

An Island-Driven Parsing System

Tesis doctoral presentada en el
Departament de Llenguatges i Sistemes Informàtics

de la Universitat Politècnica de Catalunya

para optar al grado de
Doctora en Informática

por

Alicia Ageno Pulido

bajo la dirección del doctor
Horacio Rodríguez Hontoria

Barcelona, 19 de Marzo del 2003

 2

 3

A mis padres, desde su isla

 4

 5

Acknowledgements

I would like to thank all those people who, either directly or indirectly, have contributed to the

conclusion (finally!) of this thesis. First and mainly, to my advisor, Horacio Rodríguez, for his

permanent dedication and incommensurable patience. Secondly, to my family and friends, who

have endured hearing me talking about the same Topic for all these years.

The colleagues, current and former, of the Natural Language Processing Research Group

have always provided a helpful and friendly environment: Jordi Álvarez, Victoria Arranz, Jordi

Atserias, Xavier Carreras, Núria Castell, Neus Català, Irene Castellón, Montse Civit, Vadó

Climent, Gerard Escudero, Marta Gatius, Angels Hernández, Lluís Márquez, Toni Martí, Lluís

Padró, Jordi Turmo, Kiku Ribas, German Rigau, and Mariona Taulé. I also owe gratitude to

Rosa Jiménez, Conrado Martínez, and Nacho Mayorga, who were always there with

encouraging and interesting comments.

A previous summary of this document was revised by two anonymous reviewers, who

provided highly useful suggestions.

This research has been developed within the framework of several research projects, funded

by the following institutions: The Spanish Research Department (CICYT’s projects ITEM

(TIC96-1243-C03-02), PETRA (TIC2000-1735-C02-02), HERMES (TIC2000-0335-C03-02),

and ALIADO (TIC2002-04447-C02)), the EU Commission (ACQUILEX-II project (ESPRIT-

BRA 7315)), and the Catalan Research Department (CIRIT’s Quality Research Group 2001

SGR-00254).

 6

 7

Index

Abstract 9

Resumen 10

List of Figures 11

List of Tables 12

1 Introduction 13
1.1 Setting 13

1.2 Contents of this thesis 16

2 State of the Art 19
2.1 Charts 20

2.1.1 Charts Parsing Schema 21

2.1.2 Chart Extensions 24

2.2 Stochastic Parsers 27

2.2.1 Parameter Estimation 29

2.2.1.1 Supervised Learning 29

2.2.1.2 Unsupervised Learning 34

2.2.2 SCFGs 36

2.2.3 Other Probabilistic Formalisms 38

2.2.3.1 Alternative models 40

2.2.3.2 Alternative parsers 42

2.2.3.3 Alternative learning methodologies 44

2.2.4 Lexicalised Statistical Parsers 47

2.2.5 Parser Combination and Reranking 58

2.2.6 Robust Parsers 60

3 Overview of the System 65
3.1 Description of the Overall Methodology 65

3.2 Description of our Bidirectional Chart Parsing Algorithm + Data Structures 66

3.3 Possible Variations of the Basic Algorithm: Hybrids 70

3.4 Initial Island Selection: Alternatives 71

3.5 Stochastic Models 73

3.5.1 The Local Model 74

3.5.2 The Neighbouring Model 79

3.5.3 A simple example 88

4 Chunking + Island-Driven Parsing 97

5 Evaluation 101
5.1 Preliminary Experiments 104

 8

5.1.1 Island Distribution Measures 106

5.1.2 Island Categories 109

5.2 Experiments on Real-Size Corpora: Setting 112

5.2.1 Lexesp Corpus 112

5.2.2 Penn Treebank Corpus 114

5.3 Global Results 115

5.4 Detailed Results 118

5.5 Results on Hybrid Methods 121

5.6 Results on Hybrid Methods using Thresholding 126

5.7 Smoothing by Frequencies 129

5.8 Assessing the Quality of Obtained Parses 132

5.8.1 Likelihood of the Resulting Parse Tree 132

5.8.2 Other Evaluation Metrics 135

5.9 Chunking + Island-Driven Results 137

5.9.1 Setting of the Experiments 137

5.9.2 Results 139

5.9.3 Quality Measures 142

5.10 Initial Islands by Category 145

6 Conclusions 151
6.1 Further Work 154

References 157

Appendix A: Tag Sets 173

Appendix B: Syntactic Structure 177

 9

Abstract

The core of this thesis includes two methods for stochastically modelling bidirectionality in

parsing, as well as a bidirectional island-driven chart parser that uses such stochastic models to

guide the recognition process. This bidirectional parser starts the analysis process from certain

dynamically determined positions of the sentence (that is, the islands), proceeding then in both

directions. Our framework accounts for bidirectional expansion of partial analysis, which

improves the predictive capabilities of the system.

The stochastic models provide for the probability of extension of each island to both sides,

given either a stochastic grammar (local model) or both the grammar and the islands which are

immediately adjacent to the one being considered (neighbouring model).

The system has been trained and tested over two wide-coverage corpora: Spanish Lexesp and

English Penn Treebank, achieving promising results in comparison with the methods used as

baselines (pure bottom-up and top-down methodologies). Several variants involving hybrids

between both stochastic methods as well as different types of smoothing have also been devised.

Results regarding the comparison of these variants of our proposal with both the baselines and

the previous pure methods are presented and discussed. The former variants mostly outperform

the latter methods. All the approaches have been evaluated as to both performance and

accuracy.

Island-driven methodology implies the existence of a method in order to select the initial

islands in the sentence being parsed. In this thesis, three methodologies for this selection have

been evaluated, namely selecting as islands the nonambiguous words in a morphologically

analysed but non-tagged sentence, selecting as islands the chunks in a previously chunked

sentence, and simply selecting the islands according to their category. Whatever the island

selection methodology, our approaches dramatically outperform both baselines.

 10

Resumen

El núcleo de esta tesis presenta dos métodos para modelizar estadísticamente la

bidireccionalidad en el análisis sintáctico, así como un analizador de charts bidireccional

dirigido por islas que usa los mencionados modelos probabilísticos con el fin de guiar el proceso

de reconocimiento. Este analizador bidireccional comienza el proceso de análisis a partir de

ciertas posiciones de la frase, seleccionadas dinámicamente (las islas), procediendo a partir de

éstas en ambas direcciones. Nuestra metodología tiene en cuenta la extensión bidireccional de

los análisis parciales, lo cual enriquece las capacidades predictivas del sistema.

Nuestros modelos probabilísticos proporcionan la probabilidad de extensión de cada isla

hacia ambos lados, dada una gramática probabilística (en el caso del modelo local) o dadas tanto

esta gramática como las islas inmediatamente adyacentes a la considerada (en el caso del

modelo neighbouring).

El sistema ha sido entrenado y evaluado sobre dos corpus de amplia cobertura, el corpus del

español Lexesp y el corpus del inglés Penn Treebank. Los resultados obtenidos son

prometedores en comparación con las dos aproximaciones básicas consideradas (puramente

ascendente, o bottom-up, y puramente descendente, o top-down). Se han desarrollado también

diversas variantes, que incluyen distintos métodos híbridos entre los dos modelos

probabilísticos, así como diferentes tipos de suavizado. En la tesis se presentan y discuten los

resultados obtenidos al comparar estas variantes de nuestra propuesta tanto con las dos

aproximaciones básicas como con nuestros modelos puros (obteniendo mayoritariamente

mejores resultados para estas variantes). Todos los métodos se han evaluado tanto en lo que se

refiere a su eficiencia como a su corrección (precisión y cobertura).

La metodología de análisis dirigido por islas implica la existencia de un método para

seleccionar las islas iniciales dada la frase a analizar. En esta tesis se han desarrollado tres

diferentes metodologías para esta selección: seleccionar como islas aquellas palabras no

ambiguas en una frase analizada morfológicamente pero no desambiguada, seleccionar como

islas los segmentos (chunks) en una frase previamente analizada superficialmente, y

simplemente seleccionar las islas según su categoría. Sea cual sea la metodología usada para la

selección de las islas iniciales, nuestras aproximaciones obtienen resultados sumamente mejores

que ambas aproximaciones básicas.

 11

List of Figures

Figure 1. General architecture of the system 66

Figure 2. An example of heap contents 67

Figure 3. Relationship R1 80

Figure 4. Relationship R2 81

Figure 5. Relationship R3 81

Figure 6. Relationship R4 81

Figure 7. Probability P1 81

Figure 8. Probability P2 82

Figure 9. Probability P3 82

Figure 10. Local parse tree for the sample sentence 94

Figure 11. A two-steps approach to parsing 98

Figure 12. Example of kinds of base NPs 100

Figure 13. Average #edges/sentence for each group of sentences of a certain length 119

Figure 14. Average #edges/sentence for each group of lengths, in logarithmic scale 119

Figure 15. Average #edges/sentence for each group of sentences of a certain ambiguity rate 120

Figure 16. Average #edges/sentence for each group of sentences of a certain island density 120

Figure 17. Average #edges/sentence for each group of sentences of a certain MID 120

Figure 18. Average #edges/sentence for each group of sentences of a certain island dispersion 121

Figure 19. Average #edges/sentence for each number of neighbouring cycles 122

Figure 20. Average #edges/sentence for each percentage of coverage of the sentence 123

Figure 21. Average #edges/sentence for each group of length’s sentences and for each method 124

Figure 22. Average #edges/sentence for each group of ambiguity rate and for each method 124

Figure 23. Average #edges/sentence for each group of island density and for each method 124

Figure 24. Average #edges/sentence for each group of MID and for each method 124

Figure 25. Average #edges/sentence for each group of island dispersion and method 124

Figure 26. Average #edges/sentence for each percentage of coverage of the sentence 125

Figure 27. Average #edges/sentence for each percentage of gained coverage of the sentence 125

Figure 28. Average #edges/sentence for the test subset and for each method studied 127

Figure 29. Average #edges/sentence for the test set and for each method studied 128

 12

List of Tables

Table 1. The toy grammar 103
Table 2. Comparative results between unidirectional and island-driven approaches 105
Table 3. Comparative results for the island selection criteria based on measures 108
Table 4. Comparative results for the selection criteria based on factored measures 109
Table 5. Comparative results for the island selection based on measures NR and INR 110
Table 6. Comparative results for corpora PTB-II and Lexesp and the pure approaches 116
Table 7. Comparative results for corpora PTB-II and the local approaches 118
Table 8. Different thresholds used in the experiments of figure 28 127
Table 9. Comparative results for the different smoothing levels 129
Table 10. Comparative results for hybrid methods using smoothed neighbouring stochastic matrixes 131
Table 11. Comparative results between pure and hybrid/smoothed methods for corpus PTB 131
Table 12. Average probabilities for each method 134
Table 13. Evaluation metrics 136
Table 14. The derived base NP grammar 138
Table 15. The rest of the combined derived grammar 139
Table 16. Comparative results for corpus PTB-II 140
Table 17. Comparative results for tagged corpus PTB-II 141
Table 18. Comparative results for corpus PTB-II and all types of chunks 141
Table 19. Average probabilities for each method 142
Table 20. Evaluation metrics for untagged corpus 143
Table 21. Evaluation metrics for tagged corpus 144
Table 22. Evaluation metrics for tagged corpus and subset of sentences 145
Table 23. Comparative results for the optimal combinations of categories 146
Table 24. Evaluation metrics for the optimal combinations of categories 148

 13

Chapter 1

Introduction

1.1 Setting

Two are the goals of the parsing process: to prove that a text is syntactically correct (that is, it

belongs to a specified language) and to return the structure of the text (that is, the syntactic

relationships that appear in the text, according to the used formalism). In order to define

correction, we might use a language model, patterns, good-formation rules, or most frequently,

a grammar.

There exist many different parsing algorithms and types of analysers (tabular, like Earley or

CKY; charts; deterministic, like LL or LR, ...), and several types of grammars (constituent

grammars, dependency grammars, transformational grammars, logic grammars, ...). We do not

mean to get in defining these algorithms and formalisms: in chapter 2, we will describe in detail

some of them, the most recent and /or related somehow to our work. In this thesis, we will be

using the charts technique ([Kay, 1982]), extended to deal with bidirectionality, and the

formalism of Context-Free Grammars, extended with probabilities (both in the grammar rules,

Stochastic Context-Free Grammars, as well as including additional stochastic parameters).

Although most methods for Context-Free Grammar parsing are based on a uniform way of

guiding the parsing process (e.g. top-down, bottom-up, left-corner,...), there have recently been

several attempts to introduce more flexibility, for instance allowing bidirectionality, in order to

make parsers more sensitive to linguistic phenomena ([Satta & Stock, 1994]; [Sikkel & op den

Akker, 1996]; [Ritchie, 1999]).

We can roughly classify such approaches into head-driven and island-driven parsing. They

respectively assume the existence of a distinguished symbol in each rule, the head, and certain

distinguished words in the sentence to be parsed, the islands, playing a central role on the

respective parsing approach.

 14

While assigning heads to rules is a heavy knowledge intensive task, islands are dynamically

determined positions of the sentence (from which the process starts, proceeding in both

directions). Therefore, selecting islands can be carried out quite straightforwardly: unambiguous

words, base NPs (in the case of textual input), accurately recognised fragments (in the case of

speech), might be considered islands.

The problem is, however, that simply starting with islands or heads does not assure

improvements over the basic parsing schemata. Only with appropriate heuristics for deciding

where and in which direction to proceed can we restrict the syntactic search space and therefore

obtain better results, coming through the obvious overhead that these more complex algorithms

suppose.

The core of this thesis includes two methods for stochastically modelling bidirectionality in

parsing. These models allow the parser to select, out of the set of current islands, the most

probable island, as well as the most probable side to extend it. As mentioned, we base on the

formalism of Context-Free Grammars extended with attached probabilities to the grammar rules

(Stochastic Context-Free Grammars, SCFG), and from this formalism we define two branches

of additional stochastic parameters: the local model and the neighbouring model.

The local model is simpler, for it just takes into account information previously contained in

the stochastic grammar. We denote it static, as the stochastic parameters attached can be

computed independently of the sentences being analysed. On the other hand, the neighbouring

model is quite more complex and informed. This model considers also the immediate

environment around the island being dealt with, that is, the islands and gaps immediately

surrounding each island, in an intent to restrict the syntactic search space for gaps surrounded

by two partial analyses (the islands up to the moment).

This thesis develops as well a bidirectional island-driven parser that uses such stochastic

models to guide the recognition process. The conventional left-to-right approach of chart

parsing is enhanced, so that this bidirectional parser starts analysis from certain dynamically

determined positions of the sentence (the islands), and then proceeds either left to right or right

to left from the chosen island. Our framework accounts for bidirectional expansion of partial

analysis, which improves the predictive capabilities of the system.

We will be using the charts formalism ([Kay, 1982]), extended to deal with the mentioned

bidirectionality. Therefore, in our chart implementation, the islands are equivalent to the

inactive edges of the chart, both the originally chosen ones as well as the ones created when

extending the edges. The goal of the parsing algorithm will be to extend the islands in order to

cover all the remaining gaps (or fragments of the input sentence between two adjacent islands)

with islands: parsing proceeds by growing islands of certainty into larger and larger phrases.

The parsing algorithm works by following a best-first strategy in which the items are

removed from an agenda according to a sort of figure of merit (also denoted as FOMs, described

 15

in section 2.2.1.1). This figure is provided by one of the stochastic models mentioned above,

and is used to guide the way in which edges to be processed are added to an agenda. When a

parse has been completed, one simply stops parsing, although there may be items left in the

agenda (thus saving the time to process these remaining items). The point is that the FOM is

accurate at selecting those items which are more likely to belong to the correct parse: the idea of

choosing the most probable island, according to the stochastic model, to be extended in the most

probable side.

Basically, the best-first strategy will be a guided bottom-up extension. However, the nature

of island-driven parsing entails working with dynamically selected positions of the sentence (the

original islands). This means that there might be portions of the sentence where no island at all

has been selected, though a constituent may be required by the surrounding analyses as the

analysis process proceeds. Hence the parser must also implement top-down prediction (either at

the constituent's left or right boundary) to be sure that no constituent is lost.

Our system has been previously tested over several toy grammars, in order to get an insight

into both its behaviour and the preliminary heuristics to be applied. Next, the system has been

trained and tested over two wide-coverage corpora: Spanish Lexesp and English Penn Treebank.

Results regarding comparison of several variants of our proposal with the methods we use as

baselines (straightforward optimised left-to-right bottom-up and top-down methodologies) are

presented and discussed.

We start by testing the system using a simple approach to the selection of the initial islands

(those non-ambiguous words in a tagged but non disambiguated corpus). Both stochastic models

provide significant improvement as to performance (measured in terms of the average number

of edges needed to find the first parse). However, they both perform comparably, while one

would expect the more informed neighbouring model to outperform the simpler local model.

These results appear to stem from the data sparseness involved in the neighbouring model. That

is why several variants of the neighbouring models have been devised (hybrids which combine

neighbouring and local model in different ways, the application of thresholds, and a sort of

smoothing technique). Most of these variants improve the performance of the local model.

Nevertheless, when measuring the accuracy of the different methods (by means of either the

average probability of the parse trees or average precision/recall figures), and although the

baselines are basically improved, local model still presents the best results: neither the

neighbouring model nor their variants (though the latter improve remarkably the results of the

former) get to outperform the local model. This problem remains an open line of research, for

which several ideas are being considered (see the conclusions and further lines of research in

chapter 6).

A second series of experiments have been carried out in order to test other (more informed)

methods for island selection. In particular, we have combined the island-driven parser with a

 16

previous step of very simple chunking as a method for initial islands selection. The experiments

using broad-coverage grammars derived from Penn Treebank have been performed, obtaining

significant improvements. Specially remarkable (as to both performance and accuracy) are the

results obtained by the exclusively nominal chunking. Once more, the local approach presents

better results than the neighbouring model. Nevertheless, both models outperform by far the

results of the previous approach for the selection of islands, suggesting a new line of research

involving the refinement of these selection methods.

We hasten to emphasize the main reason why we have decided our approach not to be

lexicalised: we intend to apply our system to Spanish, a language for which we do not have

treebanks big enough in order to apply our method as lexicalised (see the description of the

experiments in chapter 5 for a more detailed explanation of the sparseness problems

encountered).

The main motivation of this thesis lies in the interest on stochastically modelling

bidirectionality (and specifically the island-driven methodology) in parsing from an eminently

heuristic point of view. It must be taken into consideration that this methodology is highly

parameterised, their behaviour depending on numerous degrees of liberty (the selection method

for the initial islands, the specific parsing strategy used, the stochastic model(s) chosen, …).

Extremely formal models of bidirectional parsing in general (and island-driven parsing in

particular) have been devised (e.g. [Corazza et al., 1991], [Satta & Stock, 1994], …), but no

experimentation at all on real corpora has been carried out. The main contribution of this thesis

would therefore be twofold. On the one hand, we find the two stochastic models developed, as

well as the novel bi-directional parsing strategy applied. On the other hand, and equally

significant, there is the evaluation of the methodology carried out over real corpora, which has

in turn suggested new heuristics and hybrid methodologies, as well as new methods for island

selection.

1.2 Contents of this thesis

This section is devoted to give the reader an insight into what is included in the reminder of the

thesis, chapter by chapter.

