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Abstract

 This work investigates the application to a signal forecasting task of a novel Recurrent Neural Network (RNN) approach called Long Short Term Memory (LSTM) that has been proposed by Hochreiter and Schmidhuber (1997). LSTM uses structures called memory blocks to allow the net remember significant events distant in the past input sequence in order to solve long time lag tasks, where other RNN approaches fail. We apply LSTM to a forecasting problem in a biomedical domain, where the input/output behavior of five controllers of the Central Nervous System (CNS) control has to be modelled, i.e. the task is to predict the CNS output signals. We compare the results obtained on this task using five NN models: a Time-Delay Neural Network trained by repeated cycles of simulated anneal-ing coupled with conjugate gradient algorithm (TDNN-AC), a TDNN trained by backpropagation (TDNN-BP), a Time-Delay Heterogeneous Neural Network (TD-HNN), an Augmented Single-Layer RNN (ASLRNN) and an LSTM. For stepwise prediction, LSTM performance is shown to be similar to the one provided by a more standard recurrent network (ASLRNN trained with non-truncated gradient descent) and by a time-delay network trained by common backpropagation (TDNN-BP). However, the LSTM results were not so good as those obtained by TDNNs trained by more powerful learning algorithms (TDNN-AC and TD-HNN). On the other hand, the experimental results have shown that LSTM adapts better to long-term prediction (300 steps ahead) than common recurrent and time-delay nets. 
1.  Introduction

In the latest years, two types of neural network architectures have been applied to tasks involving dynamic input/output, such as prediction and temporal association, namely Time-Delay Neural Networks (TDNNs) and Recurrent Neural Networks (RNNs).

TDNNs are non-recurrent architectures that have been used extensively for the above tasks [11]. A TDNN can be thought as a feed-forward layered net which uses delay elements to feed input data through. The input layer is a shift register with delay elements. The shift register is used to keep several old values in a buffer, that are presented simultaneously at the network input. 

The main disadvantage of TDNNs is the limited past history horizon thereby preventing modeling of arbitrary long time relations between inputs and desired outputs. It is also difficult to set the number of delay elements, which must be chosen in advance. Hence, TDNNs may result inappropriate if arbitrarily large sequences having important events distant in the past sequence are used; on the other hand, if the window length required is known but large, then the big number of input units and weights can demand a great number of training examples to reach a good generalization performance.

TDNNs can be trained by a variety of methods. TDNNs trained by a standard backpropagation algorithm will be denoted here as TDNN-BP. A more sophisticated and powerful training algorithm is given by coupling a conjugate gradient optimization method with an annealing scheme that allows the exploration of several local minima during the training phase. TDNNs trained by this method will be denoted TDNN-AC. Another, completely different TDNN model, is the Time-delay Heterogeneous network (TD-HNN), which works with heterogeneous units based on a similarity computation and is typically trained by evolutionary algorithms [3].

 In recent years, RNNs have been widely studied in tasks involving sequences and signal prediction. Since RNNs are inherently dynamic, they should adapt better than TDNNs to the learning and processing of sequences, due to their ability to integrate and represent the information by means of the net internal state (which is associated with the hidden units activations).

The fully recurrent nets, also called Single-Layer Recurrent Neural Networks (SLRNNs), are trained by gradient-descent based learning algorithms, such as Back-Propagation Through Time (BPTT) [15] and Real-Time Recurrent Learning (RTRL) [16]. It is possible to increase an SLRNN by adding a feed-forward output layer (or even several layers, where the last one is an output layer) and the resulting architecture is called Augmented Single-Layer RNN (ASLRNN) [2]. ASLRNNs can be trained by using backpropagation for the feed-forward layer combined with BPTT or RTRL for the recurrent layer [1].

Even though RNNs are fascinating from a theoretical point of view and can be applied to several interesting problems (speech recognition, language translation, time series and dynamic systems prediction, musical composition, non linear control, signal processing and compression), in practice they have some drawbacks, since it has been demonstrated that the error signal “flowing backwards in time” in gradient-based algo-rithms tend to either, blow up or vanish [9,10]. In the first case, that can happen, for example, if a linear activation function is used, the weights oscillate and its magnitude grows exponentially leading to the net instability and error overflow. In the second case, that is more usual if a sigmoid activation function is used, the gradient magnitude decreases exponentially in time, preventing the net from learning long-term dependences and reaching the optimal task performance.

