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Abstract. The optimal transformation of one tree into another by means of elementary edit operations
is an important algorithmic problem that has several interesting applications to computational biology.
Here we introduce a constrained form of this problem in which a partial mapping of a set of nodes (the
“seeds”) in one tree to a corresponding set of nodes in the other tree is given, and present efficient
algorithms for both ordered and unordered trees. Whereas ordered tree matching based on seeded nodes
has applications in pattern matching of RNA structures, unordered tree matching based on seeded nodes
has applications in co-speciation and phylogeny reconciliation. The latter involves the solution of the
planar tanglegram layout problem, for which a polynomial-time algorithm is given here.

1 Introduction

Matching and aligning trees is a recurrent problem in computational biology. Two prominent applications
are the comparison of phylogenetic trees [2, 3, 15, 18, 22, 24, 26] and the comparison of RNA structures [10,
11, 23, 28]. The specific problems defined and addressed in this paper are motivated by applications where
densely seeded local tree alignments are sought.

In what follows, we first describe an example motivated by evolutionary studies of RNase P RNAs and
their target tRNAs; it is interesting as it demonstrates the need for seeded tree alignments for both ordered
and unordered trees. The basic formalism is given in Section 2. Section 3 describes a general framework and
the corresponding analysis for seeded tree alignment. Finally, in Section 4, an algorithm is presented which
computes a planar layout for two unordered seeded trees, if such exists.

1.1 Seeded trees based on RNase P structure comparison

Ribonuclease P is the endoribonuclease responsible for the 5’ maturation of tRNA precursors [7]. RNase P
is a ribonucleoprotein in all organisms, but is best understood in Bacteria, in which the RNA component of
the enzyme is by itself catalytically proficient in vitro (it is a ribozyme). The structure of bacterial RNase P
RNA has been studied in detail, primarily using comparative methods [16, 9, 6, 27]. Bacterial RNase P RNAs
share a common core, and synthetic minimal RNase P RNAs consisting only of these core sequences and
structures are catalytically proficient. Structural variation in RNase P RNA is predominated by variation in
the presence or absence of helical elements and in variation of the size of the distal regions of these helices.
However, there is additional variation in the form of small differences in the lengths of helices, loops and
joining regions. In terms of RNA secondary structure tree alignment, this means that the operations applied
in transforming one tree to another consist of subtree deletions and insertions as well as homeomorphic node
insertions and deletions in ordered rooted trees (see Fig. 1).

Recently, sequences encoding RNase P RNAs of various genomes have been determined (see the RNase
P database, http://www.mbio.ncsu.edu/RNaseP/). This broad sampling of RNase P RNAs allows some
phylogenetic refinement of the secondary structure, and reveals patterns in the evolutionary variation of



Fig. 1. The known secondary structures for two RNase P sequences and the corresponding coarse-grain trees. (left)
E. coli RNase P, based on [7], shaded nts represent conserved loci. (right) M. barkery RNase P obtained from the
RNase P database http://www.mbio.ncsu.edu/RNaseP/).

Fig. 2. Seeded tree alignment for the E. coli versus M. barkery RNase P secondary structures shown in Fig. 1. Dark
vertices represent conserved loci, dotted lines represent alignment seeds.

sequences and secondary structures. In [7], the extent and patterns of evolutionary variation in RNase P
RNA sequence and structure were studied, in both bacterial and archeal species, and it was shown that
highly-conserved bases are scattered throughout the sequence and secondary structure, and are concentrated
in the vicinity of the pre-tRNA binding surface of the tertiary structure. Furthermore, there are several
helices, both in the core and periphery of the RNA, that are conserved in sequence at the base and terminal
loop but are extremely variable in sequence along the length of the helix. The proximal ends of these helices
are located within important conserved sequence and structure, and interact at their terminal loops in
secondary or tertiary contacts elsewhere in the molecule. A detailed description of the conserved loci is given
in [7] and shown in Fig. 1. In terms of RNA secondary structure tree comparison, this means that in a
biologically correct alignment of two RNase P trees, the nodes corresponding to the conserved loci should
be mapped to each other (“alignment seeds”), as shown in Fig. 2.

