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Abstract. Function-Described Graphs (FDGs) have been introduced as a representation of an ensemble of Attributed Graphs (AGs) for structural pattern recognition and a distance measure using restrictions between AGs and FDGs has been reported. Nevertheless, in real applications, AGs can be distorted by some external noise, and therefore some constraints have to be relaxed. To gain more flexibility and robustness, some local costs may be added to the global cost of the labelling depending on the fulfilment of the graph element constraints of the FDG instead of applying hard binary constraints.

1 Introduction

Function-Described Graphs (FDGs) were introduced in [2] and redefined in [3] as a representation of an ensemble of Attributed Graphs (AGs) for structural pattern recognition different from Random Graphs [6]. Some 2nd order relations (antagonism, existence and occurrence of a pair of vertices or a pair of arcs) are introduced to the FDGs to keep, to the most, the structure of the ensemble of the AGs. The synthesis of FDGs was studied in [1]. Moreover, a distance measure using restrictions between AGs and FDG, was reported in [4]. Here, a new distance measure, relaxing second order restrictions is presented.

 Relations of second order defined on the FDGs are useful to constrain the set of possible labellings while computing the distance with restrictions between AGs and FDGs. This is aimed at reaching the best labelling function, taking into account the second order information obtained from the structure of the cluster of AGs that was used to synthesise the FDG. Nevertheless, in real applications, AGs can be distorted by some external noise, and therefore, the constraints associated with the second order relations have to be relaxed to avoid that a noisy AG be misclassified due to non-fulfilment of any of these constraints. A distance relaxing 2nd order restrictions is presented here. To gain more flexibility and robustness, some local non-negative costs may be added to the global cost of the labelling depending on the second-order probabilities of the graph elements, instead of applying hard binary constraints.

The organisation of this paper is as follows: AGs and FDGs are reviewed in sections 2 and 3, respectively. The new distance is proposed in section 4 and applied to the 3D-object recognition problem in section 5. Finally, some conclusions are sketched in section 6.

2 Attributed Graphs

Let 
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 be a directed graph structure of order n where 
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 is a set of vertices (or nodes) and 
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 is a set of edges (or arcs). We use the term graph element to refer to either a vertex or an edge. Let 
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be the global domains of possible values for non-null attributed vertices and arcs, respectively. A null value of a graph element is represented by 
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An attributed graph G over 
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 is defined to be a pair 
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 is an attributed arc set. The mappings 
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 assign attribute values to vertices and arcs, respectively, where 
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A complete AG is an AG with a complete graph structure H (but possibly including null elements). An attributed graph 
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, by adding vertices and arcs with null attribute values 
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. We call G’ the k-extension of G.
3 Function-Described Graphs

A function-described graph F over 
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2. 
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3. 
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 are two sets of marginal (or first-order) probability density functions for random vertices and edges, respectively. This is, 
[image: image34.wmf]{

}

n

i

p

P

i

£

£

=

1

),

(

a

w

 and 
[image: image35.wmf]{

}

m

j

q

P

j

£

£

=

1

),

(

b

e

  (being m the number of edges), where 
[image: image36.wmf])

Pr(

)

(

a

a

=

º

i

i

p

a

 for all 
[image: image37.wmf]w

D

Î

a

 and 
[image: image38.wmf])

Pr(

)

(

2

1

F

¹

Ù

F

¹

=

º

j

j

j

j

q

a

a

b

b

b

 for all 
[image: image39.wmf]e

D

Î

b

 such that 
[image: image40.wmf]2

1

,

j

j

a

a

 refer to the random variables for the endpoints of the random arc associated with 
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4. 
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 is a collection of boolean functions defined over pairs of graph elements (i.e. relations on the sets of vertices and arcs) that allow the incorporation of qualitative second-order probability information. 
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 are the vertex antagonism and arc antagonism functions, respectively, where 
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 are the vertex occurrence and arc occurrence functions, where 
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. We say that two graph elements (of the same type) are co-occurrent if and only if the occurrence relation applies to them in both directions. Finally, 
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 are the vertex existence and arc existence functions, where 
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A random element 
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 of an FDG is a null random element if its probability of instantiation to the null value is one, 
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, by adding null vertices and null arcs and extending appropriately both the set of probability density functions and the boolean functions that relate graph elements. We call F’ the k-extension of F.
4 Distance between AGs and FDGs using 1st and 2nd order costs

