges in � by an  �� �  matrix such that in each row there are exactly two � ’s and in each

column there is at most one � . Notice that our formula has depth 3.

� ��� ��
��� � � ��

�  � � ���� �� � � 	�� �
� � � � � � 

� � � ��
��� � � ��

�  �  ������ ���������l�� � 	-' � � � �R' � � � �]' � � � 
� � � ���  � � ��������� �

� ��� � � 	�' � � � �R' � � � �  �
Similarly, we will encode that � is an  4 � subset of � , by an 	* 4 � �� �  matrix in which for

each row there is exactly one ) and in each column there is at most one ) (recall that the presence

of a node in � is indicated by a negated variable).

� � � � � ���  � � ����X���� �
� ��� � � 	 � � � � � � � � 

� � � � � ��
��� � � ��

�  � � �@�� �� � � 	�� � � � � � � � 
� � � � � ��

��� � � ��� � � ' � � �
The last formula that we introduce means that there is an edge such that neither of its endpoints is

in � .

� � � ��
��� � � ��

�  � � ���� �� � �
	
� � � � � � � � � � � ��

��� � � � � � �
� ��
��� � � � � ��


Then, the ��� � � principle is expressed by the following sequent:

� � 8 � � 8 � � 8 � � 8 � � 8 � � 	 � � (3.18)

We turn this into a monotone sequent. Consider the formulas ��� � ' � � for � � $=8 � and

� �� � ' � 	 �  , where ' � � and ' � � stands for the result of switching � and � , and replacing ' � by

� for every variable. Then, the sequent 3.18 is equivalent to the monotone sequent

� � 8 � � 8 � � 	 � �� 8 � �� 8 � �� 8 � �

Notice that, as observed in [IPU94], � � � � can be reduced to ���(� �(�� � � . However we need to

define the PHP variables � � 
 as � � �� � � 	�� � � � ' � 
 �  which is not a monotone formula. Therefore the

reduction cannot be proved in MLK. Either way we can get polynomial size MLK-proofs for the��� � � principle directly.
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Theorem 10 ��� �
has tree-like MLK-proofs of size polynomial in  .

Proof : Since [IPU94] gave polynomial-size LK proofs of ��� �
, it will suffice to define pseudocom-

plement formulas for � � � and � 
 � . Define for each � � 6 �78 �:�:� 8  ]; and for each
� �F6 �b8 �:�>� 8 �  ];

the pseudocomplement formula � 	�� � �  for � � � as:

� ��
� �  � � � ���� �� � � �� � � � �� � 	�� � � �

� � � � � �  �
For each � � 6 �78 �:�:� 8  4 �@; and each

� � 6 �b8 �:�:� 8 �  ]; define the pseudocomplement formula

� 	�� � �  for � � � as
� ��
� � ���� � �� � � � � � �

We prove that for each ��� 6 �b8 �>�:� 8p ; , � � 6 �b8 �:�:� 8  4 �@; and
� � 6 �78 �:�:� 8 �  ]; the following

sequents have polynomial size tree-like MLK-proofs:

� � 8 � � � 8 � 	�� � �  	 � �� 8 � �� (3.19)

� � 	 � � � 8 � 	 � � �  8 � �� 8 � �� (3.20)

� � 8 � � 8 � 
 � 8 � 	�� 
 �  	 � �� (3.21)

� � 8 � � 	 � 
 � 8 � 	 � 
 � p8 � �� (3.22)

We prove sequents (3.19) and (3.20). Sequents (3.21) and (3.22) follow by an argument similar to

that of �i�(� � . Observe that � �� 8 � �� are the following formulas

��
��� � � ��

�  �  ������ ���������l�� � 	 � � � � � � � � � � � 
and ���  � � ����X���� �

� ��� � � 	�� � � � � � � � 
For sequent (3.19) reason as follows: for each

� � �� � � � � 6 �78 �:�:� 8 �  ; , � � 8 � � � �� � , we have proofs

of the sequents ��� � 8 	�� � � � � � � � � �  	 	 � � � � � � � � � � � � � �  . By weakenings and right � -introduction

we obtain � � � 8 	 � � � � � � � � � �  	 � �� . By right � -introductions on all previous proofs we have

� � � 8 � 	 � � �  	 � �� from which sequent (3.19) follows by two weakenings, left and right.

For sequent (3.20) reason as follows: for each
� � �� � we have proofs of the sequents ��� � � � � � � 	

� � � . By left � -introduction we can derive

� ��
� � ���� � �� � 	 � � ��� � � � �  	 � � �7�

42



From this, by right weakening we have

� ��
� � �@�� � �� � 	 � � ��� � � � �  	 � � � 8 � 	 � � �  (3.23)

For each
� � 8 � � � � 6 �78 �:�:� 8 �  ]; , with

� �� � � �� � � � �� � we can derive ��� � � � � � � � � 	 � � � � � � � � � � .
From this, by right weakenings, we can derive � � � � � � � � � � 	 � � � 8 � 	�� � �  . By left � -introductions on

these proofs we obtain
� ��

� �  � � � ���� �� � � �� � � � �� � 	 � �
� � � � � � � �  	 � � � 8 � 	 � � �  (3.24)

Finally by left � -introduction between (3.23) and (3.24), left weakening, and left � -introduction

we obtain � � 	 � � � 8 � 	 � � �  , from which (3.20) follows by right weakenings. � �

3.5.3 Clique-Coclique Principle

A graph � is a
�

-clique if there is a set of
�

nodes of � such that any two distinct nodes of the set

are connected by an edge, and no other edge is present in � . A graph � is a
�

-coclique if there is

a partition of the nodes of � into
�

disjoint sets in such a way that any two nodes that belong to

different sets are connected by an edge, and no other edges are present in � .

The 	 U8 �  -clique-coclique principle of [BPR97] says that, given a set � of  nodes, if � is

a
�

-clique over � and � is a 	 � 4 �  -coclique over � , then there is an edge in � that is not

present in � . This principle may be stated as a monotone sequent � � ������� �� as follows. For every

	 � 6 �78 �:�:� 8 � ; and ��� 6 �b8 �:�:� 8 <; , let � � � be a propositional variable whose intended meaning is

that � is the 	 -th node in the fully connected set of a
�

-clique over 6 �b8 �>�:� 8 <; . Similarly, for every

� �P6 �78 �:�:� 8 � 4 �@; and � �P6 �78 �:�:� 8  ; , let � �  be a propositional variable whose intended meaning

is that the � -th node is in the � -th disjoint set of a 	 � 4��  -coclique over 6 �b8 �:�:� 8 <; . The principle

is then expressed as follows��
� � �

��
��� � � � � �

��
��� �

� � ��
 � � � �  	

� � ��
 � �

���  � � ��������� �
���  �,��������� 	�� � � � � � � 
 � � �  � � 
   ��� � 


where � � 
 is the formula���  � � ��������� �
��
��� � 	 � � � � � � � �  �

��
� � �

���� ������X��>� 	 � � � � � � 
  �
� � ��
�

� � ���
�
��
� �

��
��� � 	�� �  � � �  �  �

We show how to reduce � � ������� �� to �i�(� � �� � � in the monotone sequent calculus. The reduction

was first given in [BPR97]; here we provide proofs of correctness to check that monotonicity is
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preserved. The strategy will be to show that the sequents� � � ������� �� 	 � �i�(� � � (3.25)
� �i�(� � � 	 � � � ������� �� (3.26)

have MLK-proofs of size polynomial in  , where
� �i�(� � � and

� �W����� � are the result of replacing

the variable � � �  by the formula �
�
��� � 	�� � � � � �   in

� �W����� and
� �i�(� � respectively.

Lemma 22 Sequent (3.25) has MLK-proofs of size polynomial in  .

Proof : Consider the following sequence of sequents with easy MLK-proofs (the notation
� 	 � 	

� stands for the sequence
� 	 � , � 	 � ):��

� � �
��
��� � � � � �

��
��� �

� � ��
 � � � �  	

��
� � �
	 ��
��� � � � � �

��
��� �

� � ��
 � � � �  
 	 ��

� � �
��
��� �
	
� � � � � � ��

 � � � �  
 	
	 ��

� � �
��
��� �

� � ��
 � � 	 � � � � � �   	

��
� � �

� � ��
 � �

��
��� � 	 � � � � � �   �

The first derivation follows by left weakening, left � -introduction, and commutativity; for the

second derivation use distributivity and the derivable sequent
� � � 	 � ; for the third derivation use

distributivity; and for the last derivation use commutativity. Finally observe that the first formula

is
� � � ������� �� and the last formula is

� �i�(� � �� � � (recall the substitution of � � �  by �
�
��� � 	 � � � � � �   ).

� �

Lemma 23 Sequent (3.26) has MLK-proofs of size polynomial in  .

Proof : Let us write down the full expression for
� �i�(� � �� � � :� � ��

 � �
���  � � ��������� �

�� ��
��� � 	�� � � � � �   �

��

 � � 	 � � � 
 � � 
   �� �

��
� � �

� � ��
�

� � ���
�
��
� �

�� ��
��� � 	�� � � � � �   �

��

�� � 	 � � 
 � � 
  �  �� �

By distributivity we obtain� � ��
 � �

���  � � ��������� �
��
�	� 
 � � 	 � � � � � �  � � � � 
 � � 
   �

��
� � �

� � ��
�

� � ���
�
��
� �

��
� � 
�� � 	�� � � � � �  � � � 
 � � 
  �  �

By commutativity we obtain� � ��
 � �

���  � � ��������� �
���  ������X���� 	 � � � � �  � � � � � 
 � �  
  �

� � ��
 � �

���  � � ��������� �
��
��� � 	�� � � � �  � � � � � � � �  �  �

��
� � �

� � ��
�

� � ���
�
��
� �

��
� � 
�� � 	�� � � � � �  � � � 
 � � 
  �  �
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Now, working on the last two big disjuncts using
� � � 	 � and distinguishing on � � � and � �� � ,

we obtain � � ��
 � �

���  � � ��������� �
���  ������X���� 	 � � � � � �  � � � � 
 � � 
   � � � 
 �

Observe that the last formula is simply
� � � ������� �� , and the proof is complete. � �

Corollary 6 The sequents � � ������� �� have MLK-proofs of size 
� � � � .

3.5.4 Separation Results

Let � and � � be two propositional proof systems. We say that � is exponentially separated from

� � if there exists a family of tautologies with � -proofs of size  �  	   whose shortest � � -proofs

require size $ ��� � � � .
Recall that �i�(� � � ����

requires exponential-size refutations in Bounded-Depth LK and in Reso-

lution in particular [PBI93, KPW95, Hak85]. On the other hand, � � ����� � �� requires exponential-

size refutations in Cutting Planes [BPR97, Pud97]. Putting these together with our upper bounds,

we obtain the following separation results:

Theorem 11 MLK is exponentially separated from Resolution, Bounded-Depth LK and Cutting

Planes.
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Chapter 4

Lower Bounds Beyond Resolution

4.1 Discussion on Random Restrictions

This chapter is devoted to the lower bounds on the size of proofs of the Weak Pigeonhole Principle

and Random CNF Formulas in any Res(2) system. The introductory chapter of the thesis contains

a wide discussion on the interest and the motivation of these results. However, we deferred the

discussion about the applicability of current lower bound techniques to this chapter.

Let us remind the way the random restriction method is used in order to prove lower bounds for

Random CNF formulas in Resolution. Of course, this will only be a sketch of the idea [BP96]. A

restriction is a partial function � � � 6 � � 8 �>�:� 8 � � ;J. 67)=8 �@; from the set of variables to 67)=8 ��; . We

can define a probability distribution ��� on random restrictions as follows: Every variable is left

undefined with probability � and is set to ) or � with probabilities 	 �94 �  � $ . Each variable is treated

independently of the rest. The idea of the lower bound argument is as follows: Given a alleged

small Resolution refutation � of a 3-CNF formula � , argue that a random restriction � ��� � with

appropriate � will satisfy all clauses of � containing many literals with high probability. All the

clauses of the resulting refutation ����� of � � � will all have not too many literals. However, if the

formula � is chosen at random according to the usual distribution, and � is not too small, one can

prove that every Resolution refutation of � �	� must contain a clause with many literals. It follows

that � could not have been small in the first place.

The most difficult part of the above argument is proving that every Resolution refutation of
� � � must contain a large clause. Proving that a clause with many literals is satisfied with high

probability is relatively straightforward. Indeed, the clause

� � � � �:�:� � � � � �N' � 
 � � �:�>� �]' � 
 �
is satisfied with probability at least �
4�	 	 � � �  � $� � � � which is pretty close to one if

� � � is big.

One may like to use the above argument for Res(2) systems in which disjunctions of conjunc-

tions of two literals (so-called 2-disjunctions) are allowed in addition to clauses. It turns out that
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the large clause lemma resists in the following form: If � is not too small, every Res(2)-refutation

of � � � must contains a 2-disjunction with many literals. Unfortunately, it is not true anymore that

� will almost surely satisfy every 2-disjunction with many literals. Indeed, let � be the following

2-disjunction:

	�� � � � �  � 	 � � � � �  � �>�:� � 	�� � � � �  �
A random restriction � � � � will leave variable � � unset with probability � . Thus, � ��� will not

be satisfied with probability at least � . The point is, however, that � � � will almost surely become

equivalent to � � , and this is a 2-disjunction with not too many literals. Thus, we do not require

that every 2-disjunction with many literals is satisfied by � , but rather that every 2-disjunction

with many literals is either satisfied or left with a few literals after � is applied. This is enough

for the lower bound argument to go through. Proving this property of 2-disjunctions and random

restrictions is the core of our lower bound and will require a non-trivial argument. In the case of

the Weak Pigeonhole Principle, the difficulty is augmented by the fact that restrictions must have

some particular form.