To solve the vanishing gradient, Hochreiter and Schmidhuber presented a recurrent architecture called Long Short Term Memory (LSTM), specifically designed to overcome error back-flow problems [9,10]. This architecture, within its gradient descent training algorithm, facilitates a constant error flowing in time by using special activation units. Moreover, LSTM has the same update complexity per time step as BPTT, i.e. O(n2), where n is the number of units in the network.

LSTM has been quite successfully applied to standard benchmarks of classification problems [6-10] and more recently to signal forecasting problems [5]. In this work, our aim was to assess the performance of LSTM in the learning of models of the Central Nervous System (CNS) controllers. The model learned for each controller should precisely correspond to the input/ output behavior available from observations of a specific patient. In order to compare LSTM against other NN approaches we recall the results published in [3] and [4] for the same task using four distinct NN approaches.

In the following section we summarise the LSTM architecture and in section 3 we introduce the case of study in more detail. In section 4 the experimental procedure is described and the obtained results are presented in section 5. Finally, some conclusions are given in section 6.
2. The LSTM Approach 

A fully connected LSTM architecture [7, 9] is a three-layer neural network composed of an input layer, a hidden layer and an output layer. The hidden layer has a feedback loop to itself, i.e., at time step t of a sequence  presented to the network, the hidden layer receives as input the activation values of the input layer and the activation values of the hidden layer at time step t-1. 
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Figure 1. Example of LSTM net with 2 input units, 1 output unit and 2 memory cell blocks of size 2.

[image: image2.jpg]Figure 2. The standard LSTM cell with a recurrent self-connection with weight 1.0 and its respective gates.

Figure 1 displays an LSTM with a fully connected hidden layer consisting of two memory blocks, each one consisting of two cells. The net showed has an input dimension of two and an output dimension of one. Only a limited subset of connections are shown.

The basic unit in the hidden layer is known as a memory cell block. A memory cell block (Figure 2) consists of C memory cells and three multiplicative gates, called the input gate, output gate and forget gate. Each memory cell has at its core a recurrently self-connected linear unit called “Constant Error Carousel” (CEC), whose activation is called the cell state. The CECs solve the vanishing error problem: in the absence of a new input or error signals to the cell, the CEC's local error back flow to remains constant, neither growing nor decaying. Input and output gates regulate write and read access to a cell whose state is denoted Sc. The CEC is protected from both flowing activation and backward flowing error by the input and output gates respectively. When gates are closed (activation around zero), irrelevant inputs and noise do not enter the cell, and the cell state does not perturb the remainder of the network. The forget gate feeds the self-recurrent connection with its output activation and is responsible for not allowing the internal state values of the cells grow without bound by resetting the internal states Sc as long as it needs. In addition to the self-recurrent connection, the memory cells receive input from input units, other cells and gates.

While the cells are responsible for maintaining informa-tion over long periods of time, the responsibility for deciding what information to store, and when to apply that information lies with the input and output gate units, respectively.

A single step involves the update of all units (forward pass) and the computation of error signals for all weights (backward pass). The equations that describe the dynamics of the LSTM network can be found in [7]. 

LSTM's backward pass is basically a fusion of slightly modified truncated BPTT [15], which is obtained by truncating the backward propagation of error informa-tion, and a customized version of RTRL [16] which properly takes into account the altered (sigma-pi-like) dynamics caused by the gates (see details in [7,9,10]).

Output units use BPTT; output gates use a truncated version of BPTT. Weights to the cells and forget gates, however use a truncated version of RTRL. The effect is that the CECs are the only part of the system through which errors can flow forever. So, the error signals flowing out of the CEC and the multiplicative gates are truncated after they are used to update the incoming, weighted connections.

LSTM's learning algorithm is local in space and time; its

computational complexity per time step and weight is O(1), that means O(n2) where n is the number of hidden units if we measure the complexity per time step. This is very efficient in comparison to the RTRL algorithm. The time step complexity is essentially that of BPTT, but unlike BPTT, LSTM only needs to store the derivatives of the CEC's, this is a fixed-size storage requirement independent of the sequence length.

3. Case of Study

The human cardiovascular system is composed of the hemodynamical system and the Central Nervous System (CNS) control. In this work we try to model the latter by capturing its input/output dynamic behavior.