The need to align seeded tree-pairs also arises in applications where the bioinformatics data is represented
in the form of unordered trees. To demonstrate this, consider the example in Fig. 3, which illustrates the
reconciliation of a phylogenetic tree based on archeal RNase P structures with the phylogenetic tree based on
archeal rRNA structures. This figure is based on a study by Harris et al. [8], where a detailed comparative
analysis of archaeal RNase P RNA structures is reported, based on 37 sequences from a wide range of
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Fig. 3. Seeded phylogenetic unordered tree alignment, in the context of horizontal gene transfer prediction. (left)
The tanglegram formed by connecting, via seed edges, the phylogenetic tree based on archeal RNase P structures [8]
with another phylogenetic tree based on archeal RNA [29]. The seed edges for the two direct neighbors, according
the RNase P RNA tree: Archeaglogi and Methanococci, which are putatively involved in RNase P RNA horizontal
transfer [8], were omitted. (right) The planar layout of the tanglegram.

archaeal species. The RNase P RNA sequences were rigorously aligned in a comparative analysis of secondary
structure, providing an opportunity to compare phylogenetic relations derived from RNase P RNA sequences
with those derived from small subunit ribosomal RNA sequences from the same group of organisms [12].

Although the RNase P RNA sequences generally recreate trees similar to those based on rRNA, a sig-
nificant exception is the placement of the sequence from Archaeoglobus fulgidus. In rRNA-based trees, this
genus lies on a branch distinct from the other major euryarchaeal groups, separating from the other groups
at approximately the bifurcation between methanobacteria and halobacteria/methanomicrobia [12]. The A.
fulgidus RNase P RNA, however, is clearly related in structure and sequence to those of Methanococcus.
Trees constructed using parsimony (DNAPARS) and maximum likelihood (DNAML) methods [4] agree on
the placement of this sequence as a relative of Methanococcus, and this placement is robust. The most likely
interpretations of the similarities between RNase P RNAs of Methanococcus and A. fulgidus are that either
(1) the ribosomal RNA-based trees are for some reason misleading, and A. fulgidus is specifically related to
the methanococcus, or (2) the gene encoding RNase P RNA has been transferred laterally from one group
to another.

The above analysis could be formulated as a seeded unordered tree alignment, as follows (see Fig. 3).
Connect each leaf from the RNase P RNA tree with the corresponding (same species) leaf from the ssu-rRNA
tree, if such exists. Note that the layout of two unordered trees with additional edges forming a bijection
among their leaves is called a tanglegram [17]. It is easy to see that the seeded unordered trees can be aligned
if the input trees can be put in a non-crossing representation (in other words: if the tanglegram formed by
the input trees together with the seed has a planar layout). Correspondingly, when formulating the problem
raised by [8] as that of seeded unordered tree alignment: if the tanglegram formed by the two seeded RNA
trees has a planar layout, and the two trees agree, then there is no basis for a lateral transfer hypothesis.
In the above example, however, the tanglegram formed by the two RNA trees can be untangled, and the
two trees can be aligned after removing the seed edges corresponding to the two new neighbors (by RNase
P RNA homology) Archeaglobi and Methanococci. This supports the hypothesis of a lateral transfer of the
gene encoding RNase P RNA from Archeaglobi to Methanococci, or vice versa.

2 Formalism

Consider the constrained form of the tree matching problem in which the mapping of a subset of the nodes
in one tree to a corresponding subset of the nodes in the other tree is given in advance. The initial node
mapping is called the seed set of the matching.

Definition 1 (mapping). A mapping M of a tree T1 = (V1, E1) to a tree T2 = (V2, E2) is a bijection
M ⊆ V1 × V2 such that for all (v1, v2), (w1, w2) ∈M , it holds that v1 is an ancestor of w1 in T1 if and only
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if v2 is an ancestor of w2 in T2. A seed set S is a bijection S ⊆ M ⊆ V1 × V2 such that S itself also is a
mapping of T1 to T2.

Among all possible mappings, in this paper we deal with the commonly used least-common-ancestor
(LCA) preserving ones.

Definition 2 (LCA-preserving mapping). Let T1 = (V1, E1) and T2 = (V2, E2) be trees, and let M ⊆
V1×V2 be a mapping of T1 to T2. M is LCA-preserving if the following condition holds: if (x1, x2) ∈M and
(y1, y2) ∈M then (lca(x1, y1), lca(x2, y2)) ∈M .