4.2 The Weak Pigeonhole Principle

4.2.1 Definitions and Overview of the Lower Bound Proof

A
�

-term is a conjunction of up to
�

literals. A
�

-disjunction is an (unbounded fan-in) disjunction

of
�

-terms. If � is a
�

-disjunction, a � -term of � is also called a free-literal. The refutation system

Res(
�

), defined by Krajı́ček [Kra00], works with
�

-disjunctions. We recall the three inference

rules: Weakening, � -Introduction, and Cut.

Weakening: �
� � �

Introduction of � : � � 	
	 � �N�:�>�@� 	 �  � � 		 � ��� � �:�:�b� 	 � � � � � 		 � �N�:�:��� 	 � 
Cut: � � 	
	 � � �:�>�@� 	 �  ���R' 	 � � �:�:� �N' 	 �� � � 8
where

�
and � are

�
-disjunctions, � � ��� � � �

, and the 	 � ’s are literals. As usual, if 	 is a

literal,
�

	 denotes its negation. Observe that Res(1) coincides with Resolution with the Weakening

rule. The size of a Res(
�

)-refutation is the number of symbols in it.

Our lower bounds will work not only for Res(2), but for any sound refutation system whose

allowed formulas are 2-disjunctions, and whose rules of inference have a fixed number of premises.

Such rules are said to have bounded fan-in. Note that all rules of Res(2) have fan-in at most two.
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As we mentioned in the introduction, our arguments are based on random restrictions. In

general terms, what we do is the following. Given an unsatisfiable CNF formula � , and an alleged

small Res(2)-refutation & of � , we apply a random restriction � , from a suitable distribution, and

we get a refutation & � � of � � � . The distribution on restrictions that we choose will satisfy the

following two properties:

(i) � � � satisfies certain expansion properties,

(ii) Every $ -disjunction in &�� � is short (measured by the number of literals that occur).

The argument will be complete since these two conditions will be shown to be contradictory.

As a contrast with the lower bound arguments for Resolution, the most difficult part of our

proof is showing that property (ii) is satisfied. The conjunctions make this task more involved. In

order to overcome this, we split the restriction into two parts � � � � � � . Then, the main contribution

is showing that every large clause in &�� � � contains many free literals. That allows us show, by a

standard argument, that no large clause remains in & � � � � � .
For the sake of clarity of exposition, we explain this outline again in the particular case of

the Weak Pigeonhole Principle. Let � � 	 � � �i8 �  be a bipartite graph on the sets
�

and �
of cardinality  and  respectively, where  !  . The � - �(� ���� , defined by Ben-Sasson and

Wigderson [BSW01], states that there is no matching of
�

into � . For every edge 	 	<8��  ��� , let

��� � � be a propositional variable meaning that 	 is mapped to � . The principle is then formalized as

the conjunction of the following set of clauses:

��� � � � � � � �

� ��� � � � 	 � � 8 ��� 	 	  � 6 � � 8 �>�:� 8�� � ; (4.1)
���� � � � ���� � � � � � �i8 	<8 	 � � ��� 	 � p8�	 �� 	

� � (4.2)

Here, ����	 �� denotes the set of neighbors of � in � . Observe that if � is the complete bipartite

graph � �� , then � - �(� � �� coincides with the usual pigeonhole principle �(� � �� . It is easy to see

that a lower bound for the size of Res(2)-refutations of � - �(� ���� implies the same lower bound for

the size of Res(2)-refutations of �(� ���� .

Ben-Sasson and Wigderson proved that whenever � is expanding in a sense defined next, every

Resolution refutation of � - �(� � �� must contain a clause with many literals. We observe that this

result is not unique to Resolution and holds in a more general setting. Before we state the precise

result, let us recall the definition of expansion:

Definition 1 [BSW01] Let � � 	 � � �i8 �  be a bipartite graph where � � � �  , and � � � �  .

For
� �
	 �

, the boundary of
�

, denoted by � � � , is the set of vertices in � that have exactly one

neighbor in
� �

; that is, � � � � 6 � � � � � � 	 � � � � � � �@; . We say that � is 	* N8 U8 � 8 0  -expanding

if every subset
� � � �

of size at most
�

is such that � � � � ��" 0 �

� � � � .
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The proof of the following statement is the same as in [BSW01] for Resolution.

Theorem 12 Let � be a sound refutation system with all rules having fan-in at most two. Then, if

� is 	  8 U8 � 8 0  -expanding, every � -refutation of � - �������� must contain a formula that involves

at least
�@0 � $ distinct literals.

Proof : For every 	 � � , let
� � be the conjunction of � � � � � � � � �

� ��� � � � and all hole axioms. Here

� � 8 �:�:� 8�� � are the neighbors of 	 in � . For a set
� � � �

, let
� � � be � ��� � � � � . For every formula

� in the refutation, let � 	 �  be the minimum size of a
� � � �

such that
� � � � � � . Obviously,

� 	 �  � � for every axiom. On the other hand, � 	 � �  " �
since every

� �
of size at most

�
has a

matching into � . Moreover, if � is derived from � � and � � , then � 	 �  � � 	 � �  ��� 	 � �  . Here we

used the soundness of the rules and that their fan-in is at most two. It follows that some � exists

with
� � $ � � 	 �  � �

. Let
� � � �

be minimal so that
� � � � ��� .

Our goal is to prove that for every � � � � � , there exists a 	 � � ��� 	 �  so that ����� � � occurs in
� . This will justify at least � � � � � " 0 �

� � � �/" ��0 � $ literals in � . Fix � � � � � and let 	 be its

unique neighbor in
� �

. Let � be a truth assignment that satisfies
� � � ��� �
	 and falsifies both

� � and
� . Such an assignment exists by the minimality of

� �
. Let � � be the result of setting � � � � to � ,

setting ��� � � � to ) for all 	 � � ��� 	 � <4F6 	Y; , and leaving the rest of variables as in � . Notice that � �

satisfies
� � � since 	 is the unique neighbor of � in

� �
. It follows that � � satisfies � since

� � � � � � .

Since � does not satisfy � and the only differences between � and � � are in the variables of hole

� , we conclude that � ��� � � occurs in � for some 	 � � ��� 	 �  . � �

With these definitions and results, we are ready to outline the argument of the lower bound

proof. In section 4.2.2, we will prove the existence of a bipartite graph � � 	 � � �i8 �  with

� � � � 	  � and � � � �  � such that if we remove a small random subset of nodes from � , and the

corresponding edges, the resulting graph is 	  N8 U8 � 8 0  -expanding for certain  ,  ,
�

and
0

. Then

we will argue that � - �(� � � � �� � requires exponential-size Res(2)-refutations as follows. Assume, for

contradiction, that � is a small refutation of � - ����� �
� �� � . We say that a $ -disjunction in � is large

if it contains at least � � ��0 � $ distinct literals. We apply a random restriction � � to the refutation

such that for every large � , either � ��� � contains many free literals, or the total number of literals in
� � � � is less than � . Then we extend � � to a new random restriction ��� � � that knocks out all those

large � such that � � � � contains many free literals, ignoring those that are not free. After applying

� , we obtain a refutation of � 	 �  - �(� � �� where all $ -disjunctions have less than
�@0 � $ literals and

� 	 �  is 	  8 U8 � 8 0  -expanding. This contradicts Theorem 12.

4.2.2 Random Graphs and Restrictions

In this section we will prove the existence of a bipartite graph � as claimed in Section 4.2.1.
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Let � 	* N8 /8 �  denote the distribution on bipartite graphs on sets
�

and � of sizes  and 
respectively, with edge probability � independently for each edge.

Lemma 24 If � is drawn from � 	  8 U8 �  , then ��� � 	 + ��� �  	* � � $ ��� � � � 	 �  � $b �  �5"
�
4 $ �� � ���	 .

Proof : Fix a vertex � � � . Then,
� � � � 	 �  is distributed as a Binomial distribution ��
� 	  8 �  with

parameters  and � , so that its expectation � � � � � � 	 �  � is  � . By Chernoff bounds, ��� � � � � � 	 �  "$b � � � � � � � � � and ��� � � � � � 	 �  �  � � $ � � � � � � ��� . By a union bound,

��� � 	�� � � �  	 � � � � 	 �  �  � � $ � � � � � 	 � �" $b � �� � �� � � � � � � �� � � � ��� � $ �� � � � ��� 8
and so ��� � 	 + � � �  	* � � $ ��� � � � 	 �  � $b �  �U" �
4 $ �� � � � ���
as required. � �

Lemma 25 Let  � �  , � � ��� � � � 	*  �  , � � � �  � and
0 �  � ��� . Let � be drawn from� 	* N8 /8 �  . Then, ��� � � is 	  8 U8 �/ N8 0  -expanding�/" � � $ .

Proof : Fix
� � � �

of size � � �U , and �
� � . Then,

��� � � � � � � � � � � 	 � 4 �  � � � �
Let � � ��� � ��� � � � � . Let � � be the indicator random variable for the event that ��� � � � .
Then, � � � � � � � � ��� � � . Observe that � � and � � � are independent whenever � �� �

�
. Hence,

� � � � ��� ��
� 	 /8 �  , so that � � � � � � � � �  � . By Chernoff bound, ��� � � � � � � �  � � $ � � � � � � ��� . On

the other hand,

 � �  � � 	 � 4 �  � � � " �  � 	 � 4 � �� � �
Moreover, 	 �Y4 �  � � � 	 �L4 �  � � � approaches � � � for sufficiently large  . Therefore,  � " �  � � � .
It follows that  � � $ " � 0 and � � � � ��� � � � � � � � ��� . We conclude that

��� � � � � � � �F0 �

� � � � � � ��� � � � � � � �  � � $ � � � � � � ��� � � � � � � � ��� �
Finally, we bound the probability that � is not 	  8 U8 �/ N8 0  -expanding by

� ��
�g� �

�  
�! � � � � � � ��� � � ��

��� �  � � � � � � � ��� � � ��
�g� � 	  "� � � � � ���  � � (4.3)

Recall that � � ��� � � � 	*  �  and  � �  . So  "� � � � � ��� �  "� � � �$# � � � �  � � � � � � . Hence the

sum in (4.3) is bounded by %�
��� � �� � � �$ �
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� �

Let � be a fixed bipartite graph on 6 �78 �:�:� 8p ; and 6 �b8 �>�:� 8 <; . A restriction (for � ) is a

sequence of pairs � � 	 	 	 � 8�� �  8 �:�>� 8 	
	 � 8�� �   such that 	 	 � 8�� �  � � 	 �  , and all � � ’s are distinct. We

let � � 	 �  be the set of restrictions of length
�
. We define a distribution � � 	��  on � � 	 �  as follows:

Let � � � 6 �78 �:�:� 8  ; ; for every ��� 6 �b8 �>�:� 8 � ; in increasing order, choose a hole ��� uniformly at

random in � � � � , choose a pigeon 	�� uniformly at random in � � 	 � �  , and let � � � � � � � 4O6 � �g; . The

final restriction is 	 	 	 � 8�� � p8 �:�:� 8 	 	 � 8�� �   .
We define a distribution

� 	  8 U8 �L8 �  on the set of pairs 	��J8 �  with � � � � 	��  : the graph �
is drawn from � 	* N8  � � 8 �  first, and then � is drawn from � � 	��  . In other words, if 	 � 8 �  is a

fixed pair with � � � � 	 �  , then

��� � � � � � � � �	� � ��� � � � 	 � 4 �  � � � � � � � � � � �� � � 	 �  �
�

If � is a bipartite graph on the vertex sets 6 �b8 �:�:� 8  ]; and 6 �78 �:�:� 8  � � ; , and � is a restriction

	 	
	 � 8�� �  8 �:�>� 8 	
	 � 8 � �   � � � 	��  , then � 	 �  denotes the graph that results from deleting � � 8 �:�:� 8�� �
from � , and renaming nodes in an order-preserving way. With this definitions we are ready to

prove:

Lemma 26 Let  � �  , � � ��� � � � 	*  �  , � � � �  � and
0 �  � ��� . Let 	 �J8 �  be drawn from

� 	  N8 U8 �L8 �  . Then, ��� � � 	 �  is 	  8 U8 �/ N8 0  -expanding�<" � � $ .
Proof : Let

�
be the event that � 	 �  is 	  8 U8 �/ N8 0  -expanding. Let

 � 6 � � 6 �78 �:�:� 8  � � ; � � � � � � ; �
Then, ��� � � � � �

� � � ��� � � � ��� ��	 �  � � ����� � ����� 	 �  � � � �
The proof that ��� � � � ��� � 	 �  � � ��" � � $ is the same as the proof of Lemma 25 replacing � by

� 4 � . The result follows. � �

Lemma 27 Let  � �  , � � ��� � � ��	*  �  , � � � �  � and
0 �  � ��� . For every

� �  , there

exists a bipartite graph � on 6 �b8 �:�>� 8  ]; and 6 �b8 �>�:� 8  � � ; such that the following two properties

hold:

(i)  � � $ � � � � � 	 �  � $7 � for every �
� 6 �b8 �:�>� 8  � � ; ,
(ii) ��� � � 	 �  is 	* N8 U8 �U N8 0  -expanding�<" � � � 8

when � is drawn from � � 	 �  .
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Proof : Let 	��?8 �  be drawn from
� 	  8 U8 �L8 �  . We have

��� � � 	 �  is 	* N8 U8 �U N8 0  -expanding�/" � � $
by Lemma 26. Moreover,

��� � 	 + � � �  	* � � $ � � � � � 	 �  � $b �  �/" � 4�	  � �  � � � � ��� " � ���
by Lemma 24. Let � 	 �J8 �  be the event that � 	 �  is expanding and every right-node in � has

degree between  � � $ and $7 � . Combining both equations above we have that ��� � � 	��?8 � �� "
� � � . On the other hand,

��� � � 	��?8 � �� � �
�
��� � � 	 �J8 �  � � � � ����� � � � � �

where � ranges over all bipartite graphs on  and  � �
nodes. Therefore, there exists some fixed

� such that ��� � � 	��J8 �  � � � � �<" � � � �
Moreover, ��� � � 	 �J8 �  � � � � � equals ��� � � 	 � 8 � �� when � is drawn from � � 	 �  . Finally, since

this probability is strictly positive, it must be the case that � satisfies property (i) in the lemma

since it is independent of � . � �

4.2.3 The Lower Bound Argument

Before we state and prove our main theorem, we will give some definitions and lemmas.