The CNS generates the regulating signals for the blood vessels and the heart, and it is composed of five controllers: the heart rate controller (HRC), the peri-pheric resistance controller (PRC), the myocardiac con-tractility controller (MCC), the venous tone controller (VTC), and the coronary resistance controller (CRC). A simplified diagram of the cardiovascular system is shown in Figure 3. All of these controllers are single-input/single-output (SISO) systems driven by the same input variable, namely the carotid sinus pressure. Although the Carotid Sinus Pressure is not easily measurable, it can be extracted from the differential equation model describing the hemodynamics of the cardiovascular system. The five output variables of the controller models are not even amenable to a physio-logical interpretation, except for the heart rate controller variable, which is the inverse heart rate, measured in seconds between beats.
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Figure 3. Diagram of the cardiovascular system model. 

Whereas the structure and functioning of the hemo-dynamical system are well known and a number of quantitative models, mostly based on differential equa-tions, have been developed, the functioning of the central nervous system control is of high complexity and still not completely understood. Although some differen-tial equation models for the central nervous system have been postulated [13], these models are not accurate enough, and hence the use of other modeling approaches like neural networks may offer an interesting alternative for learning the behavior of the CNS control  [12].

4. Experimental Procedure

The aim of this experimental study was to predict, for each of the five controllers mentioned in the previous section, a future value of the controller's output signal using the currently available input and output values. This is, given two finite sequences x(1),x(2),...,x(t) of input signal values and y(1),y(2),...,y(t) of output signal values, predict the value y(t + T) of the output signal.

To prepare the data conveniently, we have replaced the original target output y(t+1) by the the difference between the y(t+1) output value at the next step ahead and the current value y(t) multiplied by a scaling factor fs, so that the target is calculated as tg(t) = fs*(y(t+1)-y(t)) = (y(t)*fs and fs scales (y(t) between -1 and 1.
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Figure 4.  Setup for the output signals.

Stepwise and iterated predictions are made. In single-step prediction (T=1), the network predicts the next output point, y(t+1), after being fed with the current input x(t) and the last known value of the output, y(t). It should be noted that, both the inputs and the targets are provided from the known training points.

During iterated prediction with T=n the output is clamped to the y-input and the predicted values are fed back n times, i.e. the y-input samples are progressively substituted by the output of the network. This closed loop system is illustrated in Figure 4.

The data used in the training and test phases involve the five controllers mentioned in Section 3: HRC, PRC, MCC, VTC and CRC. Input and output signals were recorded with a sampling rate of 0.12 seconds from simulations of a purely differential equation model. 

This model had been tuned to represent a specific patient

suffering from coronary arterial obstruction, by making the four different physiological variables (right auricular pressure, carotid pressure, coronary blood flow, and heart rate) of the simulation model agree with the measurement data taken from the patient.

The training set consists of 1,500 data points for each controller. Each trained network was validated by using it to forecast six data sets that had not been employed in the learning process. Each one of these six test sets (for each controller), with a size of 300 points each, contains signals representing specific morphologies, allowing the validation of the model for different system behaviors.

The LSTM network used was made up of  2 input units, 1 output unit and a hidden layer consisting of memory cell blocks of size 1. The number of memory cell blocks was carefully determined, so that several different configurations were investigated aiming at finding the one that could result in the best overall performance.

The input units were fully connected to the hidden layer. The cell outputs were fully connected to the cell inputs, to all gates, and to the output unit. 

After some experiments, we fixed the bias weights for input and output gates in successive blocks as: -0.5, -1.0, -1.5, and so forth. The initialization of output gates pushes initial memory cells activations towards zero, whereas that of the input gates prevents memory cells from being modified by incoming inputs. As training progresses, the biases become progressively less negative, allowing the serial activation of cells as active participants in the network computation.

The biases of  forget gates were initialized in successive blocks with symmetric positive values: +0.5, +1.0, +1.5, and so forth. The bias initialization must be positive in this case to open the gate, thus preventing the cells from forgetting everything [5] 

We used a logistic sigmoid with range [0,1] as squashing function  f  for all gates, a sigmoid function with range  [-1,1] as the cell's input squashing function g, and a linear identity function both as output squashing function h and as activation function of the output unit.

The error measure is given by the normalized mean square error (NMSE), in percent, between the predicted output value and the target value, tg:
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where tgvar is the variance of tg.


