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Abstract

We analyze in this work the effect of the iterated application of
the linear operator that maps a Wiener process onto an Ornstein-
Uhlenbeck process. The processes obtained after p iterations are called
Ornstein-Uhlenbeck processes of order p (denoted OU(p)).

Technically our composition of operators is easy to manipulate
and its parameters can be computed efficiently because, as we show,
in most cases the result of the iteration is a linear combination of the
same operators, and exceptionally it involves simple generalizations of
them. This provides a straightforward computation of covariances.

We also give a state space model representation of OU(p) and from
this setup show that the discrete process resulting from sampling the
linear combination of Ornstein-Uhlenbeck processes, at equally spaced
periods of time, is a parsimonious ARMA process. Experiments on
real data show that the empirical autocorrelation for large lags can
be fairly modeled with OU(p) processes with approximately half the
number of parameters than ARMA processes.
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1 Introduction

The Ornstein-Uhlenbeck process (from now on OU) was introduced by L. S.
Ornstein and E. G. Uhlenbeck [Uhlenbeck and Ornstein, 1930] as a model
for the velocities of a particle subject to the collisions with surrounding
molecules. It improves Einstein’s model (a Wiener process) because it also
applies to fluids with finite viscosity, and since the 1950’s is a well stud-
ied and accepted model for thermodynamics, chemical and other various
stochastic processes found in physics and the natural sciences [Gardiner,
2004]. Moreover, the OU process is the unique non-trivial stochastic process
that is stationary, Markovian and Gaussian [Breiman, 1992]. Additionally
it is mean-reverting, and for all these properties it has found its way into
financial engineering, first as a model for the term structure of interest rates
in a form due to Vasicek [1977], and then under other variants or general-
izations (e.g. where the underlying random noise is a Lévy process) as a
model of financial time series with applications to option pricing, portfolio
optimization and risk theory, among others [Nicolato and Venardos, 2003,
Barndorff-Nielsen and Shephard, 2001a,b, Maller et al., 2009, and references
therein].

The OU process can be thought of as continuous time interpolation of
an autoregressive process of order one (i.e. an AR(1) process), a link that
we shall make evident in Section 2. Beginning with this relation to the
autoregressive model, one can seek to define and analyze the result of iter-
ating the application of the operator that maps a Wiener process onto an
OU process, in order to obtain a higher order OU process. This operator
is defined in Section 3 and denoted OU , with subscripts denoting the pa-
rameters involved. The p iterations of OU , for each positive integer p, give
rise to a new family of processes, the Ornstein-Uhlenbeck processes of order
p, denoted OU(p), proposed as models for either stationary continuous time
processes or the series obtained by observing these continuous processes at
equally spaced instants. We show that these higher order OU process can
be expressed as a linear combination of ordinary OU processes, or general-
ized OU processes as defined below by Eq. (9). This result resembles the
aggregations of Gaussian (and non-Gaussian) processes so much studied in
connection with deconstructing a complicated economic model into simpler
constituents; long memory models; flexible models of dependence structures,
and others [Granger and Morris, 1976, Granger, 1980, Barndorff-Nielsen and
Shephard, 2001a].
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A consequence of writing the OU(p) process as aggregation of simpler ones
is the derivation of a closed formula for its covariance. This has important
practical implications since it allows to easily estimate the parameters of
a OU(p) process by maximum likelihood or, as an alternative, by matching
correlations, the latter being a procedure resembling the method of moments.

A distinctive point of our OU operator from others contained in the vast
literature on aggregations (or superpositions) of stochastic processes (see,
e.g., [Granger, 1980, Barndorff-Nielsen, 2001, Eliazar and Klafter, 2009],
among many others) is that while the common assumption of these already
known aggregated models is such that the processes involved are driven by
independent Wiener processes, in our situation of the stochastic processes ob-
tained by convolution of the OU operator, the linear combination expressing
the result of the convolution of the OU operator is comprised of processes
driven by the same Wiener process.

To explore the characteristics of this homogeneous aggregation, in Section
4, we show how to write the discrete version of a OU(p) as state space
model, and from this representation show in Section 5 that for p > 1, a
OU(p) behaves like aggregation of AR processes (in the manner considered
by [Granger and Morris, 1976]), that turns out to be an ARMA(p, q), with
q ≤ p−1. Notwithstanding this structural similarity, the family of discretized
OU(p) processes is more parsimonious than the family of ARMA(p, p − 1)
processes, and we shall see empirically that it is able to fit well the auto
covariances for large lags. Hence, OU processes of higher order appear as a
new continuos model, competitive in a discrete time setting with higher order
autoregressive processes (AR or ARMA). The estimation of the parameters
of OU(p) processes is attempted in Section 6, and examples showing the
comparison of the proposed methods for that estimation and the application
of OU(p) models to real data are provided in Section 7. Section 8 contains
our concluding remarks.

2 Preliminaries

Let us call w a standard Wiener process, that is, a Gaussian, centered process
with independent increments with variance E(w(t) − w(s))2 = |t − s|. We
impose further (as usual) that w(0) = 0, but shall not limit the domain of
the parameter to R+ and assume that w(t) is defined for t in R. Then, an
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Ornstein-Uhlenbeck process with parameters λ > 0, σ > 0 can be written as

ξλ,σ(t) = σ

∫ t

−∞
e−λ(t−s)dw(s) (1)

or, in differential form,

dξλ,σ(t) = −λξλ,σ dt+ σdw(t) (2)

We may think of ξλ,σ as the result of accumulating a random noise, with
reversion to the mean (that we assume to be 0) of exponential decay with
rate λ. The magnitude of the noise is given by σ.

When the Ornstein-Uhlenbeck process x is sampled at equally spaced
times {iτ : i = 0, 1, 2, . . . , n}, τ > 0, the series Xi = x(iτ) obeys an autore-
gressive model of order 1, AR(1), since

Xi+1 = σ

∫ (i+1)τ

−∞
e−λ((i+1)τ−s)dw(s)

= σe−λτ
∫ iτ

−∞
e−λ(iτ−s)dw(s) + σ

∫ (i+1)τ

iτ

e−λ((i+1)τ−s)dw(s) = e−λτXi + Zi+1,

where Zi+1 = σ

∫ (i+1)τ

iτ

e−λ((i+1)τ−s)dw(s) is a Gaussian innovation (indepen-

dent of {w(t) : t ≤ iτ} and {x(t) : t ≤ iτ}) with variance

σ2

∫ (i+1)τ

iτ

e−2λ((i+1)τ−s)ds = σ2

∫ 0

−τ
e2λsds =

σ2

2λ
(1− e−2λτ ).