Let us first give a normal form for Res(2)-refutations of � - �(� � �� . We claim that every Res(2)-

refutation of � - �(� � �� can be turned into a Res(2)-refutation of similar size in which no $ -term

is of the form ��� � � � ��� � � � with 	 �� 	 � . To check this, observe that such a $ -term must have been

introduced at some point by the rule of � -introduction with, say,
� � � � � � and ��� ��� � � � . Cutting

them with the axiom
�� � � � � ���� � � � we get

� � � that can be used to continue the proof because it

subsumes
� � � � 	���� � � � ��� � � �  .

Let � be a $ -disjunction, and let 	 	<8��  � � 	 �  . We let � � � � � �
�

be the result of assigning

� � � � � � and � � � � � � ) for every 	 � � � � 	 � (4 6 	Y; to � , and simplifying as much as possible.

This includes replacing subformulas of the form 	 � 		 � 	 �  by 	 in some specified order; here

	 and 	 � are literals. Given a restriction � � 	 	 	 � 8�� �  8 �>�:� 8 	
	 � 8�� �   , we let � � � be the result of

applying 	 	 � 8�� �  8 �>�:� 8 	 	 � 8�� �  successively in this order. For every � � 6 �b8 �:�:� 8 � ; , we let � � �
	 	
	 � 8�� �  8 �:�>� 8 	
	 �*8�� �   .

Let us now study in more detail the result of applying a pair of a restriction to a 2-disjunction.

First we give some definitions. We say that a pair 	
	<8��  � � 	��  hits � if either � � � � occurs

positively in � , or ��� � � � occurs negatively in � for some 	 � � ����	 � i4 6 	Y; . Equivalently, 	 	<8�� 
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hits � if it sets some literal of � to � . If the literal is free, it knocks out the $ -disjunction. If

the literal is part of a conjunction, it will locally create a free literal. In general, we say that

	 	<8��  ��� 	��  knocks � if � � � � � �
� � � . We say that 	 	<8��  ��� 	��  is a bad choice for � if it does

not knock it and there exists 	 � � ��� 	 � W4 6 	 ; such that 	
	 � 8 �  knocks � . A bad choice may or

may not be a hit.

Lemma 28 Let � be a simplified $ -disjunction, and 	
	 8 � �� � 	��  . If 	
	<8��  hits � and is not a

knock or a bad choice, then � � � � � �
�

has more free literals than � .

Proof : First notice that the literals that 	 	<8��  sets to � are in a conjunction, otherwise 	
	 8 �  is a

knock. Such literals can appear positively or negatively. We will discuss the two cases:

Case 1: The literal is � � � � and appears in a conjunction of the form � � � � � � . The pair 	 	<8�� 
does not set � to � otherwise we would have a knock. Also, it does not set it to ) either, otherwise

� � ��� � � � and such a conjunction is not allowed in the normal form. On the other hand, � does not

appear free because � is a simplified $ -disjunction. Finally no free literal of � desapears when we

apply 	
	<8��  to � , otherwise 	 	<8��  would be a bad choice.

Case 2: The literal is ��� � � � , and it appears in a conjunction of the form ��� � � � � � . Because 	 	<8�� 
is not a knock, it does not set � to � . Also, 	
	 8 �  does not set � to ) either, otherwise it would be

a bad choice, given that the indegree of � is
�

or more. As in the previous case and for the same

reasons, � does not appear free in � , and no free literal of � disappears when we apply 	 	<8��  . � �
Theorem 13 Let 	 !�� be a constant. For all sufficiently large  , every Res(2)-refutation of �(� � �

��
has size at least � � � � �	��
 ��� ��� .

Proof : Let
� � 	 � � , � �  � 	 ,  � �  � � , and  � �  � 	  � . Let � � 	 � � �W8��  with � � � �  

and � � � �  � �
be the bipartite graph of Lemma 27. We show that every Res(2)-refutation of

� - �(� � � � �� � has size at least � ��� � �	��
 � � ��� . This will imply the Theorem since a Res(2)-refutation of�(� � � � �� � gives a Res(2)-refutation of � - ����� � � �� � of no bigger size. Let us assume, for contradiction,

that � - ����� � � �� � has a Res(2)-refutation � of size  � � ��� � �	��
 � � ��� .
We will use the following concepts. We say that � is large if it contains at least � �  � �:$

distinct literals; otherwise, � is small. We say that � is wide if it contains at least � �  � 	 � � �   �

free literals; otherwise, � is narrow.

In all probabilities that follow, � is drawn from the distribution � � 	 �  . Our main goal is to

prove that the probability that a fixed $ -disjunction � of � remains large is exponentially small;

that is, we aim for a proof that

��� � � � � is large � � � � ��� � �	� 
 � � � � � (4.4)

This will suffice because then

��� � 	�� � � �  	 � � � is large  � �  � � � � � �	��
 � � � � � � � � 8
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and also ��� � � 	 �  not 	  N8 U8 �/ N8 0  -expanding� � $ � �
by Lemma 27. Combining, this means that there exists a restriction � � � � 	��  such that � 	 �  is

	* N8 /8 �/ 8 0  -expanding and every $ -disjunction in ��� � has less than � � �/ 0 � $ literals. This is

a contradiction with Theorem 12 since ����� is a sound refutation.

For � � 6 �78 �:�:� 8 � ; , let
� � be the event that � ��� � is large, and let � � be the event that � � � � is

narrow. Recall that � � � 	 	 	 � 8�� � p8 �:�:� 8 	 	 � 8�� �   . Then,

��� � � � � is large � � ��� ��
� � � �


 � � � �
� 
��� � ��� ��

� � � �

 � � � �

� 
 �� �
� ��


 � � � � ��� � � 
 � � 
 � � ��� ��
� � � �


 � � � �
� 
 �� �

We will show that every term in this expression is exponentially small. The bound on terms of the

form ��� � � 
 � � 
�� will be proven in Lemma 30. For the last term, we use an argument similar in

spirit to the one by Beame and Pitassi [BP96]:

Lemma 29 ��� � � � � � 
 � � � � � 
�� � � � ��� � �	� 
 � � 	 .
Proof : Let  � be the indicator random variable for the event that 	 	 � 8�� �  knocks � � � � � � . Then,

��� ��
� � � �


 � � � �
� 
��� � ��� �� �

��� � � �
�� � ) � �


 � � � �
� 
��� �

� �
��� � � �

��� ��
 � � ) � �


 � � � �
� 
�������

�
� � � 
 
 
 �

 
 � ) �� �
� �

��� � � �
��� ��

�� � ) � � � � � ������
�

� � � 
 
�
 �
 
 � ) �� �

� �
��� � � �

��� ��
�� � )�������

� � � � � �
� � � 
 
�
 �

 
 � ) �� �
Fix � � 6 � � $ � �78 �:�:� 8 � ; and let � be the set of holes that occur in a free literal of � � � � � � .
Given that � � � � holds, � � � � � � is wide which means that there are at least � free literals. Therefore

� � �9" � � $ � , where � � $7 � is an upper bound on the right-degree of � . Moreover, every �
� �
gives a possible knock, and different holes give different knocks. The reason is the following: if

��� � � is a free literal, then 	
	<8��  is a knock; and if
�� � � � is a free literal, then 	 	 � 8 �  is a knock for

every 	 � � ����	 � �4I6 	 ; , which is non-empty since the right-degree of � is at least two. Therefore,

��� ��
�� � � ������

� � � � � �
� � � 
 
 
 �

 
 � ) �� " � � �
� 	  � � 4 � � �  " �

� � � 
�
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Therefore,

��� ��
� � � �


 � � � �
� 
 �� � �

� 4 �
� � �   

� � � � � � �
���� � � � � � � � � �	��
 ��� 	 �

� �

Lemma 30 Let � be such that
� � $ � � � �

. Then, ��� � � 
 � � 
 � � � � � � � �	��
 ��� � � .
Proof : Recall that

� 
 is the event that � � � � is large, and � 
 is the event that � � � � is narrow.

We let  � be the indicator random variable for the event that 	 	 �*8�� �  hits � � � � � � , where � � � � �
	 	
	 � 8�� �  8 �:�>� 8 	
	 � � � 8�� � � �   . Let  � � 
 ��� � �� . Then, for every

�
,

��� � � 
 � � 
 � � ��� � � 
 � � 
 �  � � � � ��� � � 
 � � 
 �  " � � �
� ��� � � 
 �  � � � � ��� � � 
 � � 
 �  " � � �

We show that each term in this expression is exponentially small. More precisely, we show that��� � � 
 �  � � � � � � ��� � �	� 
 � � � and ��� � � 
 � � 
 �  " � � � � � � � � �	��
 � � � � which is clearly enough to

prove Lemma 30.

Claim 1 Let
� �  � 	 � � �   � . Then, ��� � � 
 �  � � � � � � ��� � �	��
 ��� � .

Proof : Let � � 6 	 � � 8 �>�:� 8 ��
  � 67)98 �@; 
 � � 
 ��� � � � � � ; . Observe that
� 
 implies

� � for every

� � � because if � � � � is large, so is � � � � for every � � � . Then,

��� � � 
 �  � � � � ��� �� 
�
��� � �� � � � � 
 �� � �

� ��� ���
�� 
�
��� � �� � � � � � 
 �� �

� �
� ���


�
��� � ���

�
�� � � � � � 
 �����

� � ��� � �  � � � ��� �
� �

� ���

�
��� � ���

�
�� � � � � � � � � �����

� � ��� � �  � � � ��� �
� �

� ���

�
��� � ���

�
 � � � � �����

� � � � � � � ��� � �  � � � ��� �
Fix � �P6 �b8 �:�:� 8 �\; . Let � be the set of holes that occur in � � � � � � . We have � � �9" � � $ � given that
� � � � holds. Again, � � $b � is an upper bound to the right-degree of � . Moreover, every �
� �
gives a possible hit, and different holes give different hits (the reason is the same as in Lemma 29

for knocks). Therefore,

��� �
�� � � �����

� � � � � � � ��� � �  � � � ��� " � � �
� 	  � � 4 � � �  " �� � � 

�
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Since there are at least �?4 �
zeros in 	 � � 8 �:�:� 8 � 
  , we obtain

��� � � 
 �  � � � � �
� � �

	
�
4 �� � �  



�� � � �
� 
 �

� �
�  � � � � � � � �

��� � � � � � � � � � � � � � �
��� � � �

� � ���
	 4 �?4 �

� � � � � � ��� � 	 �  � ����� 	 �  
 � � � ��� � �	� 
 ��� � �
� � (of claim 1)

Claim 2 ��� � � 
 � � 
 �  " � � � � � � � � �	��
 ��� � � .
Proof : During this proof we will drop the subindex � in

� 
 and � 
 since it will always be the same.

For every ��� 6 �78 �:�:� 8 � ; , let � � � 6��L8��<8 �L; be a random variable indicating whether 	
	 � 8�� �  is a

knock, a bad choice, or none of the previous respectively for � � � � � � . For � �P6��L8��<8 �L; , let  � be the

indicator random variable for the event that � � � � , and let   � � 
 ��� �  � . Thus, 
	 is the number

of knocks and 
� is the number of bad choices of � 
 .
Fix � � 	 	 	 � 8 � � p8 �:�:� 8 	
	 � 8�� �   such that

� � � �  " �
holds under � . Observe that 	
	 � 8�� � 

does not knock � � � � � � for any � � 6 �b8 �>�:� 8 � ; since � � � � must be large. Hence, �	 � ) under � .

Let � � 	 � 4 �  � 	*$ � � �  . We now claim that  � " � . Suppose for contradiction that the number

of bad choices is less than � . Every bad choice 	 	 � 8�� �  removes at most $ � free literals since at

most those many literals about hole ��� may appear. Moreover, since there are no knocks, every hit

	 	 � 8�� �  that is not a bad choice increases the number of free literals by at least one (see lemma 28).

It follows that the number of free literals in � �	� � is at least

	 N4  � i4 $ �  � ! � 4�	*$ � � �  � � � 8
a contradiction with the fact that � holds under � . We have proved that

��� � � � � �  " � � � ��� �  	 � ) �  � " � � �
The intuition behind why this last probability is small is that every bad choice could have been a

knock. This makes unlikely that � produces many bad choices and no knocks. In what follows, we

will prove this intuition using martingales.

For � �F6��Y8�<8 �Y; and ���F6 �b8 �:�:� 8 �\; , let & � be the random variable ��� ��� � � � � � �:8 �:�>� 8 � � � � � .
We define a martingale � ��8 �>�:� 8 � 
 with respect to � ��8 �:�:� 8 � 
 as follows: Let

� � � )=8
� � ��� � � � �  �� ��� 4F& �� �e� �

Recall that  �� �e� is the indicator random variable for the event that � � �e� � � . So

� � � � ��� � � ��8 �:�>� 8 � � � � 	 � � � � 4F& �� ���  � & �� ��� � 	 � �L4 & �� ���  � 	 �
4F& �� ���  �
� 	 � �e4F& �� ���  	�& �� �e� � �
4F& �� ���  � & �� �e� � � � �
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Hence, 6 � �*; � is a martingale with respect to 6 � �g; � . Observe also that � 
 �  �54 � 
 ��� � & �� .