We next define a new tree alignment optimization problem over pairs of seeded trees, to be applied as
a constrained form of a general, pre-selected tree alignment algorithm. Therefore, let TAA(T1, T2) denote a
“black box” tree alignment algorithm, which applies a pre-selected tree alignment algorithm to an input
consisting of two labeled trees T1 and T2. The class of tree alignment algorithms to which the seed constraint
can actually be applied is discussed in the following section.

Definition 3 (seeded tree alignment problem). Given two trees T1 = (V1, E1) and T2 = (V2, E2), a
set of seeds S ⊆ V1 × V2, and a predefined tree similarity measure MAP , such that MAP (M) denotes a
similarity score computed based on the pairs of nodes (v1, v2) ∈ M . The seeded tree alignment problem
STA(T1, T2, S,TAA) is to find a mapping M ⊆ V1× V2 such that S ∈M and the alignment score MAP (M) is
maximal under this constraint.

Fig. 4. An illustration of the dynamic programming table computed during the seeded matching algorithm. (left) The
matched trees with a partitioning induced by seeds. (right) The corresponding DP table, divided into independent
rectangles to be computed by an appropriate LCA-preserving mapping algorithm. The colored areas illustrate which
parts of the DP need to be computed. The lowest right-most corner of each colored rectangle holds the value for the
roots of the corresponding compared subtrees. Each dashed rectangle corresponds to a secondary seed. Within each
dashed rectangle, the single-cell components correspond to seeds, where the primary seeds are at the bottom-right
and top-left (only for the subtrees framed by two primary seeds) corners, and the secondary seed is located between
the two rectangles, each corresponding to one of the subtrees rooted at this secondary seed.

3 Tree Alignment based on Seeded Nodes

In this section, we show how to efficiently apply seeded alignment on top of existing tree alignment algo-
rithms. We note that our results apply to LCA-preserving mappings (see Def. 2). This class of algorithms
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includes subtree isomorphism [13, 14, 21], subtree homeomorphism [1, 19, 20], and maximum common sub-
tree (MCS) [25] finding algorithms. For the sake of clarity of presentation, we note that all these algorithms
employ a dynamic programming table where entry [i, j] denotes the similarity score of subtree i of tree T1

versus subtree j of tree T2. Moreover, the time complexity of each of the above algorithms is computed by
summing up the work invested in matching a subtree tu ∈ T1 with a subtree tv ∈ T2:

O(
n∑

u=1

m∑
v=1

(c(u)xc(v)yf(c(u), c(v))) (1)

where |T1| = n, |T2| = m, c(u) denotes the out-degree of tu, c(v) denotes the out-degree of tv, and f(c(u), c(v))
is a concave function that differs from one algorithm to another along with coefficients x and y. For example,
unordered subtree homeomorphism can be computed in O(nm

√
m) time using the top-down algorithm of [1]

and the corresponding concave function is
√

m (see Exmp. 1 for a complete analysis).
In the discussion to follow, let the seeds contained in the initial seeds set S be denoted primary seeds. Since

we restrict our analysis to LCA-preserving mappings, the LCAs of the primary seeds also function as seeds,
to be denoted secondary seeds (see Fig. 4 (left)). For the sake of simplicity of presentation we will describe the
seeded tree alignment algorithm for binary trees. Extensions to non-binary trees are straightforward. Note
that, given an LCA-preserving tree alignment algorithm, and given as input a planar layout tanglegram of
a pair of seeded trees that are to be aligned, the corresponding seeded tree alignment could immediately be
derived by extending the applied node label similarity table as follows: For each seed s = (u, v) ∈ S such that
u ∈ T1 and v ∈ T2, relabel the seeded nodes to u′ and v′ respectively and add two new rows and two new
columns to the label similarity table – one for node u′ and the other one for node v′. Then, the similarity
score for entries [u′, v′] and [v′, u′] is set to infinity while all the remaining entries in these two rows and
columns are set to zero. This way we ensure that the above LCA-preserving tree alignment algorithms will
match seeds as required.