Hence, we can consider the OU process as continuous time interpolation
of an AR(1) process. Notice that both models are stationary. As we show
in §5, the result of iterating p times the operator that carries Wiener process
into Ornstein-Uhlenbeck process is an ARMA process with at most 2p − 1
parameters plus the variance. Let us recall that an ARMA or autoregressive
moving average process has the following form

xt = φ1xt−1 + · · ·+ φpxt−p + θ0εt + θ1εt−1 + · · ·+ θqεt−q

where φ1, . . . , φp are the autoregressive parameters, θ0, . . . , θq are the moving
average parameters, and the white-noise process εt has variance one. Such a
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processes is referred to as ARMA(p, q). Denote by B the backshift operator
that carries xt into xt−1. By considering the polynomials in the backshift
operator,

φ(B) = 1− φ1B − · · · − φpBp and θ(B) = θ0 + θ1B + · · ·+ θqB
q

the ARMA(p, q) model can be written as

φ(B)xt = θ(B)εt (3)

This compact expression of autoregressive models comes in handy for analyz-
ing structural properties of time series and moreover for multivariate time
series. It also links to another representation of ARMA processes useful for
simplifying maximum likelihood estimation and forecasting; namely, the state
space model representation. A state space model has the general form

Y t = AY t−1 + ηt (4)

xt = KtrY t +N t (5)

where (4) is the state equation and (5) is the observation equation, with Y t

the m-dimensional state vector, A and Ktr are m×m and m× k coefficient
matrices, Ktr denotes the transpose ofK, η andN are m and k dimensional
Gaussian white noises, where N would be present only if the process xt is
observed subject to additional noise (see Box et al. [1994] for further details).
We present in §4 a state space model representation of our generalized OU
process.

3 Ornstein-Uhlenbeck processes of order p

Let OUλ be defined as the operator that maps σw onto ξλ,σ(t), and also maps
a process y(t), t ∈ R onto

OUλy(t) =

∫ t

−∞
e−λ(t−s)dy(s), (6)

whenever the integral can be defined. The definition is extended to include
complex processes, by replacing λ by κ = λ + ıµ, λ > 0, µ ∈ R in (6). The
set of complex numbers with positive real part is denoted by C+.
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For p ≥ 1, the process

x = OUκ(σw) := OUκ1OUκ2 · · · OUκp(σw) =

p∏
j=1

OUκj(σw) (7)

will be called Ornstein-Uhlenbeck process of order p with parameters κ =
(κ1, . . . , κp) ∈ (C+)p and σ > 0. The composition

∏p
j=1OUκj is unambigu-

ously defined because the application of OUκj operators is commutative as
shown in Theorem 1(i) below.

For technical reasons, it is convenient to introduce the Ornstein-Uhlenbeck
operator OU (h)

κ of degree h with parameter κ that maps y onto

OU (h)
κ (t)y(t) =

∫ t

−∞
e−κ(t−s) (−κ(t− s))h

h!
dy(s) (8)

and σw onto

ξ(h)
κ,σ(t) = σ

∫ t

−∞
e−κ(t−s) (−κ(t− s))h

h!
dw(s) (9)

We call the process (9) generalized Ornstein-Uhlenbeck process of order 1
and degree h.

3.1 Properties

The following statements summarize some properties of products (compo-
sitions) of the operators defined by (7) and (8), and correspondingly, of

the stationary centered Gaussian processes ξ
(h)
κ,σ, h ≥ 0. In particular, the

Ornstein-Uhlenbeck processes of order 1 and degree 0, ξ
(0)
κ,σ = ξκ,σ are the

ordinary Ornstein-Uhlenbeck processes (1).
Corollary 1 establishes that the operator OUκ with p-vector parameter

κ can be written as a linear combination of p operators OUκ or OU (h)
κ for

suitable scalar values κ and non negative integer h. Consequently, the process
x = OUκσw can be written as a linear combination of OU processes driven
by the same Wiener process, as stated in Corollary 1.

Theorem 1.

(i) When κ1 6= κ2, the product OUκ2OUκ1 can be computed as

κ1

κ1 − κ2

OUκ1 +
κ2

κ2 − κ1

OUκ2

and is therefore commutative.
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(ii) The composition
∏p

j=1OUκj constructed with values of κ1, . . . , κp pair-
wise different, is equal to the linear combination

p∏
j=1

OUκj =

p∑
j=1

Kj(κ1, . . . , κp)OUκj , (10)

with coefficients

Kj(κ1, . . . , κp) =
1∏

κl 6=κj(1− κl/κj)
. (11)

(iii) For i = 1, 2, . . . , OUκOU (i)
κ = OU (i)

κ − κOU (i+1)
κ .

(iv) For any positive integer p the p-th power of the Ornstein-Uhlenbeck
operator has the expansion

OUpκ =

p−1∑
j=0

(
p− 1

j

)
OU (j)

κ . (12)

(v) Let κ1, . . . , κq be pairwise different complex numbers with positive real
parts, and p1, . . . , pq positive integers, and let us denote by κ a complex
vector in (C+)p with components κh repeated ph times, ph ≥ 1, h =
1, . . . , q,

∑q
h=1 ph = p. Then, with Kh(κ) defined by (11),

q∏
h=1

OUphκh =

q∑
h=1

1∏
l 6=h(1− κl/κh)pl

OUphκh =

q∑
h=1

Kh(κ)OUphκh .

Corollary 1. i. The process

x = OUκ(σw) =

q∏
h=1

OUphκh(σw)

can be expressed as the linear combination

x =

q∑
h=1

Kh(κ)(1+ξκh,σ)(ph−1), (1+ξκh,σ)(ph−1) =

ph−1∑
j=0

(
ph−1
j

)
ξ

(j)
κh,σ (13)

of the p processes {ξ(j)
κh,σ : h = 1, . . . , q, j = 0 . . . , ph − 1} (see (9)).
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ii. Consequently,

x(t) = σ

q∑
h=1

Kh(κ)

ph−1∑
j=0

(
ph−1
j

) ∫ t
−∞ e−κh(t−s) (−κh(t−s))j

j!
dw(s)

Corollary 2. For real λ, µ, with λ > 0, the product OUλ+ıµOUλ−ıµ is real,
that is, applied to a real process produces a real image.

Proof of the Theorem and its corollaries:
Parts (i) and (iii) are obtained by direct computation of the integrals,

(ii) follows from (i) by finite induction, as well as (iv) from (iii).
From the continuity of the integrals with respect to the parameter κ, the

power OUpκ satisfies

OUpκ = lim
δ↓0

p∏
j=1

OUκ+jδ = lim
δ↓0

p∑
j=1

K ′j(δ, κ, p)OUκ+jδ (14)

with

K ′j(δ, κ, p) =
1∏

1≤l≤p,l 6=j

(
1− κ+lδ

κ+jδ

) .
On the other hand, by (i),

q∏
h=1

OUphκh = lim
δ↓0

q∏
h=1

ph∏
j=1

OUκh+jδh = lim
δ↓0

q∑
h=1

ph∑
j=1

K ′′h,j(δ,κ)OUκh+jδh (15)

where δ = (δ1, . . . , δq),

K ′′h,j(δ,κ) =
1∏

1≤h′≤q,1≤j′≤ph,
(h′,j′)6=(h,j)

(
1− κh′+j

′δh′
κh+jδh

) = K ′′′h,j(δ,κ)K ′j(δh, κh, ph),

and

K ′′′h,j(δ,κ) =
1∏

1≤h′≤q,
h′ 6=h

∏ph′
j′=1(1− (κh′ + j′δh′)/(κh + jδh))

→ Kh(κ) as δ ↓ 0

For the h-th term in the right-hand side of (15), we compute

lim
δ↓0

ph∑
j=1

K ′′h,j(δ,κ)OUκh+jδh = lim
δ↓0

ph∑
j=1

K ′′′h,j(δ,κ)K ′j(δh, κh, ph)OUκh+jδh
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= lim
δ↓0

ph∑
j=1

(K ′′′h,j(δ,κ)−Kh(κ))K ′j(δh, κh, ph)OUκh+jδh

+ Kh(κ) lim
δ↓0

ph∑
j=1

K ′j(δh, κh, ph)OUκh+jδh = Kh(κ)OUphκh

by Eq. (14) since, in addition, each term in the first sum tends to zero. This
ends the verification of (v).