Similarly, we define ����8 �:�>� 8 � 
 as follows: Let

� � � )=8
� � ��� � � � �  	� ��� 4 & 	� ��� �

It is also easy to see that 6 ���g; � is a martingale with respect to 6 � ��; � . Again, � 
 � 
	Q4 � 
 ��� � & 	� .

Subclaim 1 & 	� 	 � �" & �� 	 �  � � for every �
� � � 	��  and � �P6 �b8 �:�:� 8 �\; .
Proof : Fix � � 6 �b8 �>�:� 8 � ; and � � 	 	 	 � 8 � � p8 �:�:� 8 	
	 � 8�� �   . We want to show that & 	� 	 �  "& �� 	 �  � � . Define three sets as follows: let � � 6 	
	<8��  � � 	 �  � � �� 6 � � 8 �:�:� 8�� � � � ;�; , let � 	 be

the set of knocks for � � � � � � in � , and let � � be the set of bad choices for � ��� � � � in � . Observe that& �� 	 �  � � � � �
�

� � � � � and & 	� 	 �  � � � 	 �
�

� � � � � . On the other hand, every bad choice 	 	<8��  � � �
gives a possible knock 	 	 � 8��  � � 	 by definition. Moreover, bad choices with different hole

components give different possible knocks. Grouping � � by holes, we have that � � 	 �L" � � � � � � .

Consequently, & 	� 	 �  " & �� 	 �  � � as required. � � (of subclaim 1)

To complete the proof of claim 2 we will need the following form of Azuma’s Inequality: Let

� ��8 �:�>� 8 � � be a martingale such that � � �<4 � � � � � � � ; then, ��� � � � � 4�� � ��" � � � $�� � � � � � for

every
� ! ) [GS82]. Now,

��� �  	 � ) �  � " � � � ��� �  	 � ) �  � " � � � 
�" � � $ � �
� ��� �  	 � ) �  � " � � � 
 � � � $ � �

The first summand is bounded by ��� � � 
 " � � $ � � $�� � � � � � 
 by Azuma’s Inequality. The second

summand is bounded by

��� �  	 � ) � � 
 ��� � & �� " � � $ � � ��� �  	 � ) � � 
 ��� � & 	� " � � $ � � �
� ��� � � 
 � 4 � � $ ��� � $�� � � � � � �

� 
 �
The first inequality follows from Subclaim 1, and the third follows from Azuma’s Inequality again.

The addition of the two summands is then bounded by � � ��� � �	��
 ��� � � as required. � � (of claim 2 and

lemma 30)

We are ready to complete the proof of our goal: equation (4.4). We have shown that

��� � � � � large � � ��

 � � � � �

� ��� � �	��
 � � � � � � � � � � �	��
 � � 	 � � � � � � �	��
 � � � � �
� �
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By a different setting of parameters, it is easy to see that the strongest lower bound for �(� �
��
is of the form � � �� ��� ��� � � 	 � ��� � � . Namely, put

� �  � � , � �  � � 	 	* ��� �   � � � �   and � � � � $ for

that calculation. Therefore the best result is an exponential lower bound for �(� � � ��� 	 � ��
.

We conclude this section with a separation result. Given that Res(
� � �

) and depth- ) � � ���
are

polynomially equivalent, and given that �(� � � �� has quasipolynomial-size proofs in depth- ) � � ���
[MPW00], we obtain:

Corollary 7 There is an exponential separation between Res(2) and Res(
�����

).

We note that this result indicates that any possible extension of our technique to Res(
�

) for� ! $ would have to deal with the fact that for relatively small
�

(polylog in  ), the lower bounds

cannot be exponential. Although this is valuable information, it reveals that the analysis must be

quite tight.

4.3 Random Formulas

4.3.1 Random Formulas and Restrictions

The model of random
�

-CNF formulas that we use is the one considered in [CS88, BKPS98]. The

distribution is denoted � � � �� and consists in choosing  clauses of exactly
�

literals independently

with replacement. Most of the next definitions are taken and adapted from [BKPS98].

Definition 2 For a real number  , a set of clauses
�

is  -sparse if � � � �  � � 	 �  � where � 	 �  is the

set of variables appearing in
�

.

Definition 3 If
�

is a set of clauses and 	 is a literal, we say that 	 is pure in
�

if some clause of
�

contains 	 and no clause of
�

contains
�

	 .

Definition 4 For � � � and 
 � 	*)98 �  , the following properties are defined for � � � formulas � :

�
� 	 �  : Every set of

� � � clauses of � is 1-sparse.

� ��� 	 �  : For
�

such that � � $ � � � � , every subset of
�

clauses of � has at least 
 � pure

literals.

For a given refutation system � , we say that an � -refutation is
�

-bounded if all formulas of the

refutation involve at most
�

distinct literals.

Proposition 3 [BKPS98] Let � be a sound refutation system with all rules of fan-in at most two.

Let � ! ) be an integer and � be a CNF formula. If properties
� 	 �  and �	� 	 �  both hold for � ,

then � has no 
 � � $ -bounded � -refutation.
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A restriction is a sequence of pairs 	 �<8��  where � is a variable and � is either � � 	 � or
0 � 	 � � . For

a $ -disjunction � let � � � be the number of distinct literals occurring in it. Let � be a probability

distribution on restrictions. We say that � satisfies property � 	 �\8 �  if and only if for every$ -disjunction � , ��� � � � � � �a" �� � � ��� . We will consider two probability distributions.

���
 chooses a permutation of the variables uniformly at random, then chooses each variable

with probability � �  in the order of the permutation. The values assigned to the variables are

chosen uniformly at random from � � 	�� and
0 � 	 � � .

���
 chooses

�
, the length of the restriction, with a binomial distribution of parameters � � 

and  . Then chooses uniformly at random any sequence of variables of length
�

without

repetitions. The values assigned to the variables are chosen uniformly at random from � � 	��
and

0 � 	 � � .
We prove that �  and �

 are the same probability distribution. Obviously both experiments

produce exactly the same restriccions. We only need to show that every restriction � has the same

probability in both spaces.

Lemma 31 For every � � 8 �:�:� 8 � � and � � 8 �:�:� 8�� � ,
������	� � �	� � 	 	�� � 8�� �  8 �>�:� 8 	�� � 8�� �  �� � �������
 � ��� � 	 	 � � 8 � � p8 �:�:� 8 	 � � 8�� �   � �

Proof : The probability ��� ���
 � � � � 	 	�� � 8 � � p8 �:�:� 8 	�� � 8�� �  �� is easy:�  �  � �
  

� �
�
4 �  

� � � �
Y$ 	 I4 � �$ �:�>� 	  4 � � � �$ � (4.5)

The first part corresponds to the probability of choosing the value
�

from a binomial distribution.

Remember that
�

is the length of the restriction. The rest of the expression is the probability of

choosing the
�

correct pairs 	 ���*8�� �  .
The probability ��� ���	� � ��� � 	 	 � � 8�� � p8 �:�:� 8 	 � � 8�� �   � is a little trickier. We will compute the

probability of finding a permutation of the variables that is compatible with 	 � � 8 �:�:� 8 � �  , that is,

the variables 6 � � 8 �>�:� 8 � � ; appear in that order. Then we multiply this probability by the probability

of choosing the exact places where the variables in � are and choosing the right value for them:� �
��� 	  4 � ��

��
� �
  

� �
� 4 �  

� � � �$ � � (4.6)

We first choose
�

places to put the variables in � , then we fill the gaps with the permutations of the

other ]4 �
variables. These are the favorable cases, those that are compatible. Straightforward

manipulations show that (4.5) and (4.6) are equal. � �

The following is adapted from [BKPS98], with a minor change in the probability distribution.
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Lemma 32 For each integer
� " �

and 

! ) , there are constants 	 � , 	 � � � , such that the following

holds. Let  ,  , � , � with  � �  for � " � . Let � �� � � �� and � � �
 .

� If � � 	 �  �  � � � and � � 	 �  � � � � � � � � � , then � � � satisfies
� 	 �  with probability � 4 � 	 �  in

� .

� If � 8 � � 	 � � �  � � � � � � � � � � � , then � � � satisfies ��� 	 �  with probability �
4 � 	 �  in � .

Theorem 14 Let � be a distribution over
�

-CNF formulas. Let � 8 � " � and 

! ) and let � be

a distribution over restrictions that satisfies � 	 
 � � $=8 �  . Then,

���� ��� � � � � $ 	 �  � � � $�� � $ ���� ��� � ����� � � � � does not satisfy
� 	 � �� �

� $ ���� ��� � ����� � � � � does not satisfy � � 	 � ���8
where

� � � $ 	 �  is the minimum size of a
� � 	 	 $  -refutation of � .

Proof : For a fixed unsatisfiable
�

-CNF � , let & be a minimal-size
���
	 	*$� -refutation of � . Let

� � � .

��� � � � � satisfies
� 	 �  � ��� 	 �  � � ��� ��& � � is not 
 � � $ bounded �

� ��� � 	�� � �P&  	 � � � � �9! 
 � � $���
� � � � $ 	 �  �� �

The first inequality follows by Proposition 3, the second is immediate, and the third follows by

union bound and the fact that � satisfies � 	 
 � � $=8 �  .
To finish, let

� 	 �  � ���� � � � � does not satisfy
� 	 � �� � ���� � � � � does not satisfy � � 	 � �� �

Then,
� � � $ 	 �  � � � $ implies that ��� � � � � � satisfies

� 	 �  � � � 	 � �� � � � $ , and so � 	 �  ! � � $ .
Therefore, ��� � � � � � $ 	 �  � � � $ � � ��� � � � 	 � �! � � $ � � $ � � � � 	 � �� by Markov’s inequality. The

result follows. � �

4.3.2 The Lower Bound Argument

For simplicity, we only state the lower bound for the case � � �
�

�
�

.

Theorem 15 Let � � � � �
�

�
�

. Then,
���
	 	*$� -refutations of � require size $ ��� � � � � � � �	��
 � � � � � � almost

surely.
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Proof : Let  � �  ,
� � � , fix an arbitrary 
�� 	*)98 �  , and put � � 	 � 

� 	 �   � � � � 	 �  �
�
� and � �� 
 � 	 	 �  � � 8 	 � � �  � � � � � � �  . Observe that these numbers satisfy the two hypothesis in Lemma 32. Let� � $ � � � � � � �	��
 � ��� � � . If we could prove that �  satisfies property � 	 
 � � $=8 �  , then ��� � � � � � $ 	 �  �� � $ � � $ � 	 �  by Theorem 14. Since � 	 �  is � 	 �  according to Lemma 32, the Theorem would

follow.

It remains to prove that �  satisfies property � 	 
 � � $=8 �  . In the following, we think of � as

drawn from �
 . We let � � 	 	�� � 8�� � p8 �:�:� 8 	 � � 8�� �   .

A 2-disjunction is large if it contains at least � � 
 � � $ literals, otherwise it is small. A 2-

disjunction is wide if it contains at least � � � � $ 	 ����� 	 �   � free literals, otherwise it is narrow. We

say that 	�� �*8�� �  knocks a 2-disjunction if it makes it true. We say that 	 � ��8�� �  hits a 2-disjunction

if it makes true a literal in it. Notice that every knock is a hit, but a hit might not be a knock. We

say that 	�� � 8�� �  is a bad choice if it does not knock the 2-disjunction but could have knocked it just

by giving the opposite value to the variable. For � � �
, we let � � be 	 	�� � 8�� � p8 �:�:� 8 	�� � 8�� �   . When

possible we simplify $ -disjunctions: we substitute subformulas of the form 	 � 	
	 � 	 �  by 	 in some

order. We aim for a proof that

��� � � � � is large � � � � � � � �� � ��� � � � � � 8 (4.7)

where � is an arbitrary simplified $ -disjunction.

Let
� � be the event that � � � � contains at least � distinct literals. Let

�
be the event

��� � � .

��� � � � � ��� � � � � � � � � � $�� � ��� � � � � � �9" � � $ � � (4.8)

Obviously ��� � � � � � � � � � $ � � ��� � � � � � � � $�� which is smaller than � �  ��� by Chernoff bounds, so

	 � � �  � � � � � � �� ��� � � � � ��� � � � � � ��" � � $�� �
We show now that ��� � � � � � �9" � � $�� is expone ntially small. For every � such that � � � � � � � � $ ,
let � � be the event that � � � � is narrow, that is, it contains less than � free literals. Let � be the

event that � � ��" � � $ . Then,

��� � � ��� � � ��� ��
� � 

�
��


��  � � � 
 ������
� �� � ��� ��

� � 
�
��


��  � � � 
 ������
� �� � (4.9)

We show that both terms in (4.9) are exponentially small. For every � such that � � � � � � � � $ , let

� � be the indicator random variable for the event that 	�� � 8�� �  is a knock. Then the second term in

(4.9) is

��� ��
� � 

�
��


 �  � � � 
 ������
� �� � ��� ��


�
��

���  � � � � � ) � 
�
��


 �  � � � 
 ������
� �� �
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� 
�
��

���  � � ���
��
� � � ) � 

�
��


��  � � � 
 ������
� � ��

��  � � � 
 � ) � � �� �

� 
�
��

���  � � ���
��
� � � ) � � � � � ������

� � ��

��  � � � 
 � ) � � �� �

� 
�
��

���  � � ���
��
� � � ) ������

� � � � � � � ��

��  � � � 
 � ) � � �� �

� 
�
��

���  � �
	
�
4 �$ 	 I4 � � �  
 � �

� 4 �$   
� � �

� � ��� �	 � � � � � � � �� � ��� � � � � � �
The first term in (4.9) is also exponentially small. Observe that

��� ��
� � 

�
��


 �  � � � 
 ������
� �� � ��� ��


�
��


��  � � 	
� � � 
  ������

� �� � (4.10)

� 
�
��


��  � � ��� � � 
 � � 
 ��� � � (4.11)

The last inequality is true because
�

implies
� 
 for any � � � � $ .