TD-HNN
TDNN-BP
TDNN-AC
ASLRNN
LSTM


Train
Test
Train
Test
Train
Test
Train
Test
Train
Test

HRC
0.11%
0.18%
1.15%
1.52%
0.15%
0.13%
1.63%
1.91%
2.16%
3.41%

PRC
0.09%
0.12%
0.94%
1.27%
0.26%
0.14%
0.84%
1.10%
0.25%
0.65%

MCC
0.03%
0.06%
0.81%
1.33%
0.09%
0.08%
0.71%
1.18%
0.19%
1.04%

VTC
0.03%
0.06%
0.81%
1.33%
0.09%
0.08%
0.71%
1.18%
0.19%
1.01%

CRC
0.10%
0.11%
0.47%
0.66%
0.03%
0.04%
0.41%
0.53%
0.18%
0.31%

Av. Error
0.07%
0.11%
0.84%
1.22%
0.12%
0.09%
0.86%
1.18%
0.59%
1.28%

Table 1. Average NMSE errors for stepwise prediction.
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Figure 5. Prediction of the HRC training signal.

Figure 6.  Iterated prediction of the next 300 points. HRC controller.

5. Experimental Results

In this section, the LSTM's results obtained throughout the present study are showed and compared with those reported in previous studies on the same task [3,4] using other neural net approaches. Firstly, we present the results achieved by stepwise prediction (compared with those reported in [3]) and after the results obtained in long-term iterated prediction (compared with those reported in [4]).

In [3], four different approaches were performed over the task at hand, where three of them are TDNNs [11] that differ in the training method used: a standard back-propagation algorithm (TDNN-BP), a hybrid procedure composed by repeated cycles of simulated annealing coupled with conjugate gradient algorithm (TDNN-AC), and a genetic algorithm (TD-HNN). This last network uses indeed a different neuron model based on a similar-ity computation. The other one is a RNN approach, an ASLRNN net [2], similar to Elman's SRN net, except that is trained by a true gradient descent algorithm that does not truncate error propagation backwards in time.

Table 1 displays the results of each method mentioned above for stepwise prediction, where, for each control-ler, three different training trials using different random weight initialization in the range [-0.2, 0.2] were run. Each trial was applied to the six test sets associated with the controller. The NMSE errors were calculated and the average of these errors for the three different runs is displayed in the table.

It can be observed that the performance of LSTM is rather similar to that of the other recurrent architecture (ASLRNN) and the TDNN-BP, but not as good as that provided by the more sophisticated TDNN approaches (TDNN-AC and TD-HNN). The training error achieved by LSTM is better than the one shown by the ASLRNN, but the average test error is comparable (mainly due to the bad performance obtained in the HRC controller).


TDNN-BP
ASLRNN
LSTM

H

R

C
Data Set 1
24.31%
28.25%
32.81%


Data Set 2
7.47%
8.62%
28.66%


Data Set 3
13.48%
16.77%
28.40%


Data Set 4
6.87%
8.16%
23.25%


Data Set 5
32.12%
38.24%
31.70%


Data Set 6
7.86%
9.80%
27.86%

Average Error
15.35%
18.31%
28.78%

Table 2. Average NMSE errors of the HRC controller.


TDNN-BP
ASLRNN
LSTM

P

R

C
Data Set 1
58.15%
50.07%
12.30%


Data Set 2
17.80%
16.11%
17.29%


Data Set 3
41.56%
36.89%
12.15%


Data Set 4
29.09%
26.97%
7.15%


Data Set 5
34.73%
38.54%
21.15%


Data Set 6
21.22%
18.40%
14.22%

Average Error
33.76%
31.16%
14.04%

Table 3. Average NMSE errors of the PRC controller.


TDNN-BP
ASLRNN
LSTM

M

C

C
Data Set 1
41.72%
55.83%
27.48%


Data Set 2
20.92%
17.18%
42.88%


Data Set 3
40.22%
35.60%
26.26%


Data Set 4
39.80%
42.08%
14.44%


Data Set 5
34.32%
36.87%
16.15%


Data Set 6
27.20%
23.38%
30.91%

Average Error
34.04%
35.16%
26.35%

Table 4. Average NMSE errors of the MCC controller. 