We require a fine but robust matching cost that makes powerful use of the measurement information in the data graphs (attribute values) and in the prototypes (random variable distributions) as well as an effective way of constraining the possible matches, if we want the system to have the capability of discerning between prototypes.  The matching measure must be soft for two reasons: first, because it is assumed that in real applications the patterns are distorted by noise, and second, because a prototype has to represent not only the objects in the reference set but also the ones that are “near” them.

First of all, and for the sake of robustness, the mapping 
[image: image70.wmf]h

 is not defined from the initial AG that represents the pattern to the initial FDG that represents the class, but from the k-extended AG to the k-extended FDG, to contemplate the possibility of some missing graph elements or some extraneous graph elements introduced by noisy effects. A missing element in the AG will be represented by a null element in the extended AG, and an extraneous element in the AG should be mapped to a null element in the extended FDG. Since it is desired to allow a priori all the isomorphisms, the number of vertices 
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 in the extended graphs is set to the sum of the number of vertices in both initial graphs. Hence, the limit situations in which all the graph elements in the FDG are missing in the AG or all the graph elements in the AG are extraneous are covered.

Let 
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In addition, an optimal labelling 
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The set of valid mappings 
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 contains all the bijective functions that are coherent structurally (i.e. the arc labelling is totally determined by the vertex labelling). 

We want the global cost 
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 to provide a quantitative idea of the match quality through the mapping 
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 based on the joint conditional probability that the AG is generated from the FDG given labelling
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 would be a possible choice, but it is not the most adequate because of its high sensitivity to noise. Only that one of the probabilities was zero, then the obtained distance would be 
[image: image94.wmf]¥

. Note that the joint probability 
[image: image95.wmf](

)

h

G

P

 cannot be estimated directly and has to be approximated by the product of the first-order probabilities of the elements. In this case, the previous choice is equivalent to


[image: image96.wmf](

)

(

)

(

)

(

)

å

"

=

=

-

=

x

h

y

x

h

x

y

C

)

(

Pr

ln

g

g

                           ( AUTONÚMLEG \e )

where x and y are graph elements in the AG and the FDG respectively, 
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 is the attribute value in x, and all the elements of both graphs have to appear in the productory (possibly by extending the domain and range of the mapping with null elements).

However, only that one graph element had a probability of zero, the joint probability would be zero and 
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 would be infinite. Since this may happen due to the noisy presence of an unexpected element (insertion) or the absence of a prototype element (deletion), only that one graph element were not properly mapped due to clutter, the involved graphs would be wrongly considered to be completely different.

Hence, it is better to decompose the global cost 
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 into the sum of bounded individual costs associated with the element matches. Although it has the major flaw that the joint probability is not considered as a whole, it has the advantage that clutter affects only locally the global cost. An individual cost 
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The global cost is therefore computed as the sum of the individual costs of all the matches between graph elements, 
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The main concepts underlying the definition of the distance measures between AGs and FDGs have been introduced above. To define now the different specific measures, it is only needed to define the set of valid mappings H and the individual costs 
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Individual costs of matching elements

We now turn our attention into the individual cost of matching a pair of elements, one from an AG and one from an FDG. It is defined as a normalised function depending on the dissimilarity between the two mapped elements, as given by the negative logarithm of the probability of instantiating the random element of the FDG to the corresponding attribute value in the AG, this is 
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where the cost 
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In the case of the vertices, the individual cost is defined using the probabilities stored in the FDG as
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And in the case of the arcs, the individual cost is defined using the arc conditional probabilities as follows. Let 
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However, if either 
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Second order costs of matching elements

The second order costs could be defined for the vertices as shown in equations (8) to (10), where it is assumed that 
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. These equations cover respectively the three following qualitative cases: presence of two vertices in the AG, presence of only one of them, and absence of both vertices. Note that, the second-order costs induced artificially by FDG null vertices are not taken into account.
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The definition of the costs on the arcs, 
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 are similar than the costs on the vertices (See [3] for more details).