Having said that, in this section we show how to exploit the seeds to more efficiently apply the tree
alignment, and avoid redundant work by restricting the computations to limited areas in the dynamic
programming (DP) matrix. This “constrained-by-seeds” dynamic programming can be intuitively explained
by following the example in Fig. 4. A regular, unconstrained application of the LCA-preserving algorithms
mentioned above to the two trees in Fig. 4 (left) would require the computation of each and every entry
in the DP table of Fig. 4 (right). The algorithm described below, however, will only compute the shaded
rectangles along the diagonal of the table. Note that each primary seed corresponds to a single entry in
the DP table whose score can be computed in an initialization step. Furthermore, each pair of consecutive
seeds in S (according to a planar layout) defines a rectangle in the DP matrix with a side of size at most
k, where k denotes the maximum gap between two consecutive seeds (in a planar layout), that can be filled
independently of other rectangles. This is true for all entries except for the single entry in the rectangle which
corresponds to a secondary seed, and whose computation depends on the availability of entries external to
the rectangle. This availability, however, can be taken care of if the rectangles are processed by postorder
traversal of the corresponding secondary seeds. The number of rectangles is bounded by n/2k and thus,
there is an immediate O(nk) bound on the number of entries that need to be computed in the table (in
comparison to O(n2) entries in the unconstrained tree alignment case). Furthermore, each application of TAA
is given as input two subtrees with no more than k nodes. The time complexity of seeded LCA-preserving
tree alignment algorithms is formally analyzed in Obs. 2 and demonstrated in Exmp. 1.

We refer the reader to Fig. 4 (left) for the following discussion. Consider the subtree obtained during a
postorder traversal of T1, from node c to node d: note that all nodes located in the left part are colored green
and all nodes located in the right part are colored blue. Correspondingly, in the subtree obtained during a
postorder traversal of T2, from node c′ to node d′, all nodes located in the right part are colored green and all
nodes located in the left part are colored blue. This correspondence of colors is explained by Obs. 1; before
we state it we need the following definition.

Definition 4. For any tree T and nodes x, y ∈ T , let tx−y denote the subtree consisting of all nodes found in
a postorder traversal of T , starting from node x and ending in node y. Also, let leftx−y and rightx−y denote
the left and the right subtrees of tx−y, respectively.
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Note that both leftx−y and rightx−y are rooted at lca(x, y).

Observation 1. Let T1 = (V1, E1) and T2 = (V2, E2) be trees to be aligned and (x1 ∈ V1, x2 ∈ V2) and
(y1 ∈ V1, y2 ∈ V2) be a pair of seeds such that x1 < y1 and x2 < y2 in the postorder traversal of T1 and
T2, respectively. In an LCA-preserving mapping of T1 to T2, all nodes in leftx1−y1

are mapped to nodes in
rightx2−y2

. Symmetrically, all nodes in rightx1−y1
are mapped to nodes in leftx2−y2

.

Proof. By recursive invocation of Def. 2. ut

The seeded tree alignment algorithm starts by extending the seeds set S to include the secondary seeds.
Next, it orders S such that all the seeds obey a planar layout, that is, there is no crossing between seeds.
An algorithm to compute this layout, if such layout exists, is given in Sect. 4. The resulting order partitions
the target trees, according to Obs. 1, into exclusive subtree-pair intervals (see Fig. 4 (right)). The suggested
algorithm processes these subtree pairs in postorder traversal of their roots (which are paired as secondary
seeds). For each such interval, it retrieves the corresponding subtrees and feeds them as input to TAA.

The pseudocode for the algorithm is given below; we refer the reader to the Appendix for some special
cases that are handled by the algorithm.

Algorithm 1. Given two trees T1 = (V1, E1) and T2 = (V2, E2) and a set of primary seeds S ⊆ V1 × V2,
find a best possible mapping M of T1 to T2 such that S ⊆M ⊆ V1 × V2.
1: procedure Seeded Matching(T1, T2, S)
2: S′ ← a set of secondary seeds based on S
3: S ← S ∪ S′

4: S ← layout order(S)
5: for all primary seeds (x, x′) in S do
6: DP [x, x′]← TAA(tx, tx′)
7: (x, x′)← the first secondary seed in a postorder on T1

8: while (x, x′) 6= the last secondary seed in a postorder on T1 do
9: (y, y′)← the left child seed of (x, x′)

10: (z, z′)← the right child seed of (x, x′)
11: DP [y, y′ . . . x, x′]← TAA(leftx−y, rightx′−y′)
12: DP [x, x′ . . . z, z′]← TAA(righty−z, lefty′−z′)
13: DP [x, x′]← TAA(tx, tx′)
14: (x, x′)← the next secondary seed in a postorder on T1

15: return DP [r1, r2]

Lemma 1. Let T1 = (V1, E1) and T2 = (V2, E2) be two trees to be aligned, and let S ⊆ V1×V2 be a primary
seeds set. Given an LCA-preserving tree alignment algorithm TAA and the corresponding score function MAP ,
Alg. 1 computes STA(T1, T2, S, TAA).

