
UNIVERSITY of CALIFORNIA

SANTA CRUZ

FIXED-POINT LOGICS, DESCRIPTIVE COMPLEXITY,
AND RANDOM SATISFIABILITY

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Albert Atserias

December 2002

The dissertation of Albert Atserias is
approved:

Professor Phokion G. Kolaitis, Chair

Professor Martı́n Abadi

Professor Luca de Alfaro

Frank Talamantes
Vice Provost and Dean of Graduate Studies

Copyright c
�

by

Albert Atserias

2002

Contents

Abstract v

Acknowledgements vii

Chapter 1 Introduction 1
1.1 Finite Model Theory and Descriptive Complexity 1
1.2 Results of the Dissertation . 3

1.2.1 Least Fixed-Point Logic in Finite Set Theory 4
1.2.2 Complexity of the Fixed-Points of Bounded Formulas 11
1.2.3 Datalog on Random CNF Formulas 17
1.2.4 Consequences for Proof Complexity and Constraint Satisfaction . . . 22

Chapter 2 Preliminaries 27
2.1 Languages and Structures . 27
2.2 First-Order Logic . 29
2.3 Least Fixed-Point Logic . 33
2.4 Uniform Definability and Queries . 39
2.5 Model of Computation . 40

Chapter 3 Fixed-Point Logics in Finite Set Theory 43
3.1 Basic Definitions . 43
3.2 On ���������
	�� vs. ��
 . 44
3.3 Restricted ����������	�� Collapses to ��
 . 49
3.4 Unary ��������� 	 � and Binary ��������� 	 � Collapse to ��
 59
3.5 On the Logical Complexity of the Formulas 66

Chapter 4 Descriptive Complexity of the Fixed-Points of Bounded Formulas 71
4.1 Key Lemma . 71
4.2 Closure Functions of Positive ��	 -Formulas 73
4.3 Complexity of Evaluating ����������	�� . 78
4.4 Circuit Uniformity and the Complexity Class ��� 	 81

iii

4.5 Capturing Results without Input Predicates 85
4.6 Capturing Results with Input Predicates . 91
4.7 Consequences . 95

Chapter 5 Datalog on Random CNF Formulas 97
5.1 About Datalog and Infinitary Logic . 97
5.2 Formulas as Structures and Satisfiability as Homomorphism 102
5.3 Random Model of CNF Formulas . 106
5.4 Main Result and Discussion of Proof Techniques 108
5.5 Extension Axioms and the Matching Game 111
5.6 Proof of Main Result . 116

Chapter 6 Consequences for Proof Complexity 123
6.1 Easier Games . 123
6.2 On the Complexity of Resolution . 128

Chapter 7 Conclusions 137
7.1 General Discussion . 137
7.2 About Finite Set Theory . 138
7.3 About Uniformity of Circuits . 140
7.4 About Inexpressibility Results and Proof Complexity 142

Bibliography 147

iv

Abstract

Fixed-Point Logics, Descriptive Complexity,

and Random Satisfiability

by

Albert Atserias

We study the expressive power and the computational aspects of fixed-point logics on finite

structures. Fixed-point logics is the generic name for the several known extensions of first-

order logic with a mechanism to incorporate recursion through inductive definitions.

In the first part of the thesis, we compare the expressive power of least fixed-point

logic LFP with that of first-order logic FO on structures that are equipped with the powerful

built-in predicate known as BIT, or equivalently, the set-membership relation when the ele-

ments of the universe are interpreted as hereditarily finite sets. The power and importance of

this built-in predicate stems from the fact that it provides logics with the ability to simulate

low-level computations. Moreover, its set-theoretic interpretation allows us to use methods

and techniques from set theory. We consider natural fragments of LFP syntactically defined in

terms of the bounded formulas of set theory. The goal is to identify the boundary between the

fragments of LFP that collapse to FO and those whose collapse is unlikely or will be hard to

settle. First, we show that certain large natural fragments of LFP collapse to FO. The proofs

of these collapsing results are based on the absoluteness properties that the bounded formu-

las of set theory enjoy. Second, we prove that the collapse of essentially the next fragment

would imply unexpected results in complexity theory. For these fragments, we focus on their

computational aspects and identify the complexity classes they capture.

In the second part of the thesis, we obtain inexpressibility results for Datalog and

use them to derive consequences for computational complexity. Datalog is a pure fixed-point

logic without built-in predicates capable of expressing many important properties, such as

unsatisfiability of 2-CNF formulas, non 2-colorability of graphs, the monotone circuit value

problem, and path systems, among others. We revisit the model for random 3-CNF formulas

with a fixed density, and prove that every Datalog property that implies unsatisfiability of these

formulas must have asymptotic probability zero, even when formulas are taken in the region

in which most formulas are unsatisfiable. Then we observe that our negative result allows us

re-derive the well-known lower bounds for Resolution refutations of random 3-CNF formulas,

and the Pigeonhole Principle. Thus, our results establish precise connections between the areas

of finite model theory and propositional proof complexity.

Acknowledgements

There are many people to whom I want to express my gratitude. The first in the list is my

advisor Phokion Kolaitis for having taught me so wonderfully the finite model theory, among

many other things. I hope and expect to keep learning from him in the near and later future.

I also want to thank José Balcázar for having suggested UCSC as a good place for graduate

studies at a stage when all I knew was that I wanted to learn about “logic and complexity”.

In the early stage of my graduate studies I shared experiences with a number of great

people I would like to thank: Ahmed Amer, Bao Lichun, Dan Ford, Mark Boyd, Nigel Duffy,

Raman Muthukrishnan, Ray Wheeler, Tom Rafill, Wei Ma, Xiang Zheng, and others. In the

late stage, Dean Bailey kindly accepted that we share an office as workplace. The experience

was fun and fruitful. I am also grateful to him. I don’t want to forget the staff of the CS/CSE

department, and specially Carol Mullane, whose continuous help was of great value.

Finally, I want to thank my people back home in Barcelona. Their permanent en-

couragement was a crucial ingredient in the soup. Without them this dissertation would not

had been possible, and that is why I dedicate it to them.

vii

viii

Chapter 1

Introduction

1.1 Finite Model Theory and Descriptive Complexity

The fields of finite model theory and descriptive complexity theory were launched

by Fagin’s Theorem [Fag74], which asserts that the complexity class ��� is captured by the

existential fragment of second-order logic when inputs are naturally encoded as finite struc-

tures. Later on, the complexity class � was also characterized by Immerman and Vardi

[Imm86, Var82]: � is captured by least fixed-point logic when inputs are encoded as finite

structures with a built-in linear order. There are two important concepts involved in the state-

ment of the Immerman-Vardi Theorem on which we want to elaborate: (1) the fact that the

logical formalism is least fixed-point logic, and (2) the fact that the result requires a built-in

linear order.

Least fixed-point logic is the extension of first-order logic with the ability to form

least fixed-points of positive first-order formulas. Inductive definability theory was developed

1

in the 1960’s as the consequence of a need to formalize computability on abstract domains,

other than the natural numbers [Mos74]. Quite interestingly, the same concepts re-appeared

over and over again in the context of computer science, partly because (least) fixed-points

can be reached by iteration, the quintessence of computation. Perhaps more importantly, least

fixed-points of positive first-order formulas on finite structures can be computed efficiently,

that is, in time polynomial in the size of the structure. The main contribution of Immerman

and Vardi was then in realizing that every such computation can also be encoded as the least

fixed-point of a positive first-order formula, when the structures are equipped with a built-in

linear order. And this leads us to the second aspect of the Immerman-Vardi Theorem on which

we want to focus.

Intuitively, a built-in predicate is one whose interpretation is the same in every struc-

ture. For example, equality is commonly assumed as primitive in most logics and can itself be

interpreted as a built-in predicate. The reader will have noticed that Fagin’s Theorem is about

arbitrary finite structures without any required built-in predicate, as opposed to the Immerman-

Vardi Theorem that requires a built-in linear order. Could we have a similar result for the

complexity class � ? That is, is there a logic that captures � on arbitrary finite structures

[CH82, Gur88]? This fundamental question remains open after more than 20 years of research

in the area. All attempts to capture � by different logics, such as the Immerman-Vardi Theo-

rem or Grädel’s Theorem [Grä92], require some form of built-in predicate. The general belief

is that the answer to the question above is negative, when properly formalized [Gur88], and

that this is due to a fundamental difference between � and � � . Since it is known that if

� � ��� then there is a logic that captures � , a proof that the answer is negative would in

2

fact prove that �
�

� � � .

The research presented in this dissertation is very much motivated by the two aspects

of the Immerman-Vardi Theorem that we just discussed. We study the expressive power of sev-

eral fixed-point logics on finite structures, with and without built-in predicates. When built-in

predicates are available, we characterize expressive power in terms of computational power

through the hierarchy of complexity classes provided by complexity theory. When built-in

predicates are waived, we prove strong non-expressibility results that shed light on the compu-

tational difficulty of certain problems such as the satisfiability problem for propositional logic

SAT. The connection with SAT is deeper than simple intuition since we succeed in deriving

proof complexity lower bounds from our inexpressibility results. This establishes, for the first

time, a formal connection between finite model theory and propositional proof complexity that

may turn out to be fruitful in the future.

1.2 Results of the Dissertation

This section describes the contents of each of the chapters of the dissertation. Chap-

ter 2 contains the necessary preliminaries. The results of the dissertation are presented in

Chapters 3, 4, 5, and 6. As a guide before we get into the technical content, let us say that the

results of Chapters 3 and 4 are concerned with the issue of built-in predicates in least fixed-

point logic, and the results of Chapters 5 and 6 are concerned with inexpressibility results,

and their consequences. The last chapter is devoted to the conclusions and to discuss the open

problems that our work suggests.

3

1.2.1 Least Fixed-Point Logic in Finite Set Theory

As stated already, the Immerman-Vardi Theorem establishes that on finite structures

with a built-in linear order, least fixed-point logic ����� captures the complexity class � . But

what about first-order logic ��
 ? Is it able to capture � on some infinite class of finite struc-

tures? Let us note that there exist infinite classes of finite structures on which ����� collapses to

��
 , such as the class of all finite equivalence relations, and both fail to capture � on them. But

the following question remains open: is it possible that � and ����� collapse to ��
 on some

infinite class of finite structures with built-in linear order? It is known that ��
 fails to capture

� on a number of important classes of structures even when a built-in linear order is available.

For example, the property “the number of edges is even” is not first-order expressible on the

class of all ordered finite graphs, or the property “the number of atoms is a perfect square”

is not first-order expressible on the class of all lexicographically ordered finite Boolean alge-

bras. Since such properties are clearly computable in polynomial-time, ��
 is strictly included

in � or ����� on such classes. In fact, all empirical evidence suggests that ����� is always

strictly more expressive than ��
 on structures with built-in linear order. Kolaitis and Vardi

conjectured so:

Conjecture 1 (The Ordered Conjecture [KV92]) On every infinite class of finite structures

with built-in linear order, there is a query that is definable in least fixed-point logic but that is

not definable in first-order logic.

There are some natural classes of structures on which the relationship between �����

and ��
 remains unknown, and on which the conjecture becomes particularly interesting.

4

These are the classes of structures that have strong built-in predicates in addition to the linear

order. For example, one may consider classes of structures with built-in linear order and built-

in arithmetic relations such as addition and multiplication. On such classes, establishing that

����� is strictly more expressive than ��
 is much more difficult. In particular, it is not known

whether ����� is strictly more expressive than ��
 on the class of arithmetical finite structures

�
��� � �������	�
���
���������	���
����� ��� ��� � !"���

It turns out that this question is literally equivalent to the difficult complexity-theoretic ques-

tion #�$ �&% '�)(. Indeed, ����� is strictly more expressive than ��
 on
�

if and only if

#*$ � % �
�+([DLW96]. Here, #�$ � % is the Linear-Time Hierarchy of Wrathall [Wra78], that

is, the class of problems computable in time , � � � by an alternating Turing machine making a

constant number of alternations, and (is the class of problems computable in linear exponen-

tial time -�.�/1032 by a deterministic Turing machine. The question #*$ � % '�+(is the linear time

analogue of the more well-known question �4% '�+(65 � , where �4% is the Polynomial-Time

Hierarchy of Stockmeyer [Sto77], and (65 � is the class of problems computable in exponen-

tial time - 0�798;:=< . Thus, settling the Ordered Conjecture is at least as hard as a difficult question

in complexity theory. It turns out that refuting it is also difficult since it would imply that

�
�

� �?> � � � ([DH95].

Another well-known built-in relation to consider is the BIT predicate which consists

of all pairs of natural numbers �A@ �CB � such that the @ -th bit of the binary representation of B is

one. Formally,

D �FE ��� �G@ �CB �*�IH BKJ -3L=MON � �AP�Q9RS- � ���
5

Note that the least significant bit is the � -th according to this definition. The class of structures

that arises is

�
��� � �����	���	� �C� ���3�9�	��� D �FE � � ���&� !"���

It turns out that ��
 is equally expressive on
�

and
�

. That is, a query is first-order expressible

in
�

if and only if it is first-order expressible in
�

. This follows from the fact that
D �FE is first-

order definable from � and � , and that � and � are first-order definable from
D � E and � (see

[Imm99]). For the same reason, ����� is equally expressive on
�

and
�

. Thus, the question

whether ����� collapses to ��
 on
�

is also difficult. We point out that this question was raised

by Gurevich, Immerman, and Shelah [GIS94] as a “fascinating question in complexity theory

and logic related to uniformity of circuits and logical descriptions”. Indeed, it can be shown

that ����� is strictly more expressive than ��
 on
�

if and only if �K#�������$	� (-uniform

� � 	 is different than � -uniform � � 	 , and by the facts above, if and only if #�$ � % �
� (.

We will return to the issue of the class ��� 	 and uniformity of circuits later on.

The results in Chapter 3 of this dissertation advance the state of knowledge about the

ordered conjecture on
�

by seeking to delineate the boundary where this conjecture becomes

hard to settle. In order to do that, we study certain natural fragments of ����� on
�

. We

identify a natural proper fragment of ����� for which the ordered conjecture cannot be settled

without resolving open problems in complexity theory at the same time. We then establish

that the ordered conjecture actually fails when further restricted to certain fairly expressive

fragments of ����� on
�

, which means that these fragments collapse to first-order logic on
�

.

To isolate these fragments of ����� , it is more convenient to work with an interesting alternative

interpretation of the BIT relation that we discuss next.

6

While the definition of BIT appears to be highly arithmetical, there is a surprising

re-interpretation of its meaning in terms of finite sets. To illustrate this, let � ����� Q���� �
	 be the

length of the binary representation of � ��� , and observe that every subset of �����	���	��� � ���3� can

be represented as a “bit-array” of length � . Indeed, the set �
� �������	�	� � � � �3� is represented

by ��������� ���	�	� � � 	 � � �������3� � , where � L � � if and only if @ � � . Conversely, every bit-array

of length � corresponds to a subset of �3���	���	� � � � �3� . Indeed, the bit-array ��������� ���	��� � � 	�� �
�3���	�3� � corresponds to the set � @���� L � �3� . Now, since every number in �������	�	� �
� � �3� is

represented uniquely as a bit-array of length � through its binary representation, this proves

that there is a one-to-one mapping from �������	�����C�K� �3� to ��� �������	�
� � � � �3� � , the set of all

subsets of �3���	���	��� � � �3� . If we iterate this one more step, we obtain a one-to-one mapping

from �����	���	� �C� � �3� to � ����� �������
�
��� ��� � �3� � � , where ��� � ��� Q�� � � 	 is the length of the

binary representation of � ��� . Continuing this way we obtain a one-to-one mapping from

�3���	���	���
�O�K��� to � ����������������� � ���!� � � . This idea gives rise to what is known as the Ackermann

isomorphism defined by the recursion:

" � � � � � �

" � B � � � " �A@ � � �A@ �
B � � D �FE6���

It is not hard to prove that " is an isomorphism between � � !4� D �FE � and ��#�$ �	� � , where #%$ is

the set of hereditarily finite sets defined by # $ �'& 0�(# 0 , and # 	 � � � # 0*) � � ����# 0 � (see

[Bar75]). The cumulative hierarchy of finite ranks # 0 automatically suggests an interesting

class of finite structures:

+-,
��� ��# 0 �	� � � �&� � !4���

7

In fact, the Ackermann bijection suggests that we re-interpret the class
�

by

� +-,
��� ��� 0 ��� � � �&� � !4�9�

where � 0 � � " � � � � " � � � �
�
�	� � " � � � � � � . Note that
� +-,

does not come with a built-in linear

order. However, a result of Dawar, Doets, Lindell, and Weinstein [DDLW98] implies that there

is a first-order formula that defines a linear order on every structure from
� +-,

. Moreover,

the linear order coincides with the image of the standard linear order � under the Ackermann

isomorphism. Thus, the special case of the ordered conjecture on
�

raised by [GIS94] becomes

equivalent to the following question:

Question 1 Is ����� contained in ��
 on
� +-,

?

This framework makes it possible to consider set-theoretic concepts and techniques

with the hope that these will provide new insights on the ordered conjecture on
�

. In this

work we will focus on the concept of ��	 -formulas from set-theory. These are the first-order

formulas that are obtained by forcing all quantifiers to be of the form ����� ��� � and ���	� �
� � .

The collection of ��	 -formulas has played a fundamental role in the development of set theory.

The key point is that � 	 -formulas are absolute and expressive. We will make strong use of

these facts in our results.

Let ������� �
	 � be the fragment of least fixed-point logic that consists of the least

fixed-points ����� �
� ��� � � ��� � of all ��	 -formulas � � � ��� � that are positive in the relation sym-

bol � . We consider the following variant of the ordered conjecture:

Question 2 Is ��������� 	 � contained in ��
 on
� +-,

?

8

Clearly, a negative answer would imply the ordered conjecture on
�

and thus #�$ �&% �
� (.

On the other hand, it is conceivable that ��������� 	 � could collapse to ��
 on
� +-,

because

the class of ��	 -formulas is a well-behaved proper fragment of all formulas. The first result

of Chapter 3 establishes that if ��������� 	 � � ��
 on
� +-,

, then � � #�$ � % , which in turn

implies that �
�

� ��> � � � (. Thus, Question 2 cannot be settled without resolving important

open problems in complexity theory at the same time.

This result motivates that we consider further restrictions of ������� � 	 � and ask

whether they collapse to ��
 on
� + ,

. Let us isolate a fairly expressive fragment of the

��	 -formulas: A formula � � � ��� � is called restricted � 	 if it is ��	 and every occurrence of

� involves bound variables of � only. We show that if � � � ��� � is an arbitrary restricted � 	 -

formula that is positive in � , then its least fixed-point ����� � � � � � � ��� � is first-order definable

on
� +-,

. To illustrate the power of least fixed-points of restricted � 	 -formulas, let us consider

the following example. Let � ��� ��� ��� � be the formula

��� � � � � � ���	� � � � � � � � �� � � ��� � �� ��� � ��� � ��� � � � � �

From its very definition we see that � ��� ��� ��� � is restricted � 	 , and positive in � . It turns out

that ������� � � � � � ��� ��� ��� � defines a linear order on
� +-,

. Indeed, suppose that all elements of

� and � have already been ordered. Then, � is declared smaller than � if the largest element

in the symmetric difference of � and � belongs to � . It is not hard to see that this defines

a linear order, and that this is exactly what the least fixed-point formula ����� � � � � ��� ��� ��� ��� �
expresses. Now, from our general result, we see that this linear order is first-order definable

on
� +-,

. Let us point out that the concept of restricted � 	 -formulas that we introduced is

9

inspired by the abovementioned result of Dawar, Doets, Lindell, and Weinstein showing that

the linear order is first-order definable on
� + ,

. Indeed, Dawar et al. introduced the formula

������� � � � ��� ��� ��� ��� � and proved that this particular case is first-order definable by an adhoc

argument. The new contribution of our result is in identifying the concept of restricted � 	 -

formula, and generalizing the techniques of Dawar et al. to work for all such formulas. This

required some new ideas, such as using absoluteness arguments to prove that restricted � 	 -

formulas that are positive have unique fixed-points. We also illustrate the power of our result

by showing that certain basic queries such as ordinal addition are definable by a restricted

� 	 -formula, and therefore definable by a first-order formula on
� +-,

.

After this, we consider fragments of ��������� 	 � obtained by restricting the number

of free variables in the � 	 -formulas under consideration. We observe that if � is a unary

relation symbol and � ��� ��� � is a � 	 -formula that is positive in � , then the least fixed-point

of � ��� ��� � coincides with the least fixed-point of some restricted � 	 -formula ��� ��� ��� � . It

follows that unary ����������	 � collapses to ��
 on
� +-,

. This raises the question whether any

similar collapses can be proved for ��������� 	 � -formulas of higher arities, while keeping in

mind that we cannot hope to show that ��������� 	 � -formulas of arbitrary arities collapse to ��

on
� +-,

without simultaneously showing that �
�

� �?> � � � (. Our main result along these

lines is that binary ������� ��	 � collapses to ��
 on
� +-,

. This is the most technically difficult

result of Chapter 3 and its proof requires a number of new ideas to deal with the non-restricted

occurrences of the recursive relation � . Moreover, the result has an interesting complexity-

theoretic interpretation: while the least fixed-point of a binary � 	 -formula is obviously a

binary relation on the set involved elements, our theorem says that quantification over sets of

10

these elements can simulate the fixed-point computation. The obvious statement would have

been that quantification over binary relations of these elements can simulate the fixed-point

computation. Thus, our theorem provides a non-obvious speed-up. Unfortunately, the proof

technique of our theorem does not seem to extend to ternary ��������� 	 � .

The last section of Chapter 3 deals with the logical complexity of the first-order

formulas that define the fixed-points. It turns out that the proofs of the theorems show that

the fixed-points of restricted ��	 -formulas are definable by a
�

-formula on
� +-,

. The class

of
�

-formulas is the smallest class of formulas containing the � 	 -formulas and closed under

conjunction, disjunction, bounded quantification ��� � � � � , ��� ��� � � , and existential quantifi-

cation ��� � � . We observe that, in fact, the formula can be chosen to be
� � , meaning that every

unbounded existential quantifier precedes every bounded quantifier. We note that this need not

be immediately obvious since the
�

-reflection principle, which means that every
�

-definable

predicate is also
� � -definable, is not known to hold on

� +-,
. Also, by duality, the formulas

may be chosen to be � � , the class that is obtained from the � 	 -formulas by closing under

universal quantification ��� � � . Therefore, least fixed-points of positive restricted � 	 -formulas

are � � -definable on
� + ,

.

1.2.2 Complexity of the Fixed-Points of Bounded Formulas

The isomorphism mapping
D � E to the membership relation � constitutes a good

source of inspiration to obtain results that explain the expressive power of first-order logic

and fixed-point logic when strong built-in relations are available. Moreover, the set-theoretic

framework provides new concepts to consider, such as � 	 -formulas, and new techniques to

11

apply, such as absoluteness arguments. The results in Chapter 3 are good examples of this.

However, the complexity aspects of ��������� 	 � were not completely studied in Chapter 3, and

the goal of Chapter 4 is to complete this study.

The first result of the chapter concerns the closure functions of the least fixed-points

corresponding to positive ��	 and restricted ��	 -formulas. Informally, if � � � ��� � is a first-

order formula that is positive in the relation symbol � , and � is a structure, the closure

ordinal of � � � ��� � on � is the minimum number of iterations of � that are needed to obtain

its least fixed-point on � . Then, the closure function of � is the function that assigns, to each

cardinality � , the maximum closure ordinal of � over structures of size � . Thus, the closure

function of a formula can be viewed as a measure of the complexity of evaluating its least fixed-

point. In particular, establishing that certain formulas have slowly growing closure functions

is a valuable result as far as the efficiency of evaluating their fixed-points is concerned. We

note, by the way, that it is easy to see that on structures of cardinality � , every closure function

of a positive first-order formula is bounded by a polynomial function � .�/ � 2 , and that this upper

bound is tight.

We already argued that the least fixed-points of positive � 	 and restricted ��	 -

formulas form an interesting and well-behaved subclass of ����� . The first part of Chapter 4

will provide more evidence of this by analyzing their closure functions.

We prove that the closure functions of positive restricted � 	 -formulas are bounded

by ,�� � Q�� � � � � � . Here � Q�� � � � � stands for the minimal � such that � Q�� / � 2 � � � � � , where

� Q�� / � 2 � � � is the � -fold composition of H � Q�� � � � �FM with itself. Formally, � Q�� / 	 2 � � � � � and

� Q�� / �) � 2 � � � � H � Q�� � � � Q�� / � 2 � � � �FM . In a sense then, the least fixed-points of positive restricted

12

��	 -formulas are well-behaved because their closure functions grow extremely slowly. We

should stress, however, that if the closure functions of positive restricted � 	 -formulas were

actually bounded by some constant, then the fact that their least fixed-point is first-order de-

finable would only be a trivial consequence. Therefore, it is interesting to observe, as we do,

that the closure functions of certain (natural) positive restricted � 	 -formulas meet the upper

bound ,�� � Q�� � � � � � optimally up to constant factors.

As far as general positive ��	 -formulas are concerned, we prove that their closure

functions are bounded by polylogarithmic functions � � Q�� � � � � .�/ � 2 . Again, this shows that the

least fixed-points of positive � 	 -formulas can be evaluated much faster than general first-

order formulas. Let us point out that while polylogarithmic functions grow much slower than

polynomial functions, they do grow much faster than , � � Q�� � � � � � . This establishes a deep dif-

ference between least fixed-points of restricted � 	 -formulas and general ��	 -formulas which

provides further intuition on why one fragment collapses to ��
 while the other possibly does

not. Finally, we also prove the tightness of the upper bound by exhibiting positive � 	 -formulas

whose closure functions grow polylogarithmically.

The results that we just mentioned establish that the least fixed-points of positive

��	 -formulas can be evaluated much faster than those of general first-order formulas. How-

ever, we aim for an exact complexity-theoretic classification of the properties that are ex-

pressible in ������� �
	�� . That is, we want to study the descriptive complexity of ��������� 	 � .

Our first result in this respect is that every query expressible in ������� � 	 � is computable in

� � �?# � #�������$	� (on arbitrary finite structures with built-in membership relation. Here,

� � �?# � #�������$	� (is the class of languages that are decidable in polylogarithmic time

13

by a deterministic Turing machine. We note that when considering sublinear time-bounds,

it is common to assume as we do that the machine model is equipped with a random access

mechanism to the input.

But which complexity class is really underlying ������� � 	 � ? Before we answer this

question, let us recall the well-known results of Barrington, Immerman, and Straubing [BIS90]

about the descriptive complexity of first-order logic. The Barrington-Immerman-Straubing

Theorem states that ��
 captures # % on finite structures with built-in
D �FE or membership re-

lation. Here, # % is the Logarithmic-Time Hierarchy of Sipser (see [Bus87]), that is, the class

of problems that are computable in logarithmic-time , � � Q�� � � by alternating Turing machines

making a constant number of alternations. We note that the Logarithmic-Time Hierarchy # %
is the logarithmic-time analogue of the Linear-Time Hierarchy #*$ � % , which is the linear-

time analogue of the most popular Polynomial-Time Hierarchy � % of Stockmeyer. Moreover,

Barrington, Immerman, and Straubing also showed that # % coincides with �K#�������$	� (-

uniform � � 	 , which is the class of problems that are computable by a family of circuits of

constant alternation depth and polynomial-size, and the family of circuits is �K# � � ��$	� (-

uniform in the sense that the circuit for structures of size � is recognizable in time ,�� � Q�� � �
by a deterministic Turing machine.

Now, let us focus back to ������� ��	 � on the class
� +-,

without additional relations.

We observe that on this particular class, ��������� 	 � is even in non-uniform ��� 	 for some

trivial reasons. This means that every query that is definable in ��������� 	 � on
� +-,

is already

computable by circuits of constant alternation depth and polynomial-size, but the circuits are

non-uniform in the sense that a different circuit is used for each input length. The inclusion

14

of ������� �
	 � into non-uniform � � 	 is due to the trivial reason that queries on
� +-,

depend

only on the cardinality of the structure, and such queries are always in non-uniform ��� 	 .

Since it is known that first-order logic ��
 captures a very uniform version of � � 	 , and since

��������� 	 � is certainly a uniform class, the interesting question becomes:

Question 3 Which uniform version of � � 	 is captured by ��
 � ����������	 � , the first-order

closure of ����������	 � ?

Our second main result of Chapter 4 is the complete answer to this question: on

� +-,
, the logic ��
 � ��������� 	 � captures � � �?# � #�������$	� (-uniform ��� 	 . In words,

what this means is that ��
 � ����������	 � captures the class of queries that are computable by a

uniform family of circuits of constant alternation-depth and polynomial-size, and the family of

circuits is uniform in the sense that the circuit for structures of size � is recognizable in time

� � Q�� � � .�/ � 2 by a deterministic Turing machine. We will make all these concepts precise in

Chapter 4. It turns out that � � �?# � # � � �"$	� (-uniform � � 	 is a fairly natural complexity

class since we also show that it coincides with # % �

, the logarithmic-time hierarchy of Sipser

with an oracle to � . In words, this is the class of problems that are computable in logarithmic-

time and a constant number of alternations by an alternating Turing machine that has access

to an arbitrary oracle in the complexity class � . Thus, our result can be stated in the following

circuit-free, clean form: ��
 � ������� ��	�� captures # % �

on
� +-,

.

As a corollary to these capturing results, we obtain an exact characterization of the

complexity-theoretic difficulties of showing ��
 � ��������� 	�� � ��
 on
� +-,

. We show that the

collapse is equivalent to � ��#*$ � % . This question is extremely interesting since, intuitively

15

speaking, it amounts to asking whether alternation can replace loop nesting. We note that the

complexity class #*$ � % coincides with the rudimentary languages
���

� [Wra78] introduced

by Smullyan [Smu61] and has received a good deal of attention by researchers of different

areas, from formal language theory [Jon69, BN78] to bounded arithmetic [Bus98, Woo81,

Wil79].

We then consider the descriptive complexity of ��
 � ��������� 	 � on arbitrary finite

structures with built-in membership relation. Unfortunately, we are able to provide an exact

answer only in the case that the underlying vocabulary of the class of structures is unary (on

classes of words with built-in membership relation). In that case, ��
 � ����� � � 	 � still captures

% �

, or alternatively, � � ��# � # � � ��$	� (-uniform � � 	 . This result is more subtle than

it seems since the ����������	 � subformulas may speak freely about the unary relations of the

structure. Thus, it is not even immediately obvious that ��
 � ��������� 	�� is in non-uniform

� � 	 since those formulas may require � � �?# � # � � �"$	� (to evaluate. However, the

crucial observation is that the relevant part of the unary relations on which the ��������� 	 �

subformulas depend turns out to be very small. We take advantage of this fact to prove our

theorem.

For languages of higher arities, we are able only to relate the expressive power of

��
 � ���������
	�� to a complexity-theoretic question. We show that if � � ��� � 0 :
��� , then

��
 � ���������
	�� collapses to ��
 on finite structures with built-in membership relation over

a vocabulary of arity at most � . The class
��� � 0 :

��� was introduced by Jones [Jon75] as a

natural subclass of the rudimentary languages
��� � �

��� � 0 . Moreover, Allender and

Gore observed that
��� � 0	� contains complete problems of each level of � % .