TDNN-BP
ASLRNN
LSTM

V

T

C
Data Set 1
41.68%
54.25%
27.01%


Data Set 2
20.90%
16.93%
35.43%


Data Set 3
40.22%
35.68%
10.16%


Data Set 4
39.80%
41.86%
14.58%


Data Set 5
34.41%
36.77%
15.50%


Data Set 6
27.22%
23.12%
29.90%

Average Error
34.04%
34.77%
22.02%

Table 5. Average NMSE errors of the VTC controller. 


TDNN-BP
ASLRNN
LSTM

C

R

C
Data Set 1
147.73%
148.65%
3.70%


Data Set 2
28.35%
36.17%
4.63%


Data Set 3
84.35%
83.75%
3.00%


Data Set 4
4.69%
4.49%
5.48%


Data Set 5
56.20%
58.50%
72.29%


Data Set 6
12.32%
11.16%
2.99%

Average Error
55.69%
57.12%
14.73%

Table 6. Average NMSE errors of the CRC controller.

In order to compare the long-term prediction results, where the whole test set is attempted to be predicted, T=300, we show in Tables 2 to 6 the average NMSE errors of five independent training trials for the six test sets of each controller. After some preliminary tests two training configurations were selected. The first one for the HRC, PRC, MCC and VTC controllers that were trained 400 epochs using 1 memory block with 1 cell and learning rate of 0.01. The CRC controller was trained 1,500 epochs using 4 memory blocks with 1 cell and learning rate of 0.01.

In this case, the LSTM average results clearly outperform those of the ASLRNN and TDNN-BP (even though the worse performance in the HRC controller).

Figure 5 illustrates the stepwise prediction of the HRC output signal on some part of the training set. The target output signal is shown as dashed line and the predicted signal as solid line. The long-term iterated prediction versus the true output signal from test set 1 of the HRC controller is represented in Figure 6. As can be seen, the system could capture the signal oscillation quite good, but was unable to predict accurately the signal peaks.

6. Conclusions
In this work we have investigated the potential of using neural networks for signal forecasting. For that purpose, we have tested a rather novel recurrent neural network approach named Long Short Term Memory (LSTM). This neural network uses some basic structures called memory cell blocks to allow the net remember significant events distant in the past input sequence. This information can be used to predict the future values of the sequence or time series being learned. In previous studies [6-10], LSTM has demonstrated an impressive performance and has been shown to solve complex, artificial long time lag tasks that had never been solved by previous recurrent network algorithms. Here, we were interested in assessing the LSTM performance on a real signal forecasting problem, in which, however, there is no need to store information over extended time intervals, but just to take into account the more recent history of previous input and output values.

To this end, LSTM has been applied to learn the input/output behavior of the five controllers of the Central Nervous System Control. Both single-step and long-term iterated predictions of the output signal of each controller have been tested. The results obtained have been compared to those yielded by other neural network approaches on the same task [3,4]. 

For single-step prediction, LSTM performance was similar to the one provided by a more standard recurrent network (ASLRNN trained with non-truncated gradient descent) and by a time-delay network trained by common backpropagation. However, the LSTM results were not so good as those obtained by TDNNs trained by more powerful learning algorithms.

On the other hand, the experimental results have shown that LSTM adapts better to long-term prediction (300 steps ahead) than common recurrent and time-delay nets. Even though the long-term prediction performance was just fair in most cases, LSTM could approximately capture the dynamics of the systems under study.

There are several aspects that can be further investigated as future work. In the experiments described, the current LSTM simulator that includes forget gates has been employed. It is not clear whether forget gates are useful in tasks, such as the one studied here, where there is no need to store events for a long period and then forget them once they have been used. It could be interesting to test the performance of LSTM without forget gates for this or other similar forecasting applications.

The effect of the chosen activation functions in the input and output flows of the memory cells could be further investigated. For instance, antisymmetric logarithm functions could be used in the LSTM architecture, since this type of activation function has been shown to improve the performance of other RNN architectures based on sigmoid units [14].

The experimental results obtained in this work are consistent with those reported in [5] for time series prediction using LSTM and TDNNs. It seems that LSTM should be preferably used on tasks where traditional time window based approaches or simpler recurrent networks are not good enough, typically in long time lag tasks. Hence, hybrid architectures combining either TDNNs or other RNNs with LSTM could result in a global improvement over a wider variety of dynamic input-output problems.
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