Proof. The condition S ∈ M is kept by lines 5,6 of Alg. 1. LCA-preservation is kept by the definition of
secondary seeds, by adding secondary seeds to S, and by the fact that, in line 13 of Alg. 1, for any seed cell
DP [i, j], the values all other entries in line i and all other entries in line j remain set to null. In lines 11,
12 of Alg. 1, the pre-selected tree alignment algorithm TAA computes the optimal score to each one of the
subtree-pairs confined by the seeds, according to the LCA-preservation constraint enforced by Obs. 1. The
candidate LCA-preserving algorithms mentioned above compute the values of DP in bottom-up node order
and thus the postorder processing of the subtrees corresponding to secondary seeds ensures that the necessary
node-values are available when needed. Therefore, by Def. 3, the resulting alignment is the best scoring one
under the seed constraints. ut

Restricting the computations to limited areas in the DP matrix results in a speedup of the applied,
predefined tree comparison algorithms, as analyzed below.
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Lemma 2. The above framework for computing STA(T1, T2, S, TAA) yields a speedup of Ω((n/k)x+y−1f(n, n)/
f(k, k)) over the time complexity of the corresponding, unseeded, tree alignment algorithm TAA(T1, T2).

Proof. Let f(c(u), c(v)) denote the concave function quantifying the work that a given (LCA-preserving, DP
subtree-to-subtree based) tree-comparison algorithm TAA applies per alignment of a subtree tu ∈ T1 with a
subtree tv ∈ T2, where c(u) denotes the out-degree of tu and c(v) denotes the out-degree of tv.

Observation 2.
∑k

u=1 c(u) = k and
∑k

v=1 c(v) = k.

Summing up the work over all node pairs, applying Obs. 2 to Eq. 1 we get:

O(
n

k

k∑
u=1

k∑
v=1

(c(u)xc(v)yf(c(u), c(v))) =

= O(
n

k
kx

n∑
v=1

(c(v)yf(c(u), k) = O(
n

k
kxkyf(k, k)) = O(nkx+y−1(f(k, k)) .

This yields a speedup of Ω((n/k)x+y−1f(n, n)/f(k, k)) over the time complexity obtained by applying
the corresponding unseeded version of the tree comparison algorithm. Below we give an example of one such
seeded tree alignment algorithm. Time complexities of the seeded versions of additional currently known
LCA-preserving tree comparison algorithms will be given in the full version of this paper. ut

Example 1 (Top-down unordered subtree homeomorphism [1]). The algorithm for top-down unordered sub-
tree isomorphism between trees T1 and T2 with |T1| = n1 and |T2| = n2 runs in O(n1n2

√
n2) time, since

O(
n1∑

u=1

n2∑
v=1

(c(u)c(v)
√

c(v)) = O(n1n2
√

n2)

When applied over a seeded tree matching, we get

O((n1/k)
k∑

u=1

k∑
v=1

(c(u)c(v)
√

c(v)) = O((n1/k)k
k∑

u=1

(c(v)
√

c(v))) =

= O((n1/k)k2
√

k) = O(n1k
√

k)

Thus, if the compared trees are heavily seeded and k = O(1) then the algorithm runs in O(n1) time and the
speedup factor is O(n2

√
n2).

4 Planar Tanglegram Layout

A layout of two unordered trees with additional edges forming a bijection among their leaves, is called a
tanglegram [17]. These diagrams arise in host-parasite cospeciation studies and in the reconciliation of gene
and species phylogenies.

Definition 5 (Tanglegram). A tanglegram is a triple (T1, T2, S) where T1 = (V1, E1) and T2 = (V2, E2)
are unordered trees, and S ⊆ V1×V2 is a seed, that is, a partial mapping of T1 to T2. A tanglegram is binary
if both T1 and T2 are binary trees.