Chapter 2: State of the Art

This chapter briefly summarises the recent advances in stochastic parsing, specially

emphasising the ones using our grammar formalism, basic parsing algorithm or similar data

acquisition system, some of which have inspired this work.

 17

A classification of any kind of parsing systems is not straightforward, since different

classification criteria can be applied, namely the type of analyser employed, the language model

expressiveness, the way the parameters of the model are acquired or estimated, and whether

lexical information is used. We have somehow combined all these criteria, starting by

describing the basic parsing technique we are using, the Charts and its possible extensions.

Next, considering our parser is stochastic, we will devote a section to a review of the recent

work in stochastic parsing, presenting the systems according to the feature we intend to

emphasise. Thus, we first describe the main data acquisition lines (supervised and

unsupervised), next we focus on the basic description of the language model we use (Stochastic

Context-Free Grammars, hereinafter SCFGs), and finally we define other parsing systems that,

being probabilistic, use different language models (they are classified according to either these

models, the type of parser used, or the learning methodology implemented). Although our

system is non-lexicalised, the importance of the research line motivates that we devote a section

to describe lexicalised parsers, and the same happens with the recent systems which combine

the results of different systems, to which the following section is devoted. Finally, the last

section briefly reviews the concept of robust parsing, focusing on chunking systems (due to the

combination of chunking plus island-driven parsing we have devised, described in chapter 4).

Chapter 3: Overview of the System

Chapter 3 presents our methodology in detail, by describing its two main components: the

parsing algorithm and the stochastic models. The chapter starts with a general description of the

system and its behaviour. It continues with the explanation of both our basic parsing algorithm

as well as the data structures. The possible variants of the basic algorithm we have developed

are outlined in the following section. As mentioned, several methods might be applied in order

to select the initial islands, and we briefly outline them (both the ones we have tested and the

ones we have not) in this chapter.

The last part of the chapter focuses on the description of the two stochastic models we have

devised in order to guide the operation of our best-first algorithm. Both models (local and

neighbouring) are presented in detail, including the formulae used to compute the probabilities

of extension/prediction in each particular case. In order to ease the reader to get an insight into

the way in which the models are applied, an example of a parse is provided.

Chapter 4: Chunking + Island-Driven Parsing

Out of the alternatives mentioned in chapter 3 to select the initial islands, three of them have

been tested. Two of them, namely selecting those unambiguous words in a non-tagged corpus

 18

and heuristically selecting the islands according to the terminal category of each word, are

highly simple and do not deserve further explanation. Chapter 4 presents the third proposal,

which combines island-driven parsing plus a previous chunking phase in order to select the

initial islands. In spite of being more elaborated than the other alternatives, the intention is that

this step keeps on being quite simple and not involving the necessity of additional knowledge

sources (the chunk grammar is straightforwardly derived from the original Context-Free

Grammar). Different kinds of chunks, according both to their category and to their relationship

with the other chunks in the sentence have been considered.

Chapter 5: Evaluation

The evaluation and discussion of the results appear in chapter 5. We start by briefly describing

the preliminary experiments carried out with the toy grammars and their results. Next, the

chapter focuses on the experiments performed on real corpora. Firstly, both the corpora

(Spanish Lexesp and English Penn Treebank) and grammars used in the experiments are

described. The obtained results are also outlined, and compared to both baseline methodologies

(straightforward bottom-up and top-down methods). The experiments analyse the performance

of the different approaches not only in the general case but also the different behaviours

according to certain features of the sentences in the test set.

That the local model generally attained better results (versus the neighbouring model) led us

to further research on heuristics to improve the performance of the latter model. These

heuristics, which basically fall into three different categories, are also described in this chapter,

together with the results they attain.

The chapter includes also the evaluation of the quality of the results of the different

methodologies devised (measured in terms of both the average probability of the analyses and

the average accuracy – basically precision and recall- of these analyses). Up to the moment, all

the evaluation has used the first method for island selection (non-ambiguous words). To

conclude, the chapter describes both the performance and accuracy obtained by the other two

selection methods, namely the methodology described in chapter 4 (chunking) and the selection

of initial islands regarding their terminal categories.

Chapter 6: Conclusions

Finally, chapter 6 summarises the work presented in this thesis, as well as the results obtained.

The chapter also outlines the open lines of research and the further work we are planning to

carry out.

 19

Chapter 2

State of the Art

Several criteria might be considered in order to elaborate a classification of recent parsing

systems. These criteria include, among others, the kind of analyser employed, the grammar

(and/or additional language models) expressiveness, the way the parameters of the model are

acquired or estimated (that is, the learning process), and whether lexical information is used or

not. When building our own classification, we will try to combine these general criteria with the

fact of whether these systems are relevant or not for our methodology.

Thus, we will start by describing, in section 2.1, the basic parsing technique we are using, the

Charts. Section 2.1.2 includes the brief descriptions of other recent systems using also

extensions of this technique. Next, considering our parser is stochastic, we will devote section

2.2 to a review of the recent work in stochastic parsing. We will start by classifying systems into

two sections, according to the way they learn the needed stochastic parameters (subsection

2.2.1). Subsection 2.2.2 includes the basic description of the language model we use, the

Stochastic Context-Free Grammars (hereinafter SCFGs). In section 2.2.3, we will define other

parsing systems that, though being also probabilistic, use different language models. We will

sort out the systems according to these models, the type of parser used, and the learning

methodology implemented. Although our system is non-lexicalised, we will include section

2.2.4 describing the recent relevant line of lexicalised parsers. Section 2.2.5 is devoted to the

review of the recent systems which combine the results of different systems, either by

combining parsers, by reranking the results of a parser or by combining the results of a set of

classifiers. Finally, in section 2.2.6 we will briefly review the concept of robust parsing,

focusing on chunking systems (this decision is motivated by the fact that a previous chunking

process is used in one of the versions of our approach, see the description of this methodology

in chapter 4).

 20

2.1 Charts

The technique of the charts, created by Martin Kay (see [Kay,1982]) arises from the so called

WFST (Well Formed Substring Tables). WFST are tables, dynamically built, which store the

results of those nonterminal elements recognised during the parsing process. These results are

globally accessible, they are not destroyed during the process of backtracking and they can be

both consulted and used by the parser. In order to utilise a WFST the parser must be modified

so that, before tackling the parsing and building of any constituent, a test is performed to check

that this constituent has not been previously built and added to the table. This mechanism does

not affect the parsing strategy. Charts extend this formalism so that not only are complete

constituents stored but also partially confirmed constituents. Charts are applied in their basic

versions to context-free grammars (or to their procedural extensions).

A chart can be viewed as a directed graph constructed dynamically and incrementally as the

analysis takes place. A chart parser is characterised by a domain of items (the edges), that can

be added to the chart by the parser, and some operators that specify how combinations of items

of the chart can lead to recognition of other items. Each item is represented by its rule and the

positions of the sentence where it begins and ends (the words of the sentence it subsumes). A

dot notation is used to mark whether or not the complete rule is already spanned by the edge.

Whenever it is, we have a completely analysed constituent (the entries of the WFSTs), and we

talk about an inactive edge. Whenever it is not, we merely have a goal or hypothesis, a

constituent not completely analysed yet, and we talk about an active edge.

An agenda of items that remain to be processed is maintained. At each iteration, the current

item is pulled off the agenda and added to the chart (unless it is already there, in which case it is

discarded). If the chart contains items that, in combination with the current item, allow

recognition of other items not yet present on the chart or on the agenda, these ones are added to

the agenda. In “exhaustive” chart parsing one removes items from the agenda in some relatively

simple way, and this process continues until the agenda is empty. There is an initial chart and an

initial agenda.

Before continuing to define the basic charts parsing schema, we introduce the notations

regarding the formalism used, the context-free grammars. Following the usual conventions (e.g.,

[Aho & Ullman, 1972]), a formal grammar is defined as a quadruple <T, N, S, P>, consisting of

a terminal vocabulary T, a nonterminal vocabulary N, a distinguished symbol S ∈ N (the start

symbol or axiom) and the set of productions or rewriting rules P. T, N, and P are finite sets, T

and N are disjointed (T ∩ N = ∅), and their union can be denoted V (V = T ∪ N). In the case of

context-free grammars (CFG), the rules of the grammar will be written as A → α, being A∈ N

 21

and α ∈ V*. Rules of the form A → w, where w ∈ T will be referred to as lexical rules. A

nonterminal A that appears in a lexical rule will be called preterminal.

In our bidirectional chart, where rules can be fired from any point of their right-hand side,

we will need to use double-dotted rules in order to label the active edges. Given a CFG G of the

form <T, N, S, P>, a double-dotted rule based on G is a triple (p,l,r) where p is a rule or

production in P of the form A → A1 … Ak and l, r are integers such that 0≤ l ≤ r ≤ k. The latter

integers l and r indicate the limits of the part of the rule right-hand side already covered. Such a

double-dotted rule will be written as:

A → A1 … Al •Al+1 … Ar •Ar+1 … Ak

2.1.1 Charts Parsing Schema

[Sikkel, 1997] presents a unified proposal for the description of syntactic parsing schemata. For

any parsing schema, the language of formulae which can be used (the items), the deduction

rules that allow to deduce new formulae from the existent ones, and the set of hypotheses from

which to start must be defined. Normally, the set of hypotheses depends on the input string to be

analysed, and the deduction rules use the grammar being applied. Sikkel distinguishes three

related concepts:

1. The parsing schema, the most general concept. It gives the reference frame of the

parsing method being described and it is independent of the specific grammar and the

specific input string.

2. The parsing system or instantiated schema. It is the concretion of the parsing schema

when a specific grammar and string are defined.

3. The parsing algorithm, which implies the addition of both a specific data representation

system and a deduction control system to the schema.

A parsing schema is a 3-tuple <X, H, D>, with X the domain or set of manageable entities, H the

set of hypotheses (normally H ⊆ X), and D the set of deductive steps. The schema can be

enriched with the sets F (F ⊆ X) of final entities and C (C ⊆ F) of correct entities.

Sikkel’s deductive approach to the parsing process (parsing as deduction) provides us with a

highly precise notation to work with charts. When dealing with parsers based on charts, the data

structures mentioned in point 3 above are the chart itself and the agenda that stores the edges

pending to be processed in a suitable order. The structure of the agenda might be a stack, a

 22

queue or a heap (priority queue), depending on the control mechanism implemented. As to the

control structures, although the deduction schema applied (CKY, Earley, LC, …) establishes

some constraints, the charts algorithm must normally require additional constraints. The basic

schema for a generic chart algorithm follows:

program chart

{initialise chart with H;

 initialise agenda with the items that can be deduced without antecedents;

 while not-empty (agenda)

 {extract current_item from agenda and place it in chart;

 for each item which can be deduced with a deductive step that includes current_item

 {if item is not in agenda nor in chart then add item to agenda}

 }

}

As an example, let us briefly present the Earley ([Earley, 1970]) chart parser using Sikkel’s

formalisation. In this introduction we will be dealing with phrase structure grammars, and we

will not enter into more complex formalisms, in which the items would contain further

information. The sentence to be parsed is denoted a1… an . This chart parser would use two

types of items:

[A→ α•β , i, j]: Earley items (for A→ αβ ∈ P and 0≤ i ≤ j ≤ n)

[a, j-1, j]: terminal items representing aj (1 ≤ j ≤ n)

An Earley item [A→ α•β , i, j] is to be recognised by the chart parser iff

α⇒∗ ai+1… aj, and

S⇒∗ a1… ai Aγ for some γ ∈ T*

The initial chart would contain the terminal items representing the string (we could say that,

initially, the nodes of the graph correspond to the beginning and the end of the sentence, as well

as to the spaces between adjacent words, so that, as the sentence to be analysed has n words,

there will be n+1 nodes). When the j-th word belongs to different categories, say a and b, then

both items [a, j-1, j] and [b, j-1, j] are present in the initial chart. The initial agenda would

contain items [S→ •γ, 0, 0] for all productions S→ γ ∈ P.

 23

We have considered that the definition of the charts parsing schema following Sikkel’s

notation can help clarify the algorithm and its comparison to other systems. Therefore, we

include the definition of this schema, also applied to Earley, in the following paragraphs.

If the schema being implemented is Earley (which would correspond to a top-down

strategy), the set of hypothesis H = {[A, j-1, j]| A→ aj ∈ P ∧ 1 ≤ j ≤ n}). The set of deductive

steps D = Dinit ∪ Dscan ∪ Dcompl ∪ Dpred can be defined as:

• Dinit = {⇒ [S→ •γ, 0, 0]}

• Dscan = {[A→ α• aβ, i, j], [a, j, j+1] ⇒ {[A→ αa•β , i, j+1]}

• Dcompl = {[A→ α• Bβ, i, j], [B→ γ•, j, k] ⇒ {[A→ αB•β , i, k]}

• Dpred = {[A→ α• Bβ, i, j] ⇒ [B→ •γ, j, j]}

The chart is initialised with the set of hypotheses H and the initial agenda with Dinit, the only

deductive step with no preconditions. Deductive steps Dscan and Dcompl can be reformulated by

means of the fundamental rule of the charts: “An action is taken, possibly resulting in the

introduction of new edges, whenever the introduction of a particular new edge brings the

operative end of an active edge together, at the same vertex, with the beginning of an inactive

edge. If the label of the inactive edge is of the kind that the active edge can consume, a new

edge is introduced, possibly provoking new applications of the fundamental rule. The new edge

will be either active or inactive depending on the existence of additional elements to the right of

the dot”.

Deductive step Dpred can be reformulated with the top-down rule: “Every time an active edge

[A→ α• Bβ, i, j] is added to the chart, an active edge [B→ •γ, j, j] will be added to its right for

each rule B→ γ ∈ P”.

The bottom-up rule (which might correspond to a LC strategy) can be explained as: “Every

time an inactive edge [A→ γ•, i, j] is added to the chart, an active edge [B→ A•α , i, i] must be

added to its left for each rule B→ Aα ∈ P”.

The combination of the basic rule with either the bottom-up or the top-down rule (or any

smart combination of both ones) will provide each specific parsing methodology, as explained

(for our methodology) in section 3.2 below. In our bidirectional case, the items corresponding to

active edges will have the form [A→ α•β•δ , i, j].

Different strategies lead to different criteria for organising the agenda. Several heuristics can

be applied depending on the availability of knowledge sources. [Caraballo & Charniak, 1998]

derive several figures of merit for guiding this process (see section 2.2.1.1 for a shallow

presentation of their approach).

 24

2.1.2 Chart Extensions

Chart-based algorithms are extremely flexible and have been rather successful for syntactic

analysis. However, they present some serious problems:

1. The size of the chart increases with the size of the grammar, making the method

unapproachable for voluminous grammars.

2. Lots of unnecessary active and inactive edges are created.

3. It is commonly said that the charts technique brings forward higher flexibility to the

parsing strategy but, in absence of the appropriate knowledge, a simple bottom-up

strategy is most often used, eventually corrected with top-down prediction.

Several enhancements have therefore been explored, namely the use of constraint propagation,

the introduction of the concept of bidirectionality as opposed to the previously seen

unidirectional systems, and the enrichment of the formalism using unification mechanisms.

Constraint Propagation

In his PhD thesis, J.F. Quesada ([Quesada, 1997]) presents a system, SCP, to delimit the search

space and limit the proliferation of new edges (in fact, SCP limits directly the number of active

edges, but indirectly the inactive edges are also limited). The fundamental idea is to pre-

compile, from the grammar, a series of reachability and adjacency matrixes which act as

constraints that filter the creation of new edges. The categories that may hold either a lowest

leftmost or lowest rightmost position (respectively left-corner and right-corner) are

predetermined, so that the prediction of edges that cannot take part in the derivation of a specific

sentence is avoided. This idea is similar to our local approach (see section 3.5.1). Quesada

reports excellent results. An implementation of the algorithm using unification can be found in

[Quesada & Amores, 2000], in the frame of the automatic translation system Doxa.

Bidirectionality

Bidirectionality represents a way of taking advantage of the flexibility intrinsically allowed by

the charts mechanism. It can be introduced in two points of the chart algorithm. The first one is

the application of the rules: regardless of the parsing strategy, in the classic chart schema rules

are fired from left to right, that is, the dot in the dotted rule shifts from left to right, from the

initial position (all the constituents of the right-hand side of the rule are goals) to the final

position (the edge is inactive and there are no goals left to satisfy). The second point is the way

 25

in which the sentence to be analysed is traversed, also from left to right in the classic schema.

Whatever the point of introduction, the underlying idea is the same: “start by trying to find the

main word, because this will tell you most about what else to look for” [Kay, 1989]. It is the

concept of main word what may change depending on the approach (main linguistically

speaking, or main as the word which is capable of reducing the syntactic search space the most).

 Head-driven chart parsers represent the first direction. A distinguished symbol, the head, is

marked in the right-hand side of each rule, so that the application of the rule will start from this

symbol (not from the leftmost right-hand side symbol as conventionally) and proceed in both

directions. This approach arises some problems, regarding the mark-up of the grammar (the

method depends deeply on the goodness of the selected heads, so that the performance of the

algorithm may degrade considerably in case the chosen heads are not correct) and the parsing

algorithm.

As to the mark-up (assignment of the head to each rule of the grammar), two lines have been

followed: linguistically motivated methods (such as the use of head-driven grammatical

formalisms as the Head Grammars, HG, or the Head-Driven Phrase Structure Grammars,

HPSG, see [Kay, 1989] or [Bouma & van Noord, 1993]), and systems in which the assignment

of the head is done according to a stochastic base (see [Satta & Stock, 1994] or [Corazza et al.,

1991]).

Regarding the parsing algorithm, the main difference lies in the use of double-dotted rules

(defined also in section 2.1), so that the expansion is performed from the head outwards in both

directions. Hence the inactive edges will correspond to the items in which the first dot has no

constituents to its left, nor the second dot to its right. Obviously the control of the application of

the deductive steps gets more complicated: not only must the item priority be determined (its

position in the agenda), but also its direction of expansion. [Sikkel & op den Akker, 1996] and

[Nederhof & Satta, 1994] analyse the generalisation of several chart parsing strategies for the

bidirectional case. The best known is the one obtained by generalising the Left Corner (LC)

strategy, the Head Corner (HC) approach. [Nederhof & Satta, 1994] present also a formalism,

the Extended Head Grammar (EHG) that assigns to each rule not only the head but also a tree

which defines a complete hierarchy in the constituents of the right-hand side of the rule. [van

Noord, 1997] presents an efficient implementation of a head-corner parser which makes use of

selective memoisation (only maximal projections of a head1 are memoised, so that they are

computed only once) combined with goal-weakening (combination of a number of slightly

different goals into a single more general goal) techniques to speed up the parser.

A recent version of head-driven parsing is key-driven parsing. It is a bottom-up, chart-based,

bidirectional head-driven parser, the difference lying in that, instead of selecting the head

1 Those projections of a head which unify either with the start symbol or with a non-head daughter of a
rule.

 26

according to linguistic criteria, it is done in such a way that rule applicability (with respect to all

categories derived by the grammar) is constrained. Hence, the term key daughter is used to refer

to the argument position in each rule that is the best discriminator with respect to the other

categories that the grammar derives. The key daughter of each rule is analysed first, before the

other daughter(s) are instantiated. Its selection is generally done by considering the amount and

specificity of information encoded for each argument2, considering the parser was developed for

an HPSG environment, the PAGE platform (at the DFKI in Saarbrücken). An extended version

of this parser, the so called ‘hyper-active’ parser ([Oepen & Carrol, 2000]) is currently being

used in both the PAGE and the LKB3 platforms.