Lemma 33 If � is such that � � � � � � � � $ , then ��� � � 
 � � 
 ��� � � � � � � � �� � ��� � � � � � .

Proof : For every � � � let  � be the indicator random variable for the event that 	�� � 8�� �  hits
� � � � � � , that is, that 	���� 8�� �  gives value � � 	�� to a literal in � ��� � � � . Let  � � 
 ��� � �� . We divide

the calculation in two parts: what happens when the number of hits is less than a certain
� �

� � 	 ��� � 	 �   � and what happens otherwise.

��� � � 
 � � 
 ��� � � ��� � � 
 � � 
 �  � � ��� � � ��� � � 
 � � 
 �  " � ��� �
We start by the easiest part. The intuition is that if the 2-disjunction is large it would be extremely

difficult to hit it only a few times.

Sublemma 1 ��� � � 
 �  � � � � � � � � �
� � �

� � ��� � � � � � .

Proof : Let � � 6 	 � � 8 �>�:� 8 ��
  � 67)98 �@; 
 � � 
 ��� � � � � � ; . Observe that
� 
 implies

� � for every

� � � because if � � � � is large, so is � � � � . Then,

��� � � 
 �  � � ��� � � ��� ��
� 
 � 
�

��� � �� � � ������
� �� �
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� �
� � � ���

��
� 
 � 
�

��� � �� � � � ������
� �� �

� �
� � �


�
��� � ���

�
� 
 �  � � � � �����

� � ��� � �  � � � ��� � � �
� �

� � �

�
��� � ���

�
� � � � � �� � � � �����

� � ��� � �  � � � � � � � �
� �

� � �

�
��� � ���

�
�� � � � �����

� � � � � � � ��� � �  � � � � � � � �
Fix � �P6 �b8 �:�:� 8 �\; .

��� �
�� � � �����

� � � � � � � ��� � �  � � � � � � � " �$ 	  4 � � �  " �$  �
Since there are at least �?4 �

zeros in 	 � � 8 �:�:� 8 � 
  , we obtain

��� � � 
 �  � � ��� � � �
� � �

	
� 4 �$  



�� � �

� �
� 
 �

� �
�  � � � � � � � �� � � � � � � � � � � � � �� � �

� � ���
	 4 � 	 � 4 � $  � � ����� 	 �  � ����� 	 �  
 �

� � � � �� � � � �
� ��� � � � � � � �

� � �
� � ��� � � � � � �

� � (of sublemma 1)

The last thing to do is to see what happens when the number of hits is big.

Sublemma 2 ��� � � 
 � � 
 �  " � ��� � � � � � � � �� � ��� � � � � � .

Proof : For every � � � � � � $ , let � � �F6��L8��<8 �L; be a random variable indicating whether 	 � �*8�� � 
is a knock, a bad choice, or none of the previous respectively for � � � � � � . For � � 6��Y8�� 8 �Y; , let

 � be the indicator random variable for the event that � � � � , and let   � � 
 ��� �  � . Thus, 
	
is the number of knocks and �� is the number of bad choices of � 
 . For the rest of the proof we

will skip the condition on � and the subindices from
�

and � . Fix � satisfying
� � � �  " �

.

Note that the number of knocks is 0 because the 2-disjunction still exists, so  	 � ) . Now let be

� � 	 � 4 �  � $ , we now claim that  � " � . Suppose for contradiction that the number of bad

choices is less than � . Every bad choice 	 � ��8�� �  removes at most one free literal. Moreover, since

there are no knocks, every hit 	 � � 8�� �  that is not a bad choice increases the number of free literals

63



by at least one. The reason is that such a hit turns a conjunction into a free literal. Remember that

we simplify the 2-disjunction when possible, and so the literal was not free before the hit 	 � �*8�� � 
is applied. It follows then that the number of free literals in � � � � is at least

	 N4  � /4  � ! � 4 $ � � � 8
a contradiction with the fact that � holds under � .

So far we have proved that

��� � � � � �  " � � � ��� �  	 � ) �  � " � � �
The intuition behind why this last probability is small is that every bad choice could have been a

knock. This makes it unlikely that � produces many bad choices and no knocks. In what follows,

we will prove this intuition using martingales.

Claim 3 ��� � 
	 � ) �  � " � � � � � � � � �� � ��� � � � � � .

Proof : For ��� 6��Y8�<8 �Y; and � � 6 �78 �:�:� 8 � ; , let & � � ��� � � � � � � � � 8 �>�:� 8 � � � � � . Note that & � is a

random variable. We define a martingale � �b8 �:�:� 8 � 
 with respect to � ��8 �:�>� 8 � 
 as follows: Let

� � � )=8
� � ��� � � � �  �� ��� 4F& �� �e� �

Recall that 
�� �e� is the indicator random variable for the event that � � �e� � � . Observe that

� � � � ��� � � � 8 �:�>� 8 � � � � 	 � � � � 4F& �� ���  � & �� ��� � 	 � � 4 & �� ���  � 	 �
4F& �� ���  �
� 	 � �e4F& �� ���  	�& �� �e� � �
4F& �� ���  � & �� �e� � � � �

Hence, 6 � �*; � is a martingale with respect to 6 � �g; � . Observe also that � 
 �  � 4 � 
 ��� � & �� .

Similarly, we define ����8 �>�:� 8 � 
 as follows: Let ��� � ) , and � � ��� � � � �  	� ��� 4N& 	� �e� . It is also easy

to see that 6 � � ; � is a martingale with respect to 6 � � ; � . Again, � 
 �  	 4 � 
 ��� � & 	� .

We will use the following form of Azuma’s Inequality: Let � ��8 �:�>� 8 � � be a martingale such

that � � ��4 � � � � � � � ; then, ��� � � � � 4 � � ��" � � � $�� � � �
�*� for every
� ! ) . In the next calculation

we will also use the fact that & 	� 	 �  � & �� 	 �  for every � and � �P6 �b8 �>�:� 8 �\; .
��� �  	 � ) �  � " � � � ��� �  	 � ) �  � " � � � 
�" � � $ � �

� ��� �  	 � ) �  � " � � � 
 � � � $ � �
The first summand is bounded by ��� � � 
 " � � $ � � $�� � � � � � 
 by Azuma’s Inequality. The second

summand is bounded by

��� �  	 � ) � � 
 ��� � & �� " � � $ � � ��� �  	 � ) � � 
 ��� � & 	� " � � $ � �
� ��� � � 
 � 4 � � $�� �
� $�� � � � � � 
 8
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by Azuma’s Inequality again. Therefore, the sum is bounded by

� � � �� � � � ��� � � � � � � � � � � � �� � ��� � � � � �

as required. � � (of claim 3 and sublemma 2).

With both sublemmas proved, so is Lemma 33. We are ready to complete the proof of our goal

(4.7). We have shown that

��� � � � � is large� � � � � � � �� ��� � � � � � � � � � �� � ��� � � � � � � 
�
��

���  � � �
� � � � �� � ��� � � � � � � � � � � � �� � ��� � � � � � �

� �

4.4 Relationship to the Calculus of Lovász-Schrijver

It has been long known that Boolean clauses may be rewritten as linear inequalities over 67)98 �@; .
Let � be a clause of the form

� � � � �:�:� � � � � �N' � 
 � � �:�>� �]' � 
 �
The translation of � , denoted by � 	 �  , is a linear polynomial on � � 8 �>�:� 8 � � defined as follows:

� � � � � � �

� � � � � 	 � 4 � 
 �  � � � �

� 	 �
4 � 
 �  �
Clearly, a truth assignment to the variables � � 8 �:�:� 8 � � satisfies � if and only if � 	 � (" � . As usual,

true and false are represented by � and ) respectively.

Just as clauses correspond to linear inequalities, $ -disjunctions correspond to quadratic inequal-

ities through the following straightforward translation. Let � be a $ -disjunction of the form

	
	 � � � � 	 � � �  � �:�:� � 	
	 � � � � 	 � � � 

where each 		�	� 
 is a literal in the variables � � 8 �:�>� 8 � � . The translation of � , denoted by � 	 �  , is a

degree-two polynomial on � � 8 �:�:� 8 � � defined as follows:

� 	
	 � � �  � 	
	 � � �  � � � �

� � 	
	 � � �  � 		 � � � 
where � 	
	  � � � if 	 � � � and � 		  � � 4 � � if 	 � ' � � . Again, a truth assignment satisfies � if and

only if � 	 � �" � .
We turn next to the definition of the Cutting Planes proof system, denoted by CP. The allowed

formulas are linear inequalities with integer coefficients and there only are two rules of inference:
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Addition: � � � � � � � �

� � � � � " � � � � � � � � � �

� � � � � " � �
	 � � � � �  � � � � � �

��	 � � � � �  � � " � � � � �

Integer Division:
	 �
�

� �  � � � � � �

��	 �
�

� �  � � " � �
� � � � � � � �

� � � � � " � � � � ���

Here � �:8 � � 8 �>�:� 8 � � 8 � �>8 � � 8 �:�>� 8 � � and � are all integers. We also allow the axioms � �5"#) and

�
4 � �/" ) . The goal of the system is to refute a given set of linear inequalities by deriving ) " � .
It is well-known that CP polynomially simulates Resolution when clauses are presented as linear

inequalities according to the translation above [CCT87].

We present an extension of CP to work with quadratic inequalities. Pudlák called it CP � in

[Pud01]. In this system, the allowed formulas are the quadratic inequalities with integer coeffi-

cients. The only rules of inference are addition and integer division for quadratic inequalities, in

addition to the axioms

� �<" ) � 4 � �<" )
� � � 
 " ) � �e4 � � � 
 " )
� 
(4 � � � 
 " ) � 4 � �\4 � 
 � � � � 
 " ) �

The first goal of this section is to show that CP � polynomially simulates Res(2). This simple

observation was made in joint work of the author with Bonet and Levy [ABL01]. We start with a

simple lemma.

Lemma 34 For every $ -disjunction � , the inequality � 	 �  " ) has a CP � -proof of size
� 	 � � �  .

Proof : For each pair of literals 	 � and 	 � , the inequality � 	
	 �  � 	
	 � 
" ) is exactly one of the axioms

of CP � . The rule of addition gives the desired proof of � 	 � �" ) . � �

Theorem 16 Let 6 � � 8 �:�>� 8 � � ; be a set of $ -disjunctions with a Res(2)-refutation of size  . Then,

the system of inequalities 6 � 	 � �  " �78 �:�:� 8 � 	�� �  " �@; has a CP � -refutation of size
� 	  �  .

Proof : Take the Res(2)-refutation of size  and replace each $ -disjunction � by the inequality

� 	 � �" � . We show how to simulate each of the rules of Res(2).

Weakening: Suppose that � � � is derived by the rule of weakening from � , where � is an

arbitrary 2-disjunction. We get � 	��  � � 	 � 
" � from � 	��  " � by deriving � 	�� Q" ) separately

and adding.

Introduction of conjunction: Suppose that � � 	
	 � � 	 �  is derived by the rule of introduction

of conjunction from � � � 	 � and � � � 	 � . We get � 	��  � � 	
	 �  � 		 �  " � from � 	�� �  � � 		 �  " �
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and � 	�� �  � � 		 �  " � as follows. Add the two inequalities with the rule of addition. This gives

� 	 � �  � � 	 � �  � � 		 �  � � 	
	 � �" $ . Derive the inequality 	 �
4 � 	
	 �   	 �
4 � 	
	 �  �" ) separately and

add to obtain � 	 � �  � � 	�� �  � � 		 �  � � 	
	 �  � 	 �<4 � 		 �   	 �<4 � 	
	 �   " $ . Expanding and rearranging,

we obtain � 	�� �  � � 	�� �  � � 	
	 �  � 		 � �" � . It remains to see how to eliminate duplicate terms to get

� 	 �  � � 		 �  � 	
	 �  " � . For this, it suffices to add the easily derived inequality � 	 � �  � 	 � �  "f) for

each term � 	 � �  � 	 � �  in � 	 �  � � 		 �  � 		 �  that is not already duplicated in � 	 � �  � � 	�� �  � � 		 �  � 	
	 �  .
Rearranging, this gives $ 	 � 	��  � � 	
	 �  � 	
	 �  �" � . A single application of the rule of division gives

the desired inequality.

Cut: Suppose that � is derived by a cut from � � � 		 � � 	 �  and � � � ' 	 � � ' 	 � . We get

� 	 �  " � from � 	�� �  � � 	
	 �  � 	
	 �  " � and � 	 � �  ��� 4 � 	
	 �  ��� 4 � 		 � �" � as follows. Derive

� 	 � �  "f) separately and add it to one copy of the second inequality and two copies of the first.