16

1.2.3 Datalog on Random CNF Formulas

The results of Chapters 3 and 4 are concerned with the expressive power of least

fixed-point logic when strong built-in predicates, such as the membership relation, are avail-

able. This brings several interesting connections to computational complexity, in the form of

collapsing and capturing results. However, studying logics with built-in predicates is not the

only way of obtaining connections with computational complexity. In Chapter 5 we will focus

on Datalog, a pure fixed-point logic without built-in predicates. We obtain strong inexpress-

ibility results for this logic, and then use them to prove complexity-theoretic lower bounds

related to the the satisfiability problem for propositional logic. Moreover, our results will

bring three different active areas of research in computational complexity together: the com-

plexity of random 3SAT, the complexity of resolution proofs, and the complexity of constraint

satisfaction problems. Let us start by introducing the framework of random 3SAT.

The phase transition phenomenon that certain combinatorial problems exhibit has

inspired a new line of research within the field of computational complexity. The focus is

no longer exclusively set to the worst-case complexity of the problem, but also in studying

its structure for the typical instances when drawn from certain distributions of interest. This

research is motivated by the need to understand the structure of hard-to-solve � � -complete

problems of practical importance. Moreover, the structural analysis of the typical instance is

often followed by an analysis of the complexity of the known algorithms to solve the problem.

As a matter of fact, the methods for these two tasks are very often related, and one task can be

seen as complementary of the other. The ultimate, more ambitious goal of the program would

17

be to understand the average-case complexity of the � � -complete problem under considera-

tion.

The satisfiability problem for 3-CNF formulas, the most popular ��� -complete

problem, has been intensively studied from this perspective. The distribution of interest in

this context is parameterized by the number of variables � and the number of clauses B of

the formula. Thus, following the standard notation, we let
+ � � �
B���� � denote the probability

space of random 3-CNF formulas with � variables and B clauses generated uniformly and

independently from the set of all possible clauses on exactly three distinct variables. The ratio

BKJ � is denoted by � and is called the clause density. It is conjectured that the probability

that a random formula � is unsatisfiable exhibits a phase transition from asymptotically �

to asymptotically � around a critical clause density ��� [CR92]. As far as partial results are

concerned, it has been proven that if � ��� ��� - then � is almost surely satisfiable [KKL02]

and if �	� � ��

� � then � is almost surely unsatisfiable [KKS) 01]. Moreover, experimental

results suggest that ��� is around � � - [SML96], but the existence of such a constant is only a

conjecture for the moment.

This structural analysis of the typical instance of the 3-CNF satisfiability problem

is complemented by an analysis of the complexity of the known algorithms to solve it. The

first results in this respect were only experimental showing that the running time of the Davis-

Putnam-Logemann-Loveland procedure (DPLL) for satisfiability experiments a sharp jump

around ��� � � - , and decays slowly as the ratio � increases. These empirical observations are

confirmed by two deep theoretical results. First, Broder, Frieze, and Upfal [BFU93] proved

that if � � ������� then a simple variant of DPLL running in linear time succeeds in finding

18

a satisfying assignment with high probability. Second, Chvátal and Szeméredi [CS88], as

improved by [BKPS98], proved that every Resolution refutation of an unsatisfiable � almost

surely requires size -�� /10 ����� 2 . Thus, since a DPLL run on � provides a Resolution refutation

when � is unsatisfiable no matter which heuristic is used for the splitting rule [BKPS98], this

provides a proof that all DPLL-based algorithms behave badly in the unsatisfiable region with

small � . The results of Broder, Frieze, and Upfal were later improved to values of � closer to

� � - (see the nice survey by Achlioptas [Ach01]), and the results of Chvátal and Szeméredi were

extended to other proof systems such as the Polynomial Calculus and Res(2) [BSI99, ABE02].

We remark that, at the time of writing, the known lower bounds on the satisfiability

threshold � � are algorithmic, while the known upper bounds are not. What this means is that

for every density � for which it has been proven that a random formula is almost surely satisfi-

able, there actually is a polynomial-time algorithm that certifies this with probability bounded

away from zero. The situation at the upper-end is quite different. All known constant upper

bounds on ��� follow by a counting argument that does not provide with a polynomial-time al-

gorithm that certifies unsatisfiability. In fact, the theoretical results of Chvátal and Szeméredi

about Resolution, and their extension to other proof systems such as the Polynomial Calcu-

lus and Res(2), prove that every algorithm that implicitly or explicitly produces a refutation

in such systems will fail to succeed in polynomial-time or with non-zero probability. Hence,

these results suggest a stronger form of hardness for satisfiability. Indeed, it seems that for

constant values of � beyond the critical point, certifying unsatisfiability on a significant frac-

tion of the inputs is computationally hard. A definitive argument in its favor would be proving

the non-existence of a property of 3-CNF formulas that (1) is decidable in polynomial-time, (2)

19

it implies unsatisfiability, and (3) holds with probability bounded away from � when � � � � -
is constant. Obviously, this hypothesis implies �

�
� � � , and therefore its proof seems out

of reach with current methods. In any case, it is possible to obtain some partial unconditional

results of this type, and it is clear that they provide some valuable information on our problem.

In Chapter 5 we initiate a study of the descriptive complexity of properties that im-

ply unsatisfiability with non-zero probability. We show the non-existence of a property of

3-CNF formulas that (1) is expressible in Datalog when 3-CNF formulas are encoded as fi-

nite relational structures, (2) it implies unsatisfiability, and (3) holds with probability bounded

away from � when � is constant. Datalog is a well-known query language studied in the

context of database theory (see Ullman [Ull89]), capable of expressing many interesting prob-

lems including Graph Reachability, Non-2-Colorability, Unsatisfiability of 2-CNFs, and some

� -complete problems such as the Monotone Circuit Value Problem and Path Systems among

others (see [KV00a, Pap85, Ull89]). In a nutshell, Datalog may be viewed as the existen-

tial positive fragment of first-order logic augmented with a mechanism of recursion. In fact,

Chandra and Harel [CH82] proved that Datalog coincides with the existential positive frag-

ment � ����� of ����� . Let us add that Datalog captures a significant but proper fraction of

polynomial-time (see [Ull89] again), and in the presence of a successor relation and negations

on the given predicates, it captures polynomial-time exactly [Pap85].

We point out that not all ��� -complete problems and all distributions on the in-

stances need to be hard to certify in the sense above. For example, it is know that a random

graph taken from the uniform distribution on all graphs on � nodes is almost surely non-3-

colorable. Nonetheless, the property that such a graph contains a complete subgraph on four

20

nodes is certainly (1) expressible in Datalog, (2) it implies non-3-colorability, and (3) holds

with non-zero probability over the uniform distribution. In fact, the property is expressible in

positive existential first-order logic, and holds with asymptotic probability one, as it is easy to

see.

The main ingredient of our proof is the design of a winning strategy for the Dupli-

cator in the existential � -pebble game between the structure encoding a randomly generated

formula, and the structure encoding a fixed template formula that we know is satisfiable. The

existential � -pebble game is a powerful combinatorial tool introduced by Kolaitis and Vardi

[KV95, KV00a] to analyze the expressive power of Datalog with � variables. In fact, the exis-

tential � -pebble game captures the expressive power of the stronger logic ��� � � $, the existential

positive fragment of infinitary logic with � variables. Thus, our lower bound is much stronger

than stated above since what we actually prove is that every property that implies unsatisfia-

bility of formulas with � variables and is (non-uniformly) expressible in the infinitary logic

��� � � $ when ��� � J � ��� � � � � � must have asymptotic probability � when � ��� and � is con-

stant. Note that we allow the number of variables � to grow with the number of propositional

variables � , a parameter that is not allowed to vary in a uniform Datalog program.

The design of the winning strategy for the Duplicator relies on the fact that the

incidence graph of a random 3-CNF formula, the bipartite graph that relates clauses with the

variables that occur in them, satisfies certain extension axioms that we introduce based on

the expander properties of the graph. The use of extension axioms is a recurring theme in

proving 0-1 laws for several logics and distributions on the instances [Fag76, Lyn80, SS88,

KV90]. Moreover, the expander properties of these graphs have also been used in the context

21

of propositional proof complexity to prove lower bounds in the size of Resolution refutations

[BSW01, BSG01]. This establishes an interesting link between the fields of propositional

proof complexity and finite model theory that we discuss next.

1.2.4 Consequences for Proof Complexity and Constraint Satisfaction

Propositional proof complexity is devoted to the study of the length of proofs in

propositional proof systems. Unquestionably, certain tautologies are more obvious than others,

and this is reflected by the length of their proofs in a fixed proof system. In addition, the study

of the lengths of proofs yields significant insight into the combinatorial and computational

content of the tautology. The field started with the pioneering work of Cook and Reckhow

[CR79], and has been developing continuously since then.

One of the well-studied proof systems is propositional Resolution, introduced by

Robinson [Rob65]. Strictly speaking, Resolution is a refutational system, which means that

it provides proofs of contradiction of unsatisfiable CNF formulas rather than proofs of tau-

tologies. However, it is well known that both frameworks are easily translatable one into the

other without much effort. The first significant lower bounds in propositional proof complex-

ity were for Resolution. Indeed, Haken [Hak85] showed that the propositional encoding of the

Pigeonhole Principle proposed by Cook and Reckhow requires Resolution refutations of expo-

nential size. Later on, Chvátal and Szeméredi [CS88] proved that a 3-CNF formula randomly

generated from
+ � � � � � ��� � requires exponential-size Resolution refutations almost surely.

Our results of Chapter 5 establish a link between finite model theory and proposi-

tional proof complexity. As a matter of fact, the idea of playing existential � -pebble games on

22

random 3-CNF formulas came out of the following informal reasoning: if a certain formula is

hard to refute in Resolution, shouldn’t it be hard to tell apart from a satisfiable formula by a

bounded player that confronts an adversary?

In order to make this argument more explicit, we elaborate on the idea of using the

encoding of combinatorial principles as propositional tautologies to obtain finite structures on

which playing pebble games might be easier than expected. For example, we consider the

encoding of the Pigeonhole Principle as an unsatisfiable CNF formula in the spirit of Cook

and Reckhow, and show that the Duplicator wins the existential pebble game on the finite

structure encoding this formula and a template structure encoding a satisfiable formula. What

this result is saying is that the Pigeonhole Principle is a hard example for all Datalog programs

that attempt to solve unsatisfiability. This phrasing is inspired by the results of Kolaitis and

Vardi relating the Constraint Satisfaction Problems that are solvable by � -Datalog programs,

and the finite structures on which the Duplicator wins the � -pebble game [KV00b]. We will

elaborate a little bit more on this later.

More importantly perhaps, we also observe that our main inexpressibility result for

��� � � $ is a generalization of the result of Chvátal and Szeméredi. Before we explain why this is

so, we need to digress shortly to introduce the concept of width in Resolution. In a Resolution

refutation, the width is the maximal number of literals in a clause of the refutation. Ben-Sasson

and Wigderson [BSW01] proved the following non-trivial result about the width of Resolution:

If a 3-CNF formula � has a Resolution refutation of size � , then � has a Resolution refutation

of width ,���� � � Q�� ��� , where � is the number of propositional variables. This interesting

result relates the width with the size in a form that is suitable to prove size lower bounds.

23

Indeed, if every Resolution refutation of � requires width � , then every Resolution refutation

of � requires size - � / ��� � 0�2 . Thus, lower bounds on width imply lower bounds on size. It is

worth noting that a conjecture about a trade-off of this type was formulated already in 1981

[KM81]. What we realize is that there is a tight connection between the width of Resolution,

and the number of pebbles needed to win the existential � -pebble game. We show the existence

of a Datalog program � with -�� variables such that (1) if � has a Resolution refutation of

width � , then � evaluates true on the structure encoding � , and (2) if � evaluates true on the

structure encoding � , then � has a Resolution refutation of width -�� . Thus, if the Duplicator

wins the existential � -pebble game on the structure encoding � and the template structure,

then every Resolution refutation of � requires width � J - . An immediate corollary of our main

result about the Duplicator winning the � J � ��� � � � -pebble game on a random 3-CNF formula

� , and the size-width trade-off of [BSW01], is that every Resolution refutation of � requires

size - � /10 � / ��� 0�2 � 2 . The same argument can be used to obtain Haken’s exponential lower bound

for the Pigeonhole Principle. It should be pointed out that Ben-Sasson and Wigderson prove

similar lower bounds by means of the width method in a more direct way; nonetheless, it is

quite interesting that non-expressibility results in finite model theory yield lower bounds in

proof complexity.

We turn next to a discussion about the implications of our results for the complexity

of algorithms for constraint satisfaction problems. It was first pointed out by Feder and Vardi

[FV98] that every constraint satisfaction problem can be cast as a homomorphism problem:

given two finite structures � and
�

over the same relational vocabulary, is there a homo-

morphism from � to
�

? Intuitively, � represents the variables and the tuples of constraint

24

variables,
�

represents the values and the constraints, and the homomorphisms between �

and
�

are the solutions to the constraint satisfaction problem. Note that satisfiability problems

fit well in this framework by letting the universe of
�

be �������3� and the relations of
�

be the

truth-tables of the involved connectives.

Several concepts of consistency have been popularized by the AI community as pow-

erful algorithmic tools to deal with the intractability of constraint satisfaction problems. The

underlying common idea of all these concepts is that of identifying some structural property on

the instances that guarantees success of a fixed constraint propagation algorithm in reasonable

time. All these algorithms start with the initial constraints of the problem, and propagate them

by inferring new and possibly tighter constraints, until the problem is either solved, or proved

unsatisfiable.

Kolaitis and Vardi [KV00b] shed light on the connections between the concepts of

consistency and the concept of winning strategy for the Duplicator in the existential � -pebble

game. These seemingly unrelated concepts turned out to be tightly connected through a the-

orem stating that a constraint satisfaction problem given by the structures � and
�

can be

solved by establishing strong � -consistency if and only if the Duplicator wins the existential

� -pebble game on � and
�

. As a matter of fact, what Kolaitis and Vardi pointed out is that

solvability by the usual constraint propagation algorithms can be cast, in one form or another,

as conditions on winning strategies for the Duplicator. With this interesting re-interpretation,

our result about the Duplicator winning the existential � -pebble game on a random 3-CNF

formula admits the following intuitive interpretation: any usual constraint propagation algo-

rithm that attempts to solve satisfiability with small constraints will succeed on a negligible

25

fraction of all 3-CNF formulas only. We note that resolution is only one very particular form

of constraint propagation.

26

Chapter 2

Preliminaries

2.1 Languages and Structures

A finite relational vocabulary with constants, or language, is a finite set of relation

and constant symbols � ��� � � ���	���������
��� � �	���	����� � � . Each relation symbol � in � has an asso-

ciated natural number called its arity. Since our vocabularies will always be finite, sometimes

we omit this term. If the vocabulary has constants, we usually indicate that explicitly.

Let � � � � � �	���	�������
��� � �	�	��� ��� � � be a relational vocabulary with constants. A

structure over � , or an � -structure, is a tuple

� � ��� ����� � ���	�	� ������ ���	� � �	���	� ���	�� � �

where � is a non-empty set called the universe, each � �L is a relation over � of the arity � L
of � L , and each � �L is an element of � . We say that � �L and � �L are the interpretations of the

symbols � L and � L respectively.

27

Example 1 Essentially all mathematical objects can be represented as structures for an appro-

priate vocabulary. We see two examples: graphs and groups. Let � � ��� � be the relational

vocabulary of a single binary relation symbol � , also known as the vocabulary of graphs.

An � -structure � � � � ��� � � is called a graph if � � is a symmetric, non-reflexive bi-

nary relation over � . We say that � is the set of vertices of the graph, and � � is the set

of edges. Let � � � � � " � be the relational vocabulary of one relation symbol � of arity

three, and one constant symbol " , also known as the relational vocabulary of groups. An

� -structure � � � � � � � � " � � is called a group if � � is the graph of a binary operation

� � � � � � � that is associative, has " � as its neutral element, and every element of �

has an inverse with respect to � .

The universe of a structure � is always denoted by � . If the structure is called

� , its universe is denoted by � , and similarly for other names. The interpretation of � L or � L
in � is always denoted by � �L or � �L , respectively. We say that � is a substructure of � ,

denoted by � � � , if (1) � ��� , (2) � �L
� ���

L
� � �
	

for every � L in � , and (3) � �L
� ���
L

for every � L in � .

Two structures � and � over the same vocabulary that are identical up to renaming

of the elements of the universe are called isomorphic. Formally:

Definition 1 Let � be a relational vocabulary with constants. We say that two � -structures �

and � are isomorphic, denoted by � �� � , if there exists a mapping
�� � � � that is one-

to-one and onto, and such that � � � �	�	����� � �
	 � � � �L if and only if ��
���� � � ���	�����
���� �
	 � � � � �
L

for every � � �	�	��� � � �
	 � � and � L � � , and
�� � �L �
� � �
L for every � L � � .

28

2.2 First-Order Logic

We need a precise language to express properties of structures, such as those ex-

pressed in English in Example 1. First-order logic is a convenient formalism for that.

Let � � ��� � ��� � �	���	� � be an infinite but countable set of first-order variables, and

let � be a relational vocabulary with constants. The set of atomic formulas of � is the set of

formulas of the form � ��� � ���	�	� � � � � or � � � � � , where � is an � -ary relation symbol in � , and

each � L is a first-order variable or a constant symbol � in � . The set of first-order formulas of �

is defined by closing the set of atomic formulas under negations, conjunctions, and universal

quantification.

Definition 2 Let � be a relational language with constants. The set of first-order formulas of

� is the smallest set of formulas that is closed under the following rules:

(i) if � is an atomic formula of � , then � is a formula,

(ii) if � is a formula, then ��� is also a formula,

(iii) if � and � are formulas, then �	� � � � is also a formula,

(iv) if � is a formula and � is a first-order variable, then ���	� � � ��� is a formula.

We use �	��
�� � as an abbreviation for � �	�
� � �
� � . Also, we use �	� � � � as an ab-

breviation for � �	� � �
� � , and ����� � ����� as an abbreviation for � ���	� � ������� . It will be convenient

to avoid unnecessary parenthesis. In order to do that, we view
�

and
 as associative symbols,

and give them more precedence that � . Also, the nesting of quantifiers will be discharged of

redundant parenthesis. The following examples will help:

29

Example 2 We write � � � � � instead of � ��� � � � � � � or ��� � �	� � � � � . We write � � � � �

instead of � � � � � � � � � . Similarly, we write � � � � � instead of � � � �	� � � � � . Also,

we write ���	� � ��� � � ��� � � � instead of � �	� � � � � � � � ��� � � � � � . Let us note that the occurrences

of negation � are never ambiguous: they always apply to the next formula. Thus, ���
 � is

never thought as � ���
 � � . If we want to write that, we need to use the parenthetical form.

The set of free variables of a first-order formula � , denoted by � ����� , is defined

inductively as follows: if � is atomic of the form � ��� � �	�	����� � � � or � � � � � , then � � ��� �

� � L � � L is a first-order variable � . If � � �
� , then � ����� � � �	� � . If � � ��� � � � , then

� � ��� � � �	� � � � �	� � . If � � ���	� � ��� � , then � ����� � � �	� � � � � � . If � � � ����� , we say

that � occurs free in � . If � � ��� � � , we say that � is a sentence. The notation � ��� � �	�	����� � 0 �
will mean that all free variables of � are contained in � � � ���	��� � � 0 � . Note that we do not insist

that every variable in � �
� �	���	��� � 0 � is actually a free variable of � . However, when we write

� � ��� �	���	� � � 0 � , that is usually the case.

We are ready to define the semantics of first-order formulas on structures. Let � be

a relational vocabulary with constants, and let � be an � -structure. A valuation function is

a mapping
 from the set of first-order variables � to the universe of � . It is convenient to

extend
 to the constant symbols of � by setting
�� � � � � � for every constant symbol � in � .

We say that
 is a valuation function for � .

Definition 3 Let � be a relational language with constants, let � be an � -structure, and

let
 be a valuation function for � . Let � be a first-order formula of � with free variable

� � �	���	��� � 0 . We say that � and
 satisfy � , denoted by � � � ���
�� , if one of the following

30

cases holds:

(i) � � � ��� � �	���	��� � � � for some � � � and �
�� � � � ���	�	� �
���� � � � � � � ,

(ii) � � � � � � � and
���� � � �
�� � � � ,

(iii) � � �
� and not � � � � �
 � ,

(iv) � � � � � and � � � � �
�� and � � � � �
�� ,

(v) � � ���	� � �	� � and � � � � �
 �� � for every � � � ,

where
 �� is the valuation function that sets
 �� ��� � � � , and
 �� ��� � �
���� � for every � �
� � .

Let � � ��� �	���	��� � 0 � be a first-order formula of � , let � be an � -structure, and let

� � �	���	��� � 0 be elements of � . The notation

� � � ��� � � �	���	��� � 0 �

will be used to mean that � is satisfied by � and any valuation function
 for � such that

���� L � � � L for every @ � �9���	���	� �C� � . In particular, if � is a sentence, we say that � holds in

� , denoted by � � � � , if � � � ���
�� for every valuation function
 for � .

Example 3 We revisit the examples of graphs and groups of Example 1. Our goal is to express

the axioms of graphs and groups in first-order logic. Let � ����� � be the vocabulary of graphs,

and let � be an � -structure. Let

� � � ���	� � ��� � � � � � � �

� � � ���	� � � � � � � � � � ��� � � � � � � � � � �
31

If the sentences � � and � � hold in � , then � is a graph. Indeed, � � expresses the fact that

� is anti-reflexive, and � � expresses the fact that � is symmetric. Let � � � � � " � be the

relational vocabulary of groups, and let � be an � -structure. Let

� � � ���	� � � � �	� � � ��������� ��� � � � � � � � ��� � �

� � � ���	��� � � �	� � � ���	� � � ���	��� � ��� ���
� � � � � � � � � � � ��� � � � � ����� � � � � ��� � �

If � � and � � hold in � , then � � is the graph of a binary operation � � � � � � � . Indeed,

� � expresses the fact that every pair ��� � � � � � has an image � � , and � � expresses the fact that

this image is unique. Let

� � � � �	��� � ���	� � � ���	� � � ���	��� � ���	��� � ���	��� � ���	��� � ��� ���
� � � � � ��� � � � ��� � � � � � ��� � �

� � � ��� � ��� � ����� � � ����� � � � � ��� � � ��� � ��� � �

If �	� also holds in � , then � is an associative operation. Indeed, �
� expresses the fact that

� ��� � � � � � � � � ��� � ��� � � � � � for every ��� , � � and � � . Let

�	� � ���	� � � � ��� � " � � � � � � " � � � � � �

�
� � ���	� � � � � � � � ��� ��� � " � � � � � � � � " � � �

If ��� and �
� also hold in � , then � is a group. Indeed, �
� expresses the fact that " � is the

neutral element of � , and ��� expresses the fact that every element has an inverse with respect

to � . Thus, � � �	���	��� � � are the axioms of group theory (for the relational vocabulary of groups).

A first-order sentence � expresses a property that may, or may not hold in a structure

� . A first-order formula with free variables � ��� � �	���	��� � 0 � , instead, defines a relation over

32

the universe of the structure. Namely, it defines the set of tuples of the universe that satisfy the

formula when they interpret the free variables of the formula. More formally, we define

� � ��� ��� � �	�	����� � 0 � � � 0 � � � � ��� � � ���	�	� � � 0 � ���

In particular, if � ��� � has a unique free variable � , then � � is a subset of � .

Example 4 Let � � � � � " � be the relational vocabulary of groups, and let � be a group, that

is, an � -structure that satisfies the axioms � � �	�	����� �
� in Example 3. Let

� � � � � ��� � � ����� � � � ��� � � ��� � � ��� �

Then, � � is the set of elements of the group that commute with every other element. Indeed,

the formula says that � � � � � � � for every � . Although we will not need this, let us say

that the set � � is usually called the center of the group. Thus, we say that the formula � ��� �

defines the center of the group. Observe that if the center coincides with the whole group � ,

then all elements commute, which means that � is an Abelian group. Thus, if we add the

sentence ���	� � ��� ��� � � to � � �	���	� � �
� we obtain the axioms of Abelian groups.

2.3 Least Fixed-Point Logic

We introduced first-order logic as a convenient language to express properties of

structures. In this section we introduce least fixed-point logic, which is an extension of first-

order logic to incorporate recursion through inductive definitions.

Let
�

� � # � � # � �	�	��� � be an infinite but countable set of second-order variables.

Each second-order variable has an associated number called its arity. Moreover, we assume

33

that
�

contains infinitely many second-order variables of each arity. Let � be a relational

vocabulary with constants, and let � be a second-order variable. We treat � as a relation

symbol for the purposes of defining formulas. We define the class of first-order formulas of

� � � � � that are positive in � :

Definition 4 Let � be a relational vocabulary with constants and let � be a second-order

variable of arity � . The class of first-order formulas of � � � � � that are positive in � , or

positive formulas, is the smallest class of formulas that is closed under the following rules:

(i) each atomic formula of the form � ��� � �	�	��� � � � � is a positive formula,

(ii) if � is a first-order formula of � , then � is also a positive formula,

(iii) if � and � are positive formulas, then � � � and �
 � are also positive formulas,

(iv) if � is a positive formula, then ���	� � � ��� and ����� � ����� are also positive formulas.

We are ready to define the class of least fixed-point formulas of � :

Definition 5 Let � be a relational vocabulary with constants. The class of least fixed-point

formulas of � is the set of formulas of the form

� ������� : ������� � �
� � � ��� ��� � ���	����� � � � �

where � � ��� �	���	��� � � � � � is a first-order formula of � � � � � that is positive in � -ary second-

order variable � , and each � L is either a first-order variable or a constant symbol of � .

The set of free variables of a least fixed-point formula ��������� : ������� � �
� � � ��� ��� � ���	�	� � � � �

is defined to be the set of first-order variables in � � � �	���	� � � � � . Note that the only free variables

34

of � are among � �
� �	���	��� � � � . Note also that the least fixed-point formulas, the way we defined

them, do not allow nesting of fixed-point operators nor first-order parameters. It is known that

this forms a robust class of formulas (see [Mos74]).

We turn next to the semantics. Let � be a relational vocabulary with constants, let

� be an � -structure, and let � be a second-order variable of arity � . Observe that every first-

order formula � � �
� ���	�	� � � � � � � of � � � � � defines an operator � �� � � � � � �
defined as

follows

� �� � � � � � ��� � �	���	� � � � � � � � � � � � ��� � � ���	����� � � � � � ���
Here, the notation � � � ��� � � ���	����� � � � � � means that � � � � � � � ��� � � ���	����� � � � , where � � � � �
denotes the � � � � � -structure that expands � by interpreting � by

�
.

Proposition 1 [Mos74] Let � be a relational vocabulary with constants, and let � be a

second-order variable. If � is a first-order formula of � � � � � that is positive in � , then

� �� is a monotone operator. That is, if
� ��� � � �

, then � �� � � � � � �� ��� � .
Proof : The proof is by induction on the construction of � . If � is atomic of the form

� ��� � ���	����� � � � , then � � � ��� � � �	�	����� � � � � � implies � � � ��� � � ���	�	� � � � � � � whenever
� ��� .

Thus, � �� � � � � � �� ��� � . The inductive cases are as easy. ��
Let � ��� � �	�	��� � � � � � � be a first-order formula of � � � � � that is positive in � . For

every ordinal � , let 	�
� � � � � � �� �
�����
 	 �� � � ���� �
Since � �� is a monotone operator, we have that

	 �� � � � � 	
� � � � whenever � ��� . By

a cardinality argument, there must exist a minimal ordinal � such that
	��� � � � �

	��) �� � � � .
35

Such an ordinal is called the closure ordinal of � on � , and is denoted by � � � � � � . Moreover,

we let
	 � � � � �

	 �� � � � . We note that

� �� � 	 � � � � � �
	 � � � � �

Thus,
	 � � � � is a fixed-point of the operator defined by � . Moreover, it can be seen that	 � � � � is the least fixed-point of � �� . This means that if

�
is another fixed-point of � �� , that

is, if � �� � � � �
�

, then
	 � � � � � � (see [Mos74]).

Definition 6 Let � be a relational vocabulary with constants, let � be an � -structure, and

let
 be a valuation function for � . Let � � ������� � : ������� � �
� � � � � ��� � ���	��� � � � � be a least fixed-

point formula of � . We say that � and
 satisfy � , denoted by � � � ���
�� , if the tuple

�
�� � � � ���	�	� �
���� � � � belongs to the least fixed-point
	�� � � � of the monotone operator defined

by � .

The following example borrowed from [KL00] illustrates the expressive power of

least fixed-point formulas.

Example 5 Let � � � � � " � be the relational vocabulary of groups, and let � be a finite

Abelian group. That is, � is a finite � -structure that satisfies the axioms of Abelian groups

presented in Examples 3 and 4. Let � � � ��� � be the following least fixed-point formula with

two variables:

������� � � � � � � � � "
 � � � � � � ��� � � � � � � � � � ��� � � � � ��� � � � �

It is not hard to see that, on � , the formula � ��� ��� � defines the set of pairs of the form

� ��� ��� � � � � � is a power of � �9�
36

Indeed, the @ -th stage
	 L� � � � is exactly the set � ��� � � L � ��� � � � . Now, it is known from basic

group theory, that an Abelian finite group is simple if and only if every non-trivial element

generates the whole group. Thus, the sentence

���	� � � � �
� " � ��� � � ��� ��� ��� � � �

expresses the property that � is a simple Abelian group. Note that this sentence is not a

least fixed-point sentence in the sense of Definition 5. However, its meaning is clear when we

interpret least fixed-points formulas as a mechanism of building up new relations.

Just as monotone operators have least fixed-points, they also have greatest fixed-

points. For every ordinal � , let

�
� � � � � � �� �

����
 � �� � � � �� �

Here, the empty intersection is the universe of � by convention. Since � �� is a monotone

operator, we have
� �� � � ��� �
� � � � whenever � � � . Note that the inclusion symbol is

reversed. By a cardinality argument again, there must exist a � such that
� �� � � � �

� �) �� � � � .

We let
� � � � � �

� �� � � � and observe that

� �� � � � � � � � �
� � � � � �

Thus,
� � � � � is a fixed-point of � �� , and in fact, it is the greatest fixed-point. That is, if

�
is

another fixed-point � � � � � �
�

, then
� � � � � � � .

It is known that the least fixed-point and the greatest fixed-point of a monotone

operator are related. The next proposition states how. We include its proof because we will

use this fact in Chapter 3, and because we think that it is instructive.

37

Proposition 2 [Mos74] Let � be a relational vocabulary with constants, let � be an � -

structure, and let � ��� � �	���	��� � � � � � be a first-order formula of � � � � � that is positive in the

� -ary second-order variable � . Then,
	 � � � � � � � � � � � � � , where � is the dual first-order

formula of � , that is, � � ��� � � � ���	����� � � � � J � � � . Observe that � is again positive in � .

Proof : We prove, by induction on the ordinals, that
	
� � � � � � � � �
� � � � . By definition,

� � � ���	�	� � � � � � 	
� � � � if and only if

� � � ��� � � �	���	��� � � �
����
 	 �� � � � � �

By induction hypothesis on � , this is equivalent to

� � � ��� � � �	�	��� � � � �
����
 ��� � � � �� � � � � � �

Recall that � � ��� � �
� �	�	����� � � � � J � � � . Therefore, this is equivalent to

�
�� � � � � � �	���	��� � � � ����
 � �� � � � � �

By definition, this is equivalent to ���%� ���	�	� � � � � �� �
� � � � , which means that ��� � ���	�	� � � � � �

� � � �
� � � � . This completes the proof by induction that
	
� � � � � � � � �
� � � � . Now, for

the conclusion, observe that if ��� � �	���	��� � � � � 	 � � � � , then ��� � �	���	��� � � � � 	
� � � � for some

ordinal � . Therefore, ��� � �	�	����� � � � �� �
� � � � , and so ��� � �	�	����� � � � �� � � � � � since
�
� � � � �

� � � � � . Conversely, if ��� � �	�	����� � � � �� � � � � � , then ��� � ���	�	� � � � � �� �
� � � � for some � , which

means that ��� � ���	�	� � � � � � 	
� � � � , and so ��� � ���	�	� � � � � � 	 � � � � since
	
� � � � � 	 � � � � .