[Ritchie, 1999] presents a proposal (the Bidirectionally strategy-marked context-free

grammar, BSCFG) in which one or more constituents are marked in each rule. If the left-hand

side symbol is marked, the rule can be used top-down, if any of the right-hand side symbols are

marked the rule may be used bottom-up from the analysis of such constituent. Therefore we

may find purely bottom-up, purely top-down or hybrid rules.

The second point of introduction of bidirectionality (the way in which the sentence to be

analysed is traversed) is represented by our proposal, island-driven parsing (see [Satta & Stock,

1994], [Ageno & Rodríguez, 1996] or any of our subsequent references). Instead of starting the

parsing process from all the words in the sentence (bottom-up) or incorporating words as they

are needed (LC), we start from several elements of the sentence (the islands), which are

dynamically selected. Two main problems arise: the first one is linguistic (how to select the

islands), whereas the second one is the parsing control, that is, the order in which islands must

be extended. Both aspects are widely discussed in the remainder of this thesis, along with

additional references to related work.

Unification

A fruitful extension of chart parsing consists in going beyond context-free grammars, using

more expressive grammars. Chart parsing has been widely used within the logic grammar (or

unification grammar) paradigm. In such approaches, categories are not longer reduced to be

members of a finite vocabulary, but are complex ones, owning an internal (sometimes

unlimited) structure. Prolog terms and typed ([Carpenter, 1993]) or free ([Shieber, 1985],

[Wintner, 1997]) feature structures have been used for representing such complex categories.

2 This strategy would somehow correspond, in our methodology, to the alternatives of selection of islands
which take into account lexical and syntactic ambiguity criteria in order to constrain the search space, see
section 3.4.
3 The platform from the CSLI at Stanford.

 27

The fundamental combination rule of the charts, described above in section 2.1.1, would now

be expressed as follows: “An action is taken, possibly resulting in the introduction of new

edges, whenever the introduction of a particular new edge brings the operative end of an active

edge [A → α• B1β, i, j] together, at the same vertex, with the beginning of another inactive edge

[B2 → γ•, j, k]. If the unification of B1 and B2 produces B3, a new edge [A → αB3•β , i, k] is

introduced, possibly provoking new applications of the fundamental rule”.

The top-down rule would now read: “Every time an active edge [A → α• B1β, i, j] is added to

the chart, then for each rule B2 → γ ∈ P such that B1 and B2 can be unified and the product of

their unification is B3, an active edge [B3 → •γ, j, j] will be introduced”.

Finally, the bottom-up rule would read: “Every time an inactive edge edge [A1 → γ•, i, j] is

introduced into the chart, then an active edge [B → • A3α, i, i] should be added to its right for

each rule B → A2α ∈ P such that A1 and A2 can be unified and the product of their unification is

A3”.

It can be observed that the only important modification to the basic algorithms is the

substitution of unification operations for certain equality tests, with their implied increase in

cost.

2.2 Stochastic Parsers

In order to tackle the task of full parsing of unrestricted text, a certain number of problems must

be considered, such as the ones listed in [Carroll, 1993]:

1. The difficulty to select the units to be parsed when dealing with unrestricted text, that is,

the difficulty to segment the text in analysable units.

2. The difficulty to decide which is the correct analysis whenever the parser provides a

large number of syntactically correct analyses.

3. The problem of tuning a general purpose grammar to a specific corpus.

4. The problem of obtaining plausible analyses out of the coverage scope of the grammar.

In the current state of the art, there does not seem to be any alternative to cope with such

problems other than the use of stochastic methods. There might exist some exceptions, such as

the Alvey project (ANLT, Alvey Natural Language Tools, see for instance [Grover et al.,

1989]), the Slot grammar formalism ([McCord, 1990]), or the systems based on the PNLP

(Programming Language for Natural Language Processing) approach, like the one developed at

IBM (PEG, PNLP for English Grammar, see [Jensen, 1991]), or Microsoft’s Natural Language

Processing System (NLPWin, see [Jensen et al., 1993]), which accepts sentences and delivers a

 28

detailed syntactic analysis, together with a logical form representing an abstraction of the

meaning. However, the volume of engineering and linguistic work involved in all these projects

has been enormous, and the adaptation of these systems would also require a great deal of

additional effort.

The application of stochastic models, both to the global syntactic parsing process (such as

the Stochastic Context-Free Grammars), as well as to certain decisions in the parsing process

(such as probabilistic LR parsers, or those parsers incorporating probabilistic model for certain

tasks as the pp-attachment) can take place in different ways. The key idea is to assign

probabilities to various items: the most likely tree, the most likely rule in a context, the most

likely decision in a context (where the notion of context may vary, from words in a sentence to

part-of-speech (PoS) categories in a tagged sentence or subtrees in a partially analysed

sentence). Assigning these probabilities will allow to determine the likelihood of word

sequences and their interpretation. The goal will be to accomplish the parsing of unrestricted

natural language texts with an acceptable level of accuracy. The introduction of the stochastic

methodologies implies a change of notation: we used to define a grammar, and the parser would

decide whether a certain sentence was grammatical with respect to this grammar; now we define

a language model, that is, a way of assigning a probability to any sequence of words from the

vocabulary, so that whenever the probability is greater than 0, we will say that the sentence

belongs to the language. Different types of language models have been devised, including:

1. Uniform.

2. Finite state.

3. N-grams.

4. Grammar based.

5. Other:

• Decision trees.

• Maximum entropy…

[Abney et al., 1999] group all these language models into two main approaches. The first one

uses directly the definition of a stochastic grammar (not necessarily a SCFG), defining the

probability of a parse tree as the probability of producing that tree by means of a fixed (e.g. top-

down) rule application sequence. The other approach defines the probability of a tree as the

probability that a certain shift/reduce stochastic parsing automaton outputs that tree. These two

models are proved to be only weakly equivalent, leading to different learning behaviours.

Some of these models will be detailed further in the following sections (in particular, the

formalism on which we base our work, Stochastic Context-Free Grammars, in section 2.2.2).

However, first we will address another relevant issue, such as the acquisition of the knowledge

 29

necessary to perform the analysis. This knowledge includes the productions of a grammar

(whenever we are dealing with a grammar-based method) as well as the additional stochastic

parameters of the model. A fruitful exposition of the probabilistic aspects of syntax can be

found in [Manning, 2002].

2.2.1 Parameter Estimation

Most language models impose the need of learning a number of parameters. For instance, if a

word 3-gram is used, and being V the vocabulary, |V|3 parameters need to be estimated, each one

corresponding to p(wi|wi-1, wi-2). If a PoS 3-gram is used, and T is the set of terminal categories

(i.e., the tag set), the number of parameters would now be |T|3.

In case we are using stochastic context-free grammars (SCFGs, see section 2.2.2), there are

two possibilities. The first one, whenever a wide-coverage grammar is available: therefore, only

the probabilities attached to the rules have to be learnt, that is, |P| parameters if P is the set of

grammar productions. Most of the existent broad-coverage grammars are built for the English

language. Some of the most important are the ones developed within the above mentioned

Alvey project ([Grover et al., 1989]), CLE framework (CLARE grammar, see [Alshawi, 1992]),

TOSCA project (affix grammar4, see [Oostdijk, 1991]), and the LinGO project5 at the Stanford

CSLI (the English Resource Grammar, see [Sag & Wasow, 1999], based on the HPSG

framework). Whenever a wide-coverage grammar is not available, both the grammar and the

probabilities must be learnt (see [Pereira & Schabes, 1992] as well as section 2.2.1.2 below).

Two main approaches can be adopted in order to perform the process of learning of the

parameters of a language model: supervised learning, in which we have available a set of

examples (sentences + their corresponding parse trees) which can be used as training data, and

unsupervised learning, which uses unanalysed text. Either of both methodologies might be

applied to the learning of the grammar, on one hand (whenever we are using a grammar based

approach), and to the learning of the rest of the stochastic parameters, on the other hand.

Section 2.2.3.3 below will be devoted to alternative systems specially characterised by using

Machine Learning techniques for the learning process.

2.2.1.1 Supervised Learning

The obvious problem with this kind of learning is the necessity of a syntactically analysed

corpus (a treebank), with the heavy load of linguistic knowledge and intensive labour it entails.

Treebanks can be built either manually or semi-automatically. In the latter case the corpus is

4 Extended to other European languages in the framework of the DoRo project ([Santalla, 1999]).

 30

analysed using an available grammar (normally a fragmental grammar), and the result must be

supervised in an ulterior process in order to verify the correctness of the analyses or complete

them when necessary. The use of syntactic editors (or tree editors) is fundamental in these

tasks.

The only large-scale syntactically annotated corpus for English which is publicly available is

the Penn Treebank (2.6 million words, see [Marcus et al., 1993] or [Taylor et al., 2001])6. Its

main problem (aside, of course, from being limited to the English language) is that the set of

labels it uses is quite reduced. Its second version, PTB-II (whose WSJ portion is used in some

experiments of this work, see chapter 5), though not solving the mentioned drawbacks, presents

more consistent annotations, as well as an improved annotations style (see [Marcus et al.,

1994]). The Penn Treebank used the Fidditch parser [Hindle, 1983] as a pre-processing, and its

annotation is based on context-free syntactic representations with additional trace-filler

annotations for discontinuous constituents.

Other recent and notable contribution to this area is the NEGRA Treebank ([Brants et al.,

2000]), a treebank of German newspaper texts (350,000 tokens by mid 1999), annotated using a

hybrid framework that combines Phrase-Structure and Dependency Grammars. They have used

an interactive annotation mode that suggests new phrases (plus their probabilities) to the

annotator, who can accept or reject the suggestion. The LinGO project, mentioned above, is

constructing an English Treebank for HPSGs ([Oepen et al., 2002]). The Prague Dependency

Treebank (Czech language, see [Böhmová et al., 2000]) uses automatic initial category

assignments and a subsequent manual correction step, to perform Dependency Grammar

annotations.

[Moreno et al., 2000] and [Moreno et al., 2001] describe a project to build a Spanish

Treebank, in which the annotation is performed by a tagger and a chunker, and the debugging is

carried out by means of a graphic tree-drawer, a feature checker (for both syntactic and semantic

features are included), and a generator of phrase-structure rules. The syntax level is superficial,

the parse trees being bracketed embedded structures. The treebank contains a total of 1,500

sentences. [Civit & Martí, 2002] describe the basic principles for the design of a Spanish

Treebank, as a starting point for the dawning project 3LB7.

Following the 1999 ATALA Treebank Workshop, a special issue was edited ([Abeillé,

2000]) which contains some other references on recent treebanks as well as on topics about the

use of treebanks in general.

5 http://lingo.stanford.edu/
6 We do not include the well-known corpus SUSANNE ([Sampson, 1995]), as its size is far smaller (only
128,000 words manually annotated, with syntactic annotations of constituents and functions).
7 3LB (http://www.dlsi.ua.es/projectes/3lb/) is a project which aims at building three syntactically and
semantically annotated corpora for Spanish, Catalan, and Basque (100,000 words in the case of Spanish).

 31

In case we already have the grammar (or we are dealing with a non grammar-based model),

and we intend to learn the stochastic parameters of the language model, we should have

available a treebank with granularity and labelling levels compatible with the grammar to which

we intend to attach the parameters. As to SCFGs (see section 2.2.2), in case we have labelled

material available it is not difficult to estimate the values of the probabilities attached to their

rules, using the Maximum Likelihood Estimation (MLE) procedure. Let us assume that the

learning corpus has been analysed and is composed by a set of N parse trees: {ψ1, …, ψN}. The

probability attached to rule A → α would then be:

(1)
∑

∈→

→
→=→

GP)(A

)A(#
)A(#)P(A

β
β

αα

where the counters are calculated using the counting function f(A → α ; ψ), which indicates the

number of times rule A → α has been used to build tree ψ, in the following way:

(2) ∑
=

→=→
N

1i

);f(A)(A# iψαα

If MLE is applied to the grammar induction task, the induced grammar will be the one that

confers the maximum probability to the learning corpus (say O). Instead, [Chen, 1996] uses a

Bayesian approach, together with the Minimum Description Length (MDL) criterion. That is,

being O the learning corpus, and using the Bayes’ theorem:

(3) G = argmaxG P(G/O) = argmaxG P(O/G) × P(G)

And combining with the MDL criterion:

(4) G = argminG [l(O/G) + l(G)]

Treebank Grammars (transformations and uses)

Although claimed to be poor models of language in several respects, [Charniak, 1996] and

[Charniak, 1997] have shown that SCFGs (see section 2.2.2) can achieve at least respectable

results on parsing the Penn Wall Street Journal corpus, using a supervised training approach.

[Charniak, 1996] describes results for a SCFG trained and tested on the Penn WSJ Treebank.

The author starts by extracting a treebank grammar, that is, directly reading the production rules

off all the parse trees contained in the treebank. This is no kind of learning at all, but simply

 32

recovering explicitly a grammar that already existed implicitly. Charniak, from the hand-parsed

sentences contained in what he calls a “preliminary version” of the Penn WSJ corpus, derived a

grammar with 10,605 productions8, obtaining a precision and recall of about 80% (for sentences

up to 40 words) when adding what he calls a right-branching correction (to redress the centre-

embedding bias of the CFG and favour the right-branching tendency of the English language).

[Johnson, 1998] discusses the effects that the kinds of tree representations in a treebank

corpus can have on the accuracy of a SCFG estimated from that corpus. In particular the paper

studies the effect of varying the tree structure of PP-attachment, in order to counteract the

independence assumptions implicit in any SCFG (and consequently, in the corpus of trees from

which it is derived). He also shows how conditioning the probabilities of structures on the

context (in particular on the label of the parent of each constituent) within which they appear

leads to a much better parsing model. Using the same Penn WSJ Treebank, to which he applies

the different transformations defined, he shows that the best performing option is the Parent

transform (the mentioned encoding of the label of the parent in each nonroot nonterminal node),

with average recall and precision improved by 8% with respect to the SCFG conventionally

induced from the treebank.

[Krotov et al., 1998] presents a series of proposals in order to compact this treebank

grammar, in an attempt to improve its scarce generalisation capacity, something that [Charniak,

1996] had already started to state. The authors analyse the growth of the grammar size in terms

of the corpus size and realise that, on the one hand, it is far from saturation (in fact the grammar

size shows a growth of exponent ½), and on the other hand, most of the induced productions

present a low frequency (half of the rules are only used once). The original size of the grammar

was 15,421 rules (achieving a performance of 70% recall and 78% precision). The simple

elimination of those rules occurring just once resulted in a reduction of half the number of rules,

at no price of precision and coverage. A more drastic reduction is produced when iteratively

eliminating the rules which can be covered by other pre-existent rules: a 1,122 productions

grammar is obtained, though at the price of a major drop in precision and coverage. Finally, the

authors propose the use of linguistic criteria in order to select the rules to be eliminated. In

particular, a probabilistic version of the grammar is used (the probabilities estimated by simply

counting as explained in formulae 1 and 2 above), so that a rule (possibly covered by others) is

eliminated only when the probability of the tree generated by this rule is smaller than that of the

others. In the case of combining this criterion with the deletion of the rules showing up once, the

grammar size reduces to 4,820 productions, with only a slight reduction in precision, while with

only the former criterion the grammar size is 6,417, at no cost in quality.

8 [Gaizauskas, 95] reports the extraction of a grammar with 17,534 productions from the 49,208 hand-
parsed sentences in the Wall Street Journal portion of the Penn Treebank II.

 33

 Alternative proposals for transformation of the Penn Treebank grammar can be found also

in [Sekine, 1998]. Specially attractive is the idea (firstly described in [Sekine & Grishman,

1995]) of inducing a grammar with only two nonterminal symbols (noun phrase and sentence).

The rules of this grammar would then have attached an (also induced) intermediate structure

(including other nonterminals), as well as a probability P(rule, structure | nonterminal). The

system is oriented towards information extraction applications.

[Goodman, 1996] considers that, instead of searching for the highest probability parse

(Viterbi-style), one could try to maximise any other evaluation metric, using a different parsing

algorithm for each specific metric. In fact, he presents the “Labelled Recall Algorithm” and the

“Bracketed Recall Algorithm”, and compares them to the Labelled Tree (Viterbi) Algorithm,

showing that each algorithm generally works best when evaluated on the criterion that it

optimises. The evaluation is performed firstly on the ATIS portion of the Penn Treebank, with a

SCFG induced directly from the treebank, and secondly on a portion of the Penn Treebank (also

inducing a SCFG, simplified to be binary branching).

[Caraballo & Charniak, 1998] use the treebank grammar from [Charniak, 1996] to evaluate

their approach for improving performance of best-first probabilistic chart parsing. They devise

several figures of merit (FOMs), which intend to measure how “promising” a constituent

(inactive edge of the chart) is to contribute to the most probable parse. The best performing

FOM is the boundary trigram estimate (conditioned on the context on both sides of the

constituent), getting to reduce the number of edges required for a full parse into the thousands.

[Charniak et al., 1998] extend the previous work to use this best performing FOM to rank not

only the completed constituents, but also the active (incomplete) edges of the chart. Although

this extension implies the need to transform the grammar (so that all productions are either

unary or binary), it is very much worthwhile: the approach provides a factor of 20 reduction in

the number of edges required to find the first parse, as well as improving accuracy over

exhaustive parsing. Taking [Charniak et al., 1998]’s work as a starting point, [Blaheta &

Charniak, 1999] calculate two new FOMs, considering additional factors. The first FOM takes

into account additionally the competitors of the edge, the amount of work done, and the

correctness of the edge: the edge count is lowered by almost a half while reducing accuracy

only by 0.24%. A second FOM extends the previous one by using a demeriting factor which

tries to favour those edges with fewer competitors: the average edge count drops to almost 40%

of the result in [Charniak et al., 1998], at the expense of only 0.28% accuracy loss.

As it will be mentioned in section 3.5, it is important to remind that (the figures being

completely different) our stochastic models perform also as FOMs that, combined with our

edge-based agenda, are used to guide the decisions along the parsing process, but based on the

concept of islands and applying these FOMs to their extension. In all the sequence of works

described in the previous paragraph, the average amount of edges required to find a first parse is

 34

considered to be the number of edges that are popped from the agenda. We must emphasize the

difference with respect to our proposal (see chapter 5, regarding the evaluation), in which we

measure the amount of edges required as the number of edges that need to be created.

2.2.1.2 Unsupervised Learning

Being clearly preferable, unsupervised learning of linguistically plausible structures is generally

acknowledged to be a much harder problem. It must be remarked that, although for

unsupervised learning the learning corpus does not have to be syntactically annotated, it must be

morphologically analysed and PoS-tagged (with the notable exception of [Yuret, 1998],

commented at the end of this section), which would imply a certain cost in case it is not readily

available.