Given a tanglegram (T1, T2, S), we will be interested in finding a way to represent the two trees in
such a way that the seed does not create any crossings among the edges corresponding to seeds in that
representation. We call such a representation a planar layout of the tanglegram. To define it formally, we
first introduce the notion of an extension of a set (and a pair of sets) of nodes.
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Definition 6 (Extension). Let T1 be an unordered tree, let X be an ordered set of nodes in T1, and let
u ∈ X be a non-leaf of T1. Denote by X ′ the ordered set X where u has been replaced by its children in some
particular ordering. Then, we call X ′ a one-step extension of X. We say that Z is an extension of X if
there is a sequence of zero or more one-step extensions from X to Z.

Let Y be an ordered set of nodes in an unordered tree T2. Then, we also say that (X ′, Y ′) is an extension
of (X, Y ) if X ′ is an extension of X and Y ′ is an extension of Y .

We are interested in extending the pair formed by the roots of the two trees of a tanglegram until there is
no point in extending it further. The extensions are performed until no seed with seeded descendants can be
found (for instance, seeded leaves satisfy this condition). In the following, we will call these nodes terminals.

Definition 7 (Planar layout). Let T1 and T2 be unordered trees with roots r1 and r2, respectively. A planar
layout of a tanglegram (T1, T2, S) is a pair (x, y) with x = (x1, . . . , xn) and y = (y1, . . . , yn), such that:

– (x, y) is an extension of ((r1), (r2)),
– the nodes in x and y are terminals, and
– (xi, yi) ∈ S for every i with 1 6 i 6 n.

Example 2. The tanglegram to the left has a planar layout, namely: ((a, b, d, c), (a, b, d, c)), while the one to
the right does not.

T1 S T2
a

b

c

d

a

b

c

d
T1 S T2

a

b

c

d

a

b

c

d

We next describe an algorithm for finding a planar layout of a binary tanglegram. The procedure Untangle
computes the layout of a binary tanglegram by successive refinements of two lists, the ordered sets X and
Y , which initially contain the roots of the trees. At each iteration of the loop, a node of one of the lists is
“refined,” which means that a correct ordering of its children is found and fixed for the rest of the algorithm.
The loop stops when all the elements of the lists X and Y are terminal nodes of the trees; at this point, the
planar layout (if it exists) is completed.

Before starting the main loop, the procedure Paths computes a table P of Boolean values which can be
understood as an extension of the bijection S to all the nodes of the trees. In particular, for any node u in
T1 and any node v in T2, P [u, v] is true if and only if the subtree of T1 rooted at u has a descendant u′, the
subtree of T2 rooted at v has a descendant v′, and (u′, v′) ∈ S.

The computation made by Paths can follow a dynamic programming approach. In the first place, the
entries corresponding to the leaves are given by s. Then, it proceeds by computing the entries (u, v) where u
and v are inner nodes in the trees. The value of P [u, v] is set to true if and only if an entry P [ui, vj ] has the
value true for some child ui of u and some child vj of v. The cost of computing all the entries is, therefore,
O(n2).

Now we return to the main procedure.

Algorithm 2. Given a tanglegram (T1, T2, S), obtain a planar layout (X, Y ) for (T1, T2, S). Let r1, r2 be
the roots of T1, T2, respectively.

procedure Untangle(T1, T2, S)
X, Y ← (r1), (r2)
E ← {{r1, r2}}
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P ← Paths(T1, T2, S)
while X ∪ Y contain some non-terminal node do

u← a non-terminal node of highest degree in (X ∪ Y, E)
if u is in X then

Refine(u, X, Y,E, P )
else

Refine(u, Y,X,E, P )
return (X, Y )

In the refinement step, a node u in the graph (X ∪ Y, E) is substituted by its children u1, u2 in such a
way that no edge crossing is introduced.