This gives $ � 	�� �  � $ � 	 � �  � $ � 	
	 �  � 	
	 �  � � 4 � 		 �  � � 4 � 		 � N" �
. Derive the inequality

� 	
	 �  	 �
4 � 		 �   � � 	
	 �  	 �
4 � 	
	 �  �" ) separately and add to obtain

$ � 	 � �  � $ � 	 � �  � $ � 	
	 �  � 	
	 �  � � 4 � 	
	 �  � � 4 � 	
	 �  � � 	
	 �  	 � 4 � 		 �   � � 	
	 �  	 �
4 � 		 �  �" � �
Expanding, we observe that this is the same as $ � 	 � �  � $ � 	�� �  " � . The rule of division gives

then � 	 � �  � � 	 � �  " � . Finally, we apply the same technique as before to eliminate duplicates

from � 	�� �  � � 	 � �  and obtain � 	 � �" � as required.

It remains to see how to simulate the axioms of Res(2) of the type � � ' � . These get translated

into � � �<4 � " � and we do not know how to derive that. However, we may proceed in a different

way. Consider the first time that a non-weakening rule is applied over a line that is derived from

an axiom by weakening. Suppose that the rule is a cut, say over � � 	
	 � � 	 �  and
� �N' 	 � �N' 	 � ,

where
� �P' 	 � �N' 	 � is derived from � �N' � by weakening. If both ' 	 � and ' 	 � were introduced

by weakening, then the result of the cut will contain � �N' � as a subformula. The translation will

be of the form of Lemma 34 and will be easy to derive. If only one of ' 	 � and ' 	 � is introduced

by weakening, say ' 	 � , and the other is one of � or ' � , say ' � , then the cut is simulated by an

addition with � 	 � 4 	 �  " ) which is an axiom, and some additional weakening in the form of

Lemma 34. Suppose next that the rule is a cut, say over � �P' 	 � �P' 	 � and
� � 	
	 � � 	 �  where

� � 	
	 � � 	 �  is derived from � �]' � by weakening. Obviously, 	 � � 	 � is introduced by weakening

and so the result of the cut contains � � ' � . There are two cases left: an application of the rule

of introduction of conjunction with a principal formula introduced by weakening over � � ' � , and

introduction of conjunction with one of � or ' � as a principal formula, say � . The former is as

before: the result of the rule contains � �N' � . The latter is also easy: we simulate the introduction

of the conjunction � � 	 � by an addition with ��	 � ��� 4 � 4 	 � " ) which is an axiom whatever 	 �
is, and additional weakenings in the form of Lemma 34. This completes the proof of the Theorem.

� �

The calculus of Lovász-Schrijver, denoted by LS, was also introduced by Pudlák [Pud97] and
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gave it this name to credit the seminal paper [LS91]. In this system, the allowed formulas are also

the quadratic inequalities but the rules are different. Namely, the only rules permitted are addition

of arbitrary inequalities and multiplication of linear inequalities by � � " ) or �
4 � � " ) :
Multiplication: � " )

�

� �<" )
� " )

�

	 � 4 � �  " )
where

�

is a linear polynomial on the variables � � 8 �:�:� 8 � � . Again, we allow the axioms ��� " )
and �J4 � � " ) , and the axiom � �� 4�� � " ) to enforce 0/1-solutions. It is not known whether

LS polynomially simulates Res(2). In fact, a recent result of the author in joint work with Bonet

[AB01] implies that the positive answer would have important consequences for the automatization

of Resolution. However, if we allow the rule of division for quadratic inequalities, the resulting

system does polynomially simulate Res(2).

Theorem 17 Let 6 � � 8 �:�>� 8 � � ; be a set of $ -disjunctions with a Res(2)-refutation of size  . Then,

the system of inequalities 6 � 	 � � 
" �b8 �:�:� 8 � 	�� � �" �@; has a refutation in LS extended by the rule

of division for quadratic inequalities of size
� 	   .

Proof : The axioms of CP � are easily derivable with the rule of Mutiplication applied on the axioms

� �/" ) and � 4 � �<" ) . The result follows by Theorem 16. � �

We present yet another proof system that polynomially simulates Res(2). The goal is to avoid

the rule of division at all. The new system is called Q. The allowed formulas are polynomial

inequalities of degree at most four. The rules of inference are addition of arbitrary inequalities and

multiplication of quadratic inequalities:

Addition: & � " ) & � " )& � �F& � " )
Multiplication:

� � " ) � � " )
� � � � " )

where & � and & � are arbitrary polynomials, and � � and � � are quadratic polynomials. We also

allow the axioms ���<" ) and �
4 � �/" ) , and � �� 4 � �<" ) to enforce 0/1-solutions.

Lemma 35 For every 2-disjunction � , the inequality � 	�� �" ) has a Q-proof of size
� 	 � � �  .
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Proof : This is straightforward as in Lemma 34. Indeed, � 	
	 �  � 	
	 � R" ) is simply the result of

multiplying � 		 � �" ) and � 		 �  " ) , which are axioms by definition. The rule of addition gives the

result. � �

Lemma 36 Let
�

be a quadratic polynomial, and let 	 � and 	 � be literals. The inequality
� �

� 	
	 �  � 	
	 � (" � has a Q-proof of size
� 	 � � �  from the inequalities

� � $ � 		 �  � 	
	 � �" � and
� " ) .

Proof : In the following, let � � � � 		 �  and � �
� � 	
	 �  . Consider the following sequence of

inequalities: Start with
� � $�� � � � " � and rearrange to obtain

� � $�� � � � 4 � " ) � (4.12)

Derive 	 �
4�� � �� � " ) and multiply by (4.12) to obtain

	 � � $�� � � � 4 �  	 � 4�� � �� � " ) � (4.13)

Multiply (4.12) by 	 �
4�� �  " ) to obtain

	 � � $�� � � � 4 �  	 � 4�� �  " ) � (4.14)

Add (4.13) and (4.14) to obtain

� � � � � � � 4 � 4 �
� � � � 4 $�� �� � �� " ) (4.15)

after rearranging. Then derive � � � � "#) and multiply with
� " ) (which is given) to obtain

�
� � � � " ) . Add this to (4.15) to obtain

� � � � � � � 4 $�� �� � �� 4 � " ) � (4.16)

Derive � � � � " ) and multiply by the axiom � �� 4�� � " ) to obtain 	�� �� 4�� � �� � � � " ) . Add two

copies of this to (4.16) and rearrange to obtain

� � � � � � � 4 $�� � � �� 4 � " ) � (4.17)

Similarly, multiply the axioms � �� 4�� � " ) and � � " ) to obtain 	�� �� 4�� � �� � " ) . Add two copies

of this to (4.17) and rearrange to obtain
� ��� � � � " � as required. � �

We conclude with the promised simulation of Res(2) by Q.

Theorem 18 Let 6 � � 8 �:�>� 8 � � ; be a set of $ -disjunctions with a Res(2)-refutation of size  . Then,

the system of inequalities 6 � 	 � �  " �78 �:�:� 8 � 	�� �  " �@; has a Q-refutation of size
� 	  �  .
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Q

Res(2) LS

CP2 LS++

Resolution

Figure 4.1: Simulation results between proof systems.

Proof : We first observe that the axioms of CP � are easily derivable in Q. Now, inspection on the

proof of Theorem 16 reveals that the rule of division is only used in the following form: from
� � $ � 	
	 �  � 		 �  " � , derive

� � � 	
	 �  � 		 � �" � with
�

a quadratic polynomial. This can be done

efficiently in Q by Lemma 36 if
� " ) is given. However, the

�
’s in the proof of Theorem 16 are

always additions of terms of the form � 	
	 �  � 	
	 �  , and so
� " ) is easily derivable by Lemma 35. � �

Diagram 4.1 is a summary of the known polynomial simulation results between the proof sys-

tems considered in this section. Recall that LS denotes the Lovász-Schrijver proof system. We will

denote by LS++ the extension of Lovász-Schrijver by the rule of division for quadratic inequalities.

An arrow between system & � and system & � means that & � polynomially simulates & � .
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Chapter 5

Improved Bounds on the WPHP and

Infinitely Many Primes

5.1 The Proof in Propositional Logic

The propositional form of the Weak Pigeonhole Principle �(� � �� that we use is formalized by the

following sequent: ��
��� �

��

�� � � �	� 
 	

��� � � ���� ������X���� � �	� � � � 
 � � �
Our goal is to prove a size-depth trade-off upper bound for proofs of �(� � � �� . As mentioned

in the introduction, our technique consists in reducing ����� � �� to �(� � � �� . The difference with

previous reductions is that our composition of mappings is done efficiently mimicking the proofs

of Savitch’s and Nepomnjaščij’s Theorems in Complexity Theory. To complete the proof, we will

use the fact that ����� � �� has
���

proofs of size 
� � �	��
 � �

�
�
� � �

and depth
� 	 �  , where

� � � � �
�
	   is the

� -wise composition of
� � �

with itself [PWW88, Kra95].

For the sake of clarity of exposition, it is more convenient to prove the following extreme case

of the trade-off first.

Theorem 19 �(� � � �� has
���

proofs of size 
� � �	��
 �	� 
 �

��� �
and depth

� ��� ������� 	   .
Proof : Let � � � � � ����� 	   . For every � �O67)=8 ��; 	 � , we define numbers

� � and � � inductively as

follows: Let
�
� � ����� 	   , � � � ) , and

� � � � � � , � � � � � � ,
� � � � � � � � �$ 	 � � � � �  �

Now we define sets
� � , � � and � � as follows: Let

� � � 67)=8 �:�>� 8 $ ��� 
4 �@; , � � � 67)98 �:�:� 8 $ � � 
4
�@; and � � � 67)=8 �:�:� 8 $ �� � ��� � � � �  4 �@; . Observe that

� � � 67)=8 �:�>� 8  � 4 �@; and � � � 67)=8 �:�:� 8 J4
�@; .
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For � � 67)=8 ��; � , � � � � , � � � � , let � �� � be defined as follows: If
� � � $  � �� � � �  � , define

� �� � � ) ; otherwise, define � �� � � & � � � � where � � � � � � � $  and � � � � � � �  . For

� �P67)98 �@; 
 � , � � � � , � � � � , define

� �� � � �
� ��� � 	 � � �� � � � � ����  �

It is easy to see that the size of � �� � is bounded by  � � � �
� � � � and the depth is bounded by $ 	 �
4 � � �  .

In particular, �
�

� � has size bounded by  �
�	� 
 �	��
 �

� �
and depth bounded by $ � � � � � � 	   .

In the following, we will abbreviate some expressions by ignoring the conjunction symbol.

Thus, if � and � are Boolean formulas, the notation � � will be used instead of � � � , and

similarly for longer conjunctions. This will allow us ignore some parenthesis following the rules

of arithmetic when � and � are interpreted as � and � respectively.

We want to prove the following sequents�
� � � � � � 	 �

�
�

�
�

� �� � . �
� � � � � � 	 �

�
�

�
� � �� �

� � �� � � � �� � � (5.1)

in size bounded by  �
�

and depth bounded by
� �

, where 	 is a sufficiently large constant indepen-

dent of  ( 	 � $b) should work). When
� � � � ����� � � � 	   , it is easy to see that sequent (5.1) is

equivalent to �(� ��� �� after contraction of repeated formulas, and the theorem will follow. We fix a

sufficiently large  , and proceed by induction on
�

.

Observe that the base case
� � ) is precisely the sequent ����� � �� 	 �

�  . Since the sequent�(� � � �� has
���

proofs of size 
� � �	��
�� �

�
�
� � �

and constant depth, it follows that �(� � � �� 	 �
�  has

���
-

proofs of size bounded by  �
�	��
 �	� 
 �

���
and depth bounded by

� ����� � � � 	   . Here is where we need 
to be sufficiently large.

Suppose next that we have proved sequent (5.1) for a
� ! ) in size  �

�
and depth

� �
. We prove

it for
� � � . We first prove the following sequents for every � �P67)=8 ��; � and � :�

�

�
�

� � �� � � � �
�
�

� � �� � . �
�

� �� � � (5.2)

Recall that � �� � stands for � � � � �� � � � ���� . Start with the sequents � � �� � . � � �� � and �
� � � � � �� � .

� � � � ���� , and apply right � introduction to obtain

� � �� � 8 � �
�
�

� � �� � . � � �� � � � � � � ���� � (5.3)

By distributivity we easily get

� � �� � 8 � �
�
�

� � �� � . �
�

� � �� � � � ���� � (5.4)

By left � -introduction, left weakening, left � -introduction, right � -introduction and commutativity

of � , in this order, we get the desired sequent (5.2).
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Next we prove the following sequents for every � �P67)98 �@; � , � � �� � � and � :

� �� � � � �� � � . �
�

�
� � �� �

� � � �� � � � � �� � � � �
�

�
� � �� �

� � � �� � � � � �� � � � (5.5)

Recall that � �� � � stands for � � � � �� � � � � ���� . Using distributivity, derive the sequent

� �� � � � �� � � . �
� � � � � � � �� � � � � � �� � � � � �� � � � � � �� � � � (5.6)

For � � � � � , derive the sequent � � �� � � � � � �� � � � � �� � � � � � �� � � . � � �� � � � � � �� � � � . For � � �� � � , derive the

sequent � � �� � � � � � �� � � � � �� � � � � � �� � � . � � �� � � � � �� � � . Left � -introduction and right � -introduction gives the

sequent �
� � � � � � � �� � � � � � �� � � � � �� � � � � � �� � � . �

� � � � � � � �� � � � � � �� � � � � �
� � �� � � � � �� � � � � �� � � � (5.7)

A cut with sequent (5.6), right weakening, right � -introduction and commutativity of � , in this

order, give the desired sequent (5.5).