[Fujisaki et al., 1989] propose an iterative unsupervised learning algorithm, in which, after

an initialisation, an iterative process is performed until convergence. This iteration will firstly

get all the possible parses for each sentence in the training set, secondly compute the

probabilities of each derivation tree, and thirdly re-estimate the probabilities of the rules (using

a variant of the Baum-Welch algorithm, [Baum, 1972]). Viterbi algorithm (see section 2.2.2) is

used (as a probabilistic version of the CKY algorithm, [Younger, 1967]) in order to efficiently

select the most probable analysis after training. Experiments with a hand-crafted context-free

grammar (2,118 rules, but used in Greibach Normal Form9, with which number of rules turns to

be 7,550) are described. The model is trained on 4,206 sentences and tested on 84 sentences,

and 85% of accuracy is reported.

[Chitrao and Grishman, 1990] describe an iterative process working on unannotated corpus

to estimate the rule probabilities of a SCFG (see section 2.2.2), using fine grained statistics to

try and capture context-sensitivity by means of a system of heuristic penalties (the expansion

probability of a nonterminal being conditioned on its parent). The training set is composed by

300 sentences while the test set is composed by 140 sentences, and the number of incorrect

parses decreases from 44% (without statistics) to 26% (with them).

However, the basic unsupervised learning algorithm is the one known as Inside/Outside

([Baker, 1979]). This method is an efficient application of the family of algorithms called

Expectation Maximisation (EM), which are very useful either in the absence of annotated

examples or in general, in the case of incompleteness of the training data. The algorithm uses

some initial parameters (such as the rule probabilities) generated either randomly or from a

small annotated corpus. From these parameters, the total likelihood of the corpus is calculated,

and the model parameters are re-estimated. The process is repeated with the new parameters, so

9 A CFG is in GNF if every rule has the form A→ aα, where a ∈ T and α is either empty or composed

 35

that the system performs several iterations, until convergence is accomplished. The

Inside/Outside algorithm is guaranteed not to decrease the log-likelihood of the training corpus.

Normally convergence to a local optimum is accomplished after quite a few iterations. The main

drawbacks of the Inside/Outside algorithm are that it is rather costly (O(n3)), and, after all, it is

somehow supervised (it needs a PoS-tagged corpus). Besides, there is the problem of getting

stuck in local optima, because the algorithm is very sensitive to the initialisation of the

parameters. [Rosenfeld, 1999] presents the Inside/Outside algorithm as a generalisation of the

forward-backward algorithm for training Hidden Markov Models to a training algorithm for

SCFGs.

[Lari & Young, 1990] apply the Inside/Outside algorithm to several simple artificial

languages, obtaining very interesting results. [Pereira & Schabes, 1992] use the first version of

the Wall Street Journal corpus (labelled with 48 terminal categories and 15 nonterminal

categories), and build the complete grammar (all the possible rules in CNF). The resulting

grammar has 15 x 48 = 720 unary rules and 15 x 15 x 15 = 3,375 binary rules, that is, 4,095

rules as a whole. They apply the Inside/Outside algorithm to this initial grammar and eliminate

those rules with null probability. Unfortunately the Inside/Outside algorithm is unsuccessful at

inducing linguistically plausible structures. The same authors propose to use a semisupervised

learning in which the training corpus will be manually bracketed (partially annotated), and they

slightly modify the algorithm so that the only fragments considered valid are the ones not

including crossing brackets. Not only the grammars obtained this way are more faithful to the

linguistic criteria (implicitly contained in the learning corpus), but also the processing time

decreases remarkably (O(n) time in front of O(n3) time for the original algorithm). Tests are

made on the ATIS corpus (90% bracketing accuracy reported), whereas [Schabes et al., 1993]

describe the application of the method to the WSJ (reporting also bracketing accuracies of

around 90% for sentences of up to 15 words). [Black et al., 1992] describe also a statistical

parsing model which is estimated in a partially supervised way, using the Inside/Outside

algorithm. A very similar algorithm to that of [Pereira & Schabes, 1992] is applied to the data of

a treebank, in order to estimate the probabilities attached to the rules of a hand-crafted grammar

for the restricted domain of computer manuals.

[Briscoe & Waegner, 1992] suggest a hybrid solution. In particular they propose the use of

two grammars whose union would produce the definite grammar: one explicit grammar, hand-

built following linguistic criteria from the Alvey grammar (ANLT, see [Grover et al., 1989]),

and one implicit grammar, which should be induced. The explicit grammar is composed by

2,316 rules, and the original implicit one (created from the projections X of 156 terminal

only by any number of nonterminal symbols.

 36

categories) has 7,772 rules. After 6 iterations of the Inside/Outside algorithm, a grammar with

3,789 rules and a coverage of 93.5% is obtained.

[Yuret, 1998] tackles the grammar induction task from unannotated corpora (not even

morphologically), modelling the relation of attraction or repulsion between words by means of

the mutual information measure. Mutual information measures the affinity between words:

when high, it indicates that both words tend to appear together (or close) with a significantly

higher frequency than separated.

2.2.2 SCFGs

Stochastic Context-Free Grammars (SCFGs) are the most extended language model, and the one

on which our work is based. Therefore, we will devote a whole section to their formal definition

and the description of their properties. The basic notation regarding CFGs has already been

described in the introduction of section 2.1.

Given a CFG G, a syntax or parse tree based on G is a rooted, ordered tree whose

nonterminal nodes are labelled with elements of N and whose terminal nodes are labelled with

elements of T. Those nodes immediately dominating terminal nodes will be referred to as

preterminal; the other nonterminal nodes will be referred to as nonlexical. A syntax tree based

on G is said to be well-formed with respect to G if for every nonterminal node with label A and

daughter nodes labelled A1, …, Ak, there is a rule in P of the form A → A1 … Ak. We shall

distinguish between a tree that is compatible with the rules of the grammar, and a tree that also

spans a sentence. A syntax tree is said to be generated by a grammar G iff:

1. The root node is labelled with S (the distinguished symbol).

2. The tree is well-formed with respect to G.

The conventional rewrite interpretation of CFGs will also be used in the definition of our

stochastic models. Given two strings w1 and w2∈ V*, then w1 directly derives w2, if w1 = δAγ, w2

= δαγ, and A → α is a rule in P. Similarly, w1 derives w2 (in one or more steps) if the reflexive

transitive closure of A directly derives α (written A →* α to indicate the application of one or

more rules in order to derive string α from nonterminal A).

A stochastic (or probabilistic) context-free grammar (SCFG) is a context-free grammar in

which every rule has attached a probability. That is, for every rule of a grammar G, A →α ∈ PG,

a probability P(A →α) must be possible to be defined. It is usually imposed the constraint that

the addition of the probabilities of all those rules expanding the same nonterminal must be 110:

10 Lots of the existent systems also require that the grammar is in Chomsky Normal Form (CNF).

 37

(5) 1)P(A
GP)(A

=→∑
∈→α

α

Using an auxiliary notation Aij to denote a nonterminal node A of the parse tree spanning

positions of the sentence from i through j, we can define the three assumptions of the model:

1. Place invariance: ∀ i,j, P(Aij → ζ) is the same.

2. Context freedom: P(Aij → ζ | anything outside i through j) = P(Aij → ζ)

3. Ancestor freedom: P(Aij → ζ | any ancestor nodes above Aij) = P(Aij → ζ)

The probabilities attached to the rules can be used either to heuristically guide the parsing

process or to select the most probable parse tree(s). The probability of a certain derivation (that

is, a parse tree) can be computed by multiplying the probabilities of all the productions applied

in the derivation process. Let ψ be a finite parse tree well-formed with respect to G, and f the

counting function (already defined in section 2.2.1.1, formula 2), such that f(A → α ; ψ)

indicates the number of times rule A → α has been used to build tree ψ. Then we can write:

(6));f(A

P)(A G

)P(A)P(ψα

α
αψ →

∈→
∏ →=

If we define ψG as the set of parse trees ψ mentioned above, it would be interesting that the

probability distribution P(ψ) were such that:

(7) 1)P(=∑
Ψ∈ Gψ

ψ

This is not always like that (see, for instance [Chi & Geman, 1998]), for it depends on the

probability distribution over the rules, P(A → α). However, if, as usual, the estimation of the

probabilities is carried out by means of the MLE algorithm (see section 2.2.1.1), it can be

proved that this property holds. [Chi, 1999] generalises this approach by means of the relative

weighted frequency method.

A problem related to stochastic grammars is the computation of the probability of a sentence

(which we can use as its likelihood measure)11. Obtaining the most probable parse tree for a

sentence, obviously without having to generate all of them (it can be accomplished at a cubic

11 An obvious but inefficient way of computing it is to generate all the parse trees for the sentence,
calculate the probability of each one and add them.

 38

cost by means of Viterbi algorithm, see for example [Manning & Schütze, 1999] for a detailed

description), or obtaining the k most probable parse trees, are other significant problems. It must

be taken into account that using stochastic grammars allows us the extension of the grammars

out of their coverage, by assigning small probabilities to the rules that permit this extension.

Under these circumstances, for most of the applications, it will be enough to deal with the k

most probable parse trees (with k very often reduced to 1).

The last problem that must be considered is the learning process. SCFGs present a wide

casuistry of collaboration between linguistics and statistics to this effect. As mentioned in

section 2.2.1, two types of information must be acquired, namely the context-free grammar

itself and the probabilities attached to the rules. If one is dealing with language models which

imply the extension of SCFGs, such as in our work, additional stochastic parameters should

eventually be learned. Very often the construction of the kernel of the SCFG is carried out using

linguistic knowledge. We can find from manual construction until grammar induction (from

previously annotated corpora), as well as the use of artificial grammars or grammars built

manually but completed automatically. Sections 2.2.1.1 and 2.2.1.2 above deal with this

problem as well as the learning of the stochastic parameters of the model.

2.2.3 Other Probabilistic Formalisms

SCFGs (described in the previous section) present advantages and disadvantages, such as the

following ones:

• They introduce an idea of the probability of a parse,

• but not a very good one, as lexical information (such as lexical cooccurrence

measures) is not considered.

• SCFGs are good for grammar induction: whilst CFGs cannot be induced without

negative (ungrammatical) examples, SCFGs can.

• Robustness.

• SCFGs give a probabilistic language model for a natural language.

• In practice a SCFG is a worse language model than a 3-gram:

• One obvious limitation has to do with the assumption of independence in the

production probabilities. Not only are the rules context-free, but also their

probabilities. Lets take a rule like N→N N to define the noun compounds in

English. It happens with the correct trees obtained when parsing probabilistically

the noun phrases “toy coffee grinder” and “cat food tin” that:

 P([N [N toy] [N [N coffee] [N grinder]]]) = P([N [N [N cat][N food]][N tin]])

 39

Moreover, the probability of the corresponding incorrect parse trees that would be

built by applying twice the rule N→N N is also the same. Ideally, these derivations

should be kept probabilistically distinct, as they correspond to different

interpretations.

• SCFGs do not allow to establish such a significant distinction as the point of the

parse derivation where a rule is applied. For instance, let us take rule NP → Pro, in

which a noun phrase expands as a pronoun. It is probable that P(NP → Pro) should

be greater in a subject position than elsewhere12, but only a global probability can

be attached to the rule.

• Possibility of combination of SCFGs and 3-grams.

• SCFGs give too much of the probability mass to very short sentences (smaller trees

imply less rules and are thus more probable than greater ones).

• Problem of sparseness: difficulty to correctly learn those situations which are not very

frequent (or even not occurring) in the training corpus.

There exist several approaches that intend to introduce contextual aspects (capturing more fine

grained probabilistic distributions), or lexical information in the language models (models

containing parameters corresponding to lexical dependencies), or else approaches which intend

to model not the language itself but certain aspects of the decisions the parser must take. In this

section, we will briefly describe several of those of these approaches not yet involving lexical

information (for section 2.2.4 is devoted to these ones). Each one will be classified according to

the used formalism or model, the type of knowledge acquisition method used, or the kind of

analyser employed, depending on the factor we consider more significant (though most of them

might also be classified in different sections).

It is also important to take into account the fact that probabilistic parsing models fall into two

main categories, namely discriminative models and generative models. Discriminative models

estimate the probability of a parse given a sentence, assigning probability mass to all parse trees

possible for a given sentence. On the other hand, generative models assign probability mass

jointly over all sentence-parses pairs. In natural language, a generative model looks from the

point of view of the speaker who is generating a sentence, whereas a discriminative model looks

from the point of view of a listener who knows what words were said but must determine their

structure.

12 This case might be valid as an example, although for instance [Magerman & Marcus, 1991] have
observed in treebanks statistics that this may not be true.

 40

2.2.3.1 Alternative models

Dependency Grammars

The Probabilistic Link Grammar Model of [Lafferty et al., 1992] (Grammatical Trigrams)

might be considered the earliest work on probabilistic Dependency Grammars. The model is

generative, specifying a distribution over the space of parse/sentence pairs, and it is trained in

an unsupervised way (by means of an approach similar to the Inside-Outside algorithm).

Although we include it in this section, the model is lexicalised (and as such, it could have also

fit in section 2.2.4).

Another related proposal is Lynx ([Venable, 2001]). Both Grammatical Trigrams and Lynx

are probabilistic models based on Link Grammars ([Sleator & Temperley, 1993]). Also [Eisner,

1996a], in his model C, uses a dependency grammar, in this case with unlabelled links (as

opposed to the labelled links or connectors representing grammatical relationships between

words of the Link grammars). The latter and other systems using dependency grammar-based

formalisms are described in section 2.2.4.

[Carroll & Charniak, 1992] also focus on Dependency Grammars, by defining an inductive

algorithm for the creation of the grammar which performs incrementally. A new rule is

introduced only if any of the sentences in the learning corpus is not correctly analysed by means

of the current rule set.

Increase Context Sensitivity

The systems Pearl ([Magerman & Marcus, 1991]) and Picky ([Magerman & Weir, 1992]) use

context-sensitive derivation probabilities. The basic idea is to try and maximise the probability

of a correct derivation for each of the sentences in the corpus (as opposed to the Inside-

Outside’s idea of maximising the addition of the probabilities of the sentences in the corpus

given a grammar). In Pearl, for instance, the application probability of a rule is modelled as a

conditional probability, conditioned on the context in which the mother category appears. A

chart parser (PUNDIT) is employed, and probabilities are estimated by simply counting the

application of the rules in the ATIS portion of the Penn Treebank. An accuracy of 88% is

reported.

ID/LP Grammars

In an experiment based on the use of a grammar in ID/LP format, [Sharman et al., 1990] factor

out the probabilities concerning immediate dominance (associated with ID rules) from those

 41

concerning linear precedence (associated with LP rules). They describe a supervised learning

method in which the initial probabilities (based on the frequency of ID and LP relationships) are

learnt from a manually annotated corpus (one million words). An accuracy of 88% is

accomplished in a small test set of 42 sentences (extracted from the training corpus).

History Based Grammars

[Black et al., 1993] present a more general framework, the History Based Grammars. In this

system, the term history is equivalent to context: the application of a rule is conditioned on

arbitrary aspects of the context of the parse tree (the context information being both the

dominating production and the syntactic and semantic categories of the words in the prior

derivations; in this sense, it can be considered also a sort of lexicalised model (see section

2.2.4). The system could have been also included in the subsection devoted to decision trees of

section 2.2.4, as decision tree probability models (see [Jelinek et al., 1994]), trained from a

treebank (computer manuals domain) are used to score the different derivations of sentences

produced by a hand-written broad-coverage feature-based unification grammar (672 rules, 21

features). The parsing accuracy ranges from 60% to 75%.

 [Hermjakob & Mooney, 1997] present a knowledge and context-based system (CONTEX)

which, applying machine learning techniques, uses supervisedly learnt parse action examples to

generate a deterministic shift-reduce parser. The learning algorithm uses, as the one in the

paragraph above, decision trees (in particular, a extended version of the standard ID3 model for

more general hybrid decision structures), in combination with decision lists; it starts by

assigning to each parse tree from the training corpus a sequence of shift-reduce parsing

operations needed to produce the tree. In order to learn the specific action to be performed at

any point of the derivation, the system relies heavily on an enriched context (to the left and right

of each word), encoded in features which include morphological, syntactic, and semantic

information (the previously built structure, a subcategorisation table, and a knowledge base with

semantic information about the words in the lexicon; once more, this method could then have

been classified as lexicalised). The methodology is evaluated on a subset of sentences from the

WSJ (only the ones fully covered by the 3000 most frequent words in the corpus). The impact

of the number of features is analysed, so that, with all 205 features, the highest labelled

precision and recall (respectively of 89.8% and 89.6 %) are reported. However, it must be taken

into account, not only that the domain is restricted, but also the significant difference of

annotation style with the Penn Treebank (which implies that the LR and LP figures are not

straightforwardly comparable with other systems).

In [Hermjakob, 2001], CONTEX is tuned for a Question Answering (Q&A) application by

simply providing a manually-built complementary treebank (containing 1153 questions). Tested

 42

on 179 questions from TREC-8 and TREC-9 Q&A competitions, CONTEX achieved a labelled

precision of 95.71% and a labelled recall of 95.45%.

Stochastic Unification Formalisms

[Brew, 1995] presents a stochastic version of the Head-Driven Phrase Structure Grammar

(HPSG) formalism which allows to assign probabilities to type-hierarchies. Re-entrancy poses a

problem: in some cases, even if two features have been constrained to the same value by

unification, the probabilities of their productions are assumed to be independent. The resulting

probability distribution is then normalised so that probabilities sum to one, which leads to

problems with grammar induction as pointed out by [Abney, 1997]. This latter work defines

stochastic attribute-value grammars, shows why one cannot directly transplant context-free

grammar methods to the attribute-value grammar case (basically what was done in [Brew,

1995]) and gives an adequate (though yet to be shown if practicable due to its computational

cost) algorithm for computing the maximum-likelihood estimate of their parameters (using

Montecarlo sampling techniques).

[Johnson et al., 1999] argue that this algorithm cannot be used for realistic-size grammars

and propose instead a pair of methods based on another kind of log-linear model13, Markov

Random Fields. They apply these algorithms to the estimation of the parameters of a stochastic

version of a Lexical-Functional Grammar.

2.2.3.2 Alternative parsers

Data Oriented Parsing

 The most extreme case is that of those analysers that do without the grammar. Rens Bod’s Data

Oriented Parsing (DOP, see [Bod, 1995]) is the most relevant example. DOP distinguishes from

other stochastic approaches in that it skips the step of induction of a stochastic grammar from a

corpus. Instead of grammar, the parser uses a corpus annotated with syntactic information, so

that all fragments (i.e. subtrees) in this hand-annotated corpus, regardless of size and

lexicalisation, are considered as rules of a probabilistic grammar. For an input sentence, the

entire tree is constructed as a combination of tree fragments in such a way that the product of

the probabilities is maximum. In training, a parameter is explicitly estimated for each sub-tree.

In searching for the best parse, calculating the score for a parse in principle requires summing

over an exponential number of derivations underlying a tree, which in practice is approximated

13 Other forms of log-linear models are discussed in section 2.2.4.

 43

by sampling a sufficiently large number of random parsing derivations from the forest (using

Monte Carlo techniques). [Bod, 1995] describes how the system is trained with 500 sentences

from the ATIS section of the Penn Treebank corpus (350,000 subtrees), and tested on 100 trees,

obtaining 64% parse accuracy, 75% sentence accuracy, 94.8% bracketing accuracy and 98%

coverage.