Algorithm 3. Given a partial planar layout (A∪B,E) and a node u, refine the planar layout by substituting
u by its children and return A and E modified according to the refinement.

procedure Refine(u, A,B,E, P )
u1, u2 ← children of u
for every node v ∈ B such that {u, v} ∈ E do

if P [u1, v] then
add edge {u1, v} to E

if P [u2, v] then
add edge {u2, v} to E

delete {u, v} from E

if u1 is an isolated node in ({u1} ∪B,E) then
replace u by u2 in A

else if u2 is an isolated node in ({u2} ∪B,E) then
replace u by u1 in A

else if not Crossings(u1, u2, B,E) then
replace u by the ordered set (u1, u2) in A

else if not Crossings(u2, u1, B,E) then
replace u by the ordered set (u2, u1) in A and flip clade u

else
reject

The above procedure selects an ordering of the nodes U = {u1, u2} such that, replacing u by U in A, the
graph (A ∪B,E) does not create any edge crossings. Formally, we say that (A ∪B,E) has an edge crossing
if there are two nodes a1, a2 in A and two more nodes b1, b2 in B, appearing in this order in A and B, such
that E contains the edges (a1, b2) and (a2, b1). Assuming (A∪B,E) does not already have any edge crossings
before replacing u by U in A, this property is checked in the procedure Crossings with cost O(n) by just
checking if any edge adjacent with node u2 crosses the last (in the order given by B) edge adjacent with
node u1.

Note that the whole algorithm can be thought of as the computation of an extension of ((r1), (r2)) (where
r1 and r2 are the roots of the initial trees), which becomes a planar layout at the end. In order to prove the
correctness of Untangle, we introduce the following concept.

Definition 8 (Promising partial layout). Let T = (T1, T2, S) be a tanglegram, let X be an ordered set
of nodes in T1, and let Y be an ordered set of nodes in T2. Then, we say that (X, Y ) is promising for T if it
extends to a planar layout of T .

In the following, T = (T1, T2, S) will denote the binary tanglegram which is given as input to Untangle.
Additionally, X and Y will represent, as above, two ordered sets of nodes of the trees T1 and T2, respectively,
and E will be the set of pairs of nodes kept by the algorithm. The following lemma provides an invariant for
the loop in Untangle.

9
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Fig. 5. Possible connections for u1, u2 without crossings (and degree at least 1). The exchange of u1 and u2 would
create an edge crossing in all cases.

Lemma 3. If (X, Y ) is promising for T at the beginning of an iteration of the while loop in Untangle, then
it is promising for T at the end.

Proof. Suppose that (X, Y ) is promising at the beginning of the loop, and let u be a nonterminal of highest
degree. Without loss of generality, we can suppose that u ∈ X. Note that u must have degree at least one in
the graph G = (X ∪ Y,E), since a promising pair cannot have isolated nodes. Let u1 and u2 be the children
of u in the corresponding tree. Now, in case that u1 (u2) is isolated in G, the algorithm just deletes it and
replaces u by u2 (u1). Since an isolated node cannot contribute to a planar layout, the new pair (X, Y ) must
be promising, and we are done.

Suppose now that none of u1 or u2 is isolated. Let X1 be X with u replaced by (u1, u2); symmetrically,
let X2 be X with u replaced by (u2, u1). We now differentiate between degree one and degree larger than
one for u:

Degree = 1. Since u has highest degree, its neighbor v must have degree 1 too and, then, {u, v} is an
edge in G that is not incident upon any other edge, so it cannot be crossed over by any other edge in the
one-step extensions of (X, Y ).

u v

u1

u2

v

The fact that (X, Y ) is promising means that it must extend to a planar layout, say (x, y), which is obtained
either from the pair (X1, Y ) or from (X2, Y ). In the first case, (X1, Y ) must be promising. In the second
case, (X2, Y ) is promising but since the subgraph of G induced by {u1, u2, v} is a connected component of
G, exchanging u1 and u2 and reversing children’s order in any later refinement of them leads to a planar
layout. Therefore, (X1, Y ) must be promising, too.

Degree > 1. Observe that we have now the following interesting situation:

Claim. If (X1 ∪ Y, E) does not have any edge crossing, then (X2 ∪ Y,E) has some edge crossing.