Corollary 1 is an immediate consequence of (iv) and (v), and Corollary 2
follows by applying (i) to compute

OUλ+ıµOUλ−ıµ =
λ+ ıµ

2ıµ
OUλ+ıµ −

λ− ıµ
2ıµ

OUλ−ıµ

=

∫ t

−∞
e−λ(t−s)

[
λ+ıµ
2ıµ

(cos(µ(t− s)) + ı sin(µ(t− s)))

−λ−ıµ
2ıµ

(cos(µ(t− s))− ı sin(µ(t− s)))
]
dw(s)

=

∫ t

−∞
e−λ(t−s)(cos(µ(t− s)) + λ

µ
sin(µ(t− s)))dw(s).

3.2 Computing the covariances

The representation

x = OUκ(σw) =

q∑
h=1

Kh

ph∑
j=1

(
ph − 1

j − 1

)
OU (j−1)

κh
(σw)

of x as a linear combination of the processes ξ
(i)
κh,σ = OU (i)

κh
(σw) allows a direct

computation of the covariances γ(t) = Ex(t)x̄(0) through a closed formula,

in terms of the covariances γ
(i1,i2)
κ1,κ2,σ(t) = Eξ

(i1)
κ1,σ(t)ξ̄

(i2)
κ2,σ(0):

γ(t)=

q∑
h′=1

ph′−1∑
i′=0

q∑
h′′=1

ph′′−1∑
i′′=0

Kh′(κ)K̄h′′(κ)

(
ph′ − 1

i′

)(
ph′′ − 1

i′′

)
γ(i′,i′′)
κh′ ,κh′′ ,σ

(t) (16)
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with

γ(i1,i2)
κ1,κ2,σ

(t) = σ2(−κ1)i1(−κ̄2)i2
∫ 0

−∞
e−κ1(t−s) (t− s)i1

i1!
e−κ̄2(−s) (−s)i2

i2!
ds

= σ2(−κ1)i1(−κ̄2)i2e−κ1t
i1∑
j=0

(
i1
j

)
tj

i1!i2!

∫ 0

−∞
e(κ1+κ̄2)s(−s)i1+i2−jds

=
σ2(−κ1)i1(−κ̄2)i2e−κ1t

i2!

i1∑
j=0

tj(i1 + i2 − j)!
j!(i1 − j)!(κ1 + κ̄2)(i1+i2−j+1)

(17)

A real expression for the covariance when the imaginary parameters ap-
pear as conjugate pairs is much more involved than this one, that contains
complex terms.

4 The OU(p)-process as a state space model

Theorem 1 and its corollaries lead to express the OU(p) models by means
of linear state space models. The state space modeling provides a unified
methodology for the analysis of time series [Durbin and Koopman, 2001].

In the simplest case, where the elements of κ are all different, the pro-
cess x(t) = OUκσw(t) is a linear combination of the state vector ξκ(t) =
(ξκ1(t), ξκ2(t), . . . , ξκp(t))

tr, where ξκj = OUκj(σw).
More precisely, the vectorial process

ξκ(t) = (ξκ1(t), ξκ2(t), . . . , ξκp(t))
tr, ξκj = OUκj(σw)

and x(t) = OUκσw(t) satisfy the linear equations

ξκ(t) = diag(e−κ1τ , e−κ2τ , . . . , e−κpτ )ξκ(t− τ) + ηκ,τ (t) (18)

and
x(t) = K

tr
(κ)ξ(t), (19)

ηκ,τ (t) = (ηκ1,τ (t), ηκ2,τ (t), . . . , ηκp,τ (t))
tr, ηκj ,τ (t) = σ

∫ t

t−τ
e−κj(t−s)dw(s),

Var(ηκ,τ (t)) = σ2((vj,l)), vj,l = E

∫ t

t−τ
e−(κj+κ̄l)(t−s)ds =

1− e−(κj+κ̄l)τ

κj + κ̄l
(20)
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and the coefficients from (11)

Ktr(κ) = (K1(κ), K2(κ), . . . , Kp(κ)).

The initial value ξ(0) is estimated by means of its conditional expectation

ξ̂(0) = E(ξ(0)|x(0)) = Ktr(κ)V x(0)

Ktr(κ)V K̄
, with V = Var(ξ(0)) = (( 1

κj+κ̄l
)).

An application of Kalman filter to this state space model leads to compute
the likelihood of x = (x(0), x(τ), . . . , x(nτ)). Some Kalman filter programs
included in software packages require the processes in the state space to
be real. That condition is not fulfilled by the model described by equations
(18,19). An equivalent description by means of real processes can be obtained
by ordering the parameters κ with the imaginary components paired with
their conjugates in such a way that κ2h = κ̄2h−1, h = 1, 2, . . . , c and =(κj)
= 0 if and only if 2c < j ≤ p.

Then the matrix M = ((Mj,k)) with all elements equal to zero except

M2h−1,2h−1 = M2h−1,2h = 1, −M2h,2h−1 = M2h,2h = ı, h = 1, 2, . . . , c

and
Mj,j = 1, 2c < j ≤ p

induces the linear transformation ξ 7→Mξ that leads to the new state space
description

Mξ(t) = Mdiag(e−κ1τ , e−κ2τ , . . . , e−κpτ )M−1Mξ(t− 1) +Mη(t), (21)

x(t) = K
tr
M−1Mξ(t), (22)

where the processes Mξ are real.
Observe that there is no loss of generality in choosing the spacing τ be-

tween observations as unity, for the derivation of the state space equations.
Hence, we set τ = 1 in the sequel and, in addition, τ will be omitted from
the notation.

When κ1, . . . , κq are all different, p1, . . . , pq are positive integers,
∑q

h=1 ph =
p and κ is a p-vector with ph repeated components equal to κh, the OU(p)
process xκ is a linear function of the state space vector(

ξ(0)
κ1
, ξ(1)
κ1
, . . . , ξ(p1−1)

κ1
, . . . , ξ(0)

κq , ξ
(1)
κq , . . . , ξ

(pq−1)
κq

)
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where the components are given by (9), and the transition equation is no
longer expressed by a diagonal matrix. In this case the state space model
has the following form

ξ(t) = Aξ(t− 1) + η(t)

x(t) = Ktrξ(t) (23)

We leave the technical details of this derivation to an Appendix. The terms
ξ(t), A, η(t) and K are precisely defined in (42). The real version of (23),
when the process ξ has imaginary components is obtained by multiplying
both equations by a block-diagonal matrix C (which is defined precisely in
the aforementioned Appendix), given us the real state space model

Cξ(t) = (CAC−1)(Cξ(t− 1)) + Cη(t), (24)

x(t) = (KtrC−1)(Cξ(t)). (25)

5 The OU(p) as an ARMA(p, p− 1)

The studies of properties of linear transformations and aggregations of sim-
ilar processes have produced a great amount of work stemming from the
seminal paper of Granger and Morris [1976] on the invariance of MA and
ARMA processes under these operations. These results and extensions to
Vector Autoregressive Moving Average (VARMA) processes are compiled in
the textbook by Lütkepohl [2005].