Bod’s sampling technique is so extremely time consuming, that it turns out to be prohibitive

for larger domains such as the WSJ portion of the Penn Treebank. For this corpus, in [Bod,

2000], he employs a Viterbi n-best search using a CKY algorithm and estimates the most

probable parse from the 1,000 most probable derivations. He reports a labelled precision (LP) of

88.6% and a labelled recall (LR) of 88.3% (see section 5.8.2 for a description of these metrics).

The work described in [Bod, 2001] aims at finding the minimal set of fragments which achieve

maximal parse accuracy. He tests constraints according to the subtree size, the lexical context,

the structural context, and the nonheadword dependencies, obtaining the highest parse accuracy

by employing only two constraints on the fragment set: number of words in the fragment

frontiers restricted to 12 (LP of 90.8% and LR of 90.5%) and depth of unlexicalised fragments

restricted to 6 (LP of 90.8% and LR of 90.6%). However, he finally arguments that probably

these constraints differ from corpus to corpus, and are related to data sparseness effects.

A recent article by Mark Johnson ([Johnson, 2002]) discusses that, from a theoretical point

of view, it is difficult to find a motivation for the parameter estimation methods used by Bod,

for its parameter estimation techniques do not correspond to maximum-likelihood estimation

nor to a discriminative criterion.

Probabilistic LR Parsing

The standard LR methodology performs a Left-to-right scan of the input and constructs a Right-

most derivation in reverse. [Ng & Tomita, 1991] extend the well-known generalised LR parsing

algorithm from Tomita [Tomita, 1986] by attaching probabilities to the nodes of the graph-

structured stack which constitutes the kernel of the algorithm. Part of their proposal deals with

how to consistently maintain these probabilities (initially derived from the probabilities attached

to the rules of the SCFG) considering the three operations of the graph-structured stack

(merging, local ambiguity packing, and splitting). However, it is not possible to use an

algorithm like Viterbi in order to compute the most probable parse. We have extended their

methodology for computing the probabilistic parse table for left-recursive SCFGs (by encoding

the item dependencies in terms of systems of linear equations), adapting it for the computation

of our local model probabilities (see section 3.5.1).

Other LR parsing approaches using SCFGs as a source include [Wright, 1990], [Wright &

Wrigley, 1989], and [Wright et al., 1991]. In all of them, an LR parse table is derived from the

 44

context-free grammar but, in addition, the rule probabilities are distributed among sets of

actions in the LR table. The distribution is carried out so that it can be assured that the product

of the probabilities associated to those LR actions performed in the derivation of any analysis

will be exactly the same as the probability which would have been assigned to this analysis by

the SCFG.

[Carroll, 1993] discusses the latter and other methodologies and presents, together with Ted

Briscoe, a more ambitious proposal (see also [Briscoe & Carroll, 1993]). They start from a

unification grammar (the ANLT grammar), from which a context-free backbone grammar is

automatically derived, together with an associated residue containing the dependencies between

features and values not contained in the context-free grammar. The parser must associate the

reduce operations of the LR table with a filter based on the unification of the features contained

in the residue. The backbone grammar generated from the ANLT grammar had 575 categories

and more than 2,000 productions, and an LR parse table was automatically generated for this

grammar. As opposed to [Ng & Tomita, 1991], the probabilistic model consists in attaching

probabilities not to the context-free rules, but to the actions in the LR table. The model is then

more context sensitive. In the experiments described, the learning is supervised, the training

corpus being composed by a set of LR parse histories (with human intervention to correct the

transition in the LR parse table). [Carroll & Briscoe, 1996] improve the system, achieving

labelled constituent recall and precision results of 82.9% and 83.9% respectively (for a corpus

of 250 sentences extracted form the ones covered by the system).

[Inui et al., 1998] base on Bricoe and Carrol’s work, but improve it by formalising their

model in such a way that it provides probabilistically well-founded distributions. Although they

focus on the formal and qualitative aspects of the model, they show how their refinement is

expected to improve parsing performance.

It is worth noting that recent work by [Nederhof & Satta, 2002], which investigates on the

problem of extending parsing strategies to probabilistic parsing strategies, concludes that LR

parsing cannot be extended to become a probabilistic parsing strategy, because it lacks the

property denoted as SPP (strong predictiveness property). In other words, probabilistic LR

parsing algorithms might not preserve all the SCFG probability distributions, which means that

LR parsers may sometimes lead to less accurate models than the grammars from which they are

constructed.

2.2.3.3 Alternative learning methodologies

Most recent learning methodologies involve the use of Machine Learning (ML) approaches.

Although basic learning techniques have already been described in section 2.2.1 (and some of

 45

them could also be considered ML techniques, such as the EM14), we devote this section to

parsing systems specifically based on this learning area. In general, ML techniques permit to

acquire some kind of knowledge from a concrete data domain, obtaining a description in some

representation language which explains observations and helps predicting new observations.

ML field has provided a range of learning algorithms as well as general approaches that, in the

application to parsing (either full or shallow), have permitted to use corpora to learn the models

underlying data, predict unseen observations and compact the knowledge needed in the parsing

process. However, there are some specific learning algorithms (such as Transformation- based

error-driven learning, [Brill, 1993], or the Maximum Entropy algorithm, [Ratnaparkhi, 1997],

both described below), which have been devised directly in the field of NLP. Most of these

learning paradigms are supervised, though a small number of them are unsupervised.

Transformation Based (Error-Driven) Learning

[Brill, 1993] has applied TBL to grammar induction and parsing. The approach consists in

learning a ranked list of transformational rules so that, starting from an initial imperfect binary

right-branching tree for a sentence, the sequential application of each rule may transform a piece

of the original tree, and in the end obtain a parse tree with fewer errors. The firing of each rule is

basically conditioned on a context of one or two tags, so that the learning process (performed

through a greedy search according to the largest error decrease criterion) needs quite a few

number of sentences (150 /250 sentences for the ATIS and WSJ corpora) for obtaining the same

accuracy of contemporary systems.

Instance-Based Learning

Also denoted memory-based or case-based learning, instance-based algorithms (IBL) are a

supervised way of inductively learning from examples, that are taken into account in order to

classify new examples by analogy (the most similar instances are retrieved from memory, and

used for extrapolation). Memory-based learning is a direct descendant of the classical k-NN (k

Nearest Neighbour) approach to classification.

[Simmons & Yu, 1992] apply the idea to a context sensitive shift reduce (SR) parser. SR

parsing is suitable for this classification proposal, since it breaks the parsing process into simple

parse actions (shift, reduce, and fin), allowing the construction of an example base of parse

states with their correct parse actions. A parse action is assigned to each parse state basing on

14 The frontier between statistical and ML methods is a controversial issue.

 46

information on the parse stack and the input buffer. The parser works on the level of PoS tags

and windows over the text with a context of five words to the left and to the right.

The ILK Group at the Tilburg University has developed the TiMBL (Tilburg Memory-Based

Learning Environment), a general instance-based algorithm which makes a compression of the

base of examples into a tree-based structure, the IGTree (see [Daelemans et al., 1997]), which in

turn is used to classify new examples. The memory-based algorithms implemented in the

TiMBL package have been successfully applied to a large range of NLP tasks, including

shallow parsing (see [Daelemans et al., 1999]) and more recently, full parsing: [Veenstra &

Daelemans, 2000] construct a memory-based shift reduce (MBSR) parser, inspired by

[Simmons & Yu, 1992]’s work. However, the corpus used to test the latter approach is quite

simple, so the extension to show that the parser can also be applied to real-world data

(particularly to the WSJ portion from the Penn Treebank) is announced.

[Cardie, 1993a] addresses the lexical, semantic, and structural disambiguation of full

sentences (in limited domains), within an information extraction environment. In a supervised

training phase, the parser creates a case base of domain-specific context-sensitive word

definitions. Then, given an unknown word and the context in which it occurs, an eventual robust

parser could retrieve the definitions from the case base in order to infer the necessary syntactic

and semantic features for the unknown word and then continue processing the text. The case

retrieval algorithm is basically a k-NN algorithm, but it assumes all features are equally

important for learning each type of knowledge, which intuitively seems not to be true.

Therefore, the system takes advantage of decision trees for identifying the relevant features to

be included in the k-NN case retrieval (the approach is fully described in [Cardie, 1993b]).

Other ML-based Models

The basic idea in Explanation-Based Learning (EBL, see [Rayner & Cater, 1996] is that

grammar rules (specially in any specific domain) tend to combine much more frequently in

some ways than in others. Given a sufficiently large corpus parsed by the original (general)

grammar, it is possible to learn the common combinations of rules and chunk them into macro-

rules ([Samuelsson, 1994] defines an entropy threshold for automatically deriving these macro-

rules). The result is a specialized grammar, with a larger number of rules but a simpler structure

(and a coverage which is a strict subset of that of the original grammar). In practice, parsing is

shown to be faster (3 to 4 times of speed up for an LR parser) at a price of only 5% coverage

loss, using a training corpus of a few thousand utterances.

[Zelle & Mooney, 1996] describe a methodology to automate the construction of parsers

based on another ML-based learning methodology, Inductive Logic Programming (ILP). They

have developed a system, CHILL, which begins with a well-defined parsing framework, shift-

 47

reduce parsing, and uses ILP to learn control strategies within this framework (inductively

learning a deterministic shift-reduce Prolog parser that maps sentences into parses). CHILL

represents a highly flexible application of ILP, allowing the induction over unbounded lists,

stacks, and trees. They describe the application of the system to the automatic induction of

parses that map natural language database queries into an executable logical form.

Besides, there has been some research using both neural networks and symbolic induction to

learn parsers that produce case-role analyses ([Miikkulainen, 96]). In NLP, neural networks

have been used basically to address low-level problems, although there are examples of

application to more complex problems such as parsing (sometimes in combination with

symbolic approaches such as the above mentioned example). It is beyond the scope of this

review to get into further details, we will just mention a pair of recent references ([Mayberry &

Miikkulainen, 1999] and [Sopena & Alegre, 2000]) and a survey of applications of neural

networks to NLP ([López, 1998]15).

2.2.4 Lexicalised Statistical Parsers

Most recent parsing systems heavily rely on lexicalisation, that is, the specialisation of the

features of the stochastic models according to the lexical items, to accomplish high accuracy on

real-world texts, giving rise to the so called Lexicalised Statistical Parsers. Lexicalised

formalisms allow to express syntactic preferences that are sensitive to lexical words, as well as

to control the word selection. In fact, it is widely assumed in the parsing community that there is

an accuracy ceiling whose overcoming comes through introducing lexical information in the

models. According to [Satta, 2000], the wide diffusion of lexicalised techniques is mainly due to

“the capability of lexicalised formalisms to control syntactic acceptability, when it is sensitive

to individual words in the language, and word selection, accounting for genuinely lexical factors

as well as semantic and world knowledge conditions”. A considerable research effort has been

devoted to the problem of defining statistical parameters associated with lexicalised models, as

well as to the problem of the specification of algorithms for statistical estimation of these

parameters (though possibly less effort to the problem of parsing itself using these models).

In our work, we have developed a non-lexicalised approach, mainly due to two reasons. On

the one hand, the problems of data sparseness and biasing to the training corpus encountered in

the experiments have made us discard a lexicalised version which would have only deteriorated

the situation. On the other hand, we intend to be able to apply our method to languages such as

Spanish or Catalan, for which we cannot have available large enough annotated corpora in order

to learn the lexicalised version of the parameters defined in section 3.5. However, aware as we

15 Written in Spanish.

 48

are of the importance of the issue, we devote this entire section to the review of the most

relevant lexicalised stochastic systems. We hasten to emphasise that once more, there is an

intersection among the classification criteria, as all the approaches described in this section

implement ML-based acquisition methods, and could have also been included in section 2.2.3.3

accordingly.

An important part of these recent stochastic parsers use bilexical grammars. In bilexical

grammars, each grammatical rule is specialised for two individual words, that is, each word type

idiosyncratically prefers particular complements with particular head words. The first three

subsections (dependency-based models, head automaton grammars and lexicalised context-free

grammars) describe parsing systems relying on probabilistic or weighted versions of bilexical

grammars.

[Carroll & Weir, 1997] discuss about how to attach the frequency information needed by a

parser to lexicalised grammar formalisms. Although they use LTAGs (see the corresponding

subsection below into this section) as a representative framework, their remarks can be

generalised to any lexicalised grammar formalism. Basically the idea is to identify the nature of

non determinism in the grammar derivations, and then determine the role that frequency

information plays in order to identify the ways in which this information can be associated with

the grammar. Four ways are described, using increasing fined-grained frequency information

and derivational context (as they denote it, the approaches respectively use context-free, node-

dependent, locally-dependent, and globally-dependent frequency information).

Dependency-Based Models

For each constituent, a head, its most important lexical item, is defined. Two types of

dependency-based statistics are normally collected: the one modelling the dependency between

the rule used to expand a phrase (constituent) and the head of such phrase, and the one

modelling the dependency between the head of a phrase and the head of a subphrase

(descendant). Basically the methodology consists of attaching headwords to each syntactic

category in the parse tree, and incorporate the lexical probabilities into the stochastic model.

A remarkable and highly popular parser, quite difficult to classify (as it owns elements of

lexicalised, treebank-based, and dependency-based parsers), is Collins’ parser16. Initially

described in [Collins, 1996], it was improved in [Collins, 1997], and fully described in [Collins,

1999].

Collins uses a supervised learning approach, with Penn Treebank as a knowledge source, for

estimating the parameters of his model. The key of his proposal is a very well motivated trade-

16 The parser executables can be downloaded from ftp://ftp.cis.upenn.edu/pub/mcollins/misc/

 49

off between the expressiveness of the statistical model and the independence assumptions that

must be done for assuring a sound estimation of the parameters given the corpus. In the model, a

parse tree is represented as a sequence of decisions corresponding to a head-centered top-down

derivation of the tree.

Independence assumptions are linguistically motivated and encode the X-bar schema,

subcategorisation preferences, ordering of the complements, placement of adjuncts, and lexical

dependencies among others. All the preferences are expressed by means of probabilities

conditioned on lexical heads.

Collins proposes up to seven alternative parameterisation schemata with an increasing order

of complexity, as well as a smart backing-off strategy for dealing with sparseness. The seven

alternatives follow:

1. Using a simple SCFG, i.e., the parse tree is represented as a sequence of n events, each

one representing the application of a context-free rule.

2. Representing the parse tree as n events, where events are dependencies between two

words in the sentence (head and modifier), i.e., <wi → hi>.

3. Dependencies + directions, that is, events are of the form <wi → hi, directioni>, being

directioni either L or R (indicating whether wi is placed to the left or to the right of hi).

4. Dependencies + directions + relations, i.e., eventi =<wi → hi, directioni, relationi>, where

relationi is a triple < modifieri, parenti, headi> which represents the grammatical relation

between the two words. For instance, <IBM → acquired, L, < NP, S, VP>>would be an

event belonging to this level.

5. Dependencies + direction + relations + subcategorisations. In this case, a parse tree is

represented as n + m events, the first n events are as before and the other m as

subcategorisation frames.

6. Including a distance measure between wi and hi in the previous schema.

7. Including the PoS-tags of words wi and hi.

In Collins approach, lexicalised SCFGs are composed by rules of the form:

(8) P(h) → Ln(ln) … L1(l1) H(h) R1(r1) … Rm(rm)

being P the parent category, H the head, and Li (respectively Ri) categories occurring at a

distance i to the left (right) of the head. h, li, ri, … represent the lexical items.

The generative model involves the estimation from the PTB of the probability of each rule,

i.e., the probability of generating the right part conditioned on the left part. Collins decomposes

 50

this probability into three factors, accounting for the probability of generating the head H, given

the parent, the probability of generating the components to the left, and finally the probability of

generating the components to the right. Independence assumptions are introduced in order to

make the model feasible.

This basic model is further extended by introducing distances (taking into account some

idiosyncratic features). The parser was trained with the Penn Treebank (about 40,000

sentences). The results were around 85% of labelled and bracketed recall. In [Collins, 1997],

other improvements (such as the distinction of complements and adjuncts, subcategorisation

issues, and wh-movement) are incorporated into the model, finally obtaining an accuracy above

88%.

 [Charniak, 1997] presents a similar proposal which combines head word bigram statistics

with a SCFG (the grammar read off a treebank and the probabilities supervisedly learnt from it).

The system adds a new useful statistic to guide the parser decisions: the type of the parent will

also condition the probability of a rule. When parsing a sentence, the system makes no attempt

to find all possible parsers, but it uses techniques described in [Caraballo & Charniak, 1998]

(described in turn in section 2.2.1.1) to select constituents that promise to contribute to the most

probable parses (according to the simple probabilistic CFG distribution). However, as the

current probability distribution is different, these techniques just allow to ignore improbable

parses, and the resulting chart contains the constituents along with information on how they

combine to form parses. The constituents are assigned the probability given the lexicalised

model, and the parser returns the parse with the overall highest probability according to this full

distribution. The parser is trained and evaluated on the Wall Street Journal portion of the Penn

Treebank, where labelled recall and precision of 86% are obtained (for sentences with 100 or

less words).

 [Eisner, 1996a] besides presenting a novel dynamic-programming bottom-up dependency

parser, proposes three lexicalist probabilistic models for dependency grammars, namely A, a

bigram lexical affinity model (modeling words’ preferences to associate with each other), B, a

sense tagging model (modeling tags’ preferences to follow each other), and C, a generative

model (modeling how each word generates sequences of left and right children). [Eisner, 1996b]

describes an additional model D (a variant of model B, which conditions decisions also on the

actually available words), includes the final results for the experiments, and compares his parser

to [Collins, 1996] above. The parser was trained on a corpus of dependency structures derived

from the WSJ sentences in the Penn Treebank. Surprisingly, the best performing model (as to

dependency accuracy) is D (92.6%), and not C, as it would have been expected. A variant of

model C which also generates the distances of each child from the head, improves model C’s

accuracy to 90.4%. Though not getting to improve model D’s accuracy, we remark the point if

 51

only because of the parallelism with our neighbouring approach (see section 3.5.2); like in our

case, the addition of the distances leads to a probability model which does not sum to 1.

Head Automaton Grammars

[Alshawi, 1996] describes lexicalised head automata, a formalism representing parse trees by

means of head-modifier relations. For each head, a sequence of left and right modifier words is

defined together with their corresponding relations. A head automaton grammar (HAG), is

defined as a function that defines a head automaton for each element of its (finite) domain. A

head automaton is an acceptor for a language of string pairs <x,y> (the left and right modifiers),

so that the language generated by the entire grammar is defined by expanding the special start

symbol $ into x$y for some <x,y> and then recursively expanding the words in strings x and y. A

generative probability model is provided (Alshawi describes five parameter types), as well as a

parsing algorithm which is a analogous to the CKY algorithm (with a temporal cost of O(n5)).

[Eisner & Satta, 1999] provide a translation from head automaton grammars to bilexical

CFGs, obtaining then a parsing algorithm for HAGs performing in time O(n4). Moreover, if the

HAGs belong to the particular subclass of split head automaton grammars17, a O(n3) parsing

algorithm is described.

[Eisner, 2000] introduces a new formalism, derived from dependency grammars, which can

be considered a particular case of the head automaton grammars, the weighted bilexical

grammars. Weighted bilexical grammars extend the idea of bilexical grammars so that, instead

of capturing black-and-white selectional restrictions (say, either a certain verb subcategorises a

certain noun or not), gradient selectional restrictions are captured: each specific word is

equipped with a probability distribution over possible dependents. Then, the parser task will be

to find the highest-weighted grammatical dependency tree given an input sentence. A new

parsing algorithm for bilexical grammars (variant of the one described in [Eisner, 1996a]) is

introduced which improves performance with respect to the previous and usually used version.