This concludes the proof. ��
Let us conclude this section with the following well-known observation. Let � be a

finite � -structure, and let � � � � �	���	��� � � � � � be a first-order formula of � � � � � that is positive

38

in the � -ary relation symbol � . Then the closure ordinal � � � � � � of � on � is bounded by

� � � �
. Indeed, the sequence

	 	� � � � � 	 �� � � � � ����� � 	 �� � � �

cannot last more than � � � �
steps without reaching a fixed-point because each

	
� � � � is a

subset of � �
. Thus, on finite structures, the closure ordinals of positive formulas are bounded

by a polynomial in the size of the structure.

2.4 Uniform Definability and Queries

We mentioned already that formulas with free-variables define relations on struc-

tures. We will need the more general concept of query defined next:

Definition 7 Let � be a relational vocabulary with constants, let
�

be a class of � -structures,

let � be a natural number, and for every � � �
let ��� � � be a subset of � �

. We say that

� � � � � � ��� � � ��� � � � � is an � -ary query on
�

if for every � � � � �
such that

� �� � we have that � � � � � � � � �� � � � � � � � � . If � �+� , we say that � is a Boolean query.

Boolean queries are identified with subsets of
�

in the obvious way; namely, if � is

a Boolean query on
�

, we write � � � or �
�� � to mean that ��� � � � � ��� � or � � � � � �

respectively. Sometimes we say that a query is a uniform relation. In words, an � -ary query is

a map from structures to � -ary relations on those structures, that is closed under isomorphisms.

This closure property is required for queries to be definable by logics in the following sense:

39

Definition 8 Let � be a relational vocabulary with constants, let
�

be a class of � -structures,

let � be an � -ary query on
�

, and let � be a class of formulas of � . We say that � is � -

definable on
�

if and only if there exists a formula � � � with � free variables such that

��� � � � � � for every � � �
.

We illustrate this definition with our running example of groups.

Example 6 Let � � � � � " � be the relational vocabulary of groups, and let
�

be the class

of all finite groups, that is, the set of all finite � -structures that satisfy all axioms of group

theory � � �	���	��� �
� in Example 3. Let � be the unary query that assigns, to each group in
�

,

its center (recall Example 4). Then � is first-order definable on
�

by the formula � ��� � in

Example 4. Let
�

be the set of all finite Abelian groups. Then
�

is a Boolean query, and it

is first-order definable on
�

by the sentence ���	� � ��� ��� � � . Finally, let � be the set of all finite

Abelian simple groups. Then � is again a Boolean query, and it is definable on
�

by the least

fixed-point sentence in Example 5.

2.5 Model of Computation

Our model of computation is the oracle alternating multi-tape Turing machine with

random access to the input. This model, originally defined by Ruzzo [Ruz81] and used by

Barrington, Immerman, and Straubing [BIS90], Buss [Bus87], and Sipser [Sip83] among oth-

ers, is a modification of the model of oracle alternating multi-tape Turing machine of Chan-

dra, Kozen, and Stockmeyer [CKS81] to allow sublinear time-bounds. These machines are

equipped with an address tape on which to write a number in binary. When the machine en-

40

ters a distinguished state with a number � written on its address tape, the head of the input

tape jumps, in one step, to the � -th leftmost cell of the tape. Strictly speaking, the definition

of Ruzzo [Ruz81] is slightly different from ours, but standard simulation arguments show that

both models have the same computing power with only a constant factor loss in time or number

of alternations (see [BIS90] and [Bus87] for example). In the case of deterministic machines,

our model is slightly more robust, but this will not affect the generality of the results.

The fact that our Turing machines have random access to the input will allow us im-

pose sublinear time-bounds on the machines. We note that a Turing machine with the standard

sequential access to the input would not be able to read the whole input in that time.

Example 7 This example is not only useful to illustrate the operation of random access ma-

chines, but it will also be used later in the text. This result is attributed to Dowd by Buss

[Bus87].

Proposition 3 There exists a deterministic Turing machine with random access input, that on

input � of length � , halts in exactly � ��� Q�� � � ��� � � 	 steps with the binary representation of �

written on the address tape.

Proof : First the general idea. The machine determines the last position occupied by � . To do

that, it queries the symbols at positions - 	 � - � ���	�	� � - L until the blank symbol is found. Then it

performs a binary search between positions - L ��� and - L ��� . The technicalities next. Observe

that addresses - 	 � - � �	���	��� - L can be written on the address tape by adding � ’s to an initial � .
Observe too that the binary search between - L ��� and - L � � consists in filling the zeros in �	� L � �

with zeros or ones, from left to right, and according to a simple rule: zero if the symbol at the

41

current address with a one is blank, and one otherwise. Thus, the running time is ��� Q�� � � � � � � 	

steps for the first phase, ��� Q���� � ���+� � 	 steps to let the head return to the first zero in �	� L � � ,
and - ��� Q�� � � ��� � � 	 steps to complete the binary search; overall, ����� Q�� � � ��� � � 	 steps. ��

42

Chapter 3

Fixed-Point Logics in Finite Set

Theory

3.1 Basic Definitions

Let � be a relational vocabulary. A � 	 -formula of the vocabulary � � ��� � is a first-

order formula such that all occurrences of quantifiers are of the form ���	� ��� � and ����� ��� � .

More formally:

Definition 9 Let � be a relational vocabulary. The class of � 	 -formulas of � � ��� � is the

smallest class of formulas that contains all atomic formulas of � � �9� � , and is closed under

negation, conjunction, disjunction, and bounded quantification: If � is a � 	 -formula, then

� ��� � � � ����� and ���	� � � � ����� are also ��	 -formulas. Actually, ����� � � � ����� stands for

� ��� � ��� � � � ��� , and � �	� � � � ����� stands for ���	� � ��� � � � ��� .
43

We let ������� �
	�� denote the fragment of ����� that consists of the least fixed-points

of positive � 	 -formulas. This means that every ��������� 	 � -formula is of the form

������� : ������� � ����� ��� ���
�
���	�	� � � � ��� � �

where � ����� �	���	��� � � ��� � is a ��	 -formula that is positive in the � -ary relation symbol � and has

�
� �	���	��� � � as free variables. Note that every ��������� 	 � -formula involves a single application

of the least fixed-point operator, that is, it contains no nested or iterated least fixed-points.

Furthermore, no additional first-order parameters are allowed in ��������� 	�� -formulas.

In a series of papers, Sazonov has studied definability in a variant of ��������� 	 � on

the infinite structure ��# $ ��� � of all hereditarily finite sets (see [Saz97] for a survey). Here,

we study uniform definability in ��������� 	 � on the collection
� +-,

of all finite structures that

are images of the BIT-structures
� $	� 0 � � ���������	���
� �
� � �3��� D �FE 0 � under the Ackermann

isomorphism " � � ! � # $. In particular, we investigate the question: does ������� � 	�� collapse

to ��
 on
� +-,

?

3.2 On
�������
	���

vs.
���

Although the complexity-theoretic aspects of ��������� 	�� will be studied in depth in a

later chapter of the dissertation, we start its study by observing that certain questions about its

expressibility are tightly related to difficult questions in complexity theory. As explained in the

introduction, separating ��
 from ����� on
� +-,

is literally equivalent to separating #*$ � %
from (, an open problem in complexity theory. In this section, we show that even the collapse

of ��������� 	 � to ��
 on
� +-,

would yield important results in complexity theory. Hence, it

44

is difficult to either refute or confirm that ��������� 	 � collapses to ��
 on
� + ,

. Indeed, if

��������� 	 � does not collapse to ��
 , then ����� does not either, and so #*$ � % �
� (. While if

it does, then we show that � � #*$ � % which implies �
�

� ��> � ��� (. Both separations

#*$ � % �
�+(and �

�
� ��> � � � (are considered highly likely but very difficult to prove.

Recall that our model of computation is the oracle alternating multi-tape Turing

machine with random access to the input. The only technical difference with the standard

oracle alternating multi-tape Turing machine defined by Chandra, Kozen, and Stockmeyer

[CKS81] is the ability to random-access the input. This means that the machine is equipped

with a special address tape on which to write a number in binary, and whenever the machine

enters a special query state with the number � written in the address tape, the input head jumps,

in one step, to the � -th leftmost position of the tape. This will allow our machines to access any

position of the input even when sublinear time bounds are imposed. Moreover, it is not hard

to see that when the running time is as least linear, both models simulate each other within

constant factor losses in time and number of alternations.

Given a time bound � � � ��� � Q�� � , and an alternation bound ��� � ��� � , we define

� E ����� ��� � � � � � � � � � to be the class of languages that are accepted by alternating multi-tape

Turing machines with random access input within � � � � steps of computation and ��� � � alter-

nations. The polynomial-time hierarchy �4% is known to coincide with & ��� 	 � E ����� � � � ��� � .
Similarly, the linear-time hierarchy #*$ � % is known to coincide with & ��� 	 � E ����� � �
� ��� � .
Following the analogy, the logarithmic-time hierarchy # % is defined by Sipser (see [Bus87])

as & ��� 	 � E �	�
� � ��� Q�� � ��� � .

Barrington, Immerman, and Straubing [BIS90] showed that first-order logic captures

45

the logarithmic-time hierarchy # % , on the class of words with
D �FE . Here, words with BIT

are finite structures over the vocabulary � � �	��� D �FE � , where � is a unary relation and ��� D �FE

are binary relations, that have the form � �������	�	� �
� �+����� � ����� D � E � , where � and
D � E are

the standard linear order on �������	�	� �
��� �3� and the
D �FE predicate respectively. Let � be

the class of words with
D � E . Technically, the result of Barrington, Immerman and Straubing

means that a query on � is first-order definable if and only if a suitable encoding of it is

computable in # % . Here, a suitable encoding is defined as follows. For every � � � of the

form � �3���	���	� �C� ������� � ����� D � E � , let � ����� be the word � 	 �	�	� � 0 ��� � �����	��� 0 , where � L � �

if and only if @ � � . For every @ � �3���	���	� �C�K� �3� , let � 0 �G@ � be the binary representation of

@ , with leading zeros if necessary so that the length of � 0 �A@ � is ��� Q�� � � � � 	 . Then, given a � -ary

query � on � , the encoding of � is denoted by ��� � � and is defined to be the language over

the alphabet ����������� � that consists of all words of the form

� 0 � � ����� � � 0 � � � � �+���	��� � 0 ����� �

where � � � , � � � � � , and ��� � �	���	� � ��� � � � � � � . The precise result in [BIS90] is that

� is first-order definable on � if and only if ��� �
� � # % . We have now all the necessary

material to prove the first result about the expressive power of ��������� 	 � .

Theorem 1 If ��������� 	 � � ��
 on
� +-,

, then � � #*$ � % , which in turn implies that

�
�

� �?> � � � (.

Proof : Let � be a language in � over the alphabet �������3� . We will show that the language

� � � �9� ��� ��� ��� � � �	�� � � � � � ��� � � � � over �����	� ��� � is in # % ; then a de-padding

argument puts � in #*$ � % . Here, �� stands for the dual word of � obtained by interchanging

46

� ’s and � ’s. By the Immerman-Vardi Theorem, there is a least fixed-point sentence � of the

vocabulary � � ����� D � E��
��� P���� � , where � is a unary relation symbol, that defines � on the

class of words with
D � E . We can assume that � � ������� � � �
��� � ��� � � � � � with � first-order

by the normal-form theorem for least fixed-point formulas. Moreover, � need not occur in

� , since by [DDLW98] it is first-order definable from
D �FE . Similarly, � and P���� need not

occur in � , because they are first-order definable as well. We turn ����� � �	�	����� � � ��� � into a

��	 -formula � � � ��� �	�	����� � � ��� � ��� � � � � , where � is a ��� � - � -ary relation variable. Replace each

occurrence
D �FE � � L � ��� � in � by � L � ��� , each positive occurrence � � � L � in � by � L � � � ,

each negative occurrence ��� � � L � in � by � L � � � , and each occurrence � � � L :
���	�	� � � L � � by

��� � L :
�	���	��� � L � ��� � ��� � � . Finally, replace subformulas of the form ��� � � ��� � by ��� � � � � � �	� �

� � � � � � � �	� � , and subformulas of the form ����� � �	� � by ����� � � � � �	� � � ����� � � � � �	� � . In the

following, for every � � �����	��� � , let � � ��� � � �������	��� � ��� � �+�3��� � �	��� D �FE � be the unique

word with
D � E such that � � ��� � � . Let � � ��� be the number represented in binary by � .

Claim 1 For every � � � and � ���3���	�3� 0 , the following are equivalent:

(i) � � ����� � ����� � � �
��� � ��� � � � �

(ii) " � � $	� � � � � � ����� � � � : � � � � ��� � � � �
��� � ��� � ��� � � � � � " � � � ��� � � " � � � ���� � �

Proof of Claim 1: Let � � �����	��� 0 . For every � � � ��� �	���	��� � � � ���3���	���	� �C� � �3� � , let

" � � � � � " � ��� � �	�	��� � " � � � � � " � � � ��� � � " � � � �� � � � �

Let � � � � ��� , and let � �
� $	� � � . We prove by induction on � , that � � 	
	� ��� � if

and only if " � � � � 	 	� � ��� � , for every � � �������	��� �
� � �3� � . Since " � � � � � , the claim will

47

follow. For a fixed � , write
	

�
	 	� ��� � and

	 � �
	 	�
� ��� � . The base case of the induction

� � � is obvious. Suppose then that the claim holds for � ; we prove that it also holds for

� � � . We need to prove the following stronger statement: for every subformula of ��� � ��� � ,
say � � � � ��� � , it holds that � � � � � � � ��� � � � � 	 � if and only if � � � � �� � � ��� � ��� � ��� � � � " � � � � 	 � � ,
for every � � �3���	���	� �C� � �3� �

. Here � �� � � ��� � ��� � � is the result of applying the syntactic

transformation over � � . The proof is by induction on the structure of � � . Consider first the

atomic subformulas of the form � � � L � ,
D � E � � L � ��� � , and � � � L :

�	�	��� � � L � � . In the first case, � � �

� � � L � � � L � if and only if the � L -th symbol � from the right is one, or equivalently, if and only if

� � � � L �
� � � " � � L � � " � � � ��� � � . The second case is also clear, namely, � � � D �FE � � L � � � � � � L � � � �

if and only if � � � � L � ��� � " � � L � � " � � � � � . For the third case we use the induction hypothesis

on � ; namely, � � � � � � L :
�	���	� � � L � � � � � 	 � if and only if � � L :

�	���	��� � L � � �
	
, if and only if

� " � � L : �
�	���	��� " � � L � � � " � � � ��� � �

" � � � ���� � � � 	 � by induction hypothesis, if and only if

� � � � � � � L :
�	���	��� � L � ��� � ��� � � � " � � L : �

���	����� " � � L � � � " � � � ��� � �
" � � � ���� � � 	 � � �

When � � � � ��� � is of the form �
� � � � ��� � or � � � � ��� � � � � � � ��� � , we use the induction hypoth-

esis on the structure of the formula. Consider finally the case where � � � � ��� � is of the form

� ��� L � � � � � ��� � . We have that � � � � ��� L � � � � � ��� � � � � 	 � if and only if � � � � � � � ��� � � � L� � 	 � , for

every � � �����	���	� �C� � �3� . Here � L� � � ��� �	���	��� � L ��� � � � � L) � ���	����� � � � . Now, by induction hy-

pothesis on the structure of the formula, this is equivalent to � � � � �� � � ��� � ��� � ��� � � " � � L� � � 	 � � for

every � ���������	�	� �
� ���3� . Observe that " is a bijection between �������	�	� �
� ���3� and " � � � ��� � �

" � � � ���� � from the definition of �� . Thus, this is equivalent to � � � � �� � � ��� � ��� � ��� � � " � � � L� � 	 � �
48

for every � � " � � � ��� � � " � � � ���� � . Finally, this is equivalent to

� � � ����� L � � � � �	� �� � � ��� � ��� � � �
� ����� L � � � � �	� �� � � ��� � ��� � � � � " � � � � 	 � � �

The claim follows.

Since � � is a �
	 -formula, the hypothesis of the theorem implies that the least fixed-

point of � � is definable by a first-order formula on
� +-,

. It follows that the query

��� � $	� � � � ��� � � � ��� � � � ���� � � � � � � � � � �+� �

is first-order definable on
�

. The result of Barrington, Immerman, and Straubing implies then

that the encoding of � , interpreted as a query on words with
D � E , is computable in # % . It

follows that � � � ��� ��� ��� ��� � � �	�� � � � � � ��� � � �I� is in # % . A de-padding argument

completes the proof that � � #*$ � % . Since #�$ �&% � ��� � ��� � � � � � [BDG90], the space-

hierarchy theorem implies that �
�

� ��> � ��� (. ��
It should be noted that from a result of Dawar and Hella [DH95] it follows that if

�����
� ��
 on
� + ,

, then �
�

� ��> � ��� (. Theorem 1 shows that the separation of � from

�?> � � � (can be derived from the weaker hypothesis that ��������� 	 � � ��
 on
� +-,

.

3.3 Restricted
����� �
	��

Collapses to
� �

As mentioned earlier, Dawar, Doets, Lindell, and Weinstein [DDLW98] showed

that there is a first-order formula of the vocabulary ��� � that defines a linear order on the class

� +-,
of near finite ranks, that is, structures of the form ��� �	� � such that # 0 � � � # 0) � .

49

For this, they considered the following � 	 -formula ����� ��� � ���

��� � � � � � ���	� � � � � � � � �� � � ��� � �� � � ����� � ��� � � � �

and showed that its least fixed-point is definable by a first-order formula on
� +-,

. Observe

that the occurrence of the relation symbol � in � involves only the bound variables � � and � � .

We now abstract from this observation and introduce the following concept.

Definition 10 A � 	 -formula � ��� � �	���	��� � � ��� � is restricted if every occurrence of the relation

symbol � involves only bound variables of � .

The main result of this section is that the least fixed-point of every positive re-

stricted � 	 -formula is first-order definable on
� +-,

and, hence, on
� +-,

as well. In fact,

we show that it is definable by a first-order formula of low syntactic complexity. The class

of
�

-formulas is the smallest collection of formulas containing the � 	 -formulas and closed

under conjunction, disjunction, bounded quantifications ��� ��� � � , ��� � � � � , and existential

quantification � � . The collection of � formulas is defined dually by allowing closure under

universal quantification � � . We say that a query � on a class � is � -definable if it is definable

on � by a
�

-formula and by a � formula.

Theorem 2 Let � � �
� ���	�	� � � � ��� � be a restricted ��	 -formula that is positive in the � -ary re-

lation symbol � . The least fixed-point of � is first-order definable on
� +-,

. In fact, it is

� -definable on
� +-,

.

The proof of the above theorem is inspired by the argument in [DDLW98] showing

that the least fixed-point of the � 	 -formula ����� ��� � � � is first-order definable on
� + ,

. We

50

need, however, to establish certain absoluteness properties of arbitrary � 	 -formulas, as well

as certain structural properties of arbitrary restricted � 	 -formulas that will be used heavily in

the sequel. We begin with a basic definition from set theory (see [Bar75, page 34]).

Let � and � be two structures over the vocabulary � � ��� � . We say that � is an

end extension of � , and write � ��� ��� � , if � is a substructure of � and for every � � � it

is the case that � �6� � � �O� � � � ��� �6� � � �6� � � � .

Lemma 1 (Absoluteness of ��	 -formulas [Bar75, page 35]) If � ��� � �	�	����� � � � is a ��	 -formula

and � � � ��� � , then for every ��� � �	�	����� � � � � � � we have that � � � ��� � � �	���	��� � � � if and only

if � � � ��� � � ���	����� ��� � .

Proof : The proof is by induction on the structure of � . If � is atomic, the claim follows

from the fact that � is a substructure of � . If � � �
� or � � � � � , we use the induction

hypothesis in the obvious way. Suppose next that � � ��� ��� � L � ��� � . For the forward direction

of the equivalence we only use the fact that � is a substructure of � , and not the fact that �

is actually an end-extension of � . Here is the argument: If � � � ��� � � �	���	� � � � � , then there

exists some � � � � L such that � � � � � � � �	�	����� ��� � � � . Clearly, � � � . Now, by induction

hypothesis, � � � � � � � �	���	��� ��� � � � . Since � is a substructure of � , we have � � � and � � �

� L . Therefore � � � ��� � � � L � �	� � � � � ���	����� ��� � . For the reverse direction of the implication we

use the hypothesis that � ��� ��� � as follows: If � � � ��� � � � L � ��� � � � � ���	�	� � ��� � , then there

exists some � � � � L such that � � � � � � � �	���	��� ��� � � � . Since � ��� ��� � and � L � � , we have

� � � and � � � � L . Therefore, by induction hypothesis � � � � � � � ���	����� ��� � � � , which means

that � � � ��� � � � L � �	� � � � � �	�	����� � � � as required. ��
51

If � ���
� ���	�	� � � �
��� � is a ��	 -formula, then the set of � -free indices of � , denoted by

� ����� , is the set of indices of variables that are free in � and appear in at least one occurrence

of � in � . For example, if � ���
� � � � � � � ��� � is the formula ���	��� � � � � � ���
� � � � � ��� � , then

� ����� ����� � - � . Note that a � 	 -formula � is restricted if and only if
� ����� � � . Similarly, we

define the set of free indices of � , denoted by � � ��� , as the set of indices of variables that are

free in � . Thus
� ����� � � ����� . From now on, we identify structures ��� �	� � over ��� � with

their universe � . In the following two lemmas, we establish certain important properties of

��	 and of restricted ��	 -formulas on near finite ranks. Recall from basic set theory that the

transitive closure of a set is defined inductively as follows: E � ��� � � � � & ��E � � � � � ��� � � .
Observe that if � � � , then E � ��� � � E � � � � .

Lemma 2 Let � ��� � �	�	����� � � ��� � be a � 	 -formula of �������4� , where � is a � -ary relation sym-

bol, and let � be a near finite rank such that # 0 � � � # 0*) � . For every B � � , every

relation
� � � � , and every tuple � � � � � ���	����� � � � � # �

�) �
� �

�
, we have that � � � ��� � � � �

if and only if � � � ��� � � � � � & ��E � ��� L � ��@ � � � ��� �
� � � L ��@ �

� ����� � � � � . In particular, if �

is a restricted ��	 -formula positive in � , then � � � ��� � � � � if and only if � � � ��� � � � � # �� � .

Proof : We proceed by induction on the construction of � . The base cases are trivial, and

so is the case in which � is of the form �
� . Suppose that � is of the form � � � � � . Let� � & ��E � ��� L � � @ � � ����� � and � � � & ��E � ��� L � � @ � � �	� L � � for � � ��� - . Then,

� � � ��� � � � � ��� � � � L ��@ � � ����� � � � � if and only if � � � � � � � � � � ��� � � � L ��@ � � ����� � � � �
for � � ��� - . By induction hypothesis, this is equivalent to

� � � � � � � � � � ��� � � � L ��@ �
� � ��� � � � � ��� � � � � L ��@ � � �	� L � � �

� �
52

for � � ��� - . Since � �	� � � � � � ��� and
� ��� � � � � ����� , this is equivalent to

� � � � � � � � � � � � L � � � L ��@ � � �	� L � � �
� �

for � � ��� - . By induction hypothesis again, this is equivalent to � � � � � � � � � � for � � ��� - ,
and therefore to � � � ��� � � � � . Suppose next that � is of the form ����� L � � � � � . In this case,

� � � ��� � � � � if and only if there is some � � � such that � � � � and � � � � � �
� � � , where

� � ��� � �	���	��� � L ��� � � � � L) � �	�	����� � � � . Therefore, by induction hypothesis, � � � ��� � � � � if and

only if there is some � � � such that � � � � and

� � � � � �	� � � �
�
��E � � ��� � � � � � �	� � � � � ��� � � � � �	� � � � � � �

Since for every � � � � we have that E � � � � � E � ��� � � and � � E � ������� , it is the case that�
��E � � ��� � � � � � �	� � � � � ��� � � � � �	� � � �

�
��E � ��� � � � � � � ����� � � � � � � � � � ����� �9�

Consequently, � � � ��� � � � � if and only if there is some � � � such that � � � � and

� � � � � �
� � � �
�
��E � ��� L � �9@ � � ����� �

� � � L ��@ �
� ����� � � � � �

which means that � � � ��� � � � � � & ��E � ��� L � ��@ � � ����� �
� � � L �9@ �

� ����� � � � � , as required.��
The next lemma yields an absoluteness property of � 	 -inductions on near finite

ranks and also reveals that every positive restricted � 	 -formula has a unique fixed-point on

near finite ranks.

Lemma 3 Let � ���
� �	���	��� � � ��� � be a �
	 -formula of �������4� that is positive in the � -ary rela-

tion symbol � , and let � be a near finite rank such that # 0 � � �
0*) � . For every B � �
53

and every � � � , we have that
	 	� ��� � � # �� �

	 	� � # � � and
� 	� � � � � # �� �

� 	� ��# � � . If, in

addition, � is a restricted � 	 -formula, then
	 � � � � �

� � � � � .

Proof : The first statement is proved by induction on � as follows. Assume that for every

� � � we have that
	 �� � � � � # �� �

	 �� ��# � � . Let � � # �� . By definition, � � 	 	� ��� � if

and only if � � � � � � ��� � � � � & � � 	 	 �� � � � � . By absoluteness, � � � � � � ��� � � � � & � � 	 	 �� ��� � �

if and only if # � � � � � � ��� � � � � � & � � 	 	 �� � � � � � # �� � , which in turn is equivalent to # � � �

� � � ��� � � � � & � � 	 � 	 �� ��� � � # �� � � by distributing
�

over
�

. By induction hypothesis, we have	 �� � � � � # �� �
	 �� � # � � so that # � � � � � � ��� � � � � & � � 	 � 	 �� � � � � # �� � � if and only if # � � �

� � � ��� � � � � & � � 	 	 �� ��# � � � . By definition, this means � � 	
	� � # � � as required. To prove

� 	� ��� � � # �� �
� 	� � # � � reason similarly. We turn to the second statement. Suppose that � is a

restricted formula. We show that every post fixed-point of � is included in the least fixed-point;

this will imply that the greatest fixed-point and the least fixed-point coincide. Let
� � � � be

a post fixed-point of � on � ; that is,
� � �

� � � � . Let � � � , so that � � � � � � ��� � � � � � � .
We prove that � � 	 � � � � by induction on � � P�� � ��� � ��� ��� L � �I@ � � �	�	����� � � . Obviously,

� � # �� , so that by Lemma 2 we have that � � � � � � ��� � � � � � � # �� ��� � . By induction hypothe-

sis on � we have that
� � # �� ��� � 	 � ��� � , and so by monotonicity, � � � � � � ��� � � � � 	 � ��� � � .

Since
	 � ��� � is a fixed-point, we have � � 	 � ��� � as required. ��

We now have all the necessary tools to show that restricted ��������� 	�� collapses to

��
 on the class
� +-,

of near finite ranks.

Proof of Theorem 2: The key idea is that there is a first-order formula � ��� � ���	��� � � � � that

approximates the greatest fixed-point
� � ��� � on near finite ranks � ; the formula � is based on

54

the characterization of
� � ��� � as the union of all post fixed-points of � . This approximation

can be improved to yield an exact first-order definition of
� � ��� � by first replacing every

occurrence of � in � by � , and then iterating � a constant number of times. The result will

then follow from Lemma 3, which asserts that the greatest fixed-point of the restricted � 	 -

formula � coincides with its least fixed-point. This type of argument was used in [DDLW98]

to show that the least fixed-point of the � 	 -formula ����� ��� � ��� in the beginning of Section 3.3

is first-order definable on
� +-,

. Here, we have to deploy the machinery of Lemmas 1, 2 and

3 to show that the argument can be extended and applied to every restricted � 	 -formula.

We will construct a
�

-formula ����� � �	���	��� � � � that defines the greatest fixed-point

� � ��� � on every � � � +-,
such that # 0 � � � # 0*) � for some � � -�� � � (for near

finite ranks � below # � � we can obtain a ��	 definition of
� � ��� � by iterating � a sufficient

number of times). The construction of � is carried out in three steps. For the first step, define

a �
	 -formula ��Q���� � � � expressing that � is the encoding of a post fixed-point of � on � . We

use the standard encoding of a pair � � ����� by the set ��� � ���
� � ��� ��� , and of a tuple � � � ���	����� � � �

by ��� ��� �	�	����� � ����� �
� � � � . Then � Q���� � � � is the formula

�
	!� � � � � � ����� � � �	���	��� �!� � � � � �
�� � � � �	�	����� � � ����J � � � �

where �
	!� � � � � is a �
	 -formula expressing that � is a set of encodings of � -tuples, and �� is

obtained from � by replacing atomic formulas � � � L :
�	���	� � � L � � by � � L :

�	���	� � � L � � � � . Let� � � � be such that the set � � � � � ��� � �	���	��� ��� � � ��� � �	���	��� ��� � � � � is in � ; it is not hard

to show that � � � ��Q���� ��� � � � if and only if
�

is a post fixed-point of �
� � � � on � . For the

55

second step, let � ���
� ���	�	� � � � � be the
�

-formula

��� � � � � Q���� � � � � � ��� �	���	��� � � � � � �

expressing that ���
� �	�	����� � � � belongs to some post fixed-point of � .

Claim 2
� � ��� � � # �0 � � �) � � �

�
� � � ��� � .

Proof of Claim 2: Since � is � 	 , Lemma 3 implies that
� � ��� � � # �0 � � �) � �

� � � # 0 � � �) � � .
Thus, for the first inclusion it suffices to show that if � � ���%� �	���	��� ��� � � � � ��# 0 � � �) � � , then

� � � � � � � . We need a witness � for the quantifier ��� � � in � . Put
�

�
� � � # 0 � � �) � � and

� � � � � . Since
� � # �0 � � �) � , we have that � � # 0 � � . Moreover, since � � � , we have

that � � � � � ; hence, � � � �
� � ��� � � � � � � � . We can now show that � � � ��Q ��� � � � � � � using

Lemma 1 and the fact that # 0 � � �) �*��� ��� � . For the second inclusion, let � � ��� � �	�	����� ��� � �

� � be such that � � � � � � � � � � ; that is, � � � � � � � � � � � � � for some � � � such that

� � � ��Q���� � � � � � � . Since � � � � Q���� � � � � � � , we know that � encodes a post fixed-point of �

on � , say
�

. Moreover � � � , and so � � � � ��� � because
� � ��� � is the union of all post

fixed-points of � on � .

Thus, � yields an approximation of the greatest fixed-point
� � ��� � of � . For the third

step, we iterate � a number of times (in fact, -�� times) to obtain progressively better approx-

imations. Let � 	 ���
� ���	����� � � � � � � ��� �	���	��� � � � and � L ���
� ���	����� � � � � � ����� �	���	��� � � ����J � L ��� � ,
for @ � �����	���	� � -�� � . Note that each � L is a

�
-formula.