The description of the OU(p) process x = OUκ(σw) with parameters κ, σ
as a linear state space model, given in the previous section, will allow us to
show that the series x(0), x(1), . . . , x(n) satisfies an ARMA(p, q) model with
q smaller than p. We refer the reader to Ch. 11 of Lütkepohl [2005] for a
presentation on VARMA processes and, in particular, to the following result
on the invariance property of VARMA processes under linear transformations
contained in §11.6 which we quote with a minor change of notation:

Theorem 2 (Lütkepohl [2005] Cor. 11.1.2). Let yt be a d-dimensional,
stable, invertible VARMA(p̃,q̃) process and let F be an (m × d) matrix of
rank m. Then the process zt = Fyt has a VARMA(p̌, q̌) representation with
p̌ ≤ (d−m+ 1)p̃ and q̌ ≤ (d−m)p̃+ q̃.

Equation (24) shows that Cξ(t) is a p-dimensional autoregressive vector
(a p-dimensional VARMA(1,0) process) and Eq. (25) expresses x(t) as a
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linear transformation of Cξ(t) by the (1 × p) matrix F = KtrC−1. Using
Theorem 2 (with d = p, p̃ = 1, q̃ = 0, m = 1) we conclude that (x(t) : t =
0, 1, . . . , n) is an ARMA(p̌,q̌) process with p̌ ≤ p and q̌ ≤ p− 1:

x(i) =

p∑
j=1

φjx(i− j) +

p−1∑
l=0

θlεi−l (26)

where ε is a Gaussian white noise with variance one and the parameters φ
= (φ1, . . . , φp)

tr, θ = (θ0, . . . , θp−1)tr of the ARMA process are functions of
the parameters κ and σ of the OU.

By using the backshift operator B, and the polynomials φ(z) = 1 −∑p
j=1 φjz

j, θ(z) =
∑p−1

l=0 θlz
l, (26) is written as

φ(B)x = θ(B)ε. (27)

We proceed now to identify the coefficients φ and θ of the ARMA model.
Step 1. Let us consider first the simplest case, analyzed at the beginning of
§4. For each j, the series ξκj = (ξκj(i))i∈Z satisfies the AR(1) model

(1− e−κjB)ξκj = ηκj

(see (18)), and from (19) the series x = (x(i))i∈Z given by

x =

p∑
j=1

Kj(κ)ξκj

follows the ARMA model
p∏
j=1

(1− e−κjB)x =

p∑
j=1

Kj(κ)
∏
l 6=j

(1− e−κlB)ηκj .

The sum of moving averages in the right-hand term is distributed as the
moving average

ζ =

p−1∑
h=0

θhB
hε

where ε is a white noise with variance one and the coefficients θh are suitably
chosen. It is readily verified that the autocovariances cl = Eζ(i)ζ̄(i − l) of
this MA are the coefficients in the sum of powers of z(

p−1∑
h=0

θhz
h

)(
p−1∑
k=0

θ̄kz
−h

)
=

p−1∑
l=−p+1

clz
l. (28)
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A similar formula that takes into account the correlations (20) between
the noises ηκk indicates that the same autocovariances are given by the iden-
tity

J(z) :=

p∑
j=1

p∑
l=1

KjK̄lGj(z)Ḡl(1/z)vj,l =

p−1∑
l=−p+1

clz
l (29)

where Gj(z) =
∏

l 6=j(1− e−κlz) =
∑p−1

l=0 gj,lz
l.

The coefficients gj,l and the function J are completely determined from
the parameters of the OU process. In order to express the parameters of the
ARMA(p,p− 1) process in terms of κ, σ it remains to obtain the coefficients
θh in the factorization (28).

The roots ρj (j = 1, 2, . . . , p− 1) of

θ(z) =

p−1∑
h=0

θhz
h = θ0

p−1∏
j=1

(1− z/ρj) (30)

are obtained by choosing the roots of the polynomial zp−1θ(z)θ̄(1/z) =
zp−1J(z) with modules greater than one (the remaining roots are their in-
verses). Then all θh are written in terms of the ρh and the size factor θ0 by
applying (30).

The value of θ0 follows by using an additional equation, namely, the
equality of the terms of degree zero in J(z) and θ(z)θ̄(1/z), thus obtaining

p−1∑
l=0

|θl|2 =

p∑
j=1

p∑
l=1

KjK̄lvj,l

p−1∑
h=0

gj,hḡl,h.

Step 2. As a second step, let us approach the OU(p) process x with param-
eter equal to the p-vector with equal components κ = (κ, κ, . . . , κ)tr as the
limit of xδ = OUκ(δ)σw, κ(δ) = (κ(1 + δ), κ(1 + 2δ), . . . , κ(1 + pδ))tr when δ
tends to zero.

From the previous step we use the representation

xδ =

p∑
j=1

Kjξj, Kj =
(1 + jδ)p−1

δp−1

∏
l 6=j

1

j − l
(31)

in terms of the vector

ξ = (ξ1, ξ2, . . . , ξp)
tr, ξj(t) =

∫ t

−∞
e−κ(1+jδ)(t−s)dw(s)

14



that satisfies
ξ = diag(e−κ(1+jδ))Bξ + η

with

ηj(t) =

∫ t

t−1

e−κ(1+jδ)(t−s)dw(s)

and introduce the power expansions

ξj(t) =

∫ t

−∞
e−κ(t−s)

∞∑
h=0

(jδ)h(−κ(t− s))h

h!
dw(s) =

∞∑
h=0

(jδ)hξ(h)
κ (t)

with ξ
(h)
κ (t) =

∫ t
−∞ e−κ(t−s) (−κ(t−s))h

h!
dw(s) and the similar expansion for the

innovations

ηj(t) =
∞∑
h=0

(jδ)hη(h)
κ (t) with η(h)

κ (t) =

∫ t

t−1

e−κ(t−s) (−κ(t− s))h

h!
dw(s). (32)

We write now the ARMA model

p∏
j=1

(1− e−κ(1+jδ)B)xδ =

p∑
j=1

∏
l 6=j

(1− e−κ(1+lδ)B)Kjηj

and notice that the limit when δ → 0 of the left-hand side is (1− e−κB)px.
In order to take limits at the right-hand side, we replace Kj for its ex-

pression in (31), expand
∏

l 6=j(1− e−κ(1+lδ)B) as the product of the series

p∏
l=1

(1− e−κ(1+lδ)B) =
∞∑
ν=0

aνδ
ν (33)

independent of j and

(1− e−κ(1+jδ)B)−1 =
∞∑
h=0

(e−κ(1+jδ)B)h =
∞∑
µ=0

bµ(jδ)µ (34)

with coefficients independent of j and substitute the expansion (32) for ηj
thus obtaining the series

p∑
j=1

(
∞∑
ν=0

aνδ
ν ×

∞∑
µ=0

bµ(jδ)µ × (1 + jδ)p−1
∏
l 6=j

1

j − l
×
∞∑
h=0

(jδ)hη(h)
κ

)

15



divided by δp−1.
After ordering this series by increasing powers of δ, it may be noticed

that the terms in δ raised to a power smaller than p−1 vanish, because their
coefficient include a factor

∑p
j=1 j

h
∏

l 6=j
1
j−l with h ∈ {0, 1, . . . , p − 2} that

is equal to zero as established in Lemma 1 below. Therefore, the limit when
δ → 0 of the series divided by δp−1 is the coefficient of δp−1 in the series.