The paper shows as well how the formalism can be used to model other bilexical approaches.

Lexicalised Context-Free Grammars

[Eisner & Satta, 1999] define a bilexical context-free grammar as a CFG in which every

nonterminal is lexicalised at some terminal symbol (its lexical head), which is inherited from the

constituent’s head child in the parse tree. Such grammars have the obvious advantages of

encoding lexically specific preferences and controlling word selection, at the cost of a

17 A split HAG contains only split head automatons. A split head automaton can only accept a pair <x,y>
by reading all of y and then reading all of x.

 52

significant increment in size (the number of rules grows with the square of the size of the

terminal vocabulary), which makes standard context-free grammars parsers (CKY-based

variants, O(n5)) inefficient. The paper presents a O(n4) recognition algorithm for bilexical CFGs

(in CNF), plus a improved version which, having the same asymptotic complexity, is often

faster in practice. The conversion of the algorithm into one capable of recognising stochastic

bilexical CFGs (where each lexicalised nonterminal has attached a probability distribution over

the productions with this nonterminal as a left-hand side) can straightforwardly be performed by

recursively reconstructing the highest probability derivation for every item at the end of the

parse.

[Satta, 2000] generalises the concept by defining lexicalised context-free grammars (LCFG)

as CFGs in which every nonterminal is lexicalised at one or more terminal symbols, which are

inherited from the nonterminals in the production right-hand side. Then, the degree of

lexicalisation of a LCFG can be defined, so that bilexical CFGs own a degree of lexicalisation

of 2. Their major limitation is that they cannot capture relationships involving lexical items

outside the actual constituent (in contrast with history-based models). The main motivation

underlying the definition of the formalism is the study of the computational properties which are

common to the generative formalisms described in the previous subsections (such as [Alshawi,

1996], [Eisner, 1996a], [Charniak, 1997], and [Collins, 1997]) in order to develop an efficient

parsing algorithm which can be directly applied to these formalisms. This happens with the

dynamic-programming bottom-up parser defined in [Eisner & Satta, 1999], O(n4) (whose

technique can also be applied to improve parsing of LTAGs, defined below in this section) and

the modification to deal with split grammars O(n3). They also present an enhanced version of

the top-down parser performing O(n4).

LTAGs

LTAGS (Lexicalised Tree Adjoining Grammars) represent another example of lexicalised

probabilistic parsers. They are an extension of the TAG formalism (see for instance [Joshi,

1987]), for which a probabilistic model was devised by [Resnik, 1992], in which each

elementary structure (initial or auxiliary tree) has a lexical item on its frontier, the anchor.

[Schabes, 1992] describes a very similar probabilistic model, and derives an unsupervised

version of the inside-outside algorithm to deal with stochastic TAGs.

 The main difficulty lies in defining the initial grammar rules. [Joshi & Srinivas, 1994] use n-

grams statistics in order to find an elemental structure for each lexical item: then, richer

structures can be attached to lexical items (the supertags), and each elementary tree would

correspond to a supertag which combines both phrase structure information and dependency

information in a single representation. The disambiguation performed by the supertags can be

 53

regarded as a preliminary syntactic parse (almost-parsing) which filters an important number of

elementary trees, before the conventional step of combination of trees by means of adjunction

and substitution operations. Srinivas’ thesis ([Srinivas, 1997]) gives additional models and

results.

It is not our intention to get in much more detail into the extensive literature about this

formalism. Just adding some other pointer, as the work described in [Nederhof et al., 1998],

where an algorithm for efficiently computing prefix probabilities for a stochastic TAG is

proposed, [Satta, 1998], where Giorgio Satta provides an excellent review on techniques for

recognition and parsing for TAGs, or [Eisner & Satta, 2000], which describe a proposal of a

more efficient algorithm for parsing LTAGs.

[Xia et al., 2001] describe a methodology to extract LTAG grammars from annotated

corpora, and [Sarkar, 2001] explores some new machine learning techniques to enable statistical

parsers to take advantage of unlabelled data, by exploiting the representation of stochastic TAGs

to view parsing as a classification task. Emphasis is given to the use of lexicalised elementary

trees and the recovery of the best derivation for a given sentence rather than the best parse tree.

Somehow related to our proposal, [Alonso et al., 2001] define a new model of automata for

the description of bidirectional parsing strategies for TAGs. The main advantage of this new

model is that it allows for the separation between the description of the strategy and its

execution.

Decision Tree Models

David Magerman ([Magerman, 1995]) has been a pioneer in the use of decision trees for

syntactic parsing: he considers a very wide variety of possible conditioning information and

uses a decision-tree learning scheme to pick those that seem to give the most purchase. Three

different decision-tree models are used for 1) the PoS tagging, 2) the node expansion, and 3) the

node labelling. The decisions are based on lexical and contextual information of the parent and

the child of the node. Coverage and precision of around 86% are reported.

[Haruno et al., 1999] have developed a parser for Japanese using also decision trees. The

most difficult part of a Japanese dependency parser is the construction of the modification

matrix, the structure in which it is represented how a bunsetsu (Japanese segment) is likely to

modify another. The key idea is the construction of the modification matrix by mixing a set of

sequentially generated decision trees (in turn generated by means of the Adaboost algorithm,

[Freund & Schapire, 1997]). The new parser achieves an accuracy of 85% (significantly

outperforming the conventional stochastic parsers for Japanese). The authors talk about

extending their methodology to other languages.

 54

Other related systems have already been mentioned in section 2.2.3.1, when talking about

History-based Grammars in general (and CONTEX system in particular).

Probabilistic Feature Grammars

In a probabilistic feature grammar ([Goodman, 1997], [Goodman, 1998]), each non-terminal is

represented as a vector of feature-value pairs. Then, assuming binary-branching rules, the

probability of application of a rule can be decomposed as the incremental prediction of the

feature values of each of the two members of its right-hand side. As all conditioning variables

are encoded through features, different factors such as lexical dependencies or distance features

can be dealt with in a unified way. Probabilistic feature grammars put the emphasis on

parameter estimation: having chosen the features, the parameters of the model are specified by

choosing an order for the features being predicted and then making independence assumptions

and choosing a back-off order for smoothing. The model is tested on the WSJ portion of the

Penn Treebank (the formalism allows for efficient computations of the inside-outside

probabilities for unsupervised training), where the features considered are the non-terminal

label, the headword, the head PoS, distance features, and additional context (modifier non-

terminals generated at earlier stages of the derivation). A recall of 84.8% and a precision of

85.3% are reported.

Maximum Entropy Models

Other current line of research is that of the maximum entropy models, whose use has become

very popular lately in various areas of NLP. If [Rosenfeld, 1994] applied it to speech

recognition tasks and [Berger et al., 1996] to automatic translation, Ratnaparkhi applies it in his

thesis ([Ratnaparkhi, 1998]) to several tasks: segmentation, morpho-syntactic disambiguation,

pp-attachment, and syntactic parsing. [Ratnaparkhi, 1999] describes the latter application, which

is also an example of lexicalised parser. Maximum entropy (ME) models overcome the

limitations of independence among the variables. Without the need of an explicit grammar, they

can learn, from a labelled set of examples, the model which has maximum entropy out of all the

models compatible with this set of examples. In other words, given a collection of facts, ME

models choose a model which is consistent with all the facts, but otherwise as uniform as

possible.

The basic element of any ME model are the features, binary-valued functions with two

parameters, a context x and an output y, which determine statistics one feel are important to

model the process. A constraint is an equation between the expected value of a feature function

 55

f in the model, p(f), and its expected value in the training data,)(~ fp . That is, following the

nomenclature in [Berger et al., 1996]:

(9))(~)(fpfp =

Given n features fi, the idea is that the resulting model p satisfies the corresponding constraints,

i.e., it belongs to the subset C of P (P being the space of all probability distributions), defined

as:

(10) C ≡ { p ∈ P |)(~)(ii fpfp = for i ∈ {1, 2, …, n}}

As mentioned above, the maximum entropy approach determines that, among the models p ∈ C,

the most uniform distribution must be selected. And the most uniform distribution will be the

one maximising the conditional entropy, the latter defined as:

(11))|(log)|()(~)(
,

xypxypxppH
yx
∑−≡

Therefore, the model with maximum entropy H(p) (which can be shown to be always unique)

should be selected as follows:

(12))(argmax * pHp
Cp∈

=

However, in general, whenever we can have any number of constraints, a parametric form must

be defined. Without getting into detailed explanations, a parameter λi must be introduced for

each feature fi (the more relevant the feature to the value of the probability, the higher the

absolute value of the associated λ), so that the maximum entropy model subject to the

constraints C has now the parametric form:

(13) 






= ∑
i

ii yxf
xZ

p),(exp
)(

1
* λ

λ
λ

Where Zλ(x) is a normalising function, and the parameter values λ* can be determined by

maximising the so called dual function Ψ(λ). Ψ(λ) is computed in turn by means of the theory

of Lagrange multipliers, and depends on p and λ. Therefore, in practice, any algorithm for

 56

finding the maximum λ* of Ψ(λ) can be used to find the maximum p∗ of H(p) for p ∈ C (see

formula 12 above). Once again, to keep it short we do not get into further details, which can be

found for instance in [Berger et al., 1996]).

In the application of ME models to parsing described in [Ratnaparkhi, 1999], the

performance of the parser is modelled by means of elementary actions of the shift and reduce

type (usual in LR parsers). Therefore, each of the 4 procedures defined for the parsing process

has associated a set of possible actions, so that, given the sequence of actions up to a certain

moment, the procedure must predict the following most probable action. The system is based on

the model PX (a | b), X being one of the 4 possible procedures of analysis, a being a valid

elementary action for this procedure, and b being the context or history.

As to the features, their two parameters (x, y) are a context and an action. The features are

built from the so called contextual predicates (cp), which examine the context in order to verify

the presence or absence of certain information. The general scheme of the features is:

(14)
otherwise 0

 &&)(if 1
),(



 ′==

=
aatruebcp

baf

Ratnaparkhi trains his system from a set of templates that attach to each of the parsing

procedures. These templates incorporate the type of factors the author considers relevant for the

analysis: constituent headwords, headword combinations, generalisations (morpho-syntactic

categories, constituent syntactic categories), and limited forms of look-ahead. The learning

process is very simple, just counting, so that the features that appear less than 5 times in the

corpus are rejected. Using 40,000 sentences from the PTB corpus, 1,060,000 features are

incorporated to the model (most of them lexicalised), each one attached to one of the

procedures. The system obtains notable results in terms of both coverage (85.3%) and precision

(87.5%). The possibilities of manually examining the induced features and the incorporation of

other criteria remain to be explored.

[Charniak, 2000] presents a parser based upon a probabilistic generative model, an extension

of the ones described above ([Charniak, 1997] and [Collins, 1997], see the dependency-based

models subsection). The probabilistic model is maximum-entropy-inspired, since it reformulates

the basic maximum entropy probability function so as to consider the conditioning information

of Markov grammar statistics18 as “features”, though it is ultimately smoothed by means of

deleted interpolation (instead of the standard feature selection of pure ME models). Charniak

18 In a pure mth-order Markov SCFG, given the left-hand side label l of a rule, the right-hand side can be
probabilistically generated conditioning on l and on the m previously generated pieces of the right-hand
side. Charniak’s model is not pure in that the probability is also conditioned on other information outside
the current constituent (basically the label, head, and head-PoS for the parent of the constituent).

 57

uses his bottom-up best-first chart parser (already described in [Charniak, 1997]) to generate the

candidate parses, and his top-down generative model to evaluate them (in a process which, for

each constituent, first guesses its preterminal, then its lexical head, and then its expansion into

further constituents). The experiments are performed on the WSJ portion of the Penn Treebank,

using a third-order Markov grammar (instead of the tree-bank grammar from [Charniak, 1997]),

obtaining labelled recall and precision of respectively 89.6% and 89.5% (for sentences with 100

words or less).

Closely related to ME models are also the Gibbs distributions discussed by [Abney, 1997]

(see the end of section 2.2.3.1) and [Chi, 1999].

Structured (and other Grammar-Based) Language Models

[Chelba & Jelinek, 1998] propose an alternative to introduce linguistic knowledge into language

models. The language model in question is based upon parsing: the Structured Language Model

(SLM). The key idea is that the history (see section 2.2.3 above) will not reduce to the sequence

of words already recognised, but it will include also syntactic structure, which allows to model

long-distance dependencies. The syntactic structures used by the SLM are basically lexicalised

binary trees, in which the tree nodes are labelled with the words which act as heads (the

headwords) of each constituent. The operation of SLM is based on the execution of prediction

actions and building actions, so that the linguistic structure is incorporated by means of two

stochastic models attached to such prediction and building actions (that is, predictions are based

upon the parser state). These models use as a context the preceding two exposed headwords

(topmost headword in the largest constituent that contains the word being predicted). They

evaluate the predictive power of the model on the Penn Treebank corpus, achieving a reduction

of 5% in test-data perplexity with respect to the standard trigram language model19. This

reduction gets to 11% by linearly interpolating the model with the trigram model.

[Roark, 2001] proposes a broad-coverage lexicalised probabilistic top-down parser which is

also applied to language modeling for speech recognition. The idea is quite simple: the top-

down parser is able to build a set of rooted candidate parse trees from left to right over the

string; therefore, a generative probability can be computed for each prefix string from the

probabilistic grammar, and hence a conditional probability for each word given the previous

words and the grammar (basically conditioning on parents and siblings of the rules’ left-hand

sides). The resulting grammar-based language model, as the SLM, also computes the probability

of the next word conditioning on the two prior heads of the constituents, but as opposed to it,

incrementally and generatively from the probabilistic grammar. The experiments on the same

19 In which the probability of a string is broken down into conditional probabilities for each word given
the two previous words.

 58

corpus produce a perplexity reduction of almost 4%, which reduces to almost 8% if we compare

both interpolations with the trigram model.

Also a grammatical language model, although with a different philosophy, is the work

described in [Charniak, 2001]. The idea is to try and apply the performance of the immediate-

head parsers (parsers that condition all events below a constituent upon the lexical head of such

constituent, such as the ones described in previous sections: [Collins, 1999], [Charniak, 2000],

[Ratnaparkhi, 1999] or [Magerman, 1995]) to create grammar-based language models. The

parser underlying the model is the one described in [Charniak, 2000], with the pertinent

modifications so that it can be assured that the model returns true probabilities. Evaluating the

system on the same Penn Treebank corpus, the so-called immediate bihead language model

(meaning that probabilities involve at most two lexical heads) reduces the perplexity of both

Roark’s system and the SLM. An extension (the immediate trihead model), which redefines the

concept of head for constituents of base noun-phrases (considering also the grandparent head in

certain cases), obtains a subsequent perplexity reduction of 10% with respect to the bihead

model, 14% with respect to Roark’s system, and of 17.7% with respect to the SLM20.

2.2.5 Parser Combination and Reranking

[Henderson & Brill, 1999] describe a methodology for combining three input parsers in order to

improve parsing results. The three parsers combined are the systems described in [Collins,

1997], [Charniak, 1997], and [Ratnaparkhi, 1997] (the three of them already reviewed in section

2.2.4). The two techniques used for combining parsers are parser hybridation and parser

switching. The first one is based on combining the substructures of the three input parsers in

order to produce a better parse; two hybridation strategies are used, namely constituent voting

(non-parametric, the parsers vote on the membership of a certain constituent to the final parse)

and naïve Bayes classifiers. The second technique, parser switching, chooses among entire

candidate parsers; again, two strategies are tested, a non-parametric version (similarity

switching, choosing the parse which is most similar –as to constituents- to the rest of the parses)

and a parametric version (naïve Bayes again). Experiments on the WSJ portion of the Peen

Treebank show that all the combining techniques accomplish better accuracy than any of the

single three parsers, and that the method is robust, as the addition of a poor parser (a non-

lexicalised SCFG parser) hardly affects the results.

[Collins, 2000] proposes two machine-learning methodologies for reranking the output of a

given probabilistic parser (in this paper his own parser, [Collins, 1999], already described in

section 2.2.4). The idea is that in a first step the base parser returns a set of candidate parses

20 In all these comparisons, we are considering the pure models and not their interpolation with the
trigram model, which improve all perplexity figures.

 59

(initially ranked according to the probabilities the parser has attached to them), and then a

second step tries to improve this ranking, considering additional features of the trees, which

may be easy to consider to compare parse trees, but not so much to introduce into the derivation

process. Both approaches are discriminative, since they aim to optimise a criterion which is

directly related to error rate. The first reranking technique in based on a generalisation of

SCFGs, Markov Random Fields (already used in an approach described in section 2.2.3.1,

[Abney, 1997]), while the second one is based on using boosting ([Schapire & Singer, 1999])

ranking techniques (here the ranking is a simple binary distinction between the highest scoring

parse and the other ones). The methodology was evaluated on the Penn WSJ Treebank,

including features ranging from rules or bigrams (pairs of nonterminals to the left and right of

the rule’s head), to features involving the distance between headwords. The first approach was

too inefficient to run on the full data set, so only the boosting approach could be compared. This

latter model achieves a 1.5% increase in labelled recall and precision over the base parser, and

very similar accuracy to [Charniak, 2000]’s parser, which somehow is also based on adding new

features to a previous parser ([Charniak, 1997]).

[Collins, 2001] gets more deeply into the differences between parametric maximum-

likelihood estimation methods (explicitly modelling the distributions) and distribution-free

methods (models assuming that the training and test examples are generated from the same

distribution, though it is unknown, so the results hold across all distributions). Two methods are

proposed, the first one, as in [Collins, 2000], is an application of the Adaboost algorithm to

rerank the output of an existing parser, while the second one uses the Perceptron or Support

Vector Machines (SVM) algorithms (it goes beyond the purpose of this section to get further

into the descriptions of these algorithms). This second method is based on the representation of

parse trees through tree kernels (a mechanism allowing to convert them into efficiently treatable

high dimensional feature spaces). It is described in more detail in [Collins & Duffy, 2001], as

well as applied (concretely the voted perceptron algorithm) on the ATIS portion of the Penn

Treebank, for reranking the results of an SCFG. [Collins & Duffy, 2002] extend the results to

the WSJ portion of the Penn Treebank, starting from the parses produced by model 2 of

[Collins, 1999]. The tree kernel allows the representation of all subtrees in the training data (the

same representation used by DOP), so that the perceptron algorithm uses both the result from

the base model as well as the subtrees information to rank the trees. The method accomplishes

improvements of 0.5% and 0.6% respectively in labelled precision and recall with respect to the

base model.

[Carreras et al., 2002] present an approach to partial parsing (though potentially applicable to

full parsing) which bases on 1) using local classifiers to recognise partial parsing patterns, and

2) using global inference methods to combine the results of these classifiers in a way that

provides a coherent inference that satisfies some global constraints. Although this ensembles of

 60

classifiers technique had already been explored (see for instance [Punyakanok & Roth, 2000],

that tests non-overlapping constraints), this work applies it to a deeper and more difficult level

of partial parsing, embedded clause identification. This way, the best decomposition of a

sentence into clauses is selected by means of a dynamic programming scheme which considers

previously identified partial solutions, and applies learning at several levels (for detecting

beginnings and ends of potential clauses and for scoring partial solutions, including three

different scoring functions). Adaboost algorithm with confidence rated predictions (see

[Schapire & Singer, 1999]) is used as learning method. The approach is evaluated using the

CoNLL-2001 competition ([Tjong Kim Sang & Déjean, 2001]) corpus, outperforming the best

system presented in the mentioned competition (in fact, also proposed by two of the authors,

[Carreras & Márquez, 2001]).