Now combine all sequents (5.2) by right � -introduction, left � -introduction and commutativity

of � , in this order, to obtain �
� � � � � � 	 ��� �

�
�

�
�

� �� � . �
� � � � � � 	 �

�
�

�
�

� �� � � (5.8)

Similarly, combine all sequents (5.5) by left � -introduction, right � -introduction and commutativ-

ity of � , in this order, to obtain�
� � � � � � 	 �

�
�

�
� � �� �

� � �� � � � �� � � . �
� � � � � � 	 ��� �

�
�

�
� � �� � � � �� � � � �� � � � (5.9)

Finally, two cuts using sequents (5.1), (5.8) and (5.9) give the desired result for
� � � . If 	 is

sufficiently large, it is easy to check that the size of this proof is bounded by  � � � �e� � and its depth

is bounded by
� 	 � � �  . This completes the induction step. � �

An analogous argument mimicking the proof of Nepomnjaščij’s Theorem, instead of Savitch’s

Theorem as above, would give a general size-depth trade-off upper bound. Since the notation in

the proof would get fairly tedious, we prefer to state it without proof and get it as a corollary to

Theorem 24 below (see the end of Section 5.3).

Theorem 20 �(� � � �� has
���

proofs of size 
� � � � �	��
 �

��� � � ��� �
and depth � .

5.2 Nepomnjaščii’s Theorem, Formalized

Let us briefly recall the proof of a general form of Nepomnjaščij’s Theorem. This will be of help

later.
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Theorem 21 (General Form of Nepomnjaščij’s Theorem) Let � � � 	   , � � � 	   and  �
 	   be time-constructible functions such that � 	  R"#$ . For every non-deterministic Turing

machine running in simultaneous time � and space  , there exists an equivalent alternating Turing

machine running in time
� 	  � � � � 	 �  ������� 	 �   and $ � � � 	 �  ������� 	 �  alternations.

Proof : Let
�

be a non-deterministic Turing machine running in simultaneous time � and space  .

The idea is to divide the reachability problem between configurations of
�

into many equivalent

subproblems of smaller size. Hence, configuration ��� is reachable from configuration � � in �
steps if and only if there exist � 4 � intermediate configurations � � 8 �:�:� 8 � � � � such that for

every ��� 67)=8 �:�:� 8 � 4 ��; , configuration � � ��� is reachable from configuration � � in �
� � steps.

An alternating Turing machine can existentially quantify those intermediate configurations, and

universally branch to check that every two consecutive configurations are reachable from each

other in the appropriate number of steps. Applying this recursively yields an alternating machine

that checks whether an accepting configuration is reachable from the initial configuration of
�

.

The details of the calculations follow. Since
�

runs in space  , each configuration can be

coded by a binary word of length
� 	   . The outermost reachability problem has length � since�

runs in time � . The second level of reachability subproblems have length � � � . In general,

the subproblems at level � have length � � � � . After
� � � 	 �� � ��� � 	 �  levels, we reached a trivial

reachability subproblem. Therefore, the whole computation of the simulating machine takes time� 	  � � � � 	 �  ������� 	 �   and $ ��� � 	 �  ������� 	 �  alternations. � �

Our next goal is to formalize the ideas of Theorem 21 into a theorem of the bounded arithmetic

theory ��� � . We will use the beautiful arithmetization of sequences in ����� of Chapter V, Section 3,

in the book of Hájek and Pudlák [HP93]. In summary, the arithmetization allows us to manipulate

sequences provably in ��� � . Thus, there are formulas
����� 	 �  meaning that � is the code of a

sequence, 	 �  � � � meaning that the � -th element of the sequence � is � , and ��� � � � meaning

that sequence � is the result of appending sequence � to the end of sequence � . The coding is so

that if � � 	��� , the sequence with � as its only element, then ��� � proves � �
	 � � � . Morevoer, ��� �
proves that for every sequence � , the bound ��� 	��  ��	

�

� �
�
� holds (see Lemma 3.7 in page 297

of [HP93]). It follows that � � � proves that if 	 � exists below  and � is a sequence of length
�

all of

whose elements are smaller than 	 , then � ��	 � � 	 � � (by � � -induction on
�
). Therefore, the coding

is fairly close to its information theoretic bound. Of course, � � � can prove several other obvious

facts about
���� 	 �  , 	 �  � and ��� � (see [HP93] for details).

Let � 	 �<8 �  be a � � -formula in a language
�

extending the language of arithmetic 6 �?8 � 8 � ; .
Obviously, � 	 �<8 �  defines a binary relation on any infinite model for the language

�

that may be

interpreted as an infinite directed graph. We define � � -formulas � � 	��<8 �  , with certain parameters,

meaning that � is reachable from � under certain conditions that depend on the parameters. More

precisely, let � � 	�� 8 ��8 �l8 � 8 	�8   � � 	��<8 �  (note that the parameters � , � and 	 are not used for the
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moment). Inductively, we define � � ��� 	 �<8 �e8 �l8 � 8 	-8   as follows:

	�� � �   	 ����� 	��  � 	 �  � � � � 	��  � � � � 	 + � � � � �  	 	��  � � 	  �� 	 + � � �  	�� 	�8 	 � � �  	 	��  � � 	 � 	 �  � �e� � 	 � � � � 	 	@8 	 � 8 �l8 �l8 	�8     �
Informally, the formula � � 	 �<8 �e8 �l8 �l8 	�8   says that � is reachable from � in � � steps according to

the directed graph defined by � 	�� 8 �  as long as each number in the path is bounded by 	 . The

following theorem states this in the form of recursive equations:

Theorem 22 Let
� � � ��� � 	

�

 , and let � 8 ��8 �l8 � 8 	�8  � �
be such that �<8 � � 	 , 	  exists in

�
,� � � , and

	  ��� � 	 � �  ��� � �  . Then,

(i) � � ��� 	�� 8 ��8 �l8 )98 	�8  �� � � � ,

(ii) � � ��� 	�� 8 ��8 �l8 � � �b8 	�8  �� 	�� 	 � 	  	 � � 	�� 8 	@8 �l8 �l8 	�8   � � � ��� 	 	�8 �e8 �l8 � 8 	-8   
hold in

�
.

Proof : (i) Assume � � ��� 	 �<8 �e8 �l8 )=8 	-8   holds. Then, for some �
�  , we have 	 �  � � � and

	��  � � � . Hence, � � � . Conversely, if � � � , then � � 	��� � 	
�

� � � 	
�

	 � �  is a witness

for the existential quantifier in � � ��� 	 �<8 �e8 �l8 )=8 	-8   . (ii) Assume � � ��� 	 �<8 �e8 �l8 � � �78 	-8   holds. Let

�
�  be the witness for its existential quantifier. Let 	 � 	 �  � and note that 	 �  � � � . Obviously,

	 � 	 and � � 	��<8 	@8 ��8 ��8 	-8   holds. Now let �
�

be the sequence that results from � when 	��  � is

dropped (definable in ��� � ). It is easily seen that �
� �

�
�  , and � � ��� 	 	�8 �e8 �l8 � 8 	-8   holds with �

�

witnessing its existential quantifier. Conversely, if � � 	 �<8 	�8 �l8 �l8 	�8   and � � ��� 	 	�8 �e8 �l8 � 8 	-8   hold,

let �
� �  be a witness for the existential quantifier in the latter. We can assume that �

�
codes a

sequence of
� � � numbers bounded by 	 each; if not, just trim �

�
to the first

� � � numbers (definable

in ��� � ) and the result is still a witness of the existential quantifier. Moreover, �
� � 	 � ��� � 	 � � � ��� � .

Since � � 	 and
� � � , the sequence 	 �  � �

�
is coded by some �

��	 � � � � 	 � � � � � � �  . such a � is

a witness for the existential quantifier in � � ��� 	 �<8 �e8 �l8 � � �b8 	-8   and we are done. � �

The reader will notice that the recursive equations in Theorem 22 correspond to the inductive

definition of the transitive closure of the graph defined by � � . The innermost level of stratification,

namely
� � ) , is the inductive definition of the transitive closure of the graph defined by � . It is in

this sense that we interpret Theorem 22 as a formalization of Nepomnjaščij’s Theorem.

5.3 The Proof in Bounded Arithmetic

The graph of the exponentiation function � � � � is definable by a � � -formula on the natural

numbers. Moreover, Pudlák gave a definition with the basic properties being provable in � ��� .
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Similarly, one can define � � � ����� 	 �  � , and � � � ����� � � � 	��� � in � � � . We make the convention that

when expressions such as
� � � 	 �  or 	 ����� 	 �   � do not come up integer numbers, the nearest larger

integer is assumed unless specified otherwise. Thus, 	 ��� � 	 �   � really stands for
� ����� 	 �  � � .

We let
�

be the usual language of arithmetic 6 �J8 � 8 � ; extended by a unary function symbol � .

We denote ��� � 	
�

 (see the previous section) by � � � 	 �  . The Weak Pigeonhole Principle ����� ��
is formalized by the following statement:

	,+ � �   	 � 	��� �   �. 	�� �<8 � �   	�� �� � � � 	 �  � � 	��   �
We will abbreviate this statement by ' � �  �

�
�4Y.  . We will make use of the following result:

Theorem 23 [PWW88] For every � ! ) ,
��� � 	 �  	 	�� �  	 � � � �	��
���� � ��� � �. ' � � � �

�
�
�4<. � �

Here,
��� � � �

�
	��� � � and

����� � � ��� � 	 �  � � � � 	 ��� � � � � 	 �   .
Next, we formalize the reduction of �(� � � �� to ����� � �� using the result of Section 5.2.

Theorem 24 For every � ! ) ,
� � � 	 �  	 	�� �  	 � � � � �	��
 ��� � � � � � �. ' � � $ � �

�
�4Y. � �

Proof : We will prove that every model of ��� � 	 �  satisfies the (universal closure of the) formula.

The Completeness Theorem for first-order logic will do the rest. Let 
 � � � � . Let
� � 	 � 8 � 

be a model of � � � 	 �  , let � � �
be such that � � �	��
 ���

� � �
exists in

�
, and assume for contradiction

that � � $ � �
�
�4<. � . Let � � 	 ����� 	 �   � ,

�
� � � , and � � 	�� ��� � �

� � � ��� � . Observe that � exists in�
since � � �	��
 ���

� � �
exists, and

�
is closed under multiplication. Define � 	��<8 �  as follows (see the

text that follows the formula for the intuition):

	�� � � $ �  	�� � � � �  	�� �=8 � � � �  	 � � $ � � � � � � � � � � � � � � � 	 �  � � � � � � �
�  �

Note that this � � -formula could be informally abbreviated by

� � � � � � � 	�� � � � $ �  � � � � � � � � � � $ � �
when �<8 � �P67)=8 �:�:� 8 � � 4 �@; .
Lemma 37 � 	 �<8 � �� � $ � ��� � �

�
�4Y. $ � � for every � � ����� 	 �  .
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Proof : Given 	 � $ � ��� � , let � �
�
	 � $ � � � � � � 	 	 � � � $ �  . It is not hard to see that �
� $ � � and

� 	
	<8��  holds. Moreover, if ��� $ � � is such that � 	
	<8 �  holds, then
�
�
� ��� � �

	 � $ � � � �
�
� � � and

�
� � � � � � 	
	 � � � $ �  � �

� � � � . Hence, � � � . This shows that � 	��<8 �  � is the graph of a

function from $ � �e� � to $ � � .

We show next that the function is one-to-one. Let 	<8�� �N$ � ��� � and ���N$ � � be such that � 	 	<8 ��
and � 	 ��8 �  . Then,

�
	 � $ � � � �

�
� $ � � � �

�
� � � and � 	 	 � � � $ �  ��� 	 � � � � $ �  � �

� � � � .

Since � is one-to-one, it must be then that 	 � � � $ � � �
� � � $ � . Hence, 	 � $ � � �

	 � $ � � �
	 	 � � � $ �  � $ � � �

�
� $ � � � 	 � � � � $ �  � � . � �

Lemma 38 � � 	�� 8 ��8 �
8 �
8 � 8 � �� � � �
�
�
�4 . � .

Proof : We prove that for every
� � � , the formula � � 	 �<8 �e8 �
8 �
8 � 8 �  defines a one-to-one

mapping � � � $ � � ��� � � �
� . $ � � �

� for every � � ����� 	 �  � � � . The lemma will be proved since

�
� � 	 	 � � � 	 �   � � �  � � � � � 	 �  (in fact, �

� " � � � 	 �  by our convention on rounding). The proof

is by induction on
�

(this induction is outside
�

).

Lemma 37 takes care of the base case
� � ) . We turn to the inductive case ) � � � � . Fix

� � ��� � 	 �  � � � . We prove that for every
� � � , the formula � � 	 �<8 �e8 �
8 � 8 � 8 �  defines a one-to-

one mapping � �� � $ � � � � � � � � � � � . $ � � �
� . That is, we prove that for every

� � � , � � $ � � � � � � � � � � �
and � � $ � � �

� ,

� � 	 �<8 �\8 �c8 � 8 � 8 �  � � � 	 �e8 �\8 �
8 � 8 � 8 � U. � � �

holds in
�

. We use the schema of � � -induction on
�

in the � � -formula above. The base case
� � )

is immediate since � � 	 �<8 �e8 �
8 )=8 � 8 �  defines the identity by Theorem 22. Suppose that ) � � �
� , and that � � 	 �<8 �e8 �
8 � 4 �b8 � 8 �  defines a one-to-one mapping � � � �� � $ � � � � � � � � � � � � � . $ � � �

� .