Claim 3
� � ��� � � # �0 � � �) �) L � �

�

L � � � ��� � , for every @ �+���	���	� � -�� .

56

Proof of Claim 3: Lemma 3 implies that
� � ��� � � # �0 � � �) �) L

�
� � ��# 0 � � �) �) L � . We proceed

by induction on @ . Claim 2 takes care of the case @ �+� . Assume that Claim 3 holds for @ � � .
For the first inclusion, if � � ��� � ���	����� ��� � � � � � � � � # �0 � � �) �) L , then � � � ��� � � � � ��� � � .

Since � � # �0 � � �) �) L
� � � and � is a restricted � 	 -formula, Lemma 2 implies that � � �

��� � � � � ��� � � # �0 � � �) L � . Note that this is the first place in this proof where we use the assump-

tion that the ��	 -formula � is restricted. By induction hypothesis,
� � ��� � � # �0 � � �) L � �

�

L ��� ;
therefore, � � � ��� � � � �L ��� � , since � is monotone. It follows that � � � � � � ����J � L ��� � � � � and

� � � � L � � � . For the second inclusion, let � � ��� � �	�	����� ��� � � � � be such that � � � � L � � � � � � ,
so that � � � � � � ����J � L ��� � � � � by the definition of � L . Therefore, � � � � � � ��� � � � � � �L ��� � , and

since �
�

L ��� �
� � ��� � by induction hypothesis, � � � � � � ��� � � � � � � ��� � � by monotonicity. We

conclude that � � � � � � � because
� � ��� � is a fixed-point.

Finally, let � be the
�

-formula � � � � ��� �	�	����� � � � . Claim 3 implies that � defines the

greatest fixed-point
� � ��� � of � on every near finite rank � such that # 0 � � � # 0*) �

for some � � -�� ��� . Let �� � � ��� � be the dual formula ��� � � � � � � of � . Note that �� is

also a restricted ��	 -formula. Moreover,
�

�� ��� � � � � 	 � � � � as we saw in Chapter 2.

Therefore,
	 � ��� � is � definable by taking the negation of the

�
-formula that defines

�
�� ��� � .

The � -definability of
	 � ��� � follows immediately, since

	 � ��� � �
� � ��� � by Lemma 3. This

completes the proof of Theorem 2. ��
Example 8 In spite of the stringent syntactic requirements imposed, several natural queries

can be expressed using restricted ������� ��	�� -formulas. Thus, Theorem 2 provides a versatile

tool for showing that such queries are first-order definable on
� +-,

. Here, we illustrate this

57

technique by considering the query (finite) ordinal addition � � ��� , where if � is a near finite

rank, then

� � ��� � � � ��� ��� � � � � � � � � � � , � , � are ordinals and � � � � � ���
The standard recursive specification of ordinal addition does not lead to a restricted � 	 -

formula. Consider, however, the following alternate recursive specification: if � � � � � are

ordinals, then � � � � � if and only if

� � �+� � � � � �
 � � �+� � � � � �
 ��� � � � � � ����� � � � � ����� � � � � ��� � � � � � �
� � � � � �+� � � � � � � � � � � � � � � � � � �

� � �+� � � � � � � � � � � �
This recursive specification can easily be transformed into the least fixed-point of a positive

restricted ��	 -formula that defines � � ��� ; to this end, we use the fact that being an ordinal is

��	 -definable, and that � �+� � � � � � � .
Example 9 We exhibit a second application of Theorem 2 that will be of use in a later section.

We wish to show that the set of finite ranks that belong to a near finite rank � is uniformly

� -definable. More precisely, for every � � � +-,
, let

����� ��� � ��� � � � ��� � # � for some B � �9�9�

We show that the query ����� is definable as the least fixed-point of a positive restricted � 	 -

formula, and therefore, it is � -definable on
� +-,

. Let � ��� ��� � be the formula � � �

� � �S� � � � � � � � � ����� ��� � � where ����� ��� � is the � 	 -formula

� ��� � � � � ��� � � � � � � � � � � ��� � � � � � � � � � �

� � ��� � � � ����� � � � � ���	� � � � �
� � �
� � � � � � �

58

Here, the formula � � � is an abbreviation for the � 	 -formula ����� � � � � � �
� � � , and � �

�
� � � � � is an abbreviation for the � 	 -formula ��� � � � � � � � � � �
 � � � � � � � ��� � � �

� � �
� � � � � � � � � � . Observe that � ��� ��� � is a restricted ��	 -formula that is positive in � . Let

� � � +-,
be such that # 0 � � � # 0) � .

Claim 4 For every B ��� and � � � it holds that � � � � � � � # � � if and only if � � # �) � .

Proof : Fix B � � and � � � . The implication from right to left is easy. For the other

implication, the first conjunct of ����� ��� � assures that if � � � � � � � # � � , then every ��� � �

is such that � � � # � , so � � � � # � � � # �) � . We show next that if � � � � � � � # � � , then

�) � � � too, so � � # �) � . This will prove the claim. Suppose thus that � � � � � � � # � �

and let � � � � � ���	�	� � � � � � # �) � . We show by induction on � that �&� � . If � � � , then

� � � so �6� � according to the second conjunct of ����� ��� � . Suppose next that � � � . Clearly,

� � � � � � �	���	����� � ��� � is a member of # �) � . Therefore, by induction hypothesis, � � � � . It

follows from the third conjunct of ����� ��� � that � � � � � � �K� � since � � � # � . It follows that

�"� � as was to be proved. ��
The proof that

	 � � � � � ����� � � � is completed by proving
	 	� ��� � ��� # � � B � � �

by induction on � .

3.4 Unary
� � � �
	���

and Binary
� � � �
	��

Collapse to
���

For every positive integer � , let � -ary ������� ��	 � denote the fragment of ����������	 �

that allows the formation of least fixed-points of positive � 	 -formulas � ���
� ���	����� � � ��� � such

that � is a relation symbol of arity � . The following simple observation reveals that the

59

smallest of these fragments collapses to ��
 on
� +-,

.

Proposition 4 If � ��� ��� � is a unary ��	 -formula that is positive in � , then there is a unary

restricted � 	 -formula ��� ��� ��� � that is positive in � and such that
	 � � � � �

	 � � � � � on every

structure � . Consequently, unary ������� ��	 � collapses to ��
 on
� +-,

.

Proof: Let � � ��� ��� � be the restricted ��	 -formula obtained from � � � ��� � by replacing every

occurrence of � ��� � by � �
� � , while preserving all occurrences � � � � with � a bound variable.

We prove, by induction on the ordinals, that
	 �� � � � �

	 �� � � � � for every ordinal � . We

first prove
	 �� � � �-� 	 �� � � � � . If � � 	 �� � � � , then � � � ��� � � &�� � � 	 �� � � � � by definition.

By induction hypothesis on � we have that � � � ��� � � &�� � � 	 �� � � � � � . Consider two cases:

either � � & � � � 	 �� � � � � or � �� & � � � 	 �� � � � � . In the first case we have that � � 	 �� � � � �

and we are done. In the second case, an easy induction on the structure of � shows that

� � � � � � � � & � � � 	 �� � � � � � , from which � � 	 �� � � � � follows by definition. The proof of the

inclusion
	 �� � � � �-� 	 �� � � � is identical: � � 	 �� � � � � implies � � � � � � � � & � � � 	 �� � � � � � ,

which implies � � � � � � � � & � � � 	 �� � � � � by induction hypothesis, which implies � � 	 �� � � �

by a simple case analysis as before. Theorem 2 implies then that unary ������� � 	 � collapses to

��
 on
� +-,

. ��
By Theorem 1, if ����������	 � collapses to ��
 on

� +-,
, then �

�
� ��> � � � (. The

proof of this theorem makes a crucial use of the hypothesis that � -ary ��������� 	�� collapses to

��
 for every ��� � . In view of Proposition 4, one may investigate whether � -ary ��������� 	 �

collapses to ��
 on
� + ,

for particular values of � bigger than � . The main result of this

section is that binary ��������� 	 � also collapses to ��
 on
� +-,

.

60

Theorem 3 Let � ���
� � � � ��� � be a �
	 -formula that is positive in the binary relation symbol � .

The least fixed-point of � and the greatest fixed-point of � are first-order definable on
� +-,

.

In fact, the least fixed-point is � -definable, whereas the greatest fixed-point is
�

-definable on

� +-,
.

Before we start the proof of Theorem 3, we need a short digression. In Example 9,

we saw that the query ����� is � -definable on
� +-,

. We use this fact to show that for every

@ � � , there exists a
�

-formula � L ��� � such that for every � � @ and # 0 � � �
0*) � it holds

that � �L � # 0 � L . For @ � � , we let � L � � � be the formula

��� � � � ����� � � � � ��� � � �
� � ����� ��� � L ��� � � � ��� � � �
� L � ��

��� �
��� � ���) � � � �

For @ � � , let � L ��� � be the formula ��� � � � ����� � � � � � � � � , and for @ � � let � L ��� � be the

formula ��� � � � ����� � � � � ����� � � � � � � � � � . In all cases, the verification of the correctness is

straightforward.

Proof of Theorem 3: As in the proof of Theorem 2, the first key idea is that the greatest

fixed-point
� � ��� � of � on � can be approximated by a first-order formula. In fact, we

can start with the
�

-formula � � �
� � � � � featured in that proof, because Claim 2 uses only the

hypothesis that � is a ��	 -formula (and not the additional hypothesis in Theorem 2 that � is

restricted). Thus
� � ��� � � # 0 � � � �

�
� � � ��� � for every � � � +-, such that # 0 � � �

0) � . As a matter of fact, � � � � ��� � � � � ��� � � � � ����� � � � � � � �
� � ��# 0 � � � according to the

discussion preceding this proof. Our goal is to improve on this approximation of
� � ��� � by

defining
�

-formulas � L such that
� � � # 0 � �) L � � ��� �L , for @ � � � - � � and

� � ��� � � �
�
� . Since

� � � � � � � ��� � may not be a restricted formula, a difficulty arises from the potential presence

61

in � of subformulas of the form � ��� L � � � � , � ��� L � � � , and � � � � � L � , where @ � � � ����� - � and �

is a bound variable of � . Actually, in building the formulas � L , the most serious difficulty is

caused by the subformulas � ��� L � � � and � � � � � L � . Note that, since � is ��	 and � is a bound

variable of � , every element of � witnessing � must be a member of E � ��� � � � E � ��� � � .
Therefore, for every choice of � L , the set of elements of � witnessing � � � L � � � (or � � � � � L �)
can be partitioned into three sets: a subset of � � , a subset of � � , and a subset of � E � ���
� � �

E � ��� � � � � ����� � � � � . In turn, this makes it possible to use first-order existential quantifiers

over � to quantify these sets because every � � � +-, is closed under taking subsets and

rank reduction.

We will build the desired
�

-formula � L from � L ��� , for @ � ��� - � ��� � , where we take

� 	 to be ��� ��� � � � ��� � � � � � � � � � � � � � . Let � be the set �9�����	� - � - �3� -�- � . For each � � �

containing � - , we will define a formula
��� � ��� � � � � . Then each � L ����� � � � � will be the formula

��� � L ��� � � � ��� � L � � � � ��������
	 � � ��� � � � � ��� �

where � is the set of subsets of � containing � - . The first two subformulas of � L ����� � � � � are

introduced to ensure that � � and � � belong to # 0 � �) L . Here, � ��� ��� � is simply � � � . Let ,
be the set �9�	���C� ��� - � ��� - � and let � �� : � �

��� �� : � �
��� �� : � � be three new variables for each � � � � � , .

From now on, we use the abbreviations � � � � � � � � � , � � � � �� : � � ���
� ��� - � ��� � � � � � , � , and

� � � � � � � � � . Let
�
� � � � be the formula ��� � � � � �� � � � � � � � � �� � � � � � � where

� �� N � � : � �
�
.�� � : � � � � � � � �

� � �� N � L : L �
�
� � ��� L : � � L � ��� � � � J��

� � � � � � � � � �
62

and � � : � � � � � � � is the formula

��

� � �
���	� 	 � � �� : � � � � � � � :

� � � � ��� � � � J � � � � � � � � � � �
while � � � � � � � � � is the formula � L ��� � � �
 � �� � � � � � � �
 � � �� � � � � � � � where

� �� N � �� � �
�
� : � �

�
. ����� 	 � �

�
� : � � � � � �

� � � :
�
� � � � � � � �

� � �� N �

L : L �
�
� � � � � � L :

�
� � � � L � � �

with � 	 a fresh variable. Note that � � : � � says that & �� � � � �� : � � is the set of witnesses for bound

variables that relate to �
� or to � � . Since � 	 is a
�

-formula, it is easy to see that each � L is also

a
�

-formula.

Claim 5 �
�

L
�
� � ��� � � # �0 � �) L for @ �+�����	����� � .

Proof of Claim 5: The claim holds for @ � � , since � 	 is � � ���
� � � � � ��� � � � � ���
� � � � � . Fix

@ ���9��� - � ��� �9� and assume that the claim holds for @ �+� ; we show that it holds for @ . We

show first that �
�

L � � � ��� � � # �0 � �) L . Let � � ��� � � � � � � � �
be such that � � � � L � � � .

From the definition of � L , it follows that � � # �0 � �) L , and � � � � � � � � for some � � �

with � - � � . For every � � ��� - � � , and ��� � � � , , let � �� : � �
� � be a witness for the

quantifier � � �� : � � in
�
�

, and let � be the corresponding witness for � . Since � - � � , we have

that � � � ��� � � � � � � � �� � � � � � � . It suffices to show that � �� � � � � � is a post fixed-point of �

on � ; then, the monotonicity of � will imply that � is in
� � ��� � . We need to verify that

� �� � � � � � � �
� � � �� � � � � � � . Let ��� � �

be such that � � � � � � ��� � � � � . Then � must satisfy

one of the three disjuncts of � � . Assume first that � � � � L ��� � � � . By absoluteness and the

induction hypothesis that �
�

L ���
�
� � ��� � � # �0 � �) L ���

�
� � � # 0 � �) L ��� � , we easily have that

63

�
�

L ��� is a post fixed-point of � on � . Thus � � � ��� ��� � �L ��� � . But �
�

L ��� �
� �� � � � � � and hence,

by monotonicity, � � � ��� �	�
� �� � � � � � � , as required. Assume now that � satisfies the second

disjunct. Then, there exist � � ����� - ���9� , ��� � � � , and � 	 � � �
� : � �

such that � � ��� � :
� � � � � .

From the choice of � �� : � � and the definition of � � : � � , we know that � � � ��� � � :
� � � � �
� �� � � � � � � ;

therefore, � � � ��� �	�
� �� � � � � � � , as required again. The case of the third disjunct is handled in

a similar manner.

Consider next the inclusion
� � ��� � � # �0 � �) L � �

�

L . If � � � � ��� � � # �0 � �) L , then

� � � ��� � � � � ��� � � # �0 � �) L � ; note that if @ � � , then
� � � � � � # �0 � �) L

�
� � ��# 0 � �) L � , and if

@ � � , then
� � ��� � � # �0 � �) L

�
� � � � � . Let � be the biggest subset of � containing � - and

such that for every @ �C@ � � � it is the case that � � � ��� � L :
� � L � �

� � ��� � � # �0 � �) L � . Let
�

be

the set

� � � � � � # �0 � �) L
� � E � ��� � � � E � ��� � � � � � � � � � � � � �

By Lemma 2 and monotonicity of � , for every @ ��@ � � � we have that � � � ��� � L :
� � L � �

� � . We

construct witnesses � �� : � � for � �� : � � in
�
�

such that
� � � �� � � � � � , which will prove the claim.

Fix � � � � � , . We first define a set � as follows: if � � �+� , then � ��� � � E � � � � � � E � ��� � � �
� � � ��� � � � � � ; if � � � � , then � � � � � E � ��� � � � E � ��� � � � ����� :

� � � � � � . Then

� �� : � �
� � � � � , � �� : � �

� � � � � , and � �� : � �
� � � � � E � ��� � � � E � ��� � � � � ��� � � � � � � . We

need to check three properties: (i) � �
� : � �

� � , (ii)
� � � �� � � � � � , and (iii) � �

� : � �
is a witness

for � �� : � � in
�
�

. For (i), observe that � �� : � � � � � , � �� : � � � � � , and � �� : � � � # 0 � �) L � � . Since each

� � � +-, is closed under taking subsets and � ��# 0 � �) L � � � � # 0 � �) L ��� � # 0 � � , (i)

follows. We prove (ii) next. Suppose that � � � . Then, one of the following cases holds, for

some @ � � �&��� � - � :
64

(i) �6� � � � � � � # �0 � �) L ��� ,

(ii) �6� � � � � � � � L � � � � � ,

(iii) �6� � � � � � � � � L � � � � ,

(iv) �6� � � � � � � � � E � ��� � � � E � ��� � � � � ��� � � � � � � ��� ��� � ,

(v) �6� � � � � � � � � � �4� � � E � � � � � � E � � � � � � � ��� � � � � � � ,

(vi) �6� � � � � � � � ��� L � � � � � .

In the first case we have that ��� � � � # 0 � �) L ��� � , and therefore, by induction hypothesis on @
we have that � � �

�

L ��� . Thus, � � � �� � � � � � . The next two cases are handled by the second

disjunct of � � and the choices of � �� : � � and � �� : � � . The next two cases are handled by the second

disjunct of � � and the choice of � �� : � � . The last case is handled by the third disjunct of � � and

the choice of � . It remains to see that � �� : � � is a witness for � �� : � � in
� �

. From the choice of

� and the fact that
� � � �� � � � � � we have that � � � � � �� � � � � � . All we have to show is that

� � � � �� � � � � � . Observe that for every � 	 � � �� : � � we have that ��� � :
� � � � � � � � � � ��� � .

Therefore, � � � ��� � � :
� ��� � � � � � � � � . According to Lemma 2 and monotonicity of � , we have

that

� � � ��� � � :
� ��� � � � � � � � � � E � ����� : �

� E � ����� � � � � � � :
� � � � � � � � �

But

� � ��� � � � E � ��� � : �
� E � ��� � � � � � � � :

� � � � � � � � � � � �� � � � � �
because � 	 ��E � ��� � � � E � ��� � � and so E � ��� 	�� � E � ��� � � � E � ��� � � . Therefore, � � �

��� � � :
� � � � � � �� � � � � � � by monotonicity. Conclude that � � � � � �� � � � � � . ��

65

The inquisitive reader may wonder whether the argument of Theorem 3 extends to

higher arities. The answer is that it does not, for the reason that we cannot encode binary

relations on # 0 ��� by elements of # 0 , whereas it is possible to encode unary relations (sets) on

# 0 ��� by elements of # 0 . We note, however, that Theorem 3 extends to binary � 	 -formulas of

an expanded vocabulary that, in addition to � , contains other relation symbols, as long as they

are interpreted by � -definable queries on
� + ,

.

Example 10 The aforementioned extension of Theorem 3 can be used to show that the Even

Cardinality query

� ��� �
� ��� � ��� � � � � the cardinality of � is even �

is first-order definable on
� +-,

. For this, one can write a � 	 -formula � ��� ��� ��� � of the vocab-

ulary �����������4� , whose least fixed-point defines the binary query “ � is an even element of �

with respect to the linear order � ” on
� +-,

. Here, � is interpreted by the � -definable linear

order on
� +-,

described in the beginning of Section 3.3.

3.5 On the Logical Complexity of the Formulas

We turn next to a discussion on the logical complexity of the first-order formulas

defining the fixed-points. We saw already that these formulas can be chosen to be
�

or � . It

is well known that on # $, every
�

-formula is equivalent to a
� � -formula, that is, a

�
-formula

all whose unbounded quantifiers precede the bounded ones. This is called the
�

-reflection

principle [Bar75]. Dually, every � -formula is equivalent to a � � -formula. Unfortunately,

66

this does not hold in general on finite substructures of # $ and therefore we cannot conclude

directly that the
�

-formula � of Theorem 2 is equivalent to a
� � -formula. Quite interestingly,

it turns out that in Theorem 2, the formula � is actually equivalent to a
� � -formula on

� +-,
.

The main idea is that, the only unbounded existential quantifier in � has an absolute witness.

We discuss this fact more carefully.

Recall that � was obtained from the syntactic iteration of � ��� � �	�	����� � � ��� � over the

formula

� ���
� �	�	��� � � � � � ��� � � � � Q���� � � � � � ��� �	���	��� � � � � � � �

The formula � ���
� ���	�	� � � � � defines a superset of the greatest fixed-point of � on # 0 � � �) � . The

syntactic iterations of � over � complete the definition of the greatest fixed-point of � on the

remaining -�� �+� levels (a constant number of them). Graphically, the formula � takes the

form

������� �	���	��� � 0 � � � � ��� �	�	����� � 0 ����J � � ��J � �����!��� � ��J � � ����� � � � �

Since � is positive in � and � 	 , and since � is
� � , the resulting formula is

�
with a unique

unbounded existential quantifier ��� � � . Recall that the intended meaning of that quantifier is

the existence of a post fixed-point of � on # 0 � � �) � that contains the tuple � �
� �	���	��� � � � . Such

a post fixed-point can be encoded within the structure. But we know that the greatest-fixed-

point is the maximum of all post fixed-points with respect to inclusion; therefore, if a witness

exists for � , the encoding of
� � � # 0 � � �) � � would also be a witness for it. The absoluteness

of this witness allows us to pull out the existential quantifier to the front of � to obtain a

� � -formula. We formalize this argument in the following claim. Let � ��� � ���	�	� � � � ��� � be the

67

formula � Q���� � � � � � �
� �	���	� � � � � � � , so that � ���
� �	���	��� � � � � ��� � � � ���
� ���	�	� � � � ��� � .

Lemma 4 � � � � � ��� �	���	��� � 0 ����J ��� � � � �
� ��� � � � ���
� �	���	��� � 0 ����J � � .

Proof: Since � is positive in � , the variable � is existentially quantified in the formula

� � � ����J ��� � � � � . Therefore, as � does not appear in � and we can always push down an exis-

tential quantifier, � � � ��� � � � � � ����J � � � � � � ����J ��� � � � � . The other direction is proved by

induction on the structure of � . Assume that all negations occur in front of the atoms.

If � is atomic or negated atomic of the form � L � � � , � L
�� � � , � L � � � or � L

�
� � �

then this is clear. If � is atomic of the form � ��� L :
�	���	��� � L � � then, if � � � � � � ����J ��� � � � � � � �

we have that � � � ��� � � � � � ��� � � � � , and therefore � � � ��� � � � � � ����J � � � � � . Moreover, since

� is positive in � , it cannot be atomic of the form � � ��� L :
���	�	� � � L � � . The case � � � � �

will be treated together with the case � � ���	� � � L � � . If � � � ��� � � L � � then � � �

� � � ����J ��� � � � � � � � implies that � � � ��� � � � ����J ��� � � � � � � � � � for some � � � such that

� � � L . By induction hypothesis, � � � ��� � � ��� � � � ����J � � � � � � � . As we can always swap

existential quantifiers we have that � � � ��� � � ����� � � L � ��� � � � ����J � � � � � and therefore � � �

� � � � � � � ����J � � � � � .

Consider finally the case � � ���	� � � L � � ; the case � � � � � is similar. Sup-

pose that � � � � � � ����J ��� � � � � � � � and fix any � � � such that � � � L . Then � � �

��� � � � ����J ��� � � � � � � � � � and by induction hypothesis � � � � � � � ��� � � � ����J � � � � � � � . Let �6� �

be a witness for � in the above satisfaction. Recall that � � � ��� � � ��Q���� � � � � � � �4� � and in

particular � needs to be the encoding of a relation on # 0 � � �) � . Therefore, � � � � � � ��� � � � � � �
if and only if � is the encoding of a post fixed-point of � on # 0 � � �) � and � � ��� � . But the

68

greatest fixed-point is the union of all post fixed-points and therefore � � � ��# 0 � � �) � � �O� � is

a witness for � as good as � . Let � � � � � ��# 0 � � �) � � � . Now, � � � ��� � � � ����J � � � ��� � � � � � � ��� � .
But � was arbitrarily chosen in � L and therefore � � � ���	� � � L � ��� � � � ����J � � � ��� � � � � ��� � ; that

is, � � � ��� � � � � � ����J � � � � � as needed. As said, the case � � � � � is very similar; the absolute

witness for � is again � . ��
From the claim we know that the only unbounded existential quantifier in � can be

pulled up from the front of the subformula � to the front of the subformula � � . But � does

not occur in � and therefore, it can actually be pulled out to the front of � � � � � itself. The

resulting
� � -formula is

��� � � � � � ����J � � ��J � ���!����� � ��J � � ����� � � �

Overall, we built a proof for the following:

Theorem 4 Let � � � � ���	�	� � � � ��� � be a restricted � 	 -formula that is positive in the � -ary re-

lation symbol � . The least fixed-point of � is � � -definable on
� +-,

.

As mentioned before, the fact that the linear order is ��
 -definable on
D � E structures

follows from the fact that its inductive definition is restricted � 	 . Therefore, the preceding

theorem not only shows that the canonical linear order is ��
 -definable on
� +-,

, but also

establishes its � � -definability.

We conclude this section with the observation that we have not used the hypothesis

that � is restricted in the proof of Lemma 4. This indicates that a similar argument could

be carried out to prove that the least fixed-points of unary and binary � 	 -formulas are � � -

definable. As a matter of fact, the unary case is immediate from its proof and does not need any

69

new argument. However, the binary case looks much more complicated due to the existential

quantifiers in the formulas
� �

.

70

Chapter 4

Descriptive Complexity of the

Fixed-Points of Bounded Formulas

4.1 Key Lemma

In this chapter we will focus on the complexity-theoretic aspects of the least fixed-

points of positive � 	 -formulas. First we will analyze their closure functions, that is, the num-

ber of steps that the formula needs to be iterated until it reaches the least fixed-point. This is a

measure of their complexity. Then we will use these results to obtain an exact characterization

of the complexity classes underlying the fragments of LFP. Before we start with these tasks,

we need to recall a key lemma from Chapter 3 and re-formulate it in a slightly different form.

We will be interested in arbitrary finite structures with built-in membership relation. Recall

that
� +-,

is the class of structures of the form � � 0 ��� � , where � 0 ��� " � � � �	�	��� � " � ��� � � � and

" is the Ackermann isomorphism.

71

Definition 11 Let � be a relational vocabulary. We say that a finite structure � over � � ��� �

has built-in membership relation if ��� �	� � � � � +-, , where � is the universe of � .

Recall that the transitive closure of a set � , denoted by E � ��� � , is defined inductively

as follows: E � ��� � � & ��E � � � ��� �K� � � . The reflexive transitive closure of � , denoted by

� E � ��� � , is � � � � E � ��� � . The Lemma says that the satisfiability of a � 	 -formula only depends

on the reflexive transitive closure of its arguments.

Lemma 5 Let � be a relational vocabulary, let � be a structure over � � ��� � with built-in

membership relation, and let � ��� � ���	�	� � � �
� � � be a �
	 -formula of � � ����� � � , where � is

a � -ary relation variable. For every
� � � � , and every tuple � � ��� � ���	�	� � � � � � �

�
, we

have that � � � ��� � � � � if and only if � � � ��� � � � � � & � � E � � � L �&� @ � �9���	���	� � � ��� �
� � .

Moreover, if � is restricted � 	 and � � # �
�) � for some B � � , then � � � ��� � � � � if and only

if � � � ��� � � � � # �� � .

Proof : The proof of this is entirely identical to that of Lemma 2 in Chapter 3. The proof by

induction requires the definition of the set of � -free indices
� � ��� , the set of free indices � ����� ,

and a slightly stronger induction hypothesis. Namely, that � � � ��� � � � � if and only if

� � � ��� � � � � �
�
�3E � ��� L � ��@ � � ����� �

� � � L ��@ �
� � ��� � � � � �

Then, since & �3E � ��� L �4� @ � � ����� �
� � � L � @ �

� ����� � � � � E � ��� L ��� @ � �����	���	� �
� ��� , the

statement of the Lemma follows. ��
We will also need a slightly more general form of Lemma 3 to work with arbitrary

relational vocabularies without constants.

72

Lemma 6 Let � be a relational vocabulary, let � be a structure over � � ��� � with built-in

membership relation, and let � ��� � �	�	����� � � � � � be a � 	 -formula of � � ����� � � that is positive

in the � -ary relation variable � . For every B � � , let � � be the substructure of � with

universe � � # � . Then,
	 	� � � � � # �� �

	 	� � � � � for every � � � .

Proof : The lemma is proved by induction on � as follows. Assume that for every � � � we

have that
	 �� � � � � # �� �

	 �� � � � � . Let � � # �� . By definition, � � 	
	� � � � if and only if � � �

� � � ��� � � � � & � � 	 	 �� � � � � . Note that � is an end-extension of � � . By absoluteness, � � �

� � � ��� � � � � & � � 	 	 �� � � � � if and only if � � � � � � � ��� � � � � � & � � 	 	 �� � � � � � # �� � , which in turn

is equivalent to � � � � � � � ��� � � � � & � � 	 � 	 �� � � � � # �� � � by distributing
�

over
�

. By induction

hypothesis, we have
	 �� � � � � # �� �

	 �� � � � � so that � � � � � � � ��� � � � � & � � 	 � 	 �� � � � � # �� � �

if and only if � � � � � � � ��� � � � � & � � 	 	 �� � � � � � . By definition, this means � � 	 	� � � � � as

required. ��
4.2 Closure Functions of Positive

	 �
-Formulas

Let � ����� �	���	��� � � ��� � be an arbitrary positive first-order formula. From the prelim-

inaries, recall that if � is a finite structure, then � � � � � � is the smallest integer B such that	 �� � � � � & � � � � 	 � �� � � � . In general, the rate of growth of � � � � � � can be as high as a

polynomial in the cardinality of the universe of � . Here, we analyze the rate of growth of the

closure function of positive ��	 -formulas. We establish that if � is a restricted � 	 -formula,

then � � � � � � is bounded by the iterated logarithm of � � � , and if � is a general � 	 -formula,

then � � � � � � is bounded by a polylogarithm of � � � .
73

Theorem 5 Let � be a relational vocabulary, and let � ��� � �	���	��� � � � � � be a restricted ��	 -

formula of � � ����� � � that is positive in the � -ary relation variable � . Then,

� � � � � � ��- � � Q�� � � � � � �

for every finite structure � over � � ��� � with built-in membership relation.

Proof: Let � � � be such that # � � � �
�) � . For every � � � , let � 0 be the substructure

of � with universe � � # 0 . We show that � � � � � 0 � � � � � � � 0 ��� � �+� holds for all � � � .
Since � � � � � 	�� � � , it will follow that

� � � � � � � � �+� ��- � � Q�� � � � # � � � ��- � � Q�� � � � � � � �

Let B be the closure ordinal of � on � 0 ��� . It is enough to show that
	 �) �� � � 0 � �	 �) �� � � 0 � . So let us assume that � � 	 �) �� � � 0 � , so that � 0 � � ��� � � 	 �) �� � � 0 � � . Lemma 5

implies that � 0 � � ��� � � 	 �) �� � � 0 �
� # �0 ��� � , since � is restricted and � � # 0 . By Lemma 6

we have
	 �) �� � � 0 �

� # �0 ��� �
	 �) �� � � 0 ��� � , and the choice of B implies

	 �) �� � � 0 ��� � �	 �� � � 0 ��� � . It follows that � 0 � � ��� � � 	 �� � � 0 ��� � � . Since
	 �� � � 0 ��� � � 	 �� � � 0 � by

Lemma 6 again, monotonicity gives � 0 � � ��� � � 	 �� � � 0 � � . Therefore, � � 	 �) �� � � 0 � as

required. ��
Our second result concerns the closure functions of positive � 	 -formulas that are not

necessarily restricted. Since the reflexive transitive closure of a finite set is relatively small,

Lemma 5 allows us to put polylogarithmic bounds on the closure functions of � 	 -formulas.