Unless the term a0 of the first factor is taken, the power of j appearing
in the coefficient of δp−1 will be smaller than p − 1 and again Lemma 1
leads to conclude that the coefficient vanishes. Therefore, since the same
lemma establishes that

∑p
j=1 j

p−1
∏

l 6=j
1
j−l = 1, the required limit is the

linear combination of moving averages

a0

∑
µ+ı+h=p−1

(
p− 1

i

)
bµη

(h)
κ (35)

where it remains to make explicit the dependence with respect to the back-
shift operator B.

From (33) it follows immediately that a0 = (1− e−κB)p, while from (34)
we get bµj

µµ! =
[
∂µ

∂δµ

∑∞
h=0 e−κhBhe−hjδ

]
δ=0

= (−j)µ
∑∞

h=0(e−κB)hhµ and
hence

bµ =
(−1)µ

µ!

∞∑
ν=0

(e−κB)ννµ.

Now we apply Lemma 2 (stated at the end of this section) such that, with
the coefficients αµ,ν there defined, leads us to write

∞∑
ν=0

(e−κB)ννµ =

µ∑
ν=0

αµ,ν(1− e−κB)−ν−1

and therefore (35) is equal to the moving average of order at most p− 1

∑
µ+ı+h=p−1

(
p− 1

i

)
(−1)µ

µ!

µ∑
ν=0

αµ,ν(1− e−κB)p−ν−1η(h)
κ . (36)

Let us observe finally that the order of the moving average is actually
p− 1. The term in Bp−1 corresponds to ν = 0 and reduces to∑

µ+ı+h=p−1

(
p− 1

i

)
(−1)µ

µ!
αµ,0(−1)p−1e−(p−1)κBp−1η(h)

κ .
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At least the term in Bp−1η
(p−1)
κ with coefficient (−1)p−1e−(p−1)κ does not

vanish. On the other hand, neither the term with lag zero in η
(p−1)
κ vanishes,

because its coefficient is α0,0 = 1.
Step 3. Our third and final step is to join the previous results for the
general case with parameter κ, a p-vector with pj components equal to κj,
j = 1, 2, . . . , q, with κ1, . . . , κq all different of each other and

∑q
j=1 pj = p.

We use the result of Theorem 1(v) and conclude that x = OUκ(σw), satisfies
the ARMA(p, p− 1) model

q∏
j=1

(1− e−κjB)pjx =

q∑
j=1

Kj

∏
l 6=j

(1− e−κlB)plMAj (37)

with MAj the moving average of order pj − 1 given by Eq. (36).
We do not intend to express the coefficients θh of the moving average

model
∑p−1

h=0 θhB
hε based on a white noise ε of variance one with the same

distribution as
∑q

j=1Kj

∏
l 6=j(1 − e−κlB)plMAj for the general model, but

will do it in particular cases treated below.

Lemma 1. For each positive integer p,
∑p

j=1 j
p−1
∏

l 6=j
1
j−l = 1 and for h =

0, 1, . . . , p− 2,
∑p

j=1 j
h
∏

l 6=j
1
j−l = 0.

Proof: The polynomial G(z) =
∑p

j=1

(
1
j

)p−1−h∏
l 6=j

1−lz
1−l/j has degree p − 1

and coincides for p different values of the variable, namely z = 1/j, j =
1, 2, . . . , p, with the polynomial zp−1−h, also of degree not greater than p− 1
for h = 0, 1, . . . , p− 1. Therefore, both polynomials are identical, and hence
G(0) = 0 for h < p− 1 and G(0) = 1 for h = p− 1.

Lemma 2. The power series g(z, n) =
∑∞

h=0 z
hhn, |z| < 1, n = 0, 1, 2, . . .

has the sum
n∑
h=0

αn,h(1− z)−h−1

with coefficients determined by α0,0 = 1 and the recurrence relations

αn+1,h = hαn,h−1− (h+ 1)αn,h, h = 0, 1, . . . , n+ 1, n = 0, 1, 2, . . . , αn,n+1 = 0.

In particular, αn,0 = (−1)n.
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6 Estimation of the parameters of OU(p)

6.1 Reparameterization by means of real parameters

Since we wish to consider real processes x and the process itself and its
covariance γ(t) depend only on the unordered set of the components of κ, we
shall reparameterize the process by means of the real vector β = (β1, . . . , βp)
given by the polynomial identity

g(z) =

p∏
j=1

(1 + κjz) = 1−
p∑
j=1

βjz
j. (38)

The resulting process is real, because of Corollary 2.

6.2 Maximum likelihood estimation (MLE)

We shall assume that the process x is observed at times 0, τ, 2τ, . . . , nτ . By
choosing τ the time unit of measure, as in §4, we assume without loss of
generality that our observations are x = (x(0), x(1), . . . , x(n))tr.

The likelihood L of the vector x is given by

logL(x;β, σ) = −n
2

log(2π)− 1
2

log(det(Γ(β, σ))− 1
2
xtr(Γ(β, σ))−1x

where Γ has components Γh,i = γ(|h − i|) (h, i = 0, 1, . . . , n). The Kalman
filter associated to the dinamical state space model in §4 provides an efficient
alternative to compute the likelihood.

From these elements, a numerical optimization leads to obtain the maxi-
mum likelihood estimators β̂ of β and σ̂2 of σ2. If required, the estimations
κ̂ follow by solving the analogue of the polynomial equation (38) written in
terms of the estimators:

p∏
j=1

(1 + κ̂jz) = 1−
p∑
j=1

β̂jz
j.

The optimization for large n and the solution of the algebraic equation
for large p require a considerable computation effort, but there are efficient
programs to perform both operations, as optim and polyroot in R (R De-
velopment Core Team [2011]).
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An alternative when the observed process is not assumed to be centered,
is to maximize the log-likelihood of ∆x = (x(1)−x(0), x(2)−x(1), . . . , x(n)−
x(n− 1)) given by

logL(x;β, σ) = −n
2

log(2π)− 1
2

log(det(V (β, σ))− 1
2
∆xtr(V (β, σ))−1∆x

with V (β, σ) equal to the n× n matrix with components

Vh,i = 2γ(|h− i|)− γ(|h− i|+ 1)− γ(|h− i| − 1)

that reduce to 2(γ(0)− γ(1)) at the diagonal h = i.
The optimization procedures require an initial guess about the value of the

parameter to be estimated. The estimators obtained by matching correlations
described in the next section can be used for that purpose.