The reason for the above claim is the following. Let N(u1) be the set of neighbors of u1, and N(u2)
the set of neighbors of u2. Then, there must be at least a node in the symmetric difference of N(u1) and
N(u2); otherwise, if |N(u1)| = |N(u2)| = 1, u would have degree one (which is not the present case), and if
|N(u1)| = |N(u2)| > 1, there would be an edge crossing. Suppose that there is a node w in the symmetric
difference of N(u1) and N(u2) that actually belongs to N(u1) (the other case being similar). Then, since
we are assuming that (X1 ∪ Y, E) has no edge crossings, w must appear in Y before all the neighbors of u2.
Then, if Y = (y1, . . . , ym), we have the edge {u1, w} in E with w = yi, for some i ≤ m, and some other edge
(from N(u2)) {u2, yj} for j > i. Now, if we exchange the order of u1 and u2, we get an edge crossing, as we
wanted to show. (See Fig. 5.)

It is still left to show that the pair (X ′, Y ) is promising, for X ′ being the new value of X at the end
of the iteration (that is, X ′ = X1 or X ′ = X2). But now, it is straightforward since we are supposing that
(X, Y ) is promising. If no edge crossings are found with the ordering (u1, u2) then, by the Claim, the graph
(X2 ∪ Y, E) has some edge crossing and, therefore, (X2, Y ) cannot be promising. But then, (X1, Y ) must be
promising. On the contrary, if some edge crossing is found for (u1, u2), then (X2 ∪ Y,E) must be promising
since (X, Y ) is. In any case, the new (X ′, Y ) must be promising. ut
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Remark 1. Note that the choice for u made in Alg. 2 (as a non-terminal node of highest degree) is used in
the Degree 1 case of the previous proof. The only possibility that must be avoided, however, is choosing a
node u of degree 1 adjacent to a node of degree > 1, since it would not be clear – at this stage – what the
right ordering of the children of u is. So, the “highest degree” condition ensures that if u has degree 1, its
(only) neighbor must have degree 1 too and then, both possible orderings of the children of u give rise to a
promising pair, as it is argued in the proof of Lemma 3.

Theorem 1. The procedure Untangle(T1, T2, S) computes a planar layout for (T1, T2, S) if there is one.

Proof. Supose there is a planar layout for T = (T1, T2, S). Then, if r1 is the root of T1 and r2 is the root of
T2, it is clear that ((r1), (r2)) must be promising for T . By Lemma 3, the pair (X, Y ) is kept as a promising
pair until the main loop is exited. At this point, X and Y only contain terminals, (X, Y ) is certainly an
extension of ((r1), (r2)), and there are no crossings. Therefore, (X, Y ) is a planar layout. ut

Lemma 4. Algorithm 2 runs in O(n2) time and space.

Proof. Let T1 and T2 be unordered trees with |T1| = n1 and |T2| = n2, and let n = n1+n2. The cost of Alg. 2
is dominated by the computation of the path matrix P , which takes O(n2) time and uses O(n2) additional
space. Once P is available, the Refine procedure is called exactly once for each non-terminal node of the trees,
and in each call the neighbors of the node in the graph (A ∪ B,E) are updated in O(max(n1, n2)) = O(n)
time; the Crossing procedure also takes O(n) time. Therefore, the Untangle procedure runs in O(n2) time.

ut

Note that, in practical applications, the local, or “all subtree versus subtree” version of seeded tree
alignment is actually sought, in which case we iteratively run the described framework over all subtree pairs
of T1 and T2. In this case, P is only constructed once, as a preprocessing step, in O(n2), and then, for
each local seeded subtree pair to be aligned, the processing work consists of untangling the corresponding
tanglegram in O(n), using the table P which was already computed in the preprocessing stage, and then
applying the seeded tree alignment algorithm. Since there are O(n2) subtree pairs to be processed, the
bottleneck in practice is actually dictated by the time complexity of the seeded tree alignment, according to
the density of the given seeds set and the pre-selected tree alignment algorithm TAA to be applied.

The extension of the Untangle procedure to compute the planar layout of an arbitrary – not necessarily
binary – tanglegram, is an interesting open problem. While the top-down approach of the binary case is
maintained, the refinement of the nodes, in the general case, implies replacing a node by an arbitrary number
of new nodes. In order to sort them correctly, so that the whole graph is kept planar, a characterization
in terms of caterpillars [5] can be used, together with a technique for grouping the nodes which cannot be
correctly ordered at some particular step.

The optimization problem of finding the smallest number of seeds to be removed from a tanglegram in
order to obtain a planar layout, is another interesting line of future research.
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