74

Theorem 6 Let � be a relational vocabulary, and let � ��� � �	���	��� � � � � � be a ��	 -formula of

� � ����� � � that is positive in the � -ary relation variable � . Then,

� � � � � � � � � Q�� � � � � ��� � � � � �

for every finite structure � over � � ��� � with built-in membership relation.

Proof : During this proof, we will identify a natural number � and its encoding as a finite set

" � � � . Thus, � � �����	���	� � � � � ���3� . Put � � � � Q���� � � � � � � � � � � , and assume for contradiction

that � � � � � � � � . Let � 	 � ��� 	 � � ���	�	� � � 	 � � � � 	 � � � � be such that � � 	 � � � , where � � � denotes

the minimal B such that � � 	 �� � � � if � � 	 � � � � , and � if � �� 	 � � � � . In the following, let	 �
be an abbreviation for

	 �� � � � . We build a sequence � 	 � � � ���	����� � 	 such that � � L � � � � 	 � � @ ,
and � L � �

� for every @ � ���	���	��� � , where � ���������	�	� � � Q�� � � � � � � � � �3� � � � 	 � � �	�	����� � 	 � � � .
This will prove the theorem since the cardinality of � � is at most � .

For every � � � � � �	�	����� ��� � � � � , let ��� � � denote the set �����	���	� � � Q���� � � � � � � � �

� � � ���	�	� � ��� � . Observe that & � � E � ��� L �6��@ � � ����� � � ��� � � since every element in E � ��� L �
is a bit position of an element in �������	��� � � � � � �3� . Assuming � L � � � L � � �	�	����� � L � � � is already

defined, we define � L) � � ��� L) � � � ���	��� � � L) � � � � . Let B � � � L � . Then, � � � ��� � L �
	 � ��� � .

Lemma 5 and monotonicity imply that � � � ��� � L �
	 � ��� � ��� � L �

� � . Observe that since � L �

��� � 	 � � by assumption, we have that ��� � L � � ��� � 	 � . Now let us consider two cases: (i)
	 � ��� �

��� � 	 � � � 	 � � � , or (ii)
	 � ��� � ��� � 	 � � �� 	 � � � . In case (i) we have that � � � ��� � L �

	 � � � �

by monotonicity. Hence, � L �
	 � ��� which contradicts the minimality of B � � � L � . In case

(ii), there must exist some � L) � �
	 � ��� � ��� � 	 � � that does not belong to

	 � � � . Observe that

� � L) � � � � � L � ��� , and � L) � � ��� � 	 �
� as required. This completes the proof of the theorem. ��

75

We can show that the upper bounds provided by Theorem 5 are tight. First, it can be

shown that the restricted � 	 -formula whose least fixed-point defines the standard linear order

requires � Q�� � � � # 0 � � steps to close in # 0 . Indeed, the induction grows by ranks, which means

that # 	 is linearly ordered first, then # � is linearly ordered, then # � , and so on. This takes

� � � � � Q�� � � � # 0 � � steps on # 0 .

Second, we construct below a � -ary positive � 	 -formula that requires � Q�� � � # 0 � �
steps to close on # 0 ; it should be an easy exercise to extend the construction to all poly-

logarithmic bounds. Our strategy will be to build a system of simultaneous inductions, and

then translate the system into a single � 	 -formula that implements it.

Recall that every first-order formula � � � � ���	��� � � � � � � that is positive in the � -ary

relation variable � defines a monotone operator from � �
to � �

on every structure � . For

the same reason, a pair of formulas ��� � ���
� ���	�	� � � � � � ��� � � � � ����� �	���	��� � �
� � ��� � � that are both

positive in the � -ary relation symbol � and the � -ary relation symbol � defines a monotone

operator from � � � �
�

to � � � �
�
. Since the operator is monotone, it reaches a least

fixed-point
	 �
: �
� � � � � � � �

�
� � � ���

�
� � � � that is called the simultaneous least fixed-point

of � � and � � on � .

Consider the following system of positive � 	 -formulas:

� � ��� ��� ����� ��� N ��� � � � � � ���	� � � � � � � � �� � � ��� � �� � � � ��� � ��� � � � �

� � ��� ��� ����� ��� N � � �
 ���	� � � � � � �
� � � � �

��� ��� � � � � � � � � �
 � � � � � � � � ���
� ��� � � �
76

Here, � � � is an abbreviation for ��� � � � � ��� �
� � � . We first show that the simultaneous least

fixed-point
	 �
: �
� � � # 0 � � � �

� � �
�
� requires � Q�� � � # 0 � � steps to be reached. Observe that � �

is simply defining the linear order � on # 0 , and is independent of � ; therefore, in � Q�� � � � # 0 � �
steps, the relation � will be the linear order. Consider next the set

�
� � � � � # 0 ��� �K� � �

0 ��� � � # �0 . We claim that
� � �

�
and that each pair in

�
gets into �

�
in a different stage.

Since � � � � � # 0 ��� � � � Q�� � � # 0 � � , the claim will follow. Suppose that � 	��'� ��� ������� � � is

the complete enumeration of # 0 ��� . From the construction of � � we have that for each @ such

that � � @ � � , and each stage � , the pair ��� L) � � # 0 ��� � does not get into � 	 if � � L � # 0 ��� � is

not already in � 	 ��� . Moreover, each such pair eventually gets into �
�

because � � 	 � # 0 ��� � �

� � � # 0 ��� � gets in in the first stage. This completes the argument that
	 �
: �
� � requires � Q���� � # 0 � �

steps to be reached.

We now build the � -ary ��	 -induction that implements the above system. The stan-

dard way of doing this requires at least two constants or, in case constants are not available,

existential quantification [Mos74]. Fortunately, we are lucky and in this very particular case

we can keep within �
	 -formulas without constants. One of the reasons is that � does not

occur in � � as we will see. Let � be a new � -ary relation symbol, and consider the following

��	 -formula:

� � � � � � � ��� � � �IN
� � � � � � � ��� ��� ����J9� �
� � � � � � � � � � � � � � � ��� � J � � � � �

� � �
� � � � � ��� ��� ����J9� �
� � � � � � � � � � � � � � � ��� � J9� ��� � � �*� � � � � � � � � � � � � � �

77

It is easily seen that the least fixed-point of � implements the simultaneous least fixed-point

of � � and � � in the following sense: the projection ��� � � ��� � � � � � � � � � � � � � � � ��� � � coincides

with � � , and the projection ��� � � � � � � � � �
� � � � � � � � � � � ��� � � coincides with �

�
. Moreover,

the same argument as before shows that the closure ordinal is at least � Q���� � # 0 � � on # 0 .
The polylogarithmic bound is also tight in the following sense: there exists a positive

� -formula that requires � � � steps to close on � . Such an example is the following induction

defined in terms of the linear order:

� ��� � ��� N � � �
 ��� � � �
� � � � ��� � � � �

Since the linear order � is � -definable on
� +-,

, the formula � ��� � ��� can be written as a

� -formula. It should be clear that
	 � � � � � � but each element gets in in a different stage.

Therefore, the closure function of � grows linearly with � � � . The question whether some

�
-formula requires a linear number of steps to close is open.

4.3 Complexity of Evaluating
����� �
	 �

Let � � � � � �	���	������� � be a relational vocabulary, and let � � ��� ��� � � ���	�	� ��� �� �

be a finite structure over � . We will always identify the universe of � , denoted � , with the

initial segment of the natural numbers of cardinality � � � ; thus, � ���������	�	� � � � � � �3� .
Finite structures are encoded as words over the alphabet �����	� ��� � according to the

following convention. For every relation symbol � L � � of arity � , we let � � � �L � be the

characteristic sequence of � �L . That is, � � � �L �
� � 	�� � ���	� � 0 � ��� , where � � � �������3� , and

� � � � if and only if � B � ��� �	�	�����CB 	 � ��� �L where � B � ��� �	���	���
B 	 � is the � -ary representa-

78

tion of B . That is, B �
� � ���
L � 	
B L � L . Then, the encoding of � is just

� � � � � 0 � � � � � � � �+�	����� � � � �� � �

We extend the encoding to include individuals as follows. For every � � ���	�	� � � � � � , let

� � � � � ���	�	� � ��� � � � � ��� � 0 ��� � � � �	�	� � � 0 � ��� � .

Definition 12 Let � be a relational vocabulary, let � be a class of finite structures over � ,

and let � be a � -ary query on � . We say that � is computable in a complexity class � on � if

there exists a language
� � � such that for every � � � and � � �	���	��� ��� � � , we have that

� � � ���	�	� � ��� � � � � � � if and only if � � � � � ���	�	� � ��� � � � .

The polylogarithmic bounds on the closure functions of positive � 	 -formulas pro-

vided by Theorem 6, together with a result of Immerman [Imm89], imply that every query that

is definable as the fixed-point of a ��	 -formula is computable in � � , the parallel complexity

class. However, we can keep the machine sequential as noted in the following

Lemma 7 Let � be a relational vocabulary, let
�

be a class of finite structures over � with

built-in membership relation, and let � ��� � �	���	��� � � � � � be a �
	 -formula that is positive in

the � -ary relation variable � . Then, the query on
�

defined by the formula ������� � � � ��� is

computable in � � �?# � #�������$	� (on
�

.

Proof : The idea is that the standard fixed-point computation will only take a polylogarithmic

number of iterations by Theorem 6, and each iteration is computable in polylogarithmic-time

because � is a ��	 -formula. More precisely, on input � � � � � ���	����� ��� � , the polylogarithmic-

time Turing machine will proceed as follows. The machine first determines the cardinality

79

of � , say � . To this end, it determines the length B of the input in , � � Q�� B � steps using

its random access to the input (see the preliminaries for this trick), and then it executes a

straightforward computation to extract � from B (here we use the fact that our encodings are

carefully chosen so that their length is determined by the cardinality of � , the arities of the

relation symbols in � , and �). Let � ���������	��� � � Q�� � ��� � � � �3� � � � � ���	�	� � ��� � . The machine

will keep, in a separate tape, an encoding of a � -ary relation on � ; this will require , � � � Q�� � � � �
bits of information. Then, it starts a loop that is to be repeated � � Q�� � � � � � � � � � times.

In each iteration, the machine cycles through all � -tuples � � � �	���	����� � � in � � , and evaluates

� � � ��� � � ���	�	� � � � ��� � where � is the � -ary relation encoded in the separate tape. Atomic

formulas from � are resolved by random access to the input, and atomic formulas of the form

� �
�
� ���	����� � � � are resolved by accessing the position of tuple � � � ���	����� � � � in the encoding of

� . Observe that each relevant tuple �
� � ���	����� � � � will be available since � � � ��� � � ���	�	� � � � ��� �
if and only if

� � � ��� � � �	�	��� � � � ��� � � & � � E � � � L � ��@ � � ����� � �
� � �

and & � � E � � � L ��� @ � � ����� � � � for every � � � �	���	����� � � � � � , since every element of

E � ��� L � is a bit position of an element in �������	�	� �
��� �3� . For the same reason, each quantifier

is bounded by some � L , and therefore, the variable it bounds ranges over at most � Q�� � �&� � �
elements of the universe. Hence, the computation can be done in time ,�� � � Q�� � � � � where �

depends on the number of quantifiers of � . When the evaluation of � � � ��� � � �	���	����� � ��� � is

complete, the machine updates accordingly the position corresponding to tuple � � � �	���	� � � � � in

the encoding of � . Finally, the machine will only have to check whether the tuple ����� ���	�	� � ��� �
belongs to � at the end of the loop. ��

80

4.4 Circuit Uniformity and the Complexity Class ���
�

It is traditional in the area of computational complexity to use the Turing machine

as the underlying computational model. This is partly due to a natural inheritance from the

field of recursion theory, and partly due to the very convenient robustness properties that the

model has. No less interesting is the Boolean circuit model, which might seem closer to what

actual machines of our time really do. The truth, however, is that these two models are tightly

related through the theory of uniformity of circuits. Since we will make strong use of it in this

chapter, let us devote this whole section to it.

A Boolean circuit is a directed acyclic graph with exactly one node of out-degree

zerp, whose nodes are called gates. The gates of in-degree zero are called the inputs, and the

gate of out-degree zero is called the output. Each input gate is labeled by a Boolean variable

� L , and each non-input gate is labeled by a Boolean function �+� �����	��� � � �����	��� whose

arity � coincides with the in-degree of the node. The circuit computes a Boolean function

�� �����	��� 0 � �������3� in the obvious way. Here � is the number of inputs. Typically, each

gate of the circuit has in-degree at most two, and the Boolean functions labeling the gates are

taken from a complete basis such as � � � � � , ��� �&, � � . Also, we may assume that all NOT

gates appear before all AND or OR gates by using the De Morgan rule. We note that this

transformation leads to a circuit whose number of gates is at most twice the original.

It is intuitively obvious that the larger the circuit, the more complex the Boolean

function that it computes can be. This leads to a classification of Boolean functions by the

size of its minimal circuit computing it, where size is measured by the number of gates of the

81

circuit. Moreover, certain structural properties of the circuit, such as its depth measured by the

length of the longest path, may increase or decrease its computational power.

Definition 13 Let
�

be a Boolean circuit with � inputs. The size of
�

, denoted by � � � � ,

is the number of gates of
�

. The depth of
�

, denoted by ��� � � , is the length of the longest

directed path of
�

. The alternation-depth of
�

, denoted by � � � � , is the maximum number of

alternations between AND and OR gates in any directed path of
�

.

Boolean circuits are thought to compute Boolean functions. However, we can also

think of families of Boolean circuits as recognizers of languages over the alphabet �������3�

through the so-called characteristic function:

Definition 14 Let �
� ��� �	�3� � be a language, and let
� � � � � �	�	��� be a family of circuits such

that
�
0 has exactly � inputs and one output. We say that

� � � � � ���	��� decides � if and only if for

every � � � and every ��� � ���	����� � 0 � � �������3� 0 , the circuit
�
0 outputs � on input � � � ���	����� � 0 �

if and only if � � �	��� � 0 � � .

These definitions lead us to the definition of natural complexity classes by imposing

natural restrictions on size, depth, and alternation-depth of circuits.

Definition 15 For every @ � � , let � � L be the class of languages that are decidable by circuit

families
� � � � � ���	�	� such that � � �

0 � � � .�/ � 2 and � � �
0 � �+, � � � Q�� � � L � . Similarly, for every

@ � � , let � � L be the class of languages that are decidable by circuit families
� � � � � ���	��� such

that � � �
0 � � � .�/ � 2 and ��� �

0 � � , � � � Q�� � � L � .
82

It is known that � � L � � � L � � � L) � and so ��� � & L (��� L
� & L (� � L

�

� � . The complexity classes that we just presented are strongly non-uniform in the sense that

the underlying computational device changes at each input length. This leads to the somewhat

unpleasant fact that each such class contains non-computable languages. This is in sharp

contrast with the Turing machine model in which a fixed device is designed to work for all

input lengths, and of course, any recognized language is (semi-)computable. The connection

between the two models is made through the concept of uniformity.

Intuitively, a circuit family
� � � � � �	�	��� is called uniform if there exists a fixed Turing

machine that constructs
�
0 when given � as input. In order to be able to talk about uniformity

of sublinear complexity, we will need the more refined but technical notion due to Barrington,

Immerman, and Straubing [BIS90]. In their definition, which we make precise in the sequel,

circuits are recognized rather than constructed. Let
� � � � � �	���	� be a circuit family and let

� 0 � � � �
0 � be the size of

�
0 . The gates in

�
0 may be numbered in ��� �	�	��� � � 0 ���3� , and may

be given a type � � �����	� � - � ��� according to whether they are AND gates, OR gates, positive

inputs, or negative inputs respectively. The direct connection language of
� � � � � ���	��� is the set

of words of the form � 0 � � � � ��� � � � � � � � � � � � ��� � , where gate � is an input to gate � in
�
0 , and

the type of gate � is � � ��� �	��� - � �9� . Recall that � � � � � is the unique binary representation of

� of length B , padded with leading zeros if necessary.

Definition 16 Let � be a complexity class, let
� � � � � ���	��� be a circuit family, and let � be its

direct connection language. We say that
�

is � -uniform if there exists a language � � � such

that for every � � � , we have � 0 � � � � � � � � if and only if � 0 � � � � � � � � .

83

We want to stress the technical point that the condition in Definition 16 is not the

same as the condition that � belongs to � . Indeed, the language � in Definition 16 may

contain other words that are not of the form � 0 � � � � � � . However, this highly technical point

does not affect the intuitions at all. Technically speaking, we need the condition stated in the

definition because sublinear-time deterministic machines are not able to check that its input

word has the required form � 0 � � � � � � .

Now, every circuit-based complexity class, such as those defined in Definition 15,

have uniform counterparts by letting the circuit families be uniform. When � is a natural

complexity class, the issue of having non-computable languages disappears. Moreover, the

combination of natural restrictions on the circuits and natural uniformity conditions lead to

illuminating capturing results. Thus, to cite some examples, it is quite pleasant that the class

of languages accepted by �K# � � �"$	� (-uniform families of polynomial-size circuits coin-

cides with the complexity class � , and that �K#�������$	� (-uniform � � coincides with the

parallel complexity class defined by the PRAM model with polynomially many processors and

polylogarithmic-time (see [Vol99]). Many other connections of this type can be established.

One such important connection was made by Barrington, Immerman and Straubing

[BIS90] who noticed that �K# � � �"$	� (-uniform � � 	 happens to coincide exactly with the

Logarithmic-Time Hierarchy # % . A key step in their proof is the result mentioned in Sec-

tion 3.2 of Chapter 3 that first-order logic captures # % on finite structures with BIT. Equiva-

lently now, ��
 captures �K# � � �"$	� (-uniform � � 	 on finite structures with BIT. In fact,

the proof of the Barrington-Immerman-Straubing Theorem says a lot more: A query � on a

class of finite structures � with built-in membership relation is computable in � -uniform ��� 	

84

if and only if there exists a query � on
� + ,

that is computable in the complexity class � and

such that � is first-order definable on � using � as a built-in predicate.

The results of this chapter will elaborate further on the connections between uniform

circuits, complexity classes, and logical languages, with the goal of identifying the descriptive

complexity of ������� �
	�� .

4.5 Capturing Results without Input Predicates

A closer examination of Lemma 7 in the case of
� +-,

reveals that ��������� 	 � -

definable queries are also computable in non-uniform � � 	 ; the reason is that they depend

only on , � � Q�� � � bits of the input, and every such query is in non-uniform ��� 	 . Indeed,

every Boolean function on ,�� � Q�� � � bits can be computed by a circuit of alternation-depth

two and size � .�/ � 2 that implements its truth-table. The interesting question at this point is the

following: which uniform version of ��� 	 is captured by ��
 � ����������	 � on
� +-,

? Here,

��
 � ����������	 � denotes the first-order closure of ��������� 	�� . That is, in addition to ����������	 �

formulas, we also allow atomic formulas, conjunctions, negations and first-order quantifica-

tion. Our next theorem is the answer to this question.

Technically speaking, Boolean circuits can only recognize languages over the al-

phabet �3���	�3� . However, if we are interested in languages over larger alphabets
�

, we can

fix an appropriate homomorphism � � �
� � �������3� � and convey to say that circuits accept

languages � � �
� if and only if they accept � ��� � . For our particular purposes, we will

use
�

� ����������� � , and we can fix � to be the unique homomorphism such that � � � � � ��� ,
85

� � � � � � � and � � � � �+��� .

Theorem 7 Let � be a query on
� +-,

. The following are equivalent:

(i) � is computable in # % �

on
� + ,

,

(ii) � is computable in � � ��# � # � � �"$	� (-uniform � � 	 on
� +-,

,

(iii) � is definable in ��
 � ��������� 	 � on
� +-,

.

Proof : We close a cycle of implications. We first show that (i) implies (ii). Assume that �

is computable in # % �
for some

� � � . We may assume
� � �����	��� � . For every � , let

� 0 ����� �	���	��� � 0 � be the following
� ! � -formula

�
�

� ����� 	 � ��� �
�

�
� 	 � �

� L
� �

��	 � 	
��� L �� �

Observe that � 0 ��� � �	�	����� � 0 � is true if and only if the word � � �	��� � 0 belongs to
�

. The se-

quence � � � � � � �	�	��� � , interpreted as a sequence of circuits of alternation-depth two, is of size

exponential in � , but � -uniform: the words of its direct connection language are of the form

� 0 � � � � � � with � � � � �����	��� .�/ 0�2 , and deciding membership can be done in polynomial-

time since
� � � . We now build a � � ��# � #�������$	� (-uniform family of � � 	 circuits

to compute � . Let � be an oracle alternating Turing machine witnessing that � is com-

putable in # % �
, and assume that � queries its oracle at most once in each computation path.

This is a standard trick in alternating machines; it consists of existentially guessing the an-

swers, write them down on a separate tape together with the nondeterministic branch taken

at each step, and at the end of the computation, universally branch to check the correctness

of every guess by deterministically re-simulating the computation path until the challenged

86

query is asked. Let ��� Q�� � be a bound on the running-time of � on inputs of length � . Ob-

serve that the length of each oracle query is bounded by ��� Q�� � too. As in [BIS90], we may

see the computation trees of � as a �K#�������$	� (-uniform family of � � 	 circuits, ex-

cept for the oracle queries, which may be resolved by � � ��# � # � � ��$	� (-uniform ��� 	

circuits; namely, we let queries of length B � ��� Q�� � be resolved by the circuit � � above

(exponential-size in B � ��� Q�� � is polynomial-size in � , and polynomial-time uniformity

for length B � �
� Q�� � is polylogarithmic-time uniformity for length �). It follows that � is

computable in � � �?# � #�������$	� (-uniform � � 	 .

We see that (ii) implies (iii). Let � be computable in � � ��# � # � � �"$	� (-

uniform ��� 	 . By the Barrington-Immerman-Straubing Theorem (see Section 4.4), we know

that � is then first-order definable with an additional built-in query � � � � � ��� � �	�	��� � on

� +-,
that is computable in polylogarithmic-time. We show how to replace every occurrence

of this built-in query by a formula of ��
 � ��������� 	�� . For every � and � � ��� � �	���	��� ��� � �
�3���	���	���
��� �3� � , let � �

� � �������	�	� � � Q�� � ���&� � �&�3������� �60� ���	�	� � �60� � , where � 0L
� ��B � B �

� L � . Since � is a query computable in polylogarithmic-time, the language

� � � $	� 0 � � � 0 � � � � �+���	��� � 0 ����� � � � � � �	���	��� ��� � � � 0 � � � �3�

is decidable in polylogarithmic-time on inputs of the appropriate form. A simple unpadding

argument shows then that the language � � � �
� � � � & 0�(� � 0 � is in � (the length of � � �

�

is logarithmic in the length of � �������	��� �
� ���3��� � � ���	����� ��� �). Hence, by the Immerman-Vardi

Theorem, the boolean query � � � � � � � � & 0�(� � 0 � is definable in least fixed-point logic

on the class of all structures of the form � � . We may even assume that � is definable by a

87

sentence of the form ������� � � � ��� � � � in which � is a first-order formula, and � is a constant for

zero. Let � � � � � � � � � ���	�	� � � � � � � � � be the first-order formula of the vocabulary ��� � that results

from the following substitution in � : replace each occurrence of an atomic formula of the form

� L �
� � by � � � L ; replace each atomic formula of the form � � � � by � � � � � � � � �	���	� � � � � � � ; and

replace each subformula of the form ���	� � ��� � by ���	� � � � �	� � �
 ���	� � � � �	� � � , where � � is

the result of applying recursively the substitutions. Clearly, � � is a �
	 formula. Moreover, it is

not hard to see that for every � � ���	�	� � ��� � �����	���	���
�6�K�3� , we have that � � � � ������� � � � ��� � � �
if and only if

� ��� �	�	��� � � Q�� � � � � � ���3����� � � � ������� � � ��� � � � � � � � � � � � � � � � �	�	����� ��� � � � �

where � is the largest power of two in the universe, and � � � � � . Observe that the binary

representations of � and � are dual words; that is, � � � if and only if � �� � for every

� � � Q�� � � Q���� � ��� � ��� � . Since � and � are first-order definable with � , we have shown that

� is uniformly definable on
� +-,

by a sentence of ��
 � ��������� 	 � .
It remains to see that (iii) implies (i). Let � � � � �	���	��� � � � be a formula witnessing that

� is definable in ��
 � ��������� 	 � . Without loss of generality, we may assume the following

normal form for � :

� �-� � � � ����� � � � � � � �
�
�

L � �
�	� L � �
 ���	�
 � L � 	
 �
� L �) �
 �
� L � � � � �

where each � L is � or � , and each � L � � is either an atomic formula, or a formula of the form

� ����� � � � � � � � � ���	�	� � � � � , with � a �
	 formula. For every @ � � , let � L � � be the query on
� +-,

defined by � L � � , and let
�

be the following language over the alphabet ����������� � :

��� � � 0 � � � � � �	�	� � � 0 � � � � � @ � � � � � � ���	����� � � � � � L � � �
� $	� 0 � ���

88

This language will be our oracle set. That it belongs to � will be shown later. An alternating

Turing machine with oracle
�

may simulate � as indicated next. On input � � $	� 0 � � � ���	�	� � � � �

where � � �	���	� � ��� ����� �	�	��� �C���+�3� , the machine behaves as follows. First, it computes � .

To this end, it existentially guesses the position of the leftmost � in the input, and univer-

sally branches to check that every smaller position contains a symbol other than � . Then,

following the alternation pattern of the quantifier prefix of � , the machine existentially or uni-

versally guesses � words � � ���	����� � � of length � Q�� � �&�+� � each. The @ -th word � L is meant

to be the binary representation of an element � L � �������	�	� �
� � �3� that is to interpret the

first-order variable � L . The machine proceeds then to evaluate each atomic formula � L � � as

follows. Assume � L � � � � L � � � � � ���	�	� � � � � , where each variable � � is either an � � or a � � . The

machine will write an oracle query of the form � � � � �+���	��� � ��� @ � � , where ��� � � 0 � ��� � if

� � � � � , and ��� � � 0 � � � � if �!� � � � . Observe that the length of this query is ,�� � Q�� � � , and

is easy to recover from the input (existentially guess each � 0 ��� � � and universally branch to

check that all guesses match the input). Clearly, the answer to this query is yes if and only if

� $	� 0 � � � L � � � � � �	���	� � � � � by the definition of the oracle set
�

.

All it remains to show is that the language
�

belongs to � . This is fairly easy. If

� L � � is an atomic formula, there is almost nothing to see: equalities are checked at once, and

atomic formulas of the form � L � � � are also straightforward to check. If � L � � is a formula

of the form ������� � � � � � � � � �	���	��� � � � with � being a �
	 formula, then the query it defines is

computable in � � �?# � # � � �"$	� (on
� + ,

by Lemma 7. Therefore, since the length of

� � � � �+���	��� � ��� @ � � is logarithmic in the length of � � $	� 0 � � � �	�	����� � ��� , a simple unpadding

argument puts
�

in � . ��
89

As a corollary, we characterize the question on whether all polynomial-time decid-

able languages are rudimentary. The relationship between � and
���

� remains unknown. It

is known however that � # � ���
� [Nep70, Nep73], where � # is the class of languages

accepted in nondeterministic logarithmic-space.

Corollary 1 The following are equivalent:

(i) ��
 � ������� �
	�� � ��
 on
� + ,

,

(ii) � � ��� � ,

(iii) � ��#*$ � % .

Proof : Since
��� � � #�$ � % �

� E ����� � , � � � � , � � � � , it is enough to show that (i) and (iii)

are equivalent. The implication from (i) to (iii) follows from Theorem 3.2 in Chapter 3. For

the other implication, assume that � ��#*$ � % , and let � be a query on
� +-,

that is definable

by a ��
 � ���������
	�� formula. By Theorem 7 we have � is computable in # % �

, and so in

% ��� ��� by hypothesis. Let � be an oracle alternating Turing machine witnessing that �

is computable in # % �
for some

� � #�$ �&% , and let � be an alternating Turing machine

witnessing that
� � #�$ �&% . Since an oracle Turing machine running in logarithmic-time

can only ask logarithmically long queries, oracle queries of � may be answered by � in

logarithmic-time with respect to the input to � . The number of alternations being constant, it

follows that � is computable in # % . Hence, � is first-order definable on
� +-,

. ��
90

4.6 Capturing Results with Input Predicates

The natural question at this point is what happens when input predicates, in addi-

tion to the membership (BIT) relation, are available. That is, we fix a relational vocabulary

� , and we wonder what is captured by ��
 � ��������� 	 � on classes of finite structures over

� with built-in membership relation. Unfortunately, we are able to provide only an exact an-

swer in the case that � is a unary vocabulary. We show that ��
 � ��������� 	 � still captures

� � �?# � #�������$	� (-uniform � � 	 on such classes. The proof of this fact is not as sim-

ple as before because the straightforward evaluation of the ��������� 	 � subformulas requires

polylogarithmic-time and cannot be done in � � 	 directly. Indeed, it is not known whether

� � �?# � #�������$	� (� � � 	 . The solution to overcome this difficulty is to make use of

the fact that � 	 -formulas depend only on the reflexive transitive closure of their arguments.

This makes the proof slightly more involved, but we obtain a clean result:

Theorem 8 Let � be a unary vocabulary, let
�

be a class of finite structures over � with

built-in membership relation, and let � be a query on
�

. Then, the following are equivalent:

(i) � is computable in # % �

on
�

,

(ii) � is computable in � � ��# � # � � �"$	� (-uniform � � 	 on
�

,

(iii) � is definable in ��
 � ��������� 	 � on
�

.

Proof : The proofs that (i) implies (ii), and that (ii) implies (iii), go through as in Theo-

rem 7 essentially without change. The proof that (iii) implies (i) uses an argument similar

to the one in the proof of Lemma 7. Recall from Lemma 5 that if � is a � 	 formula, then

91

� � � ��� � � �	���	��� � �
� � � if and only if � � � ��� � � ���	�	� � � �
� � � � & � � E � ��� L �4� @ � � � ��� � �
� � .

Iterated application of this lemma with each of the relation symbols of � shows then that

� � � ��� � � ���	�	� � � �C� � � if and only if

� � � � � ��� � � �	���	��� � � � � � � � � �
where � � & � � E � ��� L ��� @ � � � ��� � , and � � � is the substructure of � generated by � .

In turn, we remark that � � �3���	���	� � � Q�� � � � � �+� � �+�3� � � � � �	�	����� � � � since each element

of E � ��� L � is a bit position of an element in �������	��� � � � � �+��� . Moreover, a straightforward

argument reveals that � � � � is an end-extension of � � � , where � � ���������	��� � � Q�� � � � � �
� � ���3� � � � � �	���	��� � � � . Hence, � � � ��� � � �	�	����� � � � � � if and only if � � � � � ��� � � �	�	����� � � � � �� � � , and by absoluteness, if and only if � � � � � � ��� � � �	���	��� � �
� � � � � � � . With these

observations in hand, we claim that:

Claim 1 If � is definable in ��
 � ����������	 � on
�

, then � is definable by a formula of

��
 � ��������� 	 � in which no relation symbol from � appears within the scope of a fixed-point

operator.