6.3 Matching correlations estimation (MCE)

From the closed formula for the covariance γ (eq. (16)) and the relationship
between κ and β (eq. (38)), we have a mapping (β, σ2) 7→ γ(t), for each t.
Since ρ(T ) := (ρ(1), ρ(2), . . . , ρ(T ))tr = (γ(1), γ(2), . . . , γ(T ))tr/γ(0) does not
depend on σ2, these equations determine a map C : (β, T ) 7→ ρ(T ) = C(β, T )

for each T . After choosing a value of T and obtaining an estimate ρ
(T )
e of

ρ(T ) based on the empirical covariances of x, we propose as a first estimate
of β, the vector β̌T such that all the components of the corresponding κ

have positive real parts, and such that the euclidean norm ‖ρ(T )
e −C(β̌T , T )‖

reaches its minimum. The procedure resembles the estimation by the method
of moments. The components of ρ

(T )
e for the series (xi)i=1,2,...,n are computed

as ρe,h = γe,h/γe,0, γe,h = 1
n

∑n−h
i=1 xixi+h.

6.4 Some simulations

We have simulated the series x(i), i = 0, 1, 2, . . . , n obtained from an OU pro-
cess x for n = 300 and three different values of the parameters and computed
the MC and ML estimators β̌T , and β̂. The value of T for the MC estimation
has been arbitrarily set equal to the integral part of 0.9 ·n, but the graphs of
β̌T for several values of T show in each case that after T exceeds a moderate
threshold, the estimates remain practically constant. One of such graphs is
included below (see Figure 3).
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The simulations show that the correlations of the series with the estimated
parameters are fairly adapted to each other and to the empirical covariances.
The departure from the theoretical covariances of x can be ascribed to the
simulation intrinsic randomness.

Our first two examples describe OU(3) processes with arbitrarily (and
randomly) chosen parameters and the third one imitates the behavior of
Series A that appears in §7.

Example 1. A series (xi)i=0,1,...,n of n = 300 observations of the OUκ process
x (p = 3, κ = (0.9, 0.2 + 0.4ı, 0.2 − 0.4ı), σ2 = 1) was simulated, and
the parameters β = (−1.30, −0.56, −0.18) and σ2 = 1 were estimated
by means of β̌T = (−1.9245, −0.6678, −0.3221), T = 270, β̂ = (−1.3546,
−0.6707, −0.2355) and σ̂2 = 0.8958. The corresponding estimators for κ are
κ̌ = (1.6368, 0.1439 +0.4196ı, 0.14389 −0.4196ı) and κ̂ = (0.9001, 0.2273 +
0.4582ı, 0.2273− 0.4582ı).
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Figure 1: Empirical covariances (◦) and covariances of the MC (—) and
ML (- - -) fitted OU models, for p = 3 corresponding to Example 1. The
covariances of OUκ are indicated with a dotted line.

Figure 1 describes the theoretical, empirical and estimated covariances of
x under the assumption p = 3, that is, the actual order of x. The results
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obtained when the estimation is performed for p = 2 and p = 4 are shown in
Figure 2. Finally, Figure 3 shows that the MC estimates of β become stable
for T moderately large, and close to the already indicated estimations for
T = 270 (the horizontal lines).
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Figure 2: Empirical covariances (◦) and covariances of the MC (—) and ML
(- - -) fitted OU models, for p = 2, 4 corresponding to Example 1. The
covariances of OUκ are indicated with a dotted line.
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Figure 3: The MC estimations β̌1(◦), β̌2(O) and β̌3(�) for different values of
T , corresponding to Example 1. The horizontal lines indicate the estimations
for T = 270.

The coefficients φ1, φ2, φ3 of the ARMA(3,2) model (27) satisfied by the
series (x(i))i=0,1,...,300 are obtained by computing the product

∏3
j=1(1−e−κjB)

= 1− φ1B − φ2B
2 − φ3B

3 = 1− 1.9148B + 1.2835B2 − 0.2725B3.
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As for the coefficients θ0, θ1, θ2, the first step is to compute the function

J(z) = 0.2995z−2 − 1.1943z−1 + 1.7904− 1.1943z + 0.2995z2,

then obtain the roots ρ1 = 1.1443 −0.1944ı, ρ2 = 1.1443 +0.1944ı, ρ3 =
0.8494 −0.1443ı, ρ4 = 0.8494 +0.1443ı of the equation z2J(z) = 0, ordered
by decreasing moduli, discard the last two, and write the function θ(z) =
θ0 + θ1z + θ2z

2 defined in (30):

θ0

2∏
j=1

(1−B/ρ1)(1−B/ρ2) = θ0(1− 1.6988z + 0.7423z2).

Solve θ2
0(1 + (−1.6988)2 + 0.742292) = 1.7904 to have θ0 = 0.6352, and hence

θ(B) = 0.6352− 1.0791B + 0.4715B2.

Example 2. The process x = OU(0.04,0.21,1.87) is analyzed as in Example 1.

The resulting estimators are β̌T = (−2.0611, −0.7459, −0.0553), T = 270,
κ̌ = (1.6224, 0.3378, 0.1009), β̂ = (−1.8253, −0.7340, −0.0680), σ̂2 = 0.7842,
κ̂ = (1.3015, 0.3897, 0.1342), and the resulting covariances are shown in
Figure 4 . The associated ARMA(3,2) model is

(1− 1.9255B + 1.05185B2 − 0.1200B3)x = (0.4831− 0.9044B + 0.4230B2)ε.

Example 3. The parameter κ = (0.83, 0.0041, 0.0009) used in the simulation
of the OU process x treated in the present example is approximately equal
to the parameter κ̂ obtained by ML estimation with p = 3 for Series A in
§7.1. As in previous examples, a graphical presentation of the estimated
covariances is given in Figure 5.

The associated ARMA(3,2) model is

(1− 2.4311B + 1.8649B2 − 0.4339B3)x = (0.6973− 1.3935B + 0.6962B2)ε

The description of the performance of the model is complemented by
comparing in Figure 6 the simulated values of the process in 400 equally
spaced points filling the interval (199,201) with the predicted values for the
same interval, based on the OU(3) model and the assumed observed data
x(0), x(2), x(3), . . . , x(200). Also a 2σ confidence band is included in the
graph, in order to describe the precision of the predicted values.
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Figure 4: Empirical covariances (◦) and covariances of the MC (—) and
ML (- - -) fitted OU models, for p = 3 corresponding to Example 2. The
covariances of OUκ are indicated with a dotted line.

7 Applications to real data

In this section we present experimental results on three real data sets. We
fit OU(p) processes for small values of p and also some ARMA processes.
In each case we have observed that we can find an adequate value of p for
which the empirical covariances are well approximated by the covariances
of the adjusted OU(p) model. This is not the case for the ARMA models
adjusted by maximum likelihood, in all three examples. We present a detailed
comparison of both methodologies for the first example.

The first two data sets are taken from Box et al. [1994], and correspond
to equally spaced observations of continuous time processes that might be
assumed to be stationary. The third one is a series obtained by choosing
one in every 100 terms of a high frequency recording of oxygen saturation in
blood of a newborn child. The data were obtained by a team of researchers
of Pereira Rossell Children Hospital in Montevideo, Uruguay, integrated by
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Figure 5: Empirical covariances (◦) and covariances of the MC (—) and ML
(- - -) fitted OU models, for p = 2, p = 4 and p = 3, the actual value of
the parameter, corresponding to Example 3. The covariances of OUκ are
indicated with a dotted line.