Since the second-order probabilities are not actually stored in the FDGs, they are replaced by the second-order relations, thus obtaining costs that are coarser. This is, some second-order non-negative costs are added to the global cost of the labelling when second-order constraints (antagonism, occurrence, existence) are broken. Equations (11) to (13) show the final second-order costs, which can be only 1 or 0, associated with the three relations of antagonism, occurrence and existence between pairs of vertices.
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Global cost

The global cost on the labelling function 
[image: image134.wmf]h
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 is defined with two terms that depend on the first-order probability information, and six more terms that depend on the second-order constraints:
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The eight terms are weighted by non-negative constants 
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 to 
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, to compensate for the different number of elements in the additions as well as to balance the influence of second-order costs with respect to first-order costs in the overall value. Note that if 
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 there are strict constraints associated with the second order relations and so the distance with 2nd order restrictions is obtained.

5 Results

The contribution of FDGs to structural pattern recognition is illustrated by the three-dimensional object recognition problem. The original data is composed by 101 AGs, which represent the semantic and structural information of the views taken from five objects. Figure 1 shows a selected view of each object. Vertices in the AGs represent the faces, with one attribute, which is the area of the face. Arcs represent the edges between faces, with one attribute, which is the length of the edge. Five FDGs were built from the AGs that represent their views using a supervised synthesis method. An antagonism relation between two graph elements appears when these elements have never seen together in the same view. On the other hand, an occurrence relation appears when a graph element is visible in all the views in which another one is visible too. There is not any existence relation because there is no pair of faces such that at least one of the two faces is visible in all views. See [3] for more details. The object of the tests presented here is to assess the effects of the application of the antagonism and occurrence relations between vertices in the computation of our distance. To that aim, some tests have been carried out with different weights on these relations (
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). The other weights have been set as follows: 
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 (second order relations on the arcs). The distance (optimal cost) presented in Section 4 was computed by means of a branch-and-bound algorithm [3].

The test set was composed by random AGs, which were the previous AGs modified by some structural or semantic noise. Results shown are the average of the correctness of the classification tests performed 20 times. The semantic noise, which is added to the attribute values of the vertices and arcs, is obtained by a random number generation with a median of 0.0 and a standard deviation: 0.0, 4.0, 8.0 and 12.0. The structural noise, also obtained by a random number generator, deletes or includes 0, 1 or 2 vertices, which represent the 0%, 20% and 40% of the average structure, respectively.  The experimental results are summarised in Table 1.

# noise vertices
0
0
0
0
0
1
2
1

Standard Deviation
0.0
2.0
4.0
8.0
12.0
0.0
0.0
8.0
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100
98.7
97.1
95.0
92.5
89.2
85.2
83.6

Nearest neighbour
100
98.9
82.6
62.6
52.4
90.0
58.6
58.6

Table 1. Recognition ratio (%) obtained by the FDGs and by the nearest-neighbour classifier (using Sanfeliu’s distance between AGs [5]) resulted from applying different levels of noise.

The classification correctness is higher applying strict relations (
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 and 
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) than without applying these two relations (
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 and 
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)  when the semantic or structural noise is low, but, when the noise increases, best results appear when no relations are applied. On the contrary, the distance with both second-order costs (
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 and 
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) always obtains higher results than if one of the relations is not taken into account. The FDG classifier only obtains worse results than the nearest-neighbour classifier when the structural or semantic noise is very low.

6 Conclusions

A new distance between AGs and FDGs has been reported. The aim of this distance is to gain more flexibility and robustness throughout relaxing the second order constraints. Some local costs have been added to the global cost depending on the second order probabilities instead of applying hard binary constraints. Results show that the distance with 2nd order costs obtains better results than the distance with strict 2nd order restrictions or without considering them.

The main problem of computing a distance between graphs associated with an optimal match is the exponential cost. While a branch-and-bound algorithm [3] was used in the reported experiments, a more efficient but sub-optimal method has been presented recently [7].
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