Proof : The main idea is that since every ������� ��	�� formula will depend only on ,�� � Q�� � � bits

of the input predicates by the remarks above (here is the crucial point where we use the fact

that the vocabulary is unary), we can existentially quantify these bits outside the ��������� 	 � -

formula, and pass them to it as input variables. Formally, the argument is as follows. Assume

for simplicity that � consists of a unique relation symbol � ; the general case is as easy. Let

� be a formula defining � on
�

. Replace each occurrence in � of a subformula of the form

92

� ����� � � � � � � ��� �	���	��� � � � with � a �
	 formula, by the formula

��� � � � � � � � � � � � � � � ����� � � � � � � � � � � � � � �

�
�
� � 	 � ��� � �

�
� 	 � �

� ��� L �
� �

� 	 � 	
� � ��� L �

� ��������� � � � � � � � � � � � � � � � �

where � � is the result of replacing each atomic formula of the form � �
� � , with � a bound

variable, by � � � , each atomic formula of the form � ��� L � by � L � � L , if � L � � , each atomic

formula of the form � ��� ��� by � � �
� � � , if � � �+� , and each atomic formula of the form � � � �

by � � � � � � � . Here, � and � are existentially quantified variables set to the largest power of two

of the universe, and � � � respectively (observe that the binary representations of � and � are

dual words). Observe that if � is a witness for the first-order variable of this formula, then its

binary representation is encoding the first � Q���� � ��� � bits of � . By the remarks preceding the

claim, it is straightforward to check using standard absoluteness arguments that the modified

formula is defining � on
�

, as required.

The rest of the proof that (iii) implies (i) is now almost identical to the proof of

Theorem 7. Namely, access to the input predicates is only required when simulating the first-

order part of the formula, and the simulation of the ��������� 	 � -parts of the formula may be

asked to an oracle set in � . ��
Observe that the argument of Theorem 8 does not go through for vocabularies of

higher arities. In the case of a binary relation, for example, the reason is that there are

,�� � � Q�� � � � � � � significant bits in the substructure � � �����	���	��� � Q�� � � � � � � � � . Although we

do not provide with an exact characterization of ��
 � ��������� 	 � for vocabularies of higher

arities, we are able to compare the expressive power of ��
 � ������� � 	 � with a familiar com-

93

plexity class. Recall from the introduction that
���

� 0 :
��� �

� E ����� �=, � � � � � � � ,�� � � � (see

Corollary 5 in [AG91]).

Theorem 9 Let � be a relational vocabulary of maximum arity � , and let
�

be the class

of all finite structures over � with built-in membership relation. If � � ���
� 0 :

��� , then

��
 � ���������
	�� � ��
 on
�

.

Proof : Assume � � ���
� 0 :

��� , and let � be a query on
�

definable in ��
 � ����������	�� . It is

enough to show that � is computable in # % on
�

. Even easier, it is enough to show that each

��
 � ���������
	�� -formula can be evaluated in # % on the appropriate inputs. Let � ��� � ���	����� � � �
be such a formula. Lemma 7 says that deciding whether � � � ��� �%� ���	����� ��� � can be done in

polylogarithmic-time in � � � . Moreover, the same absoluteness argument as in the proof of

Theorem 8 reveals that � � � ��� � � �	���	��� ��� � if and only if � � � � � � ��� � � ���	��� � ��� � , where� � ���������	����� � Q�� � � � � � � � �&�3� � � � � ���	�	� � � � � . Since only ,�� � � Q�� � � � � � � bits are relevant in

� � � � , the same computation can can be carried over an unpadded input that only contains

these bits. The computation time is now polynomial in the length of the (unpadded) input,

and therefore, by hypothesis, the same language is decidable in
� E ����� �=,�� � � � � � � ,�� � � � �

��� � 0 :
��� on the appropriate inputs. Since the length of these inputs is , � � � Q�� � � � � � � , the

alternating computation can be carried over the original inputs in time

,�� � � � Q�� � � � � � � �
� � � � ,�� � Q�� � � � � �

and still a constant number of alternations. That is, on the original inputs, the evaluation of �

can be done in # % as required. ��
94

4.7 Consequences

As mentioned in the introduction, Theorem 8 sets the link to an important prob-

lem related to the uniformity of circuits for integer division. Beame, Cook, and Hoover

[BCH86] showed that the problem of dividing two integer numbers of � bits can be com-

puted by � -uniform logarithmic-depth circuits (� -uniform � � �). The result was improved

by Reif [Rei87] (see also [IL95]) who showed that the problem could be computed by � -

uniform bounded-depth circuits with majority gates (� -uniform ���). However, it was not

known until Hesse’s solution [Hes01] whether the uniformity condition can be relaxed to

�K#�������$	� (-uniformity, as it is the case for the �
� 	 circuits for addition, subtraction,

and multiplication (see Barrington, Immerman and Straubing [BIS90]).

It is known that majority gates of polylogarithmically-many bits may be simulated

by �K#�������$	� (-uniform ��� 	 circuits. We review that construction (see [Weg87] for

a similar one). A circuit E�� � ���
� ���	�	� � � � � computing whether at least � of the input bits

�
� �	���	��� � � are one is recursively built as follows:

E�� � ���
� ���	�	� � � � � �
�

	
:
��� � � � 	��	� �	
���
 � �

�
�

� � �
E�� L
 ��� / � ��� 2 � � �

) �
�	���	��� � � � � � � �

where B � � � Q�� � � .�/ � 2 , and � is suitably chosen so that the size of the circuit is polynomial in

� , and the depth is a constant independent of � . The choice � � � � Q�� � ��� works for sufficiently

small � . It is not hard to see that these circuits are �K# � � ��$	� (-uniform: a clever number-

ing of gates will tell all the required information to the �K#�������$	� (algorithm that com-

putes the direct connection language. The well-known power of � � 	 circuits to do arithmetic

on numbers with polylogarithmically-many significant bits follows from Reif’s result, and

95

the known algorithms for addition, subtraction and multiplication. However, while addition,

subtraction and multiplication of polylogarithmically-long numbers admit �K# � � ��$	� (-

uniform ��� 	 such circuits, the known algorithms for division before Hesse’s fell short since

they give only � � ��# � # � � �"$	� (-uniform ��� 	 circuits. We note that Theorem 8 im-

plies that division of numbers with polylogarithmically-many significant bits is definable in

��
 � ������� �
	 � on the class of finite words with built-in membership relation. We do not

know, however, of a direct proof of this fact that yields any new good insight.

96

Chapter 5

Datalog on Random CNF Formulas

5.1 About Datalog and Infinitary Logic

Let us start by defining Datalog, which, as we will see, corresponds to the existential

positive fragment of least fixed-point logic. We also revisit the inclusion of Datalog into the

existential positive fragment of infinitary logic with finitely many variables.

Let � � � � � �	���	����� � � be a relational vocabulary and let � � �	���	��� � � be second-

order variables. Let � L be the arity of � L , and let � L be the arity of � L . A Datalog program over

� � � � � ���	�	� � � � � is a set of rules of the form

� 	 � � � � �	���	��� � � �

where � 	 is an atomic formula of the form � L ����� �	���	��� � � 	 � , and each � � with � � � is an atomic

formula of the form � L ���
� ���	����� � �
	 � or � L ���
� ���	����� � � 	 � . Here the � L are first-order variables

that are not necessarily different.

97

Note that the heads of the rules (left part) are always predicates formed from second-

order variables. These are called the intensional database predicates (IDBs). The predicates

in the vocabulary � always appear in the bodies of the rules (right part), and are called the

extensional database predicates (EDBs). One of the IDBs is called the goal of the program,

and it might be of arity zero (a propositional letter). A Datalog program is a recursive spec-

ification of the IDBs from the EDBs with the least fixed-points semantics. Informally, if �

is a structure over the vocabulary � of the EDBs, the IDBs are given the following semantics:

initialize the IDBs to be empty, and repeatedly apply the rules of the program whose bodies

(right part) are satisfied by � and the current value of the IDBs, until no new facts can be

added to the IDBs. A precise definition of the semantics of a Datalog program requires the

concept of systems of simultaneous inductions that we introduce next.

Let

� � ����� ���	�	� � � �
:
� � � ���	�	� � � � � ���	�	� � � � ����� �	���	��� � � � � � � �	�	����� � � �

be a sequence of first-order formulas of � � � � � �	���	��� � � � each of which is positive in each

� L . On every structure � over � , the sequence of formulas ��� � �	�	����� � � � defines � monotone

operators � L � �
�
: � ����� � �

� �
� �

� 	
by setting

� L �
� � ���	�	� � � � � ��� ��� � �	�	����� � � 	 � � �

� 	 � � � � � L � � � ���	�	� � � � 	 �
� � �	�	����� � � � ���

The stages are defined by setting � 	 � ��� �	�	��� � � � and � �) � � � � � � � � � �	���	��� � � � � � � � . If

� is finite, the system reaches a least fixed-point �
�
� � � � � �

�
� � � � ���	�
� � �

�
� � � � � in a

finite number of steps.

98

Each Datalog program specifies a system of simultaneous inductions. Indeed, each

IDB predicate � L has an associated formula � L ��� � ���	����� � � 	 � � � �	���	��� � � � that is the disjunc-

tion of the existential closure of the bodies of the rules that have � L in its head. The proper

construction of � L requires some renaming of variables in order for each head to have the form

� L ���
� �	���	� � � � 	 � . Then, the interpretation of a program with goal predicate ��� on a structure

� over � is simply �
�
� � � � , where ���

�
� � � � ���	�	� � �

�
� � � � � is the least fixed-point of the si-

multaneous system ��� � ���	����� � � � . The interpretation of a Datalog program � on � is denoted

by � � . This defines the semantics of Datalog. Let us see an example.

Example 11 Consider the following Datalog program over the vocabulary of directed graphs

� ��� , where � and � are binary and unary second-order variables respectively:

� � � ��� � � � � ��� ��� �

� � � ��� � � � � ��� � � � � � � � � � �
� ��� � � � � ��� � � � �

The Datalog program recursively defines � as the set of all pairs of nodes ��� ��� � such that

� is reachable from � in the graph. Also, it defines � in terms of � as those nodes that are

reachable from themselves. Thus, if � is the goal predicate of the program, its interpretation on

a graph is the set of nodes that belong to a (non-necessarily simple) cycle. The corresponding

system is

� � � � ��� � � ��� � � � ��� ��� �
 ��� � � � � � � � � � � � � � ��� � �

������� � � ��� � � � ��� � � � �
99

We note that in this particular case, the system of simultaneous inductions is quite trivial

since, in fact, � and � variables do not mix. Nonetheless, we will have genuine simultaneous

inductions in the general case. Example 13 below is a genuine one.

A careful writing of the system of simultaneous inductions corresponding to a Data-

log program reveals that the defining formulas are existential positive. That is, each component

of the system is a first-order formula that is formed from the atomic formulas and equalities

by means of conjunctions, disjunctions and existential quantification only.

We are interested on the number of first-order variables of a Datalog program as a

measure of its complexity. Thus, following Kolaitis and Vardi [KV00a], let � -Datalog be the

class of all Datalog programs with at most � variables and IDB predicates of arity at most � . In

the following Theorem we show that each � -Datalog program is equivalent to one component

of a system of simultaneous inductions defined by an existential positive formula with at most

� variables. This was already noted by Kolaitis and Vardi [KV00a] but we provide a full proof

for completeness.

Theorem 10 Let � � � � � �	�	������� � � be a relational vocabulary, let � � �	���	��� � � be second-

order variables, and let �
L be the arity of � L . Let � be a � -Datalog program over � �

� � � �	���	� � � � � with goal predicate � � such that � � � L for every @ � �������	��� � � � . Then,

there exists a system of existential positive formulas

� � ����� �	���	��� � � :
� � � ���	�	� � � � � ���	�	� � � � ����� �	���	��� � � � � � � �	�	����� � � �

with all variables among � �
� ���	�	� � � � � such that for every structure � over � if holds that

� � � �
�
� � � � .

100

Proof : Let # � � �
� �	���	��� � � � be a set of variables that contains all variables that occur in

the program. Before we build our system, we need to do a renaming of the variables of the

rules in such a way that all heads with the same second-order variable are identical. This

is done as follows. Suppose that � is a rule � 	 :– � � ���	�	� � � � . The head of the rule is of

the form � L ����� / � 2 �	���	��� ��� / � 	 2 � for some function � � �������	�	� � � L � � �����	���	��� � � . Now, let

� � ��� �	�	��� � � � � ��� �	�	��� � � � be any permutation such that � � � � � � � � P � � � � � � � � � � � � � � � � � ,
where � and � � range over �������	��� � � L � . Such a permutation exists because the minimal � � such

that � � � � � � � is clearly unique for any � � �����	���	��� � � , and because � � � L . This is the only

place in the proof where we need that � is at least as big as the arity of any IDB predicate. We

let

� � � ����� L : � ����� ����� L�� � ��� � �
� ����� � � �� � �

where � �L is the result of renaming each variable � � by ��� / � 2 in � L . Here, @ � �	���	��� @	� is the set

of all indices of variables in �����	���	��� � � � � � � � � � � � �
�
�	� � � � � � � L � � � . In other words, � � is the

result of renaming each variable of the rule according to the permutation � , and existentially

quantifying all variables that are not within the new names � � / � / � 2 2 ���	�	� � � � / � / � 	 2=2 of the vari-

ables � � / � 2 �	���	� � � � / � 	 2 in the head. Finally, let
�

� be the set of

clashes of � , and let

� � � ��� �	���	� � � � 	 � � � � �
�

/ � � � � 2
��
 � � � � � � �

By now, we have succeeded to rename the variables of the rule � in such a way that the head,

if we were to write the rule again, has the form � L ��� � ���	�	� � � � 	 � . Now, if � � ���	�	� ��� 	 are all

101

the rules of the program having � L in its head, we let

� L ����� ���	�	� � � � 	 � � � �	�	��� � � � � � � � :
 �����
 � ��� �

From its very construction, the first component of the system ���
�
� � � � �	���
� � �

�
� � � � � is defin-

ing the semantics of the program � . ��
Following [KV00a] we will denote the existential positive fragment of first-order

logic with � variables by � ��
 � . Similarly, we let � � � � $ be the existential positive fragment

of infinitary logic with � variables. That is, � � � � $ is the smallest class of formulas with at

most � variables that is obtained by closing the atomic formulas under arbitrary conjunctions,

arbitrary disjunctions, and existential quantification only. It was shown in [KV00a] that every

component of the least fixed-point of a system of � ��
 � formulas is expressible in � � � � $. In

view of Theorem 10 we obtain:

Corollary 2 Let � be a positive integer. Then � -Datalog � � � � � $, where � -Datalog is the

class of all Datalog programs with at most � variables and IDB predicates of arity at most � .

5.2 Formulas as Structures and Satisfiability as Homomorphism

Let ��� � ���	����� � 0 � be a set of propositional variables. A literal is a variable � L or the

negation of a variable � � L . A clause is a multiset of literals. A � -CNF formula is a multiset

of clauses each of which has at most � literals. It is customary to write clauses � � � �	�	����� � � � as

disjunctions
� �
 �����
 � � , and CNF formulas as conjunctions of clauses

� � � ����� � � � . A � -

CNF formula � is satisfiable if there exists a truth assignment
�� � � � ���	����� � 0 � � �������3� that

102

satisfies every clause
�

of � . That is, if
�

��� � � L :
�	���	��� � � L � � � � :

�	���	����� � ��� � � is a clause of
�

,

then either
�� � L � � �+� for some � ���9���	���	��� � � , or
�� � � � � � � for some � ����� �	�	��� � � � � � .
There is a natural encoding of � -CNF formulas into finite relational structures. Let

� � � � � 	 ���	�	� ��� � � be the vocabulary of � � � relations of arity � . We encode a � -CNF

formula � with variables � � �	���	� � � 0 as a finite structure � � � � ��� �	 ���	������� �� � over � � .

The universe � is the set of variables � � � �	���	����� 0 � , and for each � � ��� �	�	��� � � � the relation

� �� encodes the set of clauses of � with exactly � negated variables. More precisely, � ��

consists of all � -tuples of the form

� � L :
�	���	����� L � � � � :

�	���	� � � � ��� � � ����� � �	�	����� � 0 �
�

such that � � � L :
�	���	��� � � L � � � � :

�	���	����� � ��� � � is a clause of � . The encoding of � by such a finite

structure will be denoted by � � ��� .

Example 12 Consider the 3-CNF formula

� � � � �
 � � �
 � � � � �	� � �
 � � �
 � � � � � � �
 � � �
 � � � �

over the variables � � ���	����� � � . Recall that, strictly speaking, the clauses of � are sets of literals.

Thus,
� � � � � � � � � � ��� � � , � � � � � � � � � � � ��� � � and

�
� � � � � � � � � � � � � � . The structure

encoding � is � � ��� � � � ��� 	 ��� � ��� � ��� � � where � � ��� � � � � � � � � � � � , � 	 � � , � � �

� � � � � � � ��� � � � � � � � � � � � � � � , � � ��� � � � � � � � � � � � � � � � � � ��� � � � � � � � � � � � � � � � � � ��� � ��� � � � and � � �

� .

The encoding by means of finite structures allows us to use logic to define prop-

erties of � -CNF formulas. For example, the simple property that no clause is tautological is

103

expressed by the following universal negative first-order formula:

���	��� � ����� ���	� � �
�
 ��
� � 	

�

��� ����� �	���	��� � � � � �

L � � � � � L �
� � � �� �� �

More sophisticated properties can be expressed in more powerful logics as our next example

reveals.

Example 13 The purpose of this example is to show that the property “ � is an unsatisfiable

2-CNF formula” is definable by a 3-Datalog program. The main idea amounts to the well-

known fact that clauses of two literals may be seen as arcs of a directed graph, and that the

unsatisfiability of a 2-CNF formula is characterized by a reachability property of that graph.

Let � be a 2-CNF formula on the variables � � �	���	����� 0 . Let � � � # ��� � be the following

directed graph. The set of nodes # is the set of all possible literals � � �	���	����� 0 � � � � �	�	����� � � 0 .
The set of arcs is the set of all pairs of literals � � � � � � � such that � � � � � � � � is a clause of � .

Then, it is not hard to check that � is unsatisfiable if and only if there exists a variable � L
such that � � L is reachable from � L and � L is reachable from � � L . We express this as a 3-

Datalog program over the vocabulary � � of 2-CNF formulas with four binary IDB predicates

� � , ��� , � � , � � , and a propositional IDB goal � . The meaning of � � � � L ��� � � will be

that � � is reachable from � L , the meaning of ��� � � L ��� � � will be that � � � is reachable from

� L , the meaning of ��� � � L � � � � will be that � � is reachable from � � L , and the meaning of

� � � � L ��� ��� will be that � � � is reachable from � � L . Thus, the names � � , ��� , � � and

� � stand for Positive-Positive, Positive-Negative, Negative-Positive and Negative-Negative

respectively. The recursive definitions of each of these predicates by means of a Datalog

104

program follows:

� � ��� ��� � � � � � � � ��� �

��� ��� ��� � � � � � � � ��� �

��� ��� ��� � � � � 	 � � ��� �

� � ��� ��� � � � � � � � � � �

� � ��� ��� � � � � � ��� � � � � � � � � ��� �

� � ��� ��� � � � ��� ��� � � � � ��� � � ��� �

��� ��� ��� � � � � � ��� � � � � ��� � � ��� �

��� ��� ��� � � � ��� ��� � � � � � � � � ��� �

��� ��� ��� � � � ��� ��� � � � � � � � � ��� �

��� ��� ��� � � � � � � � � � � � �
� � � ��� �

� � ��� ��� � � � ��� ��� � � � � ��� � � ��� �

� � ��� ��� � � � � � � � � � � � � � � � ��� �

� � � ��� ��� � � � � � � � � � � � �

The recursive definition of � � � � L � � � � , for instance, reflects the fact that there are exactly two

ways of reaching � � from � L by a path of length at least two: either we first reach a positive

literal � � , and from that we reach � � , or we first reach a negative literal � � � , and from that we

reach � � . The interpretation of the rest of recursive definitions is similar.

Before we conclude this section, let us introduce an alternative way of interpret-

ing satisfiability of � -CNF formulas. Recall that a homomorphisms between two relational

105

structures � and � over the same vocabulary � is a mapping
 � � � � such that if

� � � ���	�	� � � � � � � � for some � in � , then ��
���� � � �	�	��� �
���� � � � � � � . Now, let � be a � -

CNF formula. Recall that a truth assignment is a mapping from the set of variables of � to

�3���	�3� . Moreover, a truth assignment satisfies a clause � � :
 �����
 � � � exactly when
 does

not map the tuple � � � :
�	�	����� � � � � to the tuple � ���	���	� �C� � , and similarly for the other types of

clauses that have one, two, or more negations. Thus, we observe, as Feder and Vardi [FV98]

do, that the satisfying truth assignments of � are exactly the homomorphisms between � � ��� ,

the structure encoding � , and the following structure:

� � � �3���	�3�9���
�
	 ���

�
� �	���	�����

�
� �

�
�
	 � ��� �	�3� � � � � ���C� �	�
�	� �
� � �

�
�
� � ��� �	�3� � � � � ���C� �	�
�	� �
� � �

�	�	�

�
�
� � ��� �	�3� � � � � ���	� �	�
�	� ��� � � � �

The structure � will be called the template structure in the future. This interpretation of

satisfiability in terms of homomorphisms will be exploited later.

5.3 Random Model of CNF Formulas

Let � , B and � be positive natural numbers. Let � � � �
B�� � � be the set of all � -CNF

formulas on the variables ��� � �	���	� � � 0 � with exactly B clauses each of which has exactly �

literals on distinct variables. We let
+ � � �CB�� � � be the uniform distribution on the sample

106

space � � � �
B�� � � . Observe that a particular formula � �
� � � �	��� � � � of the sample space

has probability �
- ��� � ����� � � �

Alternatively,
+ � � �
B�� � � can be described as the result of independently repeating the fol-

lowing experiment B times: choose exactly � variables from ��� � �	�	��� � � � � , and negate each

variable independently with probability �	J - . We will use this interpretation whenever it is

convenient. The ratio BKJ�� is denoted by � , and is called the clause density. Usually, � is

fixed to a constant and therefore B � � � is determined by � . We are interested in studying

the asymptotic properties of a randomly chosen formula � �
+ � � � � � � � � as � approaches

infinity.

It is well known that when the clause density � exceeds a certain constant that only

depends on � , a randomly chosen formula is almost surely unsatisfiable. Let us remind the

simple argument. Let
 � �������3� 0 � ��� �	�3� be a truth assignment. Observe that probability

that a randomly chosen clause is falsified by
 is �	J - � since all chosen variables need to be

assigned the wrong polarity. Therefore, the probability that the clause is satisfied by
 is

� � ���	J - � � . Now, by independence of the clauses, the probability that a randomly chosen

formula � is satisfied by
 is

� � � �
- � � �

� " � � � � � �

Here we used the fact that � � � � " � for every real number � . If we let � be the random

variable that counts the number of satisfying assignments of a randomly chosen formula � ,

107

we have that � � � � � - 0 " � � � � �
by linearity of expectation. By Markov’s inequality

� � ��� � � � � � ��� � � - 0 " � � � � �
� - 0 " � � 0 � � � �

Finally, if � � - � ��� �G- � , the formula is unsatisfiable with probability approaching � as �

approaches � . When � � � , this bound gives the well-known number
�� ��� .

5.4 Main Result and Discussion of Proof Techniques

Let �
� � � 0 be the class of all structures of the form � � ��� where � is a 3-CNF

formula on at most � variables. Let � � � � 0 � � � � � 0 be the class of all structures of

the form � � ��� where � is a satisfiable 3-CNF formula on at most � variables. Similarly,

let � � � � � � 0 � � � � � 0 be the class of all structures of the form � � ��� where � is an

unsatisfiable 3-CNF formula on at most � variables. The main result of this chapter is the

following:

Theorem 11 For all constants
�
� � , � � � , and for all sufficiently large � , if

�
0 � �

� � � 0
is such that

(i)
�
0 � �

� � � � � 0 and

(ii) � � � � � ��� � �
0 � �

�
when � is drawn from

+ � � � � � � � � ,

then
�
0 is not definable in � � � � $ on �

� � � 0 for � � � J � ��� � � � � � .

In words, what this result says is that every property of 3-CNF formulas that implies

unsatisfiability and is expressible in � � � � $ with � � � J � ��� � � � � � must have asymptotic prob-

108

ability � . Let �
� � � � & 0�(� �

� � � 0 and �
� � � � � � & 0�(� �

� � � � � 0 . Since � -Datalog

is included in � � � � $ by Corollary 2, the following follows:

Corollary 3 Every Datalog Boolean query on � � � � that implies �
� � � � � must have

asymptotic probability � in
+ � � � � � � � � .

Theorem 11 is an inexpressibility result since it asserts that certain Boolean queries

are not expressible in � � � � $ on �
� � � . The purpose of the rest of this section is to discuss

the techniques that are available to prove such a result.

Consider the following game played by two players, Spoiler and Duplicator, on a

board formed by two structures � and
�

over the same relational vocabulary. Each player

has � pebbles numbered ��� �	�	��� � � � . At each round of the game, Spoiler can make one of

two different moves: either he places a free pebble over an element of � , or he removes

a pebble from a pebbled element of � . To each move of Spoiler, Duplicator must respond

by placing her corresponding pebble over an element of
�

, or removing her corresponding

pebble from
�

respectively. By corresponding pebble we mean the pebble that has the same

number as that chosen by Spoiler. If a round is reached in which the correspondence � L �� � L
that assigns pebbled elements of � to the corresponding pebbled elements of

�
is not a partial

homomorphism between � and
�

, then we say that Spoiler wins. Otherwise, Duplicator wins.

Recall that a partial homomorphism from � to
�

is a function
�� � � � � � , where
� ��� �

and� � ��� , such that if � � ���	�	� � � � � � � and ��� � ���	�	� � � � � � � � , then ��
���� � � �	���	���
���� � � � � ��� .

The following definition makes the game formal:

Definition 17 Let � be a relational vocabulary, and let � and
�

be two structures over � . A

109

winning strategy for Duplicator in the existential � -pebble game on � and
�

is a non-empty

set
�

of partial homomorphisms from � to
�

such that:

(i) If
 � �
, then � � Q�P���
�� � � � .

(ii) If
 � �
and � ��
 , then � � �

.

(iii) If
 � �
, � � Q�P�� � � � � � and � � � , then there is some ��� � and � � �

such that

 � � and �6� � Q�P�� � � .

The main result about existential � -pebble games is that they characterize express-

ibility in the logic � � � � $ in the following sense:

Theorem 12 [KV00a] Let � be a relational vocabulary, let � be a class of finite structures

over � , and let � be a Boolean query on � . Then, the following are equivalent:

(i) � is definable in � � � � $ on � ,

(ii) For every two structures � � � � � , if � � � � and Duplicator wins the existential

� -pebble game on � and
�

, then
� � � � .

Equipped with the tool of the existential pebble games, the proof of Theorem 11 will

proceed as follows. Suppose that
�
0 satisfies conditions (i) and (ii) in the hypothesis of the

theorem, and that
�
0 is definable on �

� � � 0 by an � � � � $ -sentence � with � � � J � � � � � � � � .
The core of the proof will be a probabilistic argument that, using (ii), will show that there

exists some 3-CNF formula � such that � � ��� � �
0 and Duplicator wins the existential � -

pebble game on � � ��� and � , where � is the template structure defined in Section 5.2. Then

we apply Theorem 12 and infer that � � � � , and so � � �
0 because � � � � � � 0 and �

110

defines
�
0 on �

� � � 0 . By (i), � must be the encoding of an unsatisfiable 3-CNF formula.

However, this is absurd because the identity mapping is a trivial homomorphism from � to � .

Indeed, � is the encoding of the unique 3-CNF formula on the variables ��� � � � � � that contains

every clause except those falsified by the truth assignment � � �� � and � � �� � . Consequently,

� is the encoding of a satisfiable 3-CNF formula.

5.5 Extension Axioms and the Matching Game

In order to execute the proof idea that we outlined in Section 5.4 we will need to

develop some combinatorial machinery. We do it in this section.

A directed graph � � ��� ��� � is called bipartite if there is a partition of the set

of nodes � into two sets
�

and # such that � � � � # . A partial matching � of � is a

subset of the edges not sharing an endpoint. If �
� � � � � � , we write � �
� � � � . Note that

this notation is not ambiguous. We say that � is defined on � , and we define the domain

� Q9P � � � of � as the set of nodes of
�

on which � is defined. We also define the range

�
� � � � � of � as � � �
� ��� � � � Q�P�� � � � . If

� � �
, we say that

�
is matchable into #

in � if there exists a partial matching � of � such that
� Q9P � � � �

�
. If � � �

, we let

��� �
� � � ��� � # ��� � � � � � � � , and if �K� # , we let ��� � � � � � � � � ��� � � � � � � � . The

left-degree (resp. right-degree) of � is the maximum size of ��� �
� � as � ranges over
�

(resp.

). If
� � �

, then ��� � � � � &
�
� � ��� �
� � . For � � � , we say that � is an � � � � � -bipartite

expander if for every
� � �

of size at most � , the size of ��� � � � is at least � ��� � � � � � . Observe

that in an � � � � � -bipartite expander, every subset of
�

of size at most � is matchable into # .

111

This is true by Hall’s Theorem:

Theorem 13 (Hall’s Theorem) If � � � � � # ��� � is a bipartite graph on
�

and # , and� � �
, then

�
is matchable into # in � if and only if � ��� ��� � � � � � � for every � � � .

Observe also that an immediate consequence of Hall’s Theorem is that if
� � �

is

minimally non-matchable into # , then � ��� � � � � � � � � . We will use this observation later.

Let � � � � � # � � � be a bipartite graph on
�

and # . The matching game on �

with � fingers was introduced by Ben-Sasson and Galesi. The game is played by two players:

Prover and Disprover. Each player has � fingers numbered �9���	���	� � � � . In each round of the

game, Prover may place a finger over an uncovered node in
�

or remove a finger from a

covered node in
�

. If Prover places a finger over node � � �
, Disprover must place her

corresponding finger over an uncovered node in ��� �
� � � # . If Prover removes a finger from

a node in
�

, Disprover must remove her corresponding finger from # . The game is over when

Disprover is not able to answer to a move of the Prover. In that case, we say that Prover wins

the game. If Disprover can make the game go on forever, we say that Disprover wins the game.

Notice that at every non-final round, the fingers placed on � determine a partial matching of

� . The goal of Disprover is to maintain a partial matching forever.

Ben-Sasson and Galesi found a sufficient condition on the graph � that guarantees

a win for Disprover. They proved that if � is an � � � � � -bipartite expander, then Disprover wins

the matching game with � � � � J �A- � � � fingers. Although our main result would already

follow from this, we prefer to give an alternative and self-contained proof of a similar result

with the aim of isolating the extension axioms on which the strategy of Disprover relies. The

112

result that we obtain is that if � is an � � � � � -bipartite expander of left-degree at most
�
, then

Disprover wins the matching game with � � � � J � � � � � fingers. Although our result is weaker

than the one of Ben-Sasson and Galesi, our proof is somewhat simpler (Claim 4.6 and 4.7 in

[BSG01] are avoided). Moreover, we will consider bipartite graphs whose left-degree is � , and

therefore the weakness of our result is really minor.

Let us isolate an important property of bipartite graphs.

Definition 18 Let � � � , let � � � � � # � � � be a bipartite graph on
�

and # , and let
� � �

and � �'# be such that � � � � � � � � � . We say that � � � � � � � satisfies the � � � � � -matching

property if the following holds: For every
� � � � � of size � � � � � , there exists a partial

matching from
�

to # � � in � .