L. Chiapella, A. Criado and C. Scavone. Their permission to analyze the
data is gratefully acknowledged by the authors.

7.1 Box, Jenkins and Reinsel “Series A”

The Series A is a record of n = 197 chemical process concentration read-
ings, taken every two hours, introduced with that name and analyzed in
Chapter 4 of Box et al. [1994] (see also http://rgm2.lab.nig.ac.jp/RGM2/
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Figure 6: Estimated interpolation and prediction of x(t) for 199 < t <
200 and 200 < t < 201, respectively (- - -), 2σ confidence bands based on
(x(i))i=0,1,...,200 (· · · ), and a refinement of the simulation of x(t) on 199 < t <
200.

tfunc.php?rd id=FitAR:SeriesA). The original data are plotted in Figure 7.
The diagrams in Figure 8 compare the empirical covariances of the series

with the covariances of the estimated ARMA(p, q) process fitted by means
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Figure 7: Series A
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Figure 8: Empirical and ARMA-fitted covariances for Series A

of the R function arima for several values of p and q. In particular, the
ARMA(1,1) is suggested as a model for this data in Box et al. [1994], and
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subsets of AR(7) are proposed in Cleveland [1971] and McLeod and Zhang
[2006] for the same purpose.

The ARMA(1,1) and the AR(7) fit fairly well the autocovariances for
small lags, but fail to capture the structure of autocorrelations for large lags
present in the series. However, the approximations obtained with the OU(3)
process reflects both the short and long dependences, as shown in Figure 9.

It is interesting to consider jointly the ARMA(3,2) model (39) fitted to the
original data by maximum likelihood (computed also with the arima func-
tion) and the ARMA(3,2) model (40) obtained by the procedure described in
§5, corresponding to the OU(3) process also fitted to the data by maximum
likelihood. The estimated parameters of this OU process are

κ̂ = (0.8293, 0.0018 + 0.0330ı, 0.0018− 0.0330ı) and σ̂ = 0.4401

and the ARMA(3,2) processes are respectively

(1−0.7945B−0.3145B2+0.1553B3)x=0.3101(1−0.4269B−0.2959B2)ε (39)

and

(1−2.4316B+1.8670B2−0.4348B3)x=0.4401(1−1.9675B+0.9685B2)ε. (40)

The autocorrelations of both ARMA models, shown in Figure 10 together
with the empirical correlations of the series were computed by means of the R
function ARMAacf, although the ones corresponding to (40) could have been
obtained as the restrictions to integer lags of the covariance function for con-
tinuous time described in §3.2. It is worth to notice that the autocorrelations
of (39) do not approach the empirical correlations, indicated by circles, as
much as the correlations of (40). The logarithms of the likelihoods of (39)
and (40) are `′ = −49.23, and `′′ = −50.95, respectively. But since the
number of parameters of the second model (which is four) is smaller than
the number of parameters of the complete family of ARMA(3,2) processes
(six), the Akaike Information Criterion (AIC) of the parsimonious OU model
is 8− 2`′′ = 109.90, slightly better than the AIC of the unrestricted ARMA
model, equal to 12− 2`′ = 110.46.

Finally we show in Figure 11 the predicted values of the continuous pa-
rameter process x(t), for t between n − 7 and n + 4 (190-201), obtained as
the best linear predictions based on the last 90 observed values, and on the
correlations given by the fitted OU(3) model. The upper and lower lines are
2σ-confidence limits for each value of the process.
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Figure 9: Empirical covariances (◦) and covariances of the MC (—) and ML
(- - -) fitted OU(p) models, for p = 2, 3, 4 corresponding to Series A.
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Figure 10: Empirical correlations (◦) of Series A, and autocorrelations of
models (39) and (40) fitted by maximum likelihood from the family of all
ARMA(3,2) and the restricted family of ARMA(3,2) derived from OU(3).

7.2 Box, Jenkins and Reinsel Series C

The Series C is a record of n = 226 chemical process temperature readings,
taken every minute, introduced with that name in Box et al. [1994], p. 544.
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As in the previous example, the fitted ARMA(p, q) and ARIMA(p, 1, q)
models for moderate values of p and q fail to capture the autocorrelations
that might be present in the series. Figure 12 shows the empirical covariances
of the series and the covariances of the MC (—) and ML (- - -) fitted OU(p)
models for p = 2, p = 3 and p = 4. It is not surprising that the MC estimated
covariances fit better than the ML ones the empirical covariances, since they
have been obtained by optimizing that fit. The poor performance of the ML
estimation is presumably due to the fact that the series does not obey an
OU model. The corresponding graphs for the first differences of Series C are
included in Figure 13.

7.3 Oxygen saturation in blood

The oxygen saturation in blood of a newborn child has been monitored during
seventeen hours, and measures taken every two seconds. We assume that a
series x0, x1, . . . , x304 of measures taken at intervals of 200 seconds is observed,
and fit OU processes of orders p = 2, 3, 4 to that series.

Again the empirical covariances of the series and the covariances of the
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x

Figure 11: Confidence bands for interpolated and extrapolated values of
Series A for continuous domain.
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Figure 12: Empirical covariances (◦) and covariances of the MC (—) and ML
(- - -) fitted OU(p) models for p = 2, 3, 4 corresponding to Series C.
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Figure 13: Empirical covariances (◦) and covariances of the MC (—) and ML
(- - -) fitted OU(p) models for p = 2, 3, 4 corresponding to the first differences
of Series C.
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Figure 14: Empirical covariances (◦) and covariances of the MC (—) and ML
(- - -) fitted OU(p) models for p = 2, 3, 4 corresponding to the series of O2

saturation in blood.
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Figure 15: Partial graph showing the five last values of the series of O2

saturation in blood at integer multiples of the 200 seconds unit of time (◦),
interpolated and extrapolated predictions (—), 2σ confidence bands (- - -),
and actual values of the series.

fitted OU(p) models for p = 2, p = 3 and p = 4 are plotted (see Figure 14)
and the estimated interpolation and extrapolation are shown in Figure 15.
In the present case, the actual values of the series for integer multiples of
1/100 of the unit measure of 200 seconds are known, and plotted in the same
figure.

8 Conclusions

We have proposed a family of continuous time stationary processes, OU(p),
for each positive integer p, based on p iterations of the linear operator that
maps a Wiener process onto an Ornstein-Uhlenbeck process. These oper-
ators have some nice properties, such as being commutative, and their p-
compositions decompose as a linear combination of simple operators of the
same kind. We remark that this last result, stated in Theorem 1, is indepen-
dent of the process onto which the operators OUκ act on. We have preferred
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to reduce the present scope of the applications envisaged by applying the op-
erators only to Wiener processes, but other choices deserve consideration, for
example, the results of applying the same operators to fractional Brownian
motions.

An OU(p) process depends on p + 1 parameters that can be easily esti-
mated by either maximum likelihood (ML) or matching correlations (MC)
procedures. Matching correlation estimators provide a fair estimation of the
covariances of the data, even if the model is not well specified.