2.2.6 Robust Parsers

The 90’s have seen a significant increase in the research on robust parsing: an indicator of this

interest is that the last two editions of the CoNLL shared task (CoNLL-2000 [Tjong Kim Sang

& Buchholz, 2000] and CoNLL-2001 [Tjong Kim Sang & Déjean, 2001]) have been devoted to

robust parsing tasks (respectively chunking and clause identification). Robust parsing can be

widely considered as parsing applied to non-restricted texts. Therefore, the application of

syntactic parsing techniques to a non-restricted corpus, the use of ML techniques for creating or

refining grammars, or the simplification of grammars in order to increase efficiency (by means

of the application of finite state techniques) fall into this research field.

The levels of precision and coverage achieved by wide-coverage syntactic parsers (be them

probabilistic or not), are far from being enough for most NLP applications. Faced with the

difficulty to get global but precise enough parses, two main strategies have been adopted: 1)

obtaining global but shallow parses, and 2) obtaining precise but local parses. By robust parsing

one usually denotes the family of techniques employed to achieve both types of analysis.

The first line, shallow parsers, are usually extensions of grammatical taggers, in which the

text is enriched not only with the grammatical category corresponding to each word, but also

with a syntactic tag indicating the shallow syntactic function (subject, pre-modifier, auxiliary,

main verb, etc.). On the other hand, partial parsers have a different goal, obtaining partial

information, though as complete as possible, about the syntactic relationships corresponding to

fragments of the text. Partial parsing includes three types of approaches: fragmental parsers,

cooccurrence analysers, and phrasal parsers.

Fragmental parsers use a complete grammar, but base their robustness on capacities such as

proposing partial analyses whenever a complete analysis is not achieved, omitting certain links

whenever not enough evidence to built them is found, etc. As to cooccurrence analysers, their

 61

goal is the extraction of tuples of words that syntactically cooccur, the difference among the

variety of systems lying in the quantity of syntactic information they use to attain this goal.

Phrasal parsers (spotters and chunkers) aim at recognising phrases (noun phrases, prepositional

phrases, verbal phrases, etc.) from simple but very specialised and efficient processors (finite

state machines, simple context-free parsers, heuristic rules, and more recently, using ML

techniques).

Recently there has been increasing interest in facilitating the parsing process in full parsing

(guided by broad-coverage Context-Free Grammars) in order to improve performance. Besides

the research line (already described in section 2.2.1.1) which consists in guiding the process by

certain type of heuristics, usually informed by stochastic models (normally SCFGs or

extensions), mainly two directions have been followed: 1) deriving a regular approximation of

the initial grammar [Nederhof, 2000] and generating a language that could be either a subset or

a superset of the language generated by the original grammar (as close as possible to such

language), and 2) splitting the parsing process into a sequence of simpler steps, each one

governed by a simple, usually regular, grammar ([Ciravegna & Lavelli, 1999], [Abney, 1996]).

Both directions present advantages and limitations. In the first case, only an approximation of

the original language is obtained. This may be enough for some applications but insufficient for

others, depending on the distance between the language generated by the original grammar and

the approximation. In the second case, the grammar must be structured as a cascade of simpler

grammars, which prevents us from using a general-purpose pre-existing grammar.

In this review, it is not our intention to examine thoroughly each type of approach, but

simply to focus on recent approaches to chunking, which has been used as a complement to our

methodology (as a technique to select initial islands, see chapter 4, which also includes the basic

definitions involved). More information about robust parsing in general can be found in [Abney,

1994] an excellent tutorial, though obviously a little obsolete, as quite a number of new

methodologies (specially ML-based) have been applied lately. A more updated tutorial is

[Vergne, 2000]. As to research in chunking, we will limit to briefly mention some recent

interesting systems next. We will indifferently mention methodologies following the two main

lines, that is, linguistic approaches (those using grammatical rules manually defined by means

of a certain formalism), and ML-based approaches (as mentioned, most of the latest research).

The term chunk was firstly proposed by [Abney, 1991], who used Hidden Markov Models to

solve the task. [Skut & Brants, 1998a] have also applied HMM in order to recognise structures

more complex than chunks (not only the borders but also the internal structure), focusing on

noun phrases. In fact, NP chunks have received far more attention than the other types of

chunks. However, other classes (verbal phrases, prepositional phrases, adjectival phrases, and

adverbial phrases) can also be considered. An example is the chunker included in the partial

parser Cass ([Abney, 1996]). Abney has applied finite state transducers (rules of the chunk

 62

grammar correspond to regular expressions and therefore can be transformed into automata) to

recognise chunks belonging to all these types. In our proposal, we have used only base-NPs in a

first step, and then extended to all the above mentioned types in a subsequent step. As presented

in section 5.9 below, experimental results indicate that, for our purposes, the only-base-NPs

approach achieves more efficient and accurate results.

[Vergne, 2000] describes system GREYC, an example of chunker based on symbolic rules

that establish conditions and produce actions on the current unit and its context. The system

uses a dictionary of functional words which are used as initial words of a chunk, so that a set of

patterns can be activated for each functional word indicating the kind of chunk and the

compulsory and optional elements that compose it.

Practically all ML techniques have been applied to the task. Apart from the HMM one

mentioned above, [Ramshaw & Marcus, 1995] have been pioneers in using these techniques,

applying transformation-based learning (see section 2.2.3.3 above), though working only with

noun-phrase chunking. This is the first system in which chunking is approached as a labelling

technique: transformation rules are applied to an initial labelling. Its main disadvantage is the

high computational cost of the learning process, in order to determine the best rule application

order.

In his thesis, Lluís Padró ([Padró, 1997]) proposes a hybrid combination of symbolic rules

and probabilistic models using an optimisation technique, relaxation labelling: given a set of

tags, variables, and constraints, it obtains the combination of labels attached to each variable

which maximises the global consistency value. [Voutilainen & Padró, 1997] apply this

methodology by combining an n-gram model with a set of contextual syntactic constraints in

order to detect noun phrases. The used constraints are bigrams, trigrams and manually defined

linguistic contraints.

Ratnaparkhi describes, also in his thesis ([Ratnaparkhi, 1998]), the application of the

maximum entropy models (see section 2.2.4) to chunking. [Skut & Brants, 1998b] also take

profit of maximum entropy estimation techniques in order to combine different parameters or

knowledge sources to estimate the contextual model.

[Cardie & Pierce, 1998] identify basic noun phrases (NPs) by means of grammatical rules

extracted from a corpus annotated with these phrases. First, an initial NP grammar is obtained

from the training corpus, and secondly, chunks are detected by matching lexical tags with

grammar rules; whenever more than a rule can be applied, the one covering a higher number of

lexical tags (the longest matching) is selected. Grammar rules whose precision falls below a

certain threshold are removed in order to improve performance. The basic operation of this

system has inspired the implementation of our simple chunking methodology (see chapter 4),

though our chunk grammar is directly extracted from the complete grammar.

 63

[Veenstra, 1999] applies instance-based learning to the detection of noun, verbal and

prepositional phrases. As mentioned in section 2.2.3.3, a classifier is built by storing a set of

examples (represented by means of feature arrays). The TiMBL environment described in

section 2.2.3.3 is employed. [Buchholz et al., 1999] present complete results for all the types of

chunks described above.

[Osborne, 1999] implements an inductive method, based on the minimum description length

(MDL) principle, in order to increase the coverage of a stochastic DCG. It can also be

considered a hybrid approach, since it starts from a manually defined set of initial rules. It aims

at a more complex task, detecting recursive noun phrases.

[Pla, 2000] proposes a methodology which combines morpho-syntactic disambiguation and

chunking, based on different language models obtained from corpora labelled with linguistic

information. In particular, grammatical language models are obtained by means of a ML

algorithm, Error Correcting Grammatical Inference. These models are then extended by means

of smoothing techniques in order to guarantee a complete language coverage. All the inferred

models are represented by means of a homogeneous formalism, finite state machines.

Specially interesting are the results obtained by applying combination of chunkers. It is

worth underlining that, in the chunking CoNLL-2000 competition, the three systems achieving

the best overall results used techniques based on combination of methods (see related parsing

methodologies in section 2.2.5). Thus, [Kudoh & Matsumoto, 2001], which obtained the first

rank in CoNLL-2000, have approached the problem by means of Support Vector Machines,

obtaining excellent results, as well as [Zhang et al., 2001] using Regularised Winnow.

[Halteren, 2000] obtained the second rank in the CoNLL-2000 competition with a methodology

based on Weighted Probability Distribution Voting. [Tjong Kim Sang, 2000] attained the third

rank by means of a voting system in which the set of chunkers involved have learned the chunk

model from different representations; supervised learning is used, as well as a (once more) case-

based classifier (in fact the system uses also TiMBL software).

As we do, other systems take advantage of the fact that partial parsers that produce chunked

structures for raw text are so widespread, in order to develop systems which process these

structures as an input for a deeper syntactic analysis (e.g., [Aït-Mokhtar et al., 2001] use them

among other types of inputs in order to robustly produce deep dependency relations, at sentence

and inter-sentential level).

 64

 65

Chapter 3

Overview of the System

After the review of chapter 2, we will focus on the complete description of our system. We will

start by giving an overview of the whole methodology in section 3.1, and continue to describe

the general parsing algorithm in section 3.2 (including both the algorithm and the data structures

used). The algorithm admits several variations: they are described in section 3.3. Section 3.4

comments on the problem of selection of the original islands and lists some alternatives. As

mentioned, our algorithm is guided by probabilities, which are obtained by means of an

stochastic model. Section 3.5 presents the two stochastic models which have been developed in

order to compute these probabilities, which can function either individually or in combination.

The last part of section 3.5 describes the steps followed by the algorithm (using both stochastic

models) in a simple parsing example, in order to clarify the methodology and the way in which

the algorithm works in combination with both stochastic models.

3.1 Description of the Overall Methodology

Island-driven parsing was firstly developed (named simply ‘island parsing’) as a technique for

parsing with Augmented Transition Networks (ATNs), in the framework of the HWIM speech

understanding project ([Woods et al., 1976]). Later, [Carroll, 1983] extended this parser in order

to enable it to interpret any grammar which conformed to Wood’s original full ATN

specification ([Woods, 1970]). This latter work also presented some interesting suggestions for

future research in island-driven parsing.

Recent work in island-driven parsing (including ours), applies to the charts formalism. In

island-driven parsing, the conventional left-to-right approach of chart parsing is enhanced with

two features: the bidirectionality (parsing can take place either left to right or right to left) and

the islands themselves (dynamically determined positions of the sentence from which the

 66

process starts, proceeding in both directions). Island-driven flexibility permits the use of optimal

heuristics that cannot be applied to unidirectional strategies. These heuristics are based on two

stochastic models, which allow to select the most probable island, to be extended to the most

probable side. These models, local and neighbouring, will be described in section 3.5. Let us

simply advance that the local model is simpler whereas the neighbouring model is quite more

complex and informed.

Figure 1. General architecture of the system

Figure 1 depicts the general methodology: starting from a CFG, a training process is performed

in order to learn both the probabilities attached to the context-free grammar rules and the

parameters of the stochastic models. This knowledge source will be the input to the island-

driven parsing process, along with the text to be parsed, in which a previous step of selection of

the initial islands has been carried out. Section 3.4 describes several alternatives for this

selection. As long as we have an input context-free grammar along with a parsed training corpus

in order to learn the stochastic parameters, our method is completely independent of the

knowledge source and the language, in contrast with approaches as [Collins, 1997].

3.2 Description of our Bidirectional Chart Parsing Algorithm + Data Structures

In our chart implementation, initially selected islands will be created as inactive edges, so that

all the subsequent inactive edges arisen from these original islands will also be considered

islands. We define a gap as each fragment of the input sentence spanning between adjacent

islands. The goal of the algorithm will be to extend the islands in order to cover all the

 67

remaining gaps with islands (or inactive edges): parsing proceeds by growing islands of

certainty into larger and larger phrases (hence getting smaller and smaller gaps).

The parsing algorithm works by following an agenda-based approach. However, instead of

adopting an “exhaustive” approach (in which one would remove items from the agenda in a

simple way such as the common last-in/first-out, until the agenda is empty), a best-first strategy

is adopted, that is, the items are removed from the agenda according to a sort of figure of merit

(FOMs, see section 2.2.1.1). When a parse (or eventually several parses) have been completed,

one simply stops parsing, possibly leaving items on the agenda (and therefore saving the time to

process these remaining items). The idea is that the FOM selects those items which are more

likely to belong to the correct parse, this likelihood being computed by one of the two stochastic

models presented in section 3.5. A priority queue, implemented as a heap, is used to deal with

the idea of choosing the most probable island, according to the stochastic model, to be extended

to the most probable side. In fact, the heap's sorting criterion will always be a real number

representing a probability attached in a way or another to each chart edge. It is important to

remark that both the inactive and the active edges are introduced into the agenda (as opposed to

the traditional strategy, which only adds incomplete constituents).

In island-driven parsing one must deal with cases in which no island at all has been selected

within the portion of the input where a constituent is required by the surrounding analyses.

Hence the parser must employ top-down prediction to be sure that no constituent is lost.

Obviously, this prediction may take place either at the constituent's left or right boundary.

Therefore, we will talk about prediction to the left or to the right.

…….
<[PRN → -LRB- PP .-RRB-., 6, 7], left, 0.447>

<[-LRB-, 2, 3], right, 0.444>
<[-RRB-, 6, 7], right, 0.002>

……….
Figure 2. An example of heap contents

Two different instances of heap (though with identical type of contents) are currently used by

the algorithm: the extension heap and the prediction heap. An element of any of both heaps

consists of a bidirectional chart edge (either active or inactive at the extension heap, always

active at the prediction one), a direction attribute indicating whether the edge must be

extended/used for prediction to the left or to the right, and a probability attribute stating the

probability of extension/fruitful prediction of the edge in question to the indicated direction.

Null probabilities are not considered at all, that is, whenever an extension/prediction probability

is zero, the attached edge is not introduced in the heap and is not considered anymore.

An example of heap containing several inactive and active edges is depicted in figure 2. It

corresponds to the first steps of the example in section 3.5.3 (local stochastic model version).

 68

Taking into account that we are using the conventional double-dotted rule notation for the edges

of the chart (see section 2.1), we can notice that the first element, with the highest probability,

indicates the extension to the left of an active edge spanning from position 6 to 7 of the

sentence, by means of rule PRN → -LRB- PP -RRB-, so that in our bidirectional algorithm, the

covered part of the right-hand side of the rule up to the moment is category -RRB-. The other

two elements of the heap correspond to islands (or inactive edges): the island labelled -LRB-, to

be extended to the right, and the island labelled -RRB- to be extended to the right. In fact, the

first active edge arises from the extension to the left of island -RRB-.

The algorithm performs a combination of bottom-up expansion and top-down prediction,

guided by the stochastic parameters. It consists of a loop composed by two stages:

1. A purely bottom-up phase which operates with the extension heap as an agenda. It

extends the bidirectional chart edges contained in the heap and in turn might add new

elements to it, always according to the attached probability. At the very first step of this

phase, only those inactive edges representing islands are taken into account. The order in

which the extension (if any) of the existing islands to the possible sides will be carried

out is therefore determined by the computed probabilities (though once the process

started up, new elements with higher probabilities may be added that would delay the

extension of certain islands).

2. Whenever the first phase does not lead to a complete analysis, a top-down prediction

phase is started. It uses a prediction heap which will be updated at the beginning of every

step of this type, only with those active edges adjacent to a gap (and not used in a

previous prediction phase yet), always according to a computed probability for each

edge and direction. Therefore, a coverage structure must be maintained, storing which

elements of the sentence form part of an island. This second phase lasts until coverage is

incremented (i.e. one of the islands grows in one direction), which is when we will go

back to the first stage, presumably with a non empty extension heap. The key idea is to

limit prediction as much as possible, going back to the extension phase as soon as an

increment of coverage is detected. This is because the prediction process, being top-

down, implies an uncontrolled growth of the prediction heap (and consequently of the

chart) with a lot of useless active edges.

It is important to emphasise that the algorithm is modularly structured, using the Object

Oriented methodology and its features, such as inheritance and polymorphism. Hence, both the

strategy and the type of stochastic parameters can be easily customised in order to allow for the

heuristic experimentation on which this thesis is based.

 69

In particular, the basic strategy that has just been described above is the one that postpones

top-down prediction as much as possible in favour of the bottom-up extension. This is a

decision that has been taken heuristically, once confirmed that top-down prediction,

unavoidable in our island-driven methodology, introduces high edge overhead. However, just

by changing a parameter, the strategy might be adapted so as to:

1. Use just the bottom-up extension (though in the island-driven case this would imply

that depending on the initial islands selected, a parse might not be found for a

grammatical sentence).

2. Use just the top-down prediction (though this would imply a much higher number

of edges).

3. Implement a head-driven strategy, whenever the grammar is appropriately marked:

islands are not selected, and a bidirectional bottom-up extension is performed.

4. Change the way in which the extension/prediction steps are combined, either

starting from the latter, or introducing other criteria to change from one step to the

other.

The other possibility of parameterisation is the use of the stochastic parameters which guide the

analysis process. As it will be described in section 3.5, we have devised two different stochastic

models. The system allows for:

A. The selection of a single model to guide the whole parsing process.

B. The selection of no model at all, in order to implement the unidirectional strategies

which are not guided by probabilities.

C. The selection of an initial model which, depending on certain criteria, might change

to another one or even to giving up using a model at all. This variation is more

thoroughly described in the next section.

In fact, the combination of alternatives 1 and B above gives rise to the version used to

implement the bottom-up version of the charts algorithm which will be used as one of our

baselines for evaluating our methodology (see chapter 5). Likewise, the simple top-down

strategy, that is, the combination of alternatives 2 and B, is used as an additional baseline for

comparison. Head-driven strategy (alternative 3) was discarded in the evaluation, since we had

not available grammars whose rules were suitably marked with the heads.

As an additional parallelism, it is worth noting that recent work by [Klein & Manning,

2001a] uses also an agenda-based chart parser for SCFGs, but extends the best-first approach by

viewing parsing as best-path finding in a certain hypergraph (in which edges are nodes and

 70

paths map to parses). Then, shortest paths (computed in this work by means of a dynamic

extension of Dijkstra’s algorithm) correspond to Viterbi parses, as long as the current best

known Viterbi score of and edge is used as the edge’s priority for insertion in the agenda. We do

not get into details about neither the computation of this score nor the concrete algorithm, but

simply point out that, as we do, their algorithm also need two agendas (the finishing and the

exploration agenda) in order to respectively maintain edges and traversals (pairs active-inactive

edge to be combined), and that, as in our case, it can also work with a variety of control

strategies.

3.3 Possible Variations of the Basic Algorithm: Hybrids

Several forms of controlling the basic iteration described in section 3.2 have been tested.