The following is the main result of this section.

Theorem 14 If � is an � � � � � -bipartite expander of left-degree at most
�
, and � � � � J � � � � � ,

then Disprover wins the matching game on � with � fingers.

Proof : The strategy of Disprover is to guarantee that � � � � Q�P � � 	 � � �
� � � � 	 � � satisfies the

� � � � � -matching property, where � 	 is the partial matching of the game at the end of round

� . Observe that � � � � � � � satisfies the � � � � � -matching property because in an � � � � � -bipartite

expander, every subset of
�

of size � is matchable into # . The following two lemmas will

be used to show that Disprover can reply to the moves that Prover makes according to her

strategy.

113

Lemma 8 (Extension Axiom) If � � � � � � � satisfies the � � � � � -matching property, � � � � � ,

and � � � � � � � � � , then there exists ��� � � �
� � � ��# � � � such that � � � � � � � ��� � � ��� � �
satisfies the � � � � � -matching property.

Proof : Let ��� � �	���	�������
� � ��� �
� � � ��# � � � . Clearly " � �
because the left-degree of � is at

most
�
. Also " � � because � � � � � and every subset of

� � � of size � � � � � � � � � � �

is matchable into # � � . Let
� � �

� � � � � , and for every @ ����� �	�	��� � " � let � L � � � ��� L � .
Note that � � � � � � � L � � � since � � � � � � � � � . Suppose for contradiction that � � � � � � � L �
does not satisfy the � � � � � -matching property for any @ � �9���	���	� � " � . Let

� L � � � � � be of

size � � � � L � and non-matchable into # � � L . Let � L � � L be minimally non-matchable into

� � L . Necessarily, � � � � � L � � ��# � � L � � � � � L � by Hall’s Theorem. The rest of neighbors

of � L can only be in � L , so

� ��L � � � �"L � � � ��� � ��L � � � � � � � � � ��L � (5.1)

for every @ � �������	����� " � . Recall that � � L � � � � L � � � � � � L � � � and the expansion property

of � for the second inequality. We derive a lower bound on � � L � for some @ ���9���	���	� � " � . We

first claim that &
�

L � � � L � � � � is not matchable into # � � . Indeed, suppose that � � � is

such a matching, and let � L be the image � � � L � of � L . Then � L � � L since � L is minimally

non-matchable into # � � L . Therefore, � cannot be matched to any of its neighbors in # � � ; a

contradiction. Now, since &
�

L � � � L � � � � � � � � and � � � � � � � satisfies the � � � � � -matching

property, we conclude that
�
�
�
�
�

��
L � �

� L � � � �
�
�
�
�
�
� � � � � � �

114

Therefore, using � � L � � � � � � � , there must exist some @ ���������	��� � " � such that

� � L � �
� � � � L �

" �
� � � � L �� �

Plugging this bound into (5.1) we get

� � L � � � �
� � �

� � �

a contradiction. ��
Lemma 9 (Retraction Axiom) If � � � � � � � satisfies the � � � � � -matching property and �
� ��� � �
� � � � � � � , then � � � � � � � �9� � � � ��� � satisfies the � � � � � -matching property.

Proof : Let
� � �

� � � � � and � � � � � ����� . Clearly � � � � � � � � � � � . Let
� � � � � �

be of size � � � � � � . Suppose first that � � �
. Then

� ��� � � � � � � and has size

� � � � � � � � � � � � � � . Therefore,
� �&� � � is matchable into # � � since � � � � � � � satisfies

the � � � � � -matching property. It follows that
�

is matchable into # � � � by adding the edge

� � � � � to that matching. Suppose next that �
�� �

. For every � � �
, the set

� �K� � � � � � �
is matchable into # � ��� # � � � since � � � � � � � satisfies the � � � � � -matching property. It

follows that if
�

is not matchable into # � � � , then it is minimally non-matchable, and so

� � � � � � � ��# � � � � � � � � � by Hall’s Theorem. The rest of neighbors of
�

can only be in � �
and therefore

� � � � � � � � � � ��� � � � � � � � � � � � � � �

Recall that � � � � � � � � � � � � and the expansion property of � for the second inequality. We

conclude that

� � � � � � �� � �
� � �

� � �
� � �

115

a contradiction. ��
We complete the proof. Suppose that � � � � Q�P � � 	 � � �

� � � � 	 � � satisfies the � � � � � -
matching property. Consider the move of Prover at time � � � . If Prover places a finger over an

uncovered node � � � � � Q�P � � 	 � , Disprover answers by some � � ��� � � � � ��# � �
� � � � 	 � �

such that � � � � Q�P � � 	 � � � � ��� �
� � � � 	 � � ��� � � satisfies the � � � � � -matching property. Such

a � exists by Lemma 8 because � � Q�P�� � 	 � � � � �
� � � � 	 � � � � . If Prover removes a finger

from a node � � � Q9P � � 	 � , Disprover removes the corresponding finger from � � � 	 �
� � , and

� � � � Q9P � � 	 � � � � �9� �
� � � � 	 � � ��� � � satisfies the � � � � � -matching property by Lemma 9. ��

5.6 Proof of Main Result

Let � �
� � � �	��� � � � be a 3-CNF formula on the variables � � �	�	����� � 0 . We define

the incidence graph � � ��� of � as follows: � � ��� is a bipartite graph on the sets of nodes

� � � ���	����� � � � and ��� � ���	����� � 0 � , and � �
L ��� � � is an edge in � � ��� if and only if � � � # � � � �

L � .
Here # � � � �

L � is used to denote the set of variables that occur in
�
L . Notice that the left-degree

of ��� ��� is at most � .

Let � be a 3-CNF formula, let # be a set of variables from � , and let � � � be the

subset of the clauses of � that mention some variable from # . In symbols,

� ��� � � � � # � � � � � � # �
� � ���

Let � be a partial matching of ��� ��� such that
� Q�P�� � � � � . We define the partial truth

assignment � corresponding to � and # as follows: For every � �� # , the partial truth assign-

ment � is undefined on � . If � � # and � � � � � � for some
� � � , then � ��� � �+� if � occurs

116

both positively and negatively in
�

, � ��� � � � if � occurs positively in
�

only, and � ��� � � �

if � occurs negatively in
�

only. Finally, if � � # but � �� �
� � � � � , then � ��� � ��� . Note that

� is well-defined because � is a partial matching. In the following, we say that a partial truth

assignment � falsifies a clause
�

if � sets all literals of
�

to � .

Lemma 10 Let � be a 3-CNF formula and let � be the partial truth assignment corresponding

to some partial matching � of � � ��� and some set of variables # . Then � does not falsify any

clause from � .

Proof : Let � be the set of clauses from � that mention some variable in # . Let
�

be an

arbitrary clause from � . If
� �� � , then every variable of

�
is left undefined by � and

�

cannot be falsified. If
� � � , then � � � � occurs in

�
and � � � � � � � is set to satisfy

�
. ��

The next result connects the Matching Game and the Existential Pebble Game.

Theorem 15 Let � be a 3-CNF formula such that � � ��� has right-degree at most � . If Dis-

prover wins the matching game with � fingers on � � ��� , then Duplicator wins the existential

H � J � M -pebble game on � � ��� and � .

Proof : Let � � � � ��� and ��� � H � J � M . Thus, � is a bipartite graph between the clauses and

the variables of � . Duplicator will simulate a play of the matching game on � on the side

trying to satisfy the following condition: Clause
�

has a finger on in it in the matching game

at time � if and only if some variable � � # � � � � � has a pebble on it in the existential � � -pebble

game at time � . In other words, if # 	 is the set of pebbled variables in the existential � � -pebble

game at the end of round � , and � 	 is the set of clauses of � that mention some variable in # 	 ,

117

then � 	 is the set of fingered clauses in the matching game at the end of round � . Since at most

��� variables are pebbled simultaneously in the existential � � -pebble game, and since the right

degree of � is at most � , at most � � � � � fingers will be required. Duplicator will make use of

the winning strategy of Disprover in the matching game on � with � fingers. In the following,

let � 	 be the partial matching in the matching game at the end of round � . Note that � 	 � �

and
� Q�P � � 	 � � � 	 . We consider the two possible moves of Spoiler at time � � � separately.

If Spoiler puts a pebble on variable � , Duplicator responds as follows. Let � �

� � � ���	����� � �=� be the set of clauses of � on which variable � occurs. Duplicator considers each

clause of � one at a time, starting by
� � . If

� � does not have a finger on it in the matching

game at time � , Duplicator simulates the winning strategy of Disprover as if Prover had placed

a finger over
� � , and proceeds to

� � . Otherwise, she proceeds to
� � directly. This procedure

is repeated until
� � is considered and treated. Let �) � be the partial matching in the matching

game at that point. Then Duplicator replies in the existential � � -pebble game as follows: If

some
�
L exists such that �) � �

�
L � � � , Duplicator answers � if � occurs both positively

and negatively in
�
L , answers � if � occurs positively in

�
L only, and answers � if � occurs

negatively in
�
L only. Otherwise, Duplicator answers � . Note for the record that Duplicator

is answering consistently with the partial truth assignment corresponding to �) � and #) � ,

the partial matching and the set of pebbled variables in the existential � � -pebble game at time

� � � .

If Spoiler removes a pebble from variable � , the answer of Duplicator is clear: she

removes the corresponding pebble from � . However, she will need to do some bookkeeping

in the matching game: Let � � � � � �	���	��� � � � be the set of clauses of � on which variable

118

� occurs. Duplicator considers each clause of � one at a time, starting by
� � . If some other

variable � � # � � � � � � � � � � has a pebble on it in the existential � � -pebble game at time � ,

Duplicator proceeds to
� � . If there is no �S� # � � � � � � � � � � as above, Duplicator simulates

the matching game as if Prover had removed his finger from
� � . Then Duplicator proceeds

to
� � . This procedure is repeated until

� � is considered and treated. Let �) � be the partial

matching in the matching game at that point.

We need to argue two points: (1) that Duplicator can follow this strategy, and (2)

that if she does, she wins the existential � � -pebble game on � � ��� and � . For (1), recall that

each variable occurs in at most � clauses, and therefore, since at most � � � H � J �3M variables are

pebbled in the existential � � -pebble game, at most � fingers are used in the matching game. It

follows that Duplicator can simulate the winning strategy of Disprover in the matching game.

For (2), suppose that Spoiler has not won at time � ; we show that he does not win at time � � � .
When Spoiler removes a pebble, Duplicator cannot loose since she removes the corresponding

pebble from � . When Spoiler puts a new pebble, Duplicator answers according to the partial

truth assignment corresponding to the partial matching �) � and the set of pebbled variables

#) � , and this cannot falsify a clause from � by Lemma 10. This completes the proof of the

Theorem. ��
Finally, we are ready for the proof of the main result. Let us recall the statement of

the theorem:

Theorem 16 For all constants
�
� � , � � � , and for all sufficiently large � , if

�
0 � �

� � � 0
is such that

119

(i)
�
0 � 3UNSAT 0 and

(ii) � � � � � ��� � �
0 � �

�
when � is drawn from

+ � � � � � � � � ,

then
�
0 is not definable in � � � � $ on �

� � � 0 for � � � J � ��� � � � � � .

Proof : Fix
�
� � , � � � , and let � be large. Let � � � J � ��� � � � � � . Suppose for contradiction

that
�
0 satisfies (i) and (ii), and � is an � � � � $ sentence defining

�
0 on �

� � � 0 . We will show

that there exists a 3-CNF formula � such that � � ��� � �
0 and � � ��� is an � � J ��� � � � �	�	J � � -

bipartite expander of right-degree at most � � � � � � � J�� � and left-degree at most � . This will be

enough because then: (1) � � ��� � � � and (2) Duplicator wins the existential � -pebble game

on � � ��� and � by Theorem 14 and Theorem 15. This means that � � � � by Theorem 12,

so that � � �
0 � 3UNSAT 0 ; a contradiction since � is isomorphic to a satisfiable 3-CNF

formula on at most � variables (in fact, on two variables).

Let us prove the existence of � as above by the probabilistic method. First we

bound the probability that the right degree of � � ��� is bigger than � . Let � � � ��� ��� � denote

the right-degree of the bipartite graph ��� ��� .

Lemma 11 Let � be drawn from
+ � � � � � ��� � . Then,

� ��� � � � � � ��� � � ��� � � � � " �� �
�
�

Proof : Note that a variable � L occurs in a random clause with probability
� 0 ���� � � 0 � � ��� � ��J � .

For every @ � ��� �	�	��� �C� � , let � L be the random variable that counts the number of clauses of

� in which variable � L occurs. By the above, the expectation of � L is � � � � J�� � � � . More

120

important,

� � ��� L � � � � � � �
� � � �� �

�
� � � � "

� �
� � �� �

�
�
� � " �

� �
�
�

Here we used the well-known inequality � 0 � � � � � " J � � � that is derivable using the fact that

��� � ��� J " � � . Now, let � be the random variable that counts the number of @ � �9���	���	� �C� �

such that � L � � . The expectation of � is at most � � � " � J � � � . Therefore, the probability that

�	� � is at most � � � " � J � � � by Markov’s inequality. ��
Next we bound the probability that ��� ��� is not an � � � � � -bipartite expander.

Lemma 12 Let � � � and � � � be such that � ��� � � � � � and let � be drawn from

+ � � � � � ��� � . Then,

� � � � � ��� not � � � � � -bipartite expander � �
� � � � � �

�� � � �

where
�

� � " �) � � ��� � � � � � � � J � � � � � .

Proof : Write � � ��� ��� � � � � � � � ��� � . Let � � � � � . We bound the probability that for

a fixed set
� � � � of size @ � � and a fixed set # � � � of size �I@ it holds that ��� � � � �
.

For a fixed � � �
, the probability that ��� �
� � � # is bounded by

� � L� � � 0 � � ��� . Since each

clause is drawn independently of the rest, the probability that ��� � � � � # is bounded by�� � � L� �
� 0 � �

�� L
� � �I@� � � L �

Here we used the fact that � 0 � � J � �
� � � � � J�B � � if � � B . Therefore, the probability that �

is not an � � � � � -bipartite expander is bounded by

��
L � �

� � �
@ � � ��I@ � � �I@� � � L �

��
L � �

� � � "
@ � L � � "� @ � � L � �I@� � � L �

121

�

��
L � �

�
� " �) � � � � � � � � � � @� � � � ��� L �

The largest term into brackets is achieved when @ � � . Thus, we can bound the sum by

��
L � �

� L �
� � � � � �

�� � �

as was to be proved. ��
Finally, we bound the probability that the right-degree of � � ��� is bigger than � , or � � ��� is

not an � � � � � -expander, or � � ��� does not belong to
�
0 by

� � � " �
� �

�
� � � � � � �

�� � � � � � � � (5.2)

From our choice of � � ��� � � � J�� � , � ��� J ��� � � � , and � � �	J � , we immediately see that (5.2)

is strictly smaller than � for sufficiently large � (recall that
�
� � and � � � are constants).

Thus, some � must exist for which � � ��� is an � � � � � -expander of right-degree at most � , and

� � ��� belongs to
�
0 . This completes the proof of the Theorem. ��

122

Chapter 6

Consequences for Proof Complexity

6.1 Easier Games

The aim of this section is to show that certain combinatorial statements such as the

Pigeonhole Principle, when encoded as contradictory sets of clauses in the spirit of Cook and

Reckhow [CR79], may yield structures on which playing pebble games is easier than expected.

The Pigeonhole Principle states that there is no one-to-one mapping from a set of

�K��� pigeons into a set of � holes. This statement may be expressed in propositional logic

as follows: For @ � �������	�	� �
�S� ��� and � �+�9���	���	���
�I� , let � L � � be a propositional variable

meaning that pigeon @ is sitting in hole � . The clause � L � � L � �

 �	�	�
 � L � 0 says that pigeon

@ sits in some hole. The clause � L � �� � � � L � �
 � � � � � for @ �
� � says that pigeons @ and

� cannot sit in the same hole � . The conjunction ����� 0*) �0 of all the clauses � L and � L � ��
is an unsatisfiable CNF since it expresses the negation of the Pigeonhole Principle. Note

that �����60) �0 is not a 3-CNF formula since the clauses � L involve � literals. However, it

123

is easy to turn it into an equivalent 3-CNF as follows: For every @ � �������	�����C�K� �3� and

� �+�3���	���	� �C� � , let � L � � be a new propositional variable. Then � � L is the following 3-CNF

formula: � � L � 	
� � 0� � � � � L � � ���
 � L � �
 � � L � ���

� � L � 0 . Finally, the 3-CNF formula � ��� � 0*) �0
expressing the negation of the Pigeonhole Principle is the conjunction of all clauses � � L and

all clauses � L � �� . Here is our promised result about pebble games and the Pigeonhole Principle:

Theorem 17 Duplicator wins the existential � -pebble game on � � � �����"0*) �0 � and � .

Proof : Consider the following strategy for Duplicator. She will keep track of a partial match-

ing � 	 in the complete bipartite graph � 0) �0 that satisfies the following property: Pigeon

@ ����� �	�	��� �C�I� �3� belongs to
� Q9P � � 	 � if and only if some variable of pigeon @ is pebbled at the

end of round � . Of course, the variables of pigeon @ are � L � � �	���	��� � L � 0 and � L � 	 �	���	����� L � 0 . Notice

that if there are � pebbles on the board at the end of round � , then � � Q�P � � 	 � � � � �
� � � � 	 � � � � .

Initially � 	 � � . Let us consider the possible moves of Spoiler at time � � � separately:

If Spoiler places a pebble over a variable � L � � , Duplicator acts as follows: If @ �
� Q9P � � 	 � , Duplicator answers � if � � � 	 �G@ � and � otherwise. In that case, �) �

� � 	 . If

@ �� � Q�P�� � 	 � , Duplicator finds some � � �����	���	� �C� ��� �
� � � � 	 � and sets �) �

� � 	 � � �A@ � � � � .
Note that such a � exists since at most ���+� pebbles are placed on the board at the end of

round � , and therefore � � Q�P�� � 	 � � � � �
� � � � 	 � � � � � � . Then she answers � if � � � and �

otherwise.

If Spoiler places a pebble over a variable � L � � , Duplicator acts as follows: If @ �
� Q9P � � 	 � , Duplicator answers � if � � � 	 �G@ � and � otherwise. In that case, �) �

� � 	 . If

@ �� � Q�P�� � 	 � , Duplicator finds some � � �����	���	� �C� ��� �
� � � � 	 � and sets �) �

� � 	 � � �A@ � � � � .
124

Such a � exists for the same reason as above. Then she answers � if � � � and � otherwise.

If Spoiler removes a pebble from a variable, the answer of Duplicator is clear: she

removes the corresponding pebble in � . However, she will need to do some bookkeeping in

the partial matching � 	 . Suppose that the variable from which Spoiler removed the pebble

belongs to pigeon @ . If no other variable of pigeon @ is pebbled at time � , Duplicator sets

�) �
� � 	 � � �A@ � � 	 �G@ � � � . Otherwise, Duplicator sets �) �

� � 	 .

It is not hard to see that Duplicator wins the existential � -pebble game when playing

according to this strategy since a clause is never falsified. ��
We can do the same with a form of the Pigeonhole Principle that is based on a

bipartite graph. Let
�

and # be disjoint sets of sizes � � � and � respectively. Let � �

� � � # � � � be a bipartite graph on
�

and # . Obviously, there is no matching from
�

into # .

This is expressed by the conjunction of the following set of clauses on the variables � � � � � �
� � � � � � � � . For every � � �

, let � � �
�

/ � � � 2
��� � � � � , and for every �
� � ��� � � � � � � � � ,

�
�

� � , let � � � �� � ��� � � �
 ��� � � � . We write � - ����� for the conjunction of these clauses.

Observe that if � � � 0) �0 , then � - ����� coincides with ��� � 0) �0 . Observe also that if �

has left-degree at most � , then � - ����� is a � -CNF.

We assign a partial truth assignment � to every partial matching � in � . For every

� � � Q�P�� � � , let � ��� � � � / � 2 � � � and � � � � � � � � � for every ��� # ��� � �
� � � such that

� � � � � � � .

Lemma 13 Let � � � � � # ��� � be a bipartite graph, let � be a partial matching in � , and

let � be the partial truth assignment corresponding to � . Then, � does not falsify any clause

125

from � - ����� .

Proof : The clauses of the form ��� � : � �
 ��� � � � � are not falsified by � since at most one of

� ��� � � � or �
� � � � � is in the partial matching � . Similarly, the clauses of the form � � � � :

�	�	�

� � � ��� are not falsified by � since if � ��� � � �
 � � � for some � � �9���	���	��� � � , then � ��� � � � 	 � � �

for some other @ ���������	��� � � � . ��
Theorem 18 If � � � � � # � � � is an � � � � � -expander of left-degree at most

�
, and � �

� � J � � � � � , then Duplicator wins the existential � -pebble game on � � � - ������� and � .

Proof : We design a strategy for Duplicator to win the existential � -pebble game on the struc-

tures � � � - ������� and � . Duplicator will simulate the play of a matching game on � on the

side trying to satisfy the following condition: Node � � �
has a finger on it in the matching

game at time � if and only if there exists some � � ��� �
� � such that � � � � has a pebble on it

in the existential � -pebble game at time � . This condition is clearly satisfied at time � � � .
Duplicator will make use of the winning strategy of Disprover in the matching game on �

with � fingers. In the following, let � 	 be the partial matching in the matching game at time � ,

so that � 	 � � . We consider the two possible moves of Spoiler at time � �+� separately.

If at time � � � Spoiler removes a pebble from variable � � � � in the existential � -

pebble game, Duplicator acts as follows: Note that � must have a finger on it at time � in the

matching game since � � � � has a pebble at time � in the existential � -pebble game. Thus, � 	 � � �

is well-defined. If some � � # � � � 	 �
� � � exists such that the variable � � � � is pebbled in the

existential � -pebble game, Duplicator does nothing in the matching game, so that �) �
� � 	 .

Then she removes the pebble from � corresponding to � � � � in the existential � -pebble game.

126

On the other hand, if no � � # � � � 	 �
� � � exists as above, Duplicator removes the fingers

from nodes � and � 	 �
� � in the matching game as if Prover had removed his finger from node �

and Disprover had responded accordingly. Thus, �) �
� � 	 �&� �
� � � 	 �
� � � � in that case. Then,

she removes the pebble from � corresponding to � � � � in the existential � -pebble game.

If at time � � � Spoiler places a pebble over variable � � � � in the existential � -pebble

game, Duplicator acts as follows: If � has a finger on it in the matching game already, Dupli-

cator does nothing in that game, so that �) �
� � 	 . Then, in the existential � -pebble game,

she answers � if � � � 	 �
� � , and � otherwise. If � did not have a finger in the matching game,

Duplicator finds some � � # to match � according to the winning strategy of Disprover as if

Prover had placed a finger over � in the matching game. Thus, �) �
� � 	 � � � � � ��� � in that

case. Then, in the existential � -pebble game, she answers � if � � � and � otherwise.

We need to argue two points: (1) that Duplicator can follow this strategy, and (2)

that if she does, she wins the existential � -pebble game on � � ��� and � . For (1), observe that

since at most � pebbles are involved in the existential � -pebble game, at most � nodes from

�
have a finger in the matching game. It follows that Duplicator can always find the required

� when needed according to the winning strategy of Disprover in the matching game. For

(2), suppose that Spoiler has not won at time � ; we show that he does not win at time � ��� .
If Spoiler removed a pebble from variable � � � � , say, Duplicator cannot lose there since she

removed the corresponding pebble in � . If Spoiler placed a pebble over variable � � � � , say,

Duplicator will always answer according to the truth values inferred by a partial matching on

� , and these never falsify a clause from � - ����� by Lemma 13. This completes the proof of

the Theorem. ��
127

6.2 On the Complexity of Resolution

Resolution is probably the most popular proof system for propositional logic. There

is only one rule: from clauses
� � � � � and � � � ��� � derive

� � � . A Resolution refutation of

a CNF formula � is a sequence of clauses ending with the empty clause ��� , each of which is

either (1) a clause of � , (2) a clause appearing earlier in the sequence, or (3) follows from two

previous clauses in the sequence by the Resolution rule. The length of a Resolution refutation

is the length of the sequence of clauses. The width of a Resolution refutation is the maximum

number of distinct literals in a clause of the refutation.

Theorem 19 There exists a -�� -Datalog sentence � such that for every 3-CNF formula � , the

following holds:

(i) If � has a Resolution refutation of width � , then � � ��� � � � .

(ii) If � � ��� � � � , then � has a Resolution refutation of width -�� .

Proof : Consider the following set of Datalog rules. For every � and @ such that � � @ � � �

-�� , let � �

L be a new predicate symbol of arity � . Consider the following rule that we call (A):

� �L ���
�
� � � � � � � � � � L ���
� � � � � � � �

The meaning of (A) is that every clause of � is derivable. Add also the following rules that

we call (B) and (C) respectively:

� �

L ��� �
�	�	��� � � � J ��� ���	�	� � ��� J � � ���	�	� � � L ��� � ���	������� � � L � � � � �

L ��� �
�	���	��� � L ��� � �	�	��� ��� � � L �

� �

L ��� �
�	�	��� � � L ��� � �	���	����� � � J � � � ���	������� � � J � � � ���	������� � � L � � � � �

L ��� �
�	���	��� � L ��� � �	�	��� ��� � � L �

128

where � � � ��� � @ in (B), � � � � ��� � � � � @ in (C). The meaning of (B) is that if the

clause � ��� � �	�	����� ��� L ��� � �	���	����� � � L � is a derivable, then any result of permuting two � -literals

in it is also derivable. Similarly for (C). The following four clauses are called (D), (E), (F) and

(G) respectively:

� �

L ���
���	�	� � � � � � �
� ���	����� � �

��� � �	���	� ��� � � L � � � � �

L ���
�	���	� � � � ��� � ��� �	���	��� � �

��� � �	���	����� � � L �

� �

L ��� �
���	��� � � L ��� � �	�	���������
��� ��� �	�	�
� ��� � � � � �

L ��� �
���	����� � L ��� � �	�	���������
�����
��� �	�	��� ��� �

� �

L ��� �
���	�	� � � L ��� � ���	������� � � L ��� ��� � � L ��� � � � � �

L) � � � �
� � � �	���	��� � L ��� � ���	�	� ��� � � L ��� �

� �

L) � �����
� �
� ���	�	� � � L ��� � ���	������� � � L ��� � � � � �

L ���
�
���	����� � L ��� � �	�	������� � � L ��� ��� � � L ��� �

where ��� � � @ � � in (D), ��� �O� � � @ � � in (E), and ��� @ � � � � in (F) and (G). The

meaning of rule (D) is that if � ��� �	�	����� ��� � ��� � � ����� �	���	��� ��� �
��� � �	���	����� � � L � is derivable, so

is the result of contracting one ��� � and adding one ��� . Similarly for (E). The meaning of

(F) is that if � ���
� � ����� �	�	����� ��� L ��� � ���	�	� ��� � � L ��� � is derivable, so is the result of contracting

one ���
� and adding one � � � L ��� . Similarly for (G). We introduce two rules that, together with

(B) ���	�	�
� (G) can be used to eliminate repeated literals. The rules are called (H), (I):

� �

L � ���
�	���	��� � L ��� � ���	�	� ��� � � L � � � � �) �

L ����� ���	�	� � � L ��� � ���	������� � � L ��� � � L �	���	����� � � L �

� �

L � ���
�	���	��� � L ��� � ���	�	� ��� � � L � � � � �) �

L) � ����� ���	�	� � ��� � �
� �	���	��� � L ��� � �	�	������� � � L � �

as long as � � � � -�� , � � @ � � in (H) and � � @ � � in (I). Next we introduce the rule

that simulates the Resolution rule that we call (J):

� �
:)

� � � ��
:)

� � ��� ��� � �	���	��� � �
:
� � � � �	���	��� � �� � ��� � �	���	����� � : �

�
:
��� �� ���	��� ��� �� � � � � ��� � � �

� � � �
:�
: � �
� � � �	�	����� � �

:
��� � ���	�	� ��� � : �

�
: �
� � � �� � ��� � � �	�	��� � � �� � ��� � � ���	�	� ��� �� � � � � ��� � � � �

129

where � � � � � � -��+-�� , �K� � � � � � and � � � � � � � . The meaning of (J) is that if the

clauses � � � � ��� � �	���	��� ��� �
:
��� � �	���	����� � : �

�
:
� and � ��� � � �	���	� � ��� �� � ��� �� ���	������� �� � � � � ��� � � � have

been derived, then the resolvent clause is also derivable by an application of the Resolution

rule. Note that the resulting clause may have repeated literals. Note also that we do not insist

that variable � appears only once in each clause in order to apply the Resolution rule. The

soundness of the rule is not lost and we will make use of this fact later. Finally, add a new

predicate symbol � and the rule (K):

� � � � �	 ��� � � � �� � � � �

The meaning of (K) is that if � � � and � ��� � are derivable, then � is refutable.

Let � be the conjunction of all these Datalog rules (ABCDEFGHIJK). Simple in-

spection reveals that each rule can be written with at most -�� variables. Thus, � is a -�� -Datalog

program. It is a routine task (but somewhat tedious) to check that if � has a Resolution refuta-

tion of width � then � � ��� � � � . Similarly, if � � ��� � � � then � has a Resolution refutation

of width -�� . The proof follows.

We first prove that if � has a Resolution refutation of width � , then � � ��� � � � .

Indeed, suppose that
� � � � � �	���	��� � � is a Resolution refutation of � of width � . We may

assume without loss of generality that
� � � � � � � � , � � ��� � � ��� � and

� � � ��� . For

� ����� �	�	�����CB � �3� , let us write
�
� � � ��� � � � �	���	��� ��� � � �
 ��� � � � �	�	������� � � �
 � where all displayed

variables are different and � � � � � � � . Let � � � ��� � � � be the width of
�
� . We will show,

by induction on � � �����	���	� �CB ����� , that

�
�

�
 ��� � � � �	���	��� � � � �
 ��� � � � �	�	��� ��� � � �
 �
130

is derivable from � � ��� and the Datalog rules. Fix ��� � and suppose that the claim holds for

all smaller values of � . If
�
� is a clause of � , the conclusion is immediate from rule (A), and

rules (B) �	���	��� (I). Suppose then that
�
� follows from

���
and

� � by the Resolution rule. Here

� � � � � . By induction hypothesis, we know that

� ���
��� ��� � � � ���	��� � � � � ��� ��� � � � ���	�	� ��� � � � � �

� ���
��� ��� � � � ���	�	� � � � � � � ��� � � � �	�	������� � � � � �

are derivable. Since
���

and
� � are resolved together to obtain

�
� , some variable must appear

negatively in
���

and positively in
� � , or conversely. Without loss of generality, let us assume

that the former holds. Using the rules (B) and (C), we may also assume that � � � � � � � � � � is the

cut variable � . Now let us apply the rule (J) to obtain

� � �) � � � ����) ��� ��� � � � � � �	�	����� � � � � � � � � � � ���	����� � � � � � ��� � � � ���	������� � � � � ��� � � � ���	������� � � � � ��� � �

Then apply the rules (B) �	���	�
� (I) to obtain

� � �) � � � ��
 ��� � � � ���	����� � � � �
 ��� � � � ���	�	� ��� � � �
 ��� � � �
 ���	������� � � �
 � �

or

� ���) ��� � �� �) � � � � ��� � � �
���	�	� � � � � � � � � � � ���	�	� � � � � �
 �

depending on whether � � � � or � � �+� respectively. Finally, apply the rule (H) or (I) to obtain

�
�

�
 ��� � � � ���	����� � � � �
 ��� � � � �	���	����� � � �
 � �

We have proved that � �	 ��� � and � �� ��� � are derivable. Thus, � is derivable, so � � ��� � � � .