When sampled on equally spaced instants, the OU(p) family can be writ-
ten as a discrete time state space model, namely, a VARMA model in a
space of dimension p. As a consequence, the families of OU(p) models are a
parsimonious subfamily of the ARMA(p, p− 1) processes. Furthermore, the
coefficients of the ARMA can be deduced from those of the corresponding
OU(p).

We have shown examples for which the ML-estimated OU model is able
to capture a long term dependence that the ML-estimated ARMA model
does not show. This leads to recommend the inclusion of OU models as
candidates to represent stationary series to the users interested in such kind
of dependence.

Appendix : Derivation of the state space model

The form of the equations for the state space representation of the OU(p)
equations in the general case can be derived by considering three special
cases:

1. When the components of κ are all different. This case is treated in §4.

2. When he components of κ are all equal.

Let κ denote the common value of the components of κ. The state of
the system is described by the vector

ξκ,p = (ξ(0)
κ , ξ(1)

κ , . . . , ξ(p−1)
κ )tr,

with components ξ(h)
κ (t) = σ

∫ t

−∞
e−κ(t−s) (−κ(t− s))h

h!
dw(s).
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Each of these terms can be written as the sum

ξ(h)
κ (t) = σe−κ

∫ t−1

−∞
e−κ(t−1−s) (−κ(t− 1− s+ 1))h

h!
dw(s) + ηκ,h(t)

(41)

where ηκ,h(t) = σ

∫ t

t−1

e−κ(t−s) (−κ(t− s))h

h!
dw(s).

The first term in the right-hand side of (41) is equal to

σe−κ
h∑
j=0

(−κ)h−j

(h− j)!

∫ t−1

−∞
e−κ(t−1−s) (−κ(t− 1− s))j

j!
dw(s)

= e−κ
h∑
j=0

(−κ)h−j

(h− j)!
ξ(j)
κ (t− 1)

and therefore, by introducing the matrix

Aκ,p = e−κ



1 0 0 . . . 0 0
(−κ)

1!
1 0 . . . 0 0

(−κ)2

2!
(−κ)

1!
1 . . . 0 0

. . . . . . . . . . . . . . . . . .
(−κ)p−2

(p−2)!
(−κ)p−3

(p−3)!
(−κ)p−4

(p−4)!
. . . 1 0

(−κ)p−1

(p−1)!
(−κ)p−2

(p−2)!
(−κ)p−3

(p−3)!
. . . (−κ)

1!
1


we may write

ξκ,p(t) = Aκ,pξκ,p(t− 1) + ηκ,p

where
ηκ,p(t) = (ηκ,0(t), ηκ,1(t), . . . , ηκ,p−1(t))tr

is a vector of centered Gaussian innovations (independent of the σ-
algebra generated by {w(s) : s ≤ t− 1}) with covariance matrix Bκ,κ,p

obtained with κ1 = κ2 and p1 = p2 from the general expression of the
p1 × p2 matrix Bκ1,κ2,p1,p2 = ((bκ1,κ2,h1,h2))1≤h1≤p1,1≤h2≤p2 , where

bκ1,κ2,h1,h2 = Eηκ1,h1(t)η̄κ2,h2(t)

= σ2

∫ t

t−1

e−(κ1+κ̄2)(t−s)(−κ1)h1(−κ̄2)h2(t− s)h1+h2ds

= σ2

∫ 1

0

e−(κ1+κ̄2)y(−κ)h1(−κ̄)h2yh1+h2dy.
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The equation x(t) = Ktr
p ξκ,p(t), with Ktr

p = (
(
p−1

0

)
,
(
p−1

1

)
, . . . ,

(
p−1
p−1

)
)

completes the description of the system state dynamics.

3. The vector κ has components κ1 = λ+µı and κ2 = λ−µı, µ 6= 0, each
repeated p1 times.

A description involving imaginary processes is immediate from the pre-
vious case. The equations(

ξκ1,p1(t)
ξκ2,p1(t)

)
=

(
Aκ1,p1 0

0 Aκ2,p1

)(
ξκ1,p1(t− 1)
ξκ2,p1(t− 1)

)
+

(
ηκ1,p1
ηκ2,p1

)

x(t) = (Ktr
p1
,Ktr

p1
)

(
ξκ1,p1(t)
ξκ2,p1(t)

)
hold, and Var

(
ηκ1,p1
ηκ2,p1

)
=

(
Bκ1,κ1,p1,p1 Bκ1,κ2,p1,p1

Bκ2,κ1,p1,p1 Bκ1,κ1,p1,p1

)
.

A description in terms of real processes is obtained by multiplying the
first equation by the matrix

Cp1 =

(
Ip1 Ip1
−ıIp1 ıIp1

)
(where Ip denotes the p × p identity matrix), because the vectorial

process Cp1

(
ξκ1,p1(t)
ξκ2,p1(t)

)
has real components. The new equations are

Cp1

(
ξκ1,p1(t)
ξκ2,p1(t)

)
=

(
Cp1

(
Aκ1,p1 0

0 Aκ2,p1

)
C−1
p1

)
×
(
Cp1

(
ξκ1,p1(t− 1)
ξκ2,p1(t− 1)

))

+ Cp1

(
ηκ1,p1
ηκ2,p1

)
and

x(t) =
(
(Ktr

p1
,Ktr

p1
)C−1

p1

)
×
(
Cp1

(
ξκ1,p1(t)
ξκ2,p1(t)

))

General case, real processes

Let us assume that κ1, . . . , κq are distinct components of κ, each repeated
p1, . . . , pq times. We assume in addition that the imaginary components are
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κ1, κ2 = κ̄1, . . . , κ2c−1, κ2c = κ̄2c−1 and the remaining κ2c+1, . . . , κq are real.
With this notation, p2h−1 = p2h for h = 1, 2, . . . , c.

We make intensive use of the notations introduced in previous cases to
write

ξ(t) = Aξ(t− 1) + η(t), (42)

x(t) = Ktrξ(t)

with

ξ(t) =



ξκ1,p2(t)
ξκ2,p2(t)
ξκ3,p4(t)
ξκ4,p4(t)
. . .

ξκ2c−1,p2c(t)
ξκ2c,p2c(t)

ξκ2c+1,p2c+1
(t)

ξκ2c+2,p2c+2
(t)

. . .
ξκq ,pq(t)


,η(t) =



ηκ1,p2(t)
ηκ2,p2(t)
ηκ3,p4(t)
ηκ4,p4(t)
. . .

ηκ2c−1,p2c(t)
ηκ2c,p2c(t)

ηκ2c+1,p2c+1
(t)

ηκ2c+2,p2c+2
(t)

. . .
ηκq ,pq(t)


,

A =


Aκ1,p2 0 . . . 0

0 Aκ2,p2 . . . 0
...

... . . .
...

0 0 . . . Aκq ,pq


and

Ktr = (Ktr
κ1,p1

, Ktr
κ2,p2

, . . . , Ktr
κq ,pq).

The real version, when the process ξ has imaginary components is ob-
tained by multiplying (42) by the matrix

C =


Cp2 0 . . . 0 0
0 Cp4 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . Cp2c 0
0 0 . . . 0 Ip2c+1+···+pq

 (43)

thus obtaining

Cξ(t) = (CAC−1)× (Cξ(t− 1)) + Cη(t), (44)

x(t) = (KtrC−1)× (Cξ(t)). (45)
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