Since � � � � 	 �<8 �e8 �
8 �
8 � 8 �  defines a one-to-one mapping � � � � � $ � � � � � � � � � � � . $ � � � � � � � � � � � � �
by induction hypothesis on

�
, and since � � 	 �<8 �e8 �
8 � 8 � 8 �  defines the composition of � � � � and

� � � �� by Theorem 22 (observe that � 8 � � �

,
� 4 � � � and

	 � �e� � �

� � � �e� � � � ), it follows that

� � 	��<8 ��8 �c8 � 8 � 8 �  defines a one-to-one mapping � �� � $ � � � � � � � � � � � . $ � � �
� as required. � �

Since � � is a � � 	 �  formula, we have that 	 � 8 � � 	��<8 ��8 �c8 �c8 � 8 � ��  � � � � � 	 �  . Moreover,

�
�	� 
 � ��� ���

� � � � �	� 
 ���
� � �

exists in
�

. It follows from Theorem 23 that � � 	 �<8 �e8 �
8 �
8 � 8 �  � is not a

one-to-one mapping from � � . � ; a contradiction to Lemma 38. � �

It is well-known that proofs in � � � 	 �  translate into bounded-depth
���

proofs of polynomial-

size. When statements of the form “
0 	 �  exists” are required as in Theorem 22, the translations

come up of size
0 	   � � � � (see [Kra95], for example). This gives us Theorem 20 as a corollary.
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5.4 Infinitely Many Primes

The existence of infinitely many primes is not guaranteed in weak fragments of arithmetic. For

example, it is known that � open, Peano Arithmetic with induction restricted to open formulas, has

models with a largest prime [MM89]. It is an open problem whether ��� � proves the infinitude of

primes. It is known, however, that ��� � augmented with the axiom 	 +��  	�� �  	�� � � �	��
 ��� �  proves

it. In addition, a single application of this axiom suffices1. More precisely:

Theorem 25 [PWW88] � � ��	 	�� �  	 � � � �	��
 ��� � i. 	�� �  	 �5! � � prime 	 �   .

The proof of Theorem 25 is quite involved due to the technical difficulties of working within

the theory ��� � . However, the main idea is based on a fairly standard argument. Before we go on,

we proceed to sketch this idea leaving out some of the tedious details of working in ��� � . We will

try to keep some similarity with the actual proof and point out the crucial points where a delicate

argument is required.

Let us assume that there is a maximal prime � and let � � � �	��
 ���
�
. We will derive a contra-

diction. We start with the observation that for every � such that � � � � � , the following equality

holds ��� � 	 �  � �
� 	 �

6 ��; � � � � 	 � 
where the sum ranges over all primes and 6 ��; � is the maximum

�
such that �

�
divides � . On the

other hand, ��
��� � 6 �-; � � �� � �

�
�
� ��� � �

�� � � �� � � �
� 4 �

since there are
� �
� � � numbers in 6 �78 �:�:� 8 � ; that are divisible by �

�
. Hence,

�
�

��
��� � � � � 	 �  � �

�

��
��� � �� 	 �

6 �-; � ����� 		�  � �
�
�
� 	 �

��� � 	 � 
��
��� � 6 �-; � � �

� 	 �

��� � 	 � 
� 4 �

� (5.10)

At this point we would like to derive a large lower bound on the left-hand side of (5.10) and a

small upper bound on the right-hand side of (5.10) so that a contradiction is apparent. Carrying

out summations of those many terms is not possible, in general, in � � � . However, one could try

using the Weak Pigeonhole Principle to prove that there are more numbers that are smaller than

the left-hand side than numbers that are bigger than twice the right-hand side. This contradiction

would finish the proof since the weak pigeonhole principle is provable. This is the way in which

the proof of Paris, Wilkie and Woods proceeds. We will not review it here. However, the need for

the large number � �	��
 ���
�

to exist is made explicit in the following calculations.

1This notion of limited use of an axiom also appears in Chapter V, Section 5, Subsection (g) of [HP93].
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For a lower bound on the left-hand side of (5.10) we have:

�
�

��
��� � � � � 	 � #" �

�

��
��� � � �

� � � 	 � (" �
�

�
� � � � � 	 � � � �" �

� 	 � � � 	 �  � 4 $  8
since � � � �	��
 ���

�
. For an upper bound on the right-hand side of (5.10), we split the sum in two:�

� 	 �

����� 		� 
� 4 �

� �
� 	 �

�
�
�
� � � 	 � 
� 4 � �

�
�
�
�
�

 � 	 �

� � � 	 � 
�54 �

�
Since � � � � � � � � � � in the second summand and there are at most � terms, we can bound this

quantity by �
� 	 �

�
�
�
� � � 	 � 
� 4 � � �

� � � 	 � 
� � � � � �

� 	 �
�
�
�
� � � 	 � 
� 4 � � �

� � � � 	 �  �
Repeating, we obtain the upper bound�

� 	 �
�
�
� �
� � � 		� 
�54 � � � � ����� 	 � � � �  � � � ����� 	 �  �

� � � � �$
�
� � �


  � � ����� 	 �  �
Finally setting


 � ������ 	 � 
we obtain the desired contradiction when � is large since the left-hand side of (5.10) is actually

bigger than the right-hand side.

The aim of this section is to show that a weaker axiom suffices, and so the existence of � �	��
 ���
�

is not the optimal large number assumption. In order to prove that, we will have to resort to the

technique of the Weak Pigeonhole Principle mentioned above. However, we are able to reuse

it without change from [PWW88], and we obtain our result as a corollary to the results of the

previous section.

Theorem 26 ��� �c	 	�� �  	 � � � � �	��
 ��� � � � � � (. 	�� �  	�� !�� � prime 	 �   for every � ! ) . Moreover,

there exists a model
� � � � � � with a non-standard element � � �

such that � � �	��
 ���
� � � � �

exists in�
but �

�	� 
 ���
�

does not.

Proof : For the second part, let
�

be a non-standard model of the theory of true arithmetic � � 	 ���  ,
and let �
� �

be a non-standard element. Obviously, � � �	� 
 ���
� � � � �

exists in
�

since the function is

total in true arithmetic. Let � � 6  � � � 	�� � ���  	 � � �  � � � � �	��
 ���
� � � � �  ; . It is not hard to see

that � is a cut of
�

that is closed under addition and multiplication. It follows that � � � � � � (see

Lemma 5.1.3 in page 64 of [Kra95]). Finally, � � �	��
 ���
� � � � �

still exists in � by absoluteness of the

� � -formula expressing the graph of exponentiation. However, �
�	� 
 ���

�
does not exist in � because

�
�	� 
 ���

� ! � � � �	��
 ���
� � � � �

in
�

for every standard � ��� .
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For the first part, suppose that � � �	��
 ���
� � � � �

exists in
� � � � � � . Our goal is to show that no � � -

definable function � � � . �
maps

	 � ����� 	 �  injectively into � � ����� 	 �  . The result would follow

from Theorem 11 of [PWW88] since then a prime exists in
�

between � and � ��� . Let � � � �
�

and

observe that � � �	��
 � �
� � � � � � � � �

� � � �	� 
 ��� � � � � � exists in
�

since it is closed under multiplication. By

Theorem 24, no � � -definable function maps $ � injectively into � . It follows that no � � -definable

function maps
�� � injectively into � ; otherwise we could compose that function with itself a con-

stant number of times to map $ � injectively into � . We conclude that no ��� -definable function

maps
	 � ����� 	 �  injectively into � � ����� 	 �  ; otherwise, we could juxtapose that function with itself

to obtain a � � -definable function mapping
�� � injectively into � (break � and

�� � into � �
� � � � � � � � 	 � 

blocks of size � � � � � 	 �  and
	 � ����� 	 �  respectively). � �

We note that ��� � proves 	,+��  	�� �  	 � � � �	��
 ��� � � I. 	,+ �� 	�� �  	 � � � �	� 
 ��� �  . However, the

second part of Theorem 26 implies that ��� � does not prove 	�� �  	�� � � �	� 
 ���
���
]. 	�� �  	 � �

� �	��
 ���
�
 .

Another major open problem in Feasible Number Theory is whether Fermat’s Little Theorem is

provable in ��� � . Berarducci and Intrigila [BI91] point out that one important difficulty is that the

modular exponentiation relation � � � � 	 � � �   is not known to be � � -definable. The situation

has changed, however. Very recently, Hesse [Hes01] proved that the modular exponentiation re-

lation on numbers of
� 	 � � � 	    bits is first-order definable. A well-known translational argument

shows then that � � � �
	 � � �   is � � -definable. The proof of this result, however, seems to rely

on Fermat’s Little Theorem, and therefore it is not clear whether the basic properties of modular

exponentiation are provable in ��� � .

Open Problem 1 Find a � � definition of the modular exponentiation relation whose basic prop-

erties are provable in � � � ; namely, � � � � � � � � � 	 � � �   and 	�� �  � � � � � 	 � � �   .
We believe that a positive solution to this open problem would help developping the number

theory of � � � in the same way that the � � -definition of the (non-modular) exponentiation relation

helped developping the metamathematics of � � � [GD82, HP93].
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Chapter 6

Conclusions

We view the results of this thesis as contributions to the field of Propositional Proof Complexity

in two ways: (1) the proofs of each of our results required the introduction of some new technique

to the field that may show useful for later use, and (2) the results resolve important problems that

were left open by other researchers of the field and suggest some new conjectures that will help

keep the field active. All our results have been published in conferences and appeared in final

form in journals, or are submitted for journal publication at the time of writing [AGG01, AGP01,

ABE01, Ats01]. The goal of this section is to review and relate all the results of the thesis, and list

some of the open problems they suggest.

6.1 The Think Positively Conjecture

We proved that the monotone sequent calculus MLK quasipolynomially simulates LK and every

Frege system. This means that although an arbitrary LK proof may use concepts that are not de-

finable by small monotone formulas, one is able to avoid that by a somewhat tricky simulation

that distinguishes �� � cases according to the number of ones in the underlying variables. Re-

call that the proof is inspired by the fact that, on the class of slice functions, monotone formulas

quasipolynomially simulate arbitrary formulas provably with small MLK proofs. This suggest

using a similar approach towards collapsing other seemingly different proof systems.

The main open problem in the context of the monotone calculus MLK is whether MLK poly-

nomially simulates LK on monotone sequents, or on contradictory sets of clauses. As we noted

in Chapter 3, a negative answer would imply a major breakthrough since then no Frege systems

is polynomially bounded. Actually, even more is true. According to Lemma 18, if MLK does not

simulate LK polynomially, then the formulas expressing the basic properties of the polynomial-

size monotone threshold formulas that arise from Valiant’s probabilistic construction, or AKS’s

explicit construction, would require super-polynomial size in LK.
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However, we tend to believe that the actual answer to the problem is positive.

Conjecture 1 MLK polynomially simulates LK on monotone sequents, even as refutation systems.

We call this the Think Positively Conjecture. The reason to believe in this conjecture is that there

ought to be polynomial-size monotone Boolean formulas for the majority function with their basic

properties easily provable. That this would suffice is formalized in Lemma 18. A possible approach

in trying to prove this would be to consider Valiant’s probabilistic construction of the monotone

formulas for majority and try to build up a proof of the basic properties by the probabilistic method.

Actually, it is easy to see that the only property that we really need is the symmetry of Valiant’s

formulas.

6.2 Open Problems Related to Res(2)

The main results of Chapter 4 proved that the Weak Pigeonhole Principle and Random CNF for-

mulas require exponential-size refutations in Res(2). The goal was to understand the difficulty in

dealing with these tautologies when formulas are allowed to alternate between conjunctions and

disjunctions, although in a minimalist way. We showed that the combination of old and new tech-

niques yield exponential lower bounds. Moreover, in view of the known Res(
� � �

) upper bounds,

our results are quite tight in the case of the Weak Pigeonhole Principle. The main open problem

is whether our techniques can be used to prove lower bounds for Res(
�

) for larger
�

. We believe

that the techniques should work, at least, for constant
�

in the case of Random CNF formulas.

However, we have not been able to do that.

Open Problem 2 Extend the lower bounds of Chapter 4 beyond Res(2).

As we mentioned in the introduction, it is also known that Resolution cannot polynomially

simulate Res(2) [ABE01]. Actually, the separation can be made exponential [AB01], and, in fact,

the proof shows that Res(2) requires exponential-size monotone interpolants. It is open, however,

whether Res(2) has feasible interpolation, and any answer would have important consequences for

the automatizability of Resolution [AB01]. We note that in view of the results of the last section

of Chapter 4, it is quite intriguing that the Lovász-Schrijver proof system has feasible interpolation

[Pud97].

Open Problem 3 Investigate the proof system � . Does it have feasible interpolation?

Recall that � polynomially simulates Res(2), and therefore, if it has feasible interpolation so

does Res(2).
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6.3 Open Problems Related to the WPHP and Primes

We now know that the bound 
� � �	��


� �
is not optimal for bounded-depth proofs of WPHP �

��
. The

size-depth trade-off proved in Chapter 5 suggests that a general superpolynomial lower bound for

all constant depths, if any, should have a quite exotic form.

Conjecture 2 The Weak Pigeonhole Principle WPHP �
�� has polynomial-size proofs in bounded-

depth LK.

One reason to believe in this conjecture is that there ought to be polynomial-size bounded-

depth formulas to approximately count with easily derivable properties. The sufficiency of this

is not completely obvious, but is somehow well-known. For an explicit statement of this claim,

see Pitassi’s Thesis [Pit92]. In fact, the computational problem of approximate counting is indeed

solvable by uniform bounded-depth families of formulas [Ajt93]. So, the reason to believe in

this conjecture is the same as the one we have to believe in the Think Positively Conjecture: the

correctness of some algorithm solving a natural computational problem should always be provable

within the complexity of the problem itself. Obviously, if the solution to Conjecture 2 is positive

with a sufficienly uniform proof, we would get a positive solution to Wilkie’s problem on whether

��� � proves the infinitude of primes.
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