131

Let us prove the reverse direction, namely that if � � ��� � � � , then � has a Resolu-

tion refutation of width -�� . In order to prove that, we will need to introduce a mild extension of

Resolution as an intermediary step. The new proof system incorporates the so-called weaken-

ing rule: from clause
�

, derive
� � � where � is an arbitrary clause. In Lemma 14 below, we

prove that weakenings may be eliminated without increasing the width, and therefore allowing

them cannot hurt. Next we prove that if

� �

L ��� �
�	���	��� � L ��� � �	���	����� � � L �

holds, then the clause

� ����� ���	�	� � ��� L ��� � ���	������� � � L � (6.1)

has a Resolution derivation with weakening from � in width -�� . The proof is by induction on

the stage � at which the tuple � �
� ���	�	� � � L ��� � ���	������� � � L � entered in the least fixed-point of the

Datalog rules. Let � � � and suppose that the claim holds for all smaller values of � . If the

tuple entered following rule (A), the claim is obvious since then (6.1) is an initial clause of � .

If the tuple entered following one of the rules (B) �	���	�
� (I), the claim is also clear since clauses

are sets of literals. Finally, if the tuple entered following the rule (J), we proceed as follows:

Let us rename �
� ���	����� � L ��� � �	�	������� � � L in the form of the conclusion of rule (J); that is

��� � � �	���	��� � �� :
� � � �� �	���	��� � � �� �

��� �� �	���	� ��� �� : �
�
:
��� � �� ���	��� ��� � �� � � � � ��� � � (6.2)

where both

� �
:�
: � �
� � � � �	�	����� � �� :

��� � � �	�	��� ��� �� : �
�
: �

� � �� � ��� � �� �	���	��� � � �� �
��� � �� �	���	����� � �� � � � � ��� � � �

132

hold and have entered in a previous stage. If � does not occur in (6.2), then (6.1) is simply the

result of resolving the clauses

� � � � ��� � � �	���	��� ��� �� :
��� �� �	���	� ��� �� : �

�
:
�

� ��� � �� �	���	� � ��� � �� �
��� � �� ���	�	� ��� � �� � � � � ��� � � �

on � . If on the contrary, � occurs in (6.2), then we may obtain (6.1) by weakening over one of

these two clauses. Which clause depends on whether � occurs positively or negatively. This

completes the proof of the Theorem. ��
Before we go on we need to address the following lemma that we left without proof.

The result it asserts is well-known, but we include a complete proof for completeness.

Lemma 14 Let
� � �	�	����� �

� be clauses. If � � � ���	����� �
� � has a Resolution refutation with

weakening of width � and length � , then it also has a Resolution refutation without weak-

ening of width at most � and length at most � .

Proof : We prove, by induction on B , that if � � �	���	��� � � is a Resolution derivation with

weakening, then there exist a Resolution derivation � � � �	�	����� � �� without weakening such that

� �L � � L for every @ ���������	�	� �CB&� . Let B � � and suppose that the claim holds for all smaller

values. Let � � � �	�	����� � �� ��� be the derivation claimed by the induction hypothesis. We consider

three cases according to the nature of � � . If � � is an initial clause, let � �� � � � and we

are done. If � � is derived from � � with � � B by weakening, we let � �� � � �� and we are

also done because � �� � � � � � � . If � � is derived from � � and � � with � � � ��B by a

cut with � � � � and ��� � � � , we consider three cases. If � appears in � �� and ��� appears in

133

� �� , we let � �� be the result of cutting � �� and � �� on � . Then

� �� � � �� � � �� � � � � ��� � � � � � � � � � � � ��� � � � � �

If � appears in � �� but ��� does not appear in � �� , we let � �� � � �� . Then

� �� � � �� � � �� � � � � ��� � � � � � � � � ��� � � � � �

Finally, if � does not appear in � �� , we let � �� � �-�� and again

� �� � � �� � � �� � � � � ��� � � � � � � � � ��� � � � � �

Since we covered all possible cases, this completes the proof of the lemma. ��
An immediate corollary of the proof of Theorem 11 and Theorem 19 is that every

Resolution refutation of a a random 3-CNF formula requires width � J - � ��� � � � with probability

approaching � as � approaches � . Now, Ben-Sasson and Wigderson [BSW01] proved that

if � is a 3-CNF on � variables that has a Resolution refutation of length � , then � has a

Resolution refutation of width , � � � � Q�� � � . Thus, we obtain a slightly weaker bound than

that of Chvátal and Szeméredi.

Corollary 4 Let � be drawn from
+ � � ��� � � � � . Then, almost surely, � is unsatisfiable and

every Resolution refutation of � requires size - � / 0 � / ��� 032 � 2 .

From Theorem 18 we can also obtain Haken’s lower bound:

Corollary 5 Every resolution refutation of ����� 0) �0 requires length - � /1032 .
134

Proof : It is known that there exist � � � � � �	�	J � � -bipartite expanders of left-degree � on sets

of size ��� � and � (an easy probabilistic argument as in the proof Theorem 11 does it).

Therefore, for such a bipartite expander � � � � � # � � � , every Resolution refutation of the

set of clauses � - ��� � requires width
� � � � by Theorem 18. Since the number of variables of

� - ����� is ,�� � � , we conclude from the size-width trade-off of Ben-Sasson and Wigderson

that every Resolution refutation of � - ����� requires size - � / 0�2 . Although the lower bound for

����� 0) �0 follows from this at once, we review the proof for completeness.

Suppose for contradiction that ����� 0) �0 has a resolution refutation of length -�� / 0�2 .
Let

� � ���	��� � �
� be such a refutation. Let � be the partial truth assignment to the variables

� � L � � � that sets � � � L � � � �+� if �A@ � � � �� � . Here we are assuming without loss of generality that

�
� �9���	���	���
�����3� and # � ��� �	�	��� �C� � . For every @ � �����	���	� � � � , let

� �L
� � � �

L � be the

result of applying � to
�
L . That is,

� �L is � if � sets some literal of
�
L to � , and the subset of

non-falsified literals of
�
L otherwise. We claim that the sequence of clauses

� �� �	���	��� � �� is a

Resolution refutation with weakening of � - ����� � ����� . If this is true, then � - ����� has a

Resolution refutation of length - � /1032 since the clause � cannot be used in any cut.

We will show, by induction on B � �������	����� � � , that
� �� �	�	��� � � �� is a valid Resolu-

tion derivation from � - ����� � ���3� . Suppose that B � � and that the claim is valid for every

other smaller value. If
� � is an initial clause of ����� 0) �0 , it is easily seen that either

� �� � � ,
or

� �� is an initial clause of � - ����� . Suppose next that
� � is derived by the resolution rule

from
� � and

� � with � � � � B . Suppose that the cut variable is � L � � . The immediate case

is when
� ��

�
� � and

� �� �
� � because then

� �� is simply the result of applying the resolution

rule on them. Also, if
� �� � � and

� �� � � , then
� �� � � because some satisfied literal must

135

be inherited by
� � . Finally, if

� �� � � and
� �� �

� � , say, there are two cases two consider. If

the satisfied literal in
� � is not about variable � L � � , then this literal is inherited in

� � and so

� �� � � . If the satisfied literal in
� � is about variable � L � � indeed, then it must be � � L � � . In

that case,
� �� does not contain the literal � L � � because � � � L � � � � � . We conclude that

� �� is a

weakening of
� �� and we are done. ��

136

Chapter 7

Conclusions

7.1 General Discussion

The results of this dissertation advance the state of knowledge about the expressive

power of least fixed-point logics on finite structures from two different perspectives. In the first

part of the thesis we studied the effect of powerful built-in predicates, such as the membership

relation between hereditarily finite sets, and in the second part we proved non-expressibility

results for Datalog without built-in predicates. The results in the first part delineate the bound-

ary where the fragments of ����� collapse to ��
 on finite structures with built-in membership

relation, and provide new insights on computational aspects of ����� . The results in the sec-

ond part establish inherent limitations in the expressive power of Datalog on random 3-CNF

formulas. In both cases, the results tightly connect with well-known problems in complexity

theory, such as questions about Boolean circuit uniformity in the first case, and questions about

random satisfiability and proof complexity in the other. Moreover, we believe that the results

137

are also interesting as results of finite model theory in their own right, independently of the

complexity-theoretic connections.

We conclude with some remarks on the results presented here and with some open

problems that warrant further investigation.

7.2 About Finite Set Theory

The result stating that the least fixed-points of positive restricted � 	 -formulas are

� � -definable on
� +-,

is a valuable expressibility tool. We demonstrated this by means of

non-trivial examples, such as Example 9 in which we showed that the query

����� ��� � ��� � � � ��� � # � for some B � �9�

is definable as the least fixed-point of a positive restricted � 	 -formula. We note that, although

possible in principle, the direct construction of a
� � and a � � -formula that defines � ��� on

� +-,
seems a harder approach. Second, the fact that the binary fragment of ������� � 	�� col-

lapses to ��
 on
� + ,

is both unexpected and useful. It is unexpected since at first sight it

seems that quantification over binary relations of bounded elements is needed, while we show

that monadic quantification over such elements suffices. It is useful because, once again, it

provides a versatile expressibility tool.

Moreover, the set-theoretic framework suggests new ideas and new problems to con-

sider that may provide new insights. Recall that the class of
�

-formulas is the smallest class of

formulas that contains the � 	 -formulas and is closed under conjunction, disjunction, and exis-

tential quantification only. Recall also that the class of
� � -formulas is the class of

�
-formulas

138

in which all unbounded quantifiers precede the bounded ones. We note that it is known that

�
�

� � on #%$. Does this collapse propagate to
� +-,

?

Open Problem 1 Is
�

�
� � on

� + ,
?

The positive answer to this question would mean that the class of
� � -formulas forms

a very robust class. Moreover, such a result would constitute a highly non-trivial computational

speedup. Consider the following
�

-formula

���	�
� � � � � �	� � � � � ���	� � � � � ��� � � �	������� � � � � � � ��� � � � �

with � being a ��	 -formula. Note that the evaluation of such a formula on
� + ,

by a non-

deterministic Turing machine seems to require ,�� � � Q�� � � � � steps of non-determinism, since

for each triple �
� , � � , and � � of elements of � , � , and � respectively, the machine needs

to guess � Q�� � bits for the unbounded existential quantifier ��� � � . However, ,�� � Q�� � � steps

of non-determinism suffice to evaluate any
� � -formula on

� +-,
. On the other hand, the

negative answer to the question might give new information on the well-known problems

�&#�$ � '����� - � #*$ � , and � #�$ � '� #*$ � % .

Let us consider a second open problem suggested by the set-theoretic framework.

We know, and we have used that intensively, that every � 	 -definable predicate is absolute. In

fact, by standard absoluteness arguments, even � -definable predicates on
� +-,

are absolute.

One can easily show, though, that � �
� ��	 on

� +-,
. Indeed, using the well-known result of

Furst, Saxe and Sipser [FSS84] that � � 	 circuits cannot compute the parity of its input, it is

not hard to see that the query

� ��� �
� ��� � ��� � � � � the cardinality of � is even �

139

is not �
	 -definable on
� +-,

. Since we showed in Example 10 that � ��� �
� ��� � is definable as

the least fixed-point of a binary positive � 	 -formula, we know that it is � -definable. Moreover,

it is easy to see that the greatest fixed-point of that formula coincides with the least fixed-point,

and so the query is indeed � -definable on
� + ,

. It seems to us that the use of the circuit

lower bound for parity to prove that � �
� � 	 is an overkill, since ��	 -formulas are limited

to quantify over the transitive closure of the input. Is it possible to prove this lower bound

directly, by means of Ehrenfeucht-Fraı̈ssé games?

Open Problem 2 Prove that � �
� � 	 on

� + ,
using Ehrenfeucht-Fraı̈ssé games.

The solution may give some insight on the following important question: how do we design

winning strategies for the Duplicator in Ehrenfeucht-Fraı̈ssé games when both arithmetic built-

in predicates � and � are available? We remark that successful strategies have been designed

when only � is available [Lyn82].

7.3 About Uniformity of Circuits

A descriptive complexity characterization of a complexity class, that is, the proof

that a certain logic captures it, usually provides new information and motivates further the

class. Moreover, if the logic that captures the class is natural enough, it allows us to build

up very useful analogies. One of the most appealing analogies is the trichotomy provided by

first-order logic ��
 , monadic second-order logic � �
 , and full second-order logic
�
 . On

finite structures with built-in membership relation, these three logics capture the Logarithmic-

Time Hierarchy # % [BIS90], the Linear-Time Hierarchy #*$ � % , and the Polynomial-Time

140

Hierarchy �4% [Sto77], respectively. Note that the fact that
�
 captures � % can be extended

to arbitrary finite structures, but provably not in the other two cases.

The results of Chapter 4 showed that ��
 � ����������	 � captures # % �

, or equivalently

� � �?# � #�������$	� (-uniform � � 	 , on
� + ,

. In this case, the logic ��
 � ��������� 	 � arose

naturally from the set-theoretic interpretation of the built-in predicate and the fact that the

��	 -formulas had been successfully used in that field. The identification of the underlying

complexity class leads to another interesting trichotomy. The logics ��
 , ��
 � ��������� 	 � and

��
 � ����� capture �K#�������$	� (-uniform � � 	 , � � �?# � # � � �"$	� (-uniform ��� 	 ,

and � -uniform ��� 	 , respectively, on
� +-,

. However, we want to make the point that com-

plexity classes should not only be motivated by their underlying computational model or their

descriptive characterization, but also by the computational problems that they contain. This

leads us to the following remarks about � � ��# � # � � �"$	� (-uniform � � 	 .

For 15 years after the time that Beame, Cook and Hoover [BCH86] introduced the

technique of discrete logarithms for integer division, the most efficient Boolean circuits for

integer division had only been � -uniform, which means that the descriptions of the circuits

were computable in polynomial-time, but no less. This situation was quite annoying since the

uniformity of circuits for natural problems tends to be quite low in the complexity hierarchy,

actually, as low as �K# � � ��$	� (-uniform. Hesse’s recent result that integer division is in

�K#�������$	� (-uniform �
� 	 resolved this issue with an elegant proof after a number of

previous attempts [Hes01].

Recall now the discussion in Chapter 4 about the � � ��# � # � � �"$	� (-uniform

� � 	 circuits for integer division of numbers of polylogarithmic length. Before Hesse’s result,

141

it was not known how to improve the uniformity of such circuits from � � ��# � # � � �"$	� (

to �K# � � ��$	� (. This was in sharp contrast with the �K# � � �"$	� (-uniform � � 	 circuits

for the rest of arithmetic operations on numbers of polylogarithmic length such as addition

and multiplication. We note that the restriction to numbers of polylogarithmic length is a

necessary one since, from the strongest lower bounds for � � 	 circuits, it follows that neither

multiplication nor division of longer numbers can be done in � � 	 [Has86, FSS84]. The

fact that the problem about integer division has been solved, and therefore that division of

numbers of polylogarithmic length is also in �K#�������$	� (-uniform � � 	 , leaves us without

candidates to separate � � ��# � #�������$	� (-uniform � � 	 from �K#�������$	� (-uniform

� � 	 . After all, it is still possible that ��
 � ������� � 	 � collapses to ��
 , as do the unary and

binary fragments. This state of affairs motivates the following problem:

Open Problem 3 Does ternary ����������	 � collapse to ��
 on
� +-,

?

As a matter of fact, we are inclined to think that � � #*$ � % , just as � #
�+#*$ � % [Nep70,

Nep73]. Recall, though, that a proof would imply �
�

� �?> � � � (.

7.4 About Inexpressibility Results and Proof Complexity

The fact that strong logics capture complexity classes implies that tight inexpress-

ibility results for these logics are very hard to obtain. Indeed, a proof that unsatisfiability of 3-

CNF formulas is not expressible in existential second-order logic would imply ���
�

� ��� - ��� ,

and so �
�

� � � . In contrast, inexpressibility results of this type are possible for logics, such

as Datalog, that do not capture any particular complexity class. What is the value of these

142

results?

Let us focus on Datalog. While Datalog fails short to capture any complexity class

defined in terms of the standard computational models, many important algorithmic techniques

can be “implemented” as Datalog programs. In particular, this holds true for algorithmic

techniques capable of solving such problems as unsatisfiability of 2-CNF formulas, graph

reachability, or the circuit value problem. Note that the latter problem is � -complete but

Datalog is not closed under logspace reductions, and that is why it falls short to capture � .

The fact that natural classes of algorithms can be implemented in Datalog makes in-

expressibility results powerful. A clear example of this is provided by the results in Chapter 6,

where we showed that a -�� -Datalog program is able to implement the proof search algorithm

for Resolution of width � . This algorithm was studied already in 1977 by Galil [Gal77], and

revisited by Ben-Sasson and Wigderson [BSW01]. Moreover, the important results of Ben-

Sasson and Wigderson that relate Resolution width with Resolution size, together with our

inexpressibility result for Datalog, allowed us to re-derive the known lower bounds for Res-

olution size. In this sense then, inexpressibility results for logics that fall short to capture

complexity classes can still be used to derive complexity-theoretic lower bounds.

The main issue that remains open from the results of Chapters 5 and 6 is that of

establishing further connections between inexpressibility results and lower bounds for proof

complexity. The first observation we want to make in this respect is related to a potential

application of proof-complexity techniques to finite-model-theory techniques. The second

observation is related to a synergy in the reverse direction.

Inexpressibility results are usually proved by designing a winning strategy for the

143

Duplicator, one of the players of the appropriate Ehrenfeucht-Fraı̈ssé game for the logic under

consideration. For example, inexpressibility results for � � � � $ are proved by exhibiting a win-

ning strategy for the Duplicator in the existential � -pebble game. It turns out that the design of

winning strategies for the Duplicator is often a highly non-trivial task. To make things worse,

there is a clear lack of techniques to describe the winning strategies in a precise mathematical

form, other than by enumerating essentially all possible cases. However, there is an important

exception: when extension axioms are available, winning strategies for the Duplicator are easy

to describe. The proof of the result of Chapter 5 made strong use of extension axioms, which,

in turn, were derived from the expansion properties of certain graphs. This suggests that fur-

ther extension-type axioms are yet to be discovered, and the experience in using expander

properties in propositional proof complexity may turn out to be helpful.

The second observation that we want to make with respect to the interaction between

finite model theory and proof complexity is the following: it seems intuitively clear that if

Datalog relates to Resolution in the precise sense of Theorem 19 of Chapter 6, then stronger

fixed-point logics should relate to stronger proof systems. This suggests two problems. The

first one is in finite model theory, proper.

Open Problem 4 Extend the inexpressibility results of Datalog on random 3-CNF formulas

to stronger fixed-point logics, such as Least Fixed-Point Logic LFP, or even full infinitary logic

with finitely many variables � $ � $.

Clearly, the same problem could be posed for other logics such as first-order logic, existential

monadic second-order logic (monadic ���), or logics with counting quantifiers.

144

The last open problem of this section is stated in slightly more general terms. It

should be considered as a family of open problems, one for each logic and proof system,

rather than as concrete open problem with a precise statement.

Open Problem 5 Establish further connections between inexpressibility results for natural

logics and lower bounds for propositional proof systems.

We hope that the results of this dissertation, together with the solution to some of

these open problems, may contribute to the synergy between the fields of finite model theory

and propositional proof complexity in their quest to classify the complexity of algorithmic

problems.

145

146

Bibliography

[ABE02] A. Atserias, M. L. Bonet, and J. L. Esteban. Lower bounds for the weak pi-
geonhole principle and random formulas beyond resolution. Information and
Computation, 176(2):136–152, 2002.

[Ach01] D. Achlioptas. A survey of lower bounds for random 3-SAT via differential equa-
tions. Theoretical Computer Science, 265(1–2):159–185, 2001.

[AG91] E. Allender and V. Gore. Rudimentary reductions revisited. Information Process-
ing Letters, 40:89–95, 1991.

[AK99] A. Atserias and Ph. G. Kolaitis. First-order logic vs. fixed-point logic in finite set
theory. In 14th IEEE Symposium on Logic in Computer Science, pages 275–284,
1999.

[Ats00] A. Atserias. The descriptive complexity of the fixed-points of bounded formulas.
In P. Clote and H. Schwichtenberg, editors, Computer Science Logic ’2000, 14th
Annual Conference of the EACSL, volume 1862 of Lecture Notes in Computer
Science, pages 172–186. Springer-Verlag, 2000.

[Ats02] A. Atserias. Unsatisfiable random formulas are hard to certify. In 17th IEEE
Symposium on Logic in Computer Science, pages 325–334, 2002.

[Bar75] J. Barwise. Admissible Sets and Structures. Springer-Verlag, 1975.

[BCH86] P. W. Beame, S. A. Cook, and H. J. Hoover. Log depth circuits for division and
related problems. SIAM Journal of Computing, 15(4):994–1003, 1986.

[BDG90] J. L. Balcázar, J. Dı́az, and J. Gabarró. Structural Complexity II. Springer-Verlag,
1990.

[BFU93] A. Z. Broder, A. M. Frieze, and E. Upfal. On the satisfiability and maximum
satisfiability or random 3-CNF formulas. In 4th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 322–330, 1993.

147

[BIS90] D.M. Barrington, N. Immerman, and H. Straubing. On uniformity within NC � .
Journal of Computer and System Sciences, 41(3):274–306, 1990.

[BKPS98] P. Beame, R. Karp, T. Pitassi, and M. Saks. On the complexity of unsatisfiability
proofs for random k-CNF formulas. In 30th Annual ACM Symposium on the
Theory of Computing, pages 561–571, 1998.

[BN78] R. V. Book and M. Nivat. Linear languages and the intersection closures of classes
of languages. SIAM Journal of Computing, 7(2):167–177, 1978.

[BSG01] E. Ben-Sasson and N. Galesi. Space complexity of random formulas in resolution.
In 16th IEEE Conference on Computational Complexity, pages 42–51, 2001.

[BSI99] E. Ben-Sasson and R. Impagliazzo. Random CNF’s are hard for the polynomial
calculus. In 40th Annual IEEE Symposium on Foundations of Computer Science,
pages 415–421, 1999.

[BSW01] E. Ben-Sasson and A. Wigderson. Short proofs are narrow–resolution made sim-
ple. Journal of the ACM, 48(2):149–169, 2001.

[Bus87] S. R. Buss. The boolean function value problem is in ALOGTIME. In 28th
Annual IEEE Symposium on Foundations of Computer Science, pages 123–131,
1987.

[Bus98] S. R. Buss. First-order proof theory of arithmetic. In Handbook of proof theory,
pages 79–147. Elsevier Science, 1998.

[CH82] A. Chandra and D. Harel. Structure and complexity of relational queries. Journal
of Computer and System Sciences, 25:99–128, 1982.

[CKS81] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of the
ACM, 28:114–133, 1981.

[CR79] S. Cook and R. Reckhow. The relative efficiency of propositional proof systems.
Journal of Symbolic Logic, 44:36–50, 1979.

[CR92] V. Chvátal and B. Reed. Mick gets some (the odds are on his side). In 33rd
Annual IEEE Symposium on Foundations of Computer Science, pages 620–627,
1992.

[CS88] V. Chvátal and E. Szemerédi. Many hard examples for resolution. Journal of the
ACM, 35(4):759–768, 1988.

[DDLW98] A. Dawar, K. Doets, S. Lindell, and S. Weinstein. Elementary properties of finite
ranks. Mathematical Logic Quarterly, 44:349–353, 1998.

148

[DH95] A. Dawar and L. Hella. The expressive power of finitely many generalized quan-
tifiers. Information and Computation, 123:172–184, 1995.

[DLW96] A. Dawar, S. Lindell, and S. Weinstein. First order logic, fixed point logic and
linear order. In H. K. Büning, editor, Computer Science Logic ’95, volume 1092
of Lecture Notes in Computer Science, pages 161–177. Springer-Verlag, 1996.

[Fag74] R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets.
In R. Karp, editor, Complexity of Computation, pages 27–41. SIAM-AMS Pro-
ceedings 7, 1974.

[Fag76] R. Fagin. Probabilities on finite models. Journal of Symbolic Logic, 41:50–58,
1976.

[FSS84] M. Furst, J. Saxe, and M. Sipser. Parity, circuits and the polynomial time hierar-
chy. Mathematical Systems Theory, 17:13–27, 1984.

[FV98] T. Feder and M. Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through Datalog and group theory. SIAM
Journal of Computing, 28(1):57–104, 1998.

[Gal77] Z. Galil. On resolution with clauses of bounded size. SIAM Journal of Computing,
6:444–459, 1977.

[GIS94] Y. Gurevich, N. Immerman, and S. Shelah. McColm’s conjecture. In 9th IEEE
Symposium on Logic in Computer Science, pages 10–19, 1994.

[Grä92] E. Grädel. Capturing complexity classes by fragments of second-order logic.
Theoretical Computer Science, 101:35–57, 1992.

[Gur88] Y. Gurevich. Logic and the challenge of computer science. In E. Börger, editor,
Current Trends in Theoretical Computer Science, pages 1–57. Computer Science
Press, 1988.

[Hak85] A. Haken. The intractability of resolution. Theoretical Computer Science,
39:297–308, 1985.

[Has86] J. Hastad. Computational limitations for small depth circuits. PhD thesis, Mas-
sachussets Institute of Technology, 1986.

[Hes01] W. Hesse. Division is in uniform � � 	 . In 28th International Colloquium on
Automata, Languages and Programming, volume 2076 of Lecture Notes in Com-
puter Science, pages 104–114. Springer-Verlag, 2001.

[IL95] N. Immerman and S. Landau. The complexity of iterated multiplication. Infor-
mation and Computation, 116(1):103–116, 1995.

149

[Imm86] N. Immerman. Relational queries computable in polynomial time. Information
and Computation, 68:86–104, 1986.

[Imm89] N. Immerman. Expressibility and parallel complexity. SIAM Journal of Comput-
ing, 18:625–638, 1989.

[Imm99] N. Immerman. Descriptive Complexity. Springer-Verlag, 1999.

[Jon69] N. Jones. Context-free languages and rudimentary attributes. Mathematical Sys-
tems Theory, 3:102–109, 1969.

[Jon75] N. D. Jones. Space-bounded reducibility among combinatorial problems. Journal
of Computer and System Sciences, 11:68–85, 1975. Corrigendum: Journal of
Computer and System Sciences 15:241, 1977.

[KKL02] A. C. Kaporis, L. M. Kirousis, and E. G. Lalas. The probabilistic analysis of
a greedy satisfiability algorithm. In 10th Annual European Symposium on Al-
gorithms, volume 2461 of Lecture Notes in Computer Science, pages 574–585.
Springer, 2002.

[KKS) 01] A. C. Kaporis, L. M. Kirousis, Y. C. Stamatiou, M. Vamvakari, and M. Zito.
Coupon collectors, q-binomial coefficients and the unsatisfiability threshold. In
7th Italian Conference on Theoretical Computer Science, volume 2202 of Lecture
Notes in Computer Science, pages 328–338. Springer, 2001.

[KL00] A. Koponen and K. Luosto. Definability of group theoretic notions. Manuscript,
2000.

[KM81] B. Krishnamurthy and R. N. Moll. Examples of hard tautologies in the proposi-
tional calculus. In 13th Annual ACM Symposium on the Theory of Computing,
pages 28–37, 1981.

[KV90] Ph. G. Kolaitis and M. Y. Vardi. 0-1 laws and decision problems for fragments of
second-order logic. Information and Computation, 87:302–338, 1990.

[KV92] Ph. G. Kolaitis and M. Y. Vardi. Fixpoint logic vs. infinitary logic in finite-model
theory. In 7th IEEE Symposium on Logic in Computer Science, pages 46–57,
1992.

[KV95] Ph. G. Kolaitis and M. Y. Vardi. On the expressive power of Datalog: tools and a
case study. Journal of Computer and System Sciences, 51:110–134, 1995.

[KV00a] Ph. G. Kolaitis and M. Y. Vardi. Conjunctive-query containment and constraint
satisfaction. Journal of Computer and System Sciences, 61(2):302–332, 2000.

150

[KV00b] Ph. G. Kolaitis and M. Y. Vardi. A game-theoretic approach to constraint sat-
isfaction. In 7th National Conference on Artificial Intelligence, pages 175–181,
2000.

[Lyn80] J. F. Lynch. Almost sure theories. Annals of Mathematical Logic, 18:91–135,
1980.

[Lyn82] J. Lynch. On sets of relations definable by addition. Journal of Symbolic Logic,
47(3):659–668, 1982.

[Mos74] Y. N. Moschovakis. Elementary Induction on Abstract Structures. North-Holland,
1974.

[Nep70] V. A. Nepomnjascij. Rudimentary predicates and Turing calculations. Soviet
Math. Dokl., 11:1462–1465, 1970.

[Nep73] V. A. Nepomnjascij. Rudimentary modelling of indeterminate Turing calcula-
tions. Cybernetics, 9(2):212–218, 1973.

[Pap85] C. H. Papadimitriou. A note on the expressive power of Prolog. Bullentin of the
EATCS, 26:21–23, 1985.

[Rei87] J. H. Reif. On threshold circuits and polynomial computation. In 2nd IEEE
Structure in Complexity Theory, pages 118–123, 1987.

[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution principle. Jour-
nal of the ACM, 12(1):23–41, 1965.

[Ruz81] W. L. Ruzzo. On uniform circuit complexity. Journal of Computer and System
Sciences, 22:365–383, 1981.

[Saz97] V. Y. Sazonov. On bounded set theory. In Logic and Scientific Methods, pages
85–103. Kluwer Academic Publishers, 1997.

[Sip83] M. Sipser. Borel sets and circuit complexity. In 15th Annual ACM Symposium on
the Theory of Computing, pages 61–69, 1983.

[SML96] B. Selman, D. G. Mitchell, and H. J. Levesque. Generating hard satisfiability
problems. Artificial Intelligence, 81:17–29, 1996.

[Smu61] R. Smullyan. Theory of formal systems. In Annals of Mathematics Studies,
volume 47. Princeton University Press, 1961.

[SS88] S. Shelah and J. Spencer. Zero-one laws for sparse random graphs. Journal of the
American Mathematical Society, 1(1):97–115, 1988.

151

[Sto77] L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science,
3:1–22, 1977.

[Ull89] J. D. Ullman. Database and knowledge-base systems. Computer Science Press,
1989.

[Var82] M. Vardi. Complexity of relational query languages. In 14th Annual ACM Sym-
posium on the Theory of Computing, pages 137–146, 1982.

[Vol99] H. Vollmer. Introduction to Circuit Complexity. Springer-Verlag, 1999.

[Weg87] I. Wegener. The Complexity of Boolean Functions. John Wiley & Sons, 1987.

[Wil79] A. J. Wilkie. Applications of complexity theory to
� 	 -definability problems in

arithmetic. In Model Theory of Algebra and Arithmetic, volume 834 of Lecture
Notes in Mathematics, pages 363–369. Springer-Verlag, 1979.

[Woo81] A. R. Woods. Some problems in logic and number theory, and their connections.
PhD thesis, University of Manchester, Department of Mathematics, 1981.

[Wra78] C. Wrathall. Rudimentary predicates and relative computation. SIAM Journal of
Computing, 7(2):194–209, 1978.

152