Obviously the most straightforward way is to guide the insertion/extraction from the heap

always according to the same stochastic model (alternative A in section 3.2 above), though

other hybrid alternatives might be considered, such as combining both models (the sounder idea

would be starting with the more informed model and under certain circumstances back-off to the

simpler model) or even combining any of the (or both) models with a blind purely bottom-up

left-to-right strategy.

So far, we have tested strategies which start working with one of the stochastic models and,

at a certain moment, back-off to either the other model or the purely bottom-up strategy, ending

the analysis process with no more changes of strategy. The decision of the combinations to be

tested is not gratuitous, but founded by the following two facts:

1. Back-off is necessary in some cases in order to guarantee complete coverage, that is, that

grammatical sentences are always completely analysed. In particular, in order to reach a

complete coverage of the corpus for the neighbouring model, a back-off to other method

must be performed whenever the parsing process ends unsuccessfully. Section 3.5.2,

where the neighbouring model is completely described, includes the justification why

backing off to either local model or any of the non-stochastic methods (bottom-up or

top-down) is indispensable for assuring full coverage when using the neighbouring

model.

2. Back-off is suitable in some cases in order to avoid degradation in performance.

Contrary to the previous point, in these cases the back-off may not be carried out when

the initial method has been exhausted, but at a certain previous point. The specific point

is what defines the different hybrid strategies.

 71

The unavoidable back-off described in point 1 above has shown to be much more efficient to the

local model than to the pure bottom-up. Using this strategy, however, neighbouring’s

performance does not improve local’s. Hence, we have tested other heuristic strategies that

perform the back-off, again to local model, before (point 2 above). The following four hybrid

methodologies have been devised:

1. Back-off from neighbouring to local whenever a certain number of extension-prediction

loops have been performed.

2. Back-off from neighbouring to local when a percentage of the sentence has been covered

by the islands that are being extended.

3. The number of parameters of the neighbouring model is larger than local's (as will be

seen in section 3.5). This implies that the neighbouring statistical parameters learnt by

our training process might not be correct, due to the sparseness of the input data. A more

accurate analysis of the number of occurrences in the training corpus of the rules that are

used to calculate the probability distribution of the lengths of each rule reveals that in a

lot of cases the number of occurrences is insufficient. A significant number of

distributions are learnt by means of just one or two occurrences. We can definitely

conclude that the neighbouring model needs a more relevant training set. Therefore we

have tested another hybrid method in which we will consider that, from the moment

decisions in the neighbouring approach are being made by means of such examples, the

use of this model does not make sense anymore, and a back-off to local model is

necessary. We accomplish this goal by applying thresholds to the extension and

prediction probabilities. The type of the thresholds in question is completely heuristic, so

they will be defined in detail in the chapter devoted to evaluation.

4. As a consequence and justification of the previous point, we have also tested another

type of smoothing, this time directly focusing on the frequencies of the occurrences in

the training corpus. Several levels of smoothing are applied to these frequencies, from

which the statistical parameters are therefore computed.

3.4 Initial Island Selection: Alternatives

As mentioned, island-driven parsing starts by concentrating on those islands which, a priori,

seem to be most likely part of the preferred analysis. Island-driven parsing is an approach

specific to natural language processing, which arose in order to deal specially with cases where

certain parts of the input might be corrupted, rendering the analysis left-to-right impossible.

However, its interesting features can also be useful in cases where certain parts of the input are

 72

considered to provide more useful information to drive the parsing process. Several sound

strategies can be proposed in order to select the initial islands in each sentence, including the

following ones:

1. Unambiguous words, if we are dealing with a corpus which is morphologically analysed

but non PoS-tagged.

2. Base NPs, or other types of chunks, if we have available some sort of shallow parser.

3. Proper Nouns.

4. Punctuation signs.

5. Specific patterns, when dealing with highly structured texts such as the case of parsing

dictionary definitions.

6. Accurately detected segments of an input, if we are dealing with a speech recogniser.

This approach, starting from words which have been hypothesised with high acoustic

evidence by an acoustic processor, has been proposed by [Corazza et al., 1991a].

7. Apart from the previous strictly syntactic criteria, other semantic criteria might be

considered. It seems intuitive that islands being those items presenting certain significant

semantic features could be definite in order to prune and guide the analysis process.

However, this option is the less defined.

Independently of the concrete strategy used, once the initial islands selected, other factors might

be studied, such as the number of islands or their layout.

In particular, we have tested strategies 1 and 2 (see chapters 4 and 5). Being one of the

parameters of our system, it is straightforward that another source of improvement could be the

method of selection of the islands. Several refinements of the first strategy have been devised,

consisting basically in applying a less restrictive criterion which, instead of regarding as islands

only those words with lexical ambiguity zero, might consider a combination of criteria based on

both:

1. A low degree of ambiguity as to the lexical categories of the word.

2. A low degree of ambiguity as to the categories according to the grammar, that is, as to

the occurrence of the given symbol in the right-hand side of the productions of the

grammar.

However, the preliminary part of these experiments (introducing the terminal category as a

criterion for selection of the islands), completely developed, achieved no relevant results. At

least for our corpus and test set, no particular category (or set of categories) seems to generally

behave as a good initial island. These experiments were initiated with the toy grammars (see

 73

section 5.1), and are extensively described for the real-sized grammar and corpora in section

5.10. That no significant results where obtained led us to not continuing to explore in this line.

3.5 Stochastic Models

Given a Stochastic Context-Free Grammar (SCFG), what we try to model is the likelihood of

extending (either to the right or to the left) an (either inactive or active) edge, or partial analysis,

growing islands of "certainty". Our models provide sort of Figures of Merit (FOMs) as

[Charniak et al., 1998] or [Blaheta & Charniak, 1999], in order to deliver a single best-first

analysis, but basing on the concept of islands and applying these FOMs to their extension.

[Klein & Manning, 2002] extend the alternative to best-first search already commented at the

end of section 3.2 ([Klein & Manning, 2001a]), with a generalisation of A* search, in which the

scores are a combination of a known best inside score of an edge (the distance from the start

point to it) and a conservative estimate of the outside score (the distance remaining to the

goal)21. For the latter score, several alternatives are proposed. All of them are based on

summarising, in different (richer and richer) ways, the outside context of the edge being

evaluated, and finding the score of the best parse of any context which fits that summary. There

is a rough correspondence between the combination of their SXL and SXR estimates (which

include in the summary respectively the tag adjacent to the left and to the right) and our local

approach (see section 3.5.1). This technique guarantees that the first parse obtained is the most

likely (Viterbi) parse, something that neither our method nor the rest of the best-first approaches

cited above can assure.

Focusing on stochastic models for island-driven parsing, [Corazza et al., 1991a] provide a

theoretical framework for computing the probability that a SCFG generates sequences of islands

intermixed with gaps. Basing on the inside probabilities (see section 2.2.1.2) and the prefix-

string probabilities defined by [Jelinek & Lafferty, 1991], and dealing only with grammars in

CNF, they provide a definition for the probability that a partial tree generates substrings of a

sentence (islands) with a gap in between, and followed by an eventual gap (the prefix-string-

with-gap probabilities, or their symmetrical case, the suffix-string-with-gap probabilities). This

scoring is based on computing the sum of the probabilities of all the possible completions of the

partial tree. However, they show that, whereas the time complexity of their computation is

unacceptable whenever the length of the gap in the middle of both islands is unknown (it

requires the solution of a quadratic system of equations), an alternative computationally-

affordable method can be tackled whenever this length is known. This theoretical methodology

is not put into practice.

 74

[Corazza et al., 1994] define a new scoring method which represents a tighter upper-bound,

as they compute the probability of the most likely derivation instead of the sum of all of them.

An algorithm to calculate this score (the probability of the most likely trees that can generate a

sentence, when this sentence consists of an arbitrary sequence of islands and gaps) is described.

This algorithm performs in cubic-time (with respect to the length of the input), always for

SCFGs in CNF. This theoretical methodology is not practically evaluated either.

In our framework, two basic models have been studied22. The first one, the local model, is

static, as it just takes into account grammatical information. The second one, the neighbouring

model, considers also the immediate environment around the island being dealt with, that is, the

islands and gaps immediately surrounding each island (in order to apply the main feature of the

bidirectional approaches, namely the restriction of the syntactic search space whenever we have

unrecognised gaps with (recognised) partial analyses around them). Both approaches are based

on the summation of the probabilities of the possible derivations, although, at the end of section

3.5.1, the possibility of a change to the maximisation of this probability23 is outlined.

As it will be shown throughout the experiments described in chapter 5, performance is highly

improved, but the accuracy remains to be increased. In fact, the idea of our hybrid proposals has

the same motivation as the ideas of “work” and “competitorship” described in [Blaheta &

Charniak, 1999] thus pointing out a possible extension for improving both our performance and

accuracy. [Blaheta & Charniak, 1999] also provides some interesting ideas to deal with the data-

sparseness which may be applied to our neighbouring model.

3.5.1 The Local Model

The local approach is based on regarding the probability of an edge to be extended (and the

same applies to the prediction) as the probability of the next symbol to be expanded having the

terminal(s) symbol(s) in the corresponding position of the sentence as either left or right corner

(according to the expansion/prediction direction).

Let G be a Stochastic Context-Free Grammar, following the usual notational conventions

(see sections 2.1 and 2.2.2). Let Ri ∈ P be the i-th production of G and P(Ri) its attached

probability.

As mentioned above, we will employ the usual double-dotted rule notation for the edges of

the chart (see section 2.1). [A, i, j] is an island of category A spanning positions in the sentence

i+1 to j (in turn corresponding to words wi+1 and wj respectively), and {left|right}_corner are

functions from N × T to [0,1], being {left|right}_corner (A, a) the probability that a derivation

21 See section 2.2.1.2 for the definition of inside/outside probabilities.
22 A third model, the global approach, was tried with no remarkable results.
23 Suggested by an anonymous reviewer.

 75

tree rooted A could have symbol a as a {left|right} corner. In other words, the left corner

probability left_corner (A, a) would denote the probability that starting with the nonterminal

symbol A, successive application of rules from grammar G produce a string starting with

terminal symbol a (in the case of our sample island, the left corner relationship would mean that

symbol a would occupy position i+1 in the sentence, that is, wi+1= a). As to the right corner

relation, the right corner probability right_corner (A, a) would denote the probability that

starting with the nonterminal symbol A, successive application of rules from grammar G

produce a sequence ending with terminal symbol a (in the case of our sample island, the right

corner relationship would imply that symbol a would be at position j in the sentence, that is, wj=

a). This means that we will only be looking at derivations of strings over set {Ax | x ∈ T*}.

We have borrowed from [Jelinek & Lafferty, 1991] the notation P(A<<i,j) to denote the sum

of the probabilities of all trees with root node A resulting in word strings whose initial substring

is wi wi+1 … wj. However, in our case we will restrict to the computation of the probability

P(A<<i,i). Moreover, we will pre-compute these probabilities, independently of the particular

sentence, for each pair of <nonterminal, terminal>. Therefore, we will take the license to refer to

the terminal symbol instead of its position in the sentence, and we can define that:

 (15))/(),(_:, GaAPaAcornerleftTaNA <<=∈∈∀

A symmetrical notation can be used for the right_corner. Extending [Jelinek & Lafferty,

1991]’s notation to the bidirectional case, P(A>>i,j) would denote the sum of the probabilities of

all trees with root node A resulting in word strings whose ending substring is wi wi+1 … wj. Once

more, in our case we will restrict to the computation of the probability P(A>>j,j), and take the

license again to refer to the terminal symbol instead of its position in the sentence. Then we can

define that:

 (16))/(),(_:, GaAPaAcornerrightTaNA >>=∈∈∀

Similarly, left_corner* is a function from (N ∪ T) × 2T to [0,1], being left_corner* (A, l) the

probability that a derivation tree rooted A could have any of the symbols of a list l (containing

only terminal symbols) as a left_corner:

 (17) If A ∈ N: ∑
∈

=
la

aAcornerleftlAcornerleft),(_),(*_

 If A ∈ T: 1),(*_ =lAcornerleft if A ∈ l

 0),(*_ =lAcornerleft otherwise

 76

Right_ corner* probabilities are symmetrically defined, as the probability that a derivation tree

rooted A could have any of the symbols of list l of terminal symbols as a right_corner:

 (18) If A ∈ N: ∑
∈

=
la

aAcornerrightlAcornerright),(_),(*_

 If A ∈ T: 1),(*_ =lAcornerright if A ∈ l

 0),(*_ =lAcornerright otherwise

The elementary probabilities defined above, left_corner and right_corner, are pre-computed and

stored in two structures. These data structures have been denoted the Lreachability and the

Rreachability tables, and their dimensions are [|N| × |T|]24. These tables can be efficiently

accessed (when needed) in order to compute the definite probabilities:

• For expansion to the left of an island (inactive edge) labelled A:

 (19))()]/,,([
:
∑

→

=
AXR

i
left

island
i

RPGjiAP
α

Where α ∈ (N ∪ T)*. Rules of the form X →αAβ are not considered, since expansions like

these ones will only take place on the Bottom-Up/Top-Down extensions (see section 3.2).

• For expansion to the right of an island (inactive edge) labelled A:

 (20))()]/,,([
:
∑

→

=
αAXR

i
right

island
i

RPGjiAP

Where α ∈ (N ∪ T)*. As in formula 19, rules of the form X →βAα are not considered either.

• For expansion to the left of (or prediction to the left from) an active edge (being w the

sentence, and li the list of terminal categories attached to word wi):

 (21)),(*_),]/,,..([i
left

edge lBcornerrightwGjiBAP =→ γβα

Where α, β, and γ ∈ (N ∪ T)*.

24 Notation |A| indicates the cardinality of a set A.

 77

• For expansion to the right of (or prediction to the right from) an active edge (being w

the sentence, and lj+1 the list of terminal categories attached to word wj+1):

 (22)),(*_),]/,,..([1+=→ j
right

edge lBcornerleftwGjiBAP γβα

Where α, β, and γ ∈ (N ∪ T)*.

As to the expansion of the islands (first two formulae), note that the parser does not compute the

partition function (normalising constant) for its distributions, so the numbers that both formulae

return cannot be regarded as true probabilities, but simply scorings.

As to the active edges (formulae 21 and 22), obviously either α, β, or γ might be empty. In

this case, the intention is essentially that the probability models the likelihood of this edge to be

useful for the definite analysis, considering its situation in the sentence. That is why the same

formula is applied to both the extension and prediction stages.

Computing the reachability tables is far from being a trivial problem. In a first approach, the

computation of these tables was performed by following a methodology based on [Horowitz &

Sahni, 1978]. In this methodology, nonterminals were first topologically sorted according to the

so called precedence relationship (a nonterminal A is said to precede another nonterminal B

whenever A has B as a left [right] corner). Next, the tables were computed by calculating the

transitive closure (assuming the previously computed order), by incrementally doing

(Rreachability was computed symmetrically):

Lreachability [i, j] ⇐ Lreachability [i, j] + Lreachability [i, k] × Lreachability [k, j]

The drawback for this technique was that, in order to be able to perform both topological sorts,

the grammar cannot be neither left-recursive nor right-recursive. Therefore, a different approach

had to be adopted. We have developed an algorithm that is an extension (to be able to deal with

bidirectionality) of [Ng & Tomita, 1991]’s approach for massively recursive grammars. For

each of both relationships, the interdependencies between nonterminals are represented as a

linear equations system. The problem has been that we encountered equations systems of

unfeasible dimensions for our real-size grammars25. Therefore, the process had to be

decomposed into the following three steps:

25 A previous toy grammar composed by 96 context-free rules and 58 nonterminal symbols, gave rise to a
coefficients matrix of dimension [3364 x 3364]…

 78

1. As nonterminal interdependencies (both the left and right reachabilities) can be

considered as a graph, we can firstly calculate the strongly connected components of

such a graph. Each strongly connected component is composed by those elements which

are completely interrelated. In order to calculate these components, we use the

conventional three-steps algorithm which: 1) computes the reflexive transitive closure

according to the direct [right or left] reachability relation, 2) transposes the previous

matrix, and 3) calculates the intersection between both matrixes.

2. Next, the linear system of equations corresponding to each connected component

(presumably of a far smaller dimension) can be independently solved. We use a version

of the Gaussian Elimination method optimised to take advantage of the sparseness of the

coefficients matrix of this system of equations.

3. Finally, an algorithm which combines the results obtained for each connected component

is computed, in order to obtain the solution for the whole system. This combination

algorithm is composed by two steps:

1. The strongly connected components are sorted according to the aforementioned

precedence partial relationship. When applied to components, the precedence is an

extension of the same relationship applied to individual symbols, by considering all

the individual elements in each component (notice that, dealing with strongly

connected components, a cycle can never happen in the precedence relationship, and

therefore, the recursivity problem found in the first method is completely avoided).

2. The results for each connected component are incrementally combined,

incorporating in each step a new component according to the previously computed

order. Basically we sort of compute the transitive closure of the components, in such

a way that each incremental step is in turn composed by four loops. These loops

account for the different types of relationships encountered among the components,

and require the use of two temporal matrixes.

As it can be observed in formulae 19 to 22, all our scores are based on summations of the

probabilities of the derivations, always according to our SCFG. Therefore, what we are

describing is a class of events that belong to possibly different strings. However, in practice we

will be applying this figure to a single string (or item, in the middle of the parsing process) to be

expanded, which will rarely be derived with such a probability. An alternative might be defining

the probabilities of extension/prediction as the maximum of the probabilities of the derivations,

instead of their addition, providing then what might be considered as a more realistic upper

 79

bound26. This strategy would correspond to the work in [Corazza et al., 1994] and [Klein &

Manning, 2002] already described in the introduction of this chapter. We have applied this new

strategy gradually, in two stages:

1. Maximum is applied to the extension of (or prediction from) active edges (formulae 21

and 22). This means changing the definition of the elementary functions left-corner and

right-corner (formulae 17 and 18), so that they return the maximum probability of the

derivations instead of the addition of the probabilities of the derivations.

2. Additionally to the approach described in the previous point, maximum is also applied

to the extension of islands (inactive edges). This means that in formulae 19 and 20, the

addition of the production probabilities is simply replaced by the maximum of them.

However, the potential possibilities of this new proposal have been noticed when all the

evaluation task had already been developed. Therefore, it has also been tested and compared

with the results of the original local approach, but the additional applications of the local model

(such as its use as a back-off of the neighbouring method, described in the following section, or

the evaluation with other types of islands, described in chapter 4), have only been tested with

our original local approach.

3.5.2 The Neighbouring Model

In this approach, in order to take the decision of extending an island we will consider the

information provided by the neighbours, that is, the islands and gaps immediately surrounding

such island, as well as distances to them (the lengths of the gaps). Roughly speaking, we intend

to model the distances (in terms of number of terminal symbols) between nodes in the parse

tree, and guide the decisions accordingly. Therefore, the probabilities of length distributions for

each rule of the grammar must be previously learnt from a training corpus.

An additional motivation may be to try and capture dependencies between pairs of words

that are not adjacent, or even that are more than two words apart (the latter, what trigram

language models would model).

Using the same conventions as in the local model, let G be a Stochastic Context-Free

Grammar (see sections 2.1 and 2.2.2). Let Ri ∈ P be the i-th production of G and P(Ri) its

attached probability. Distances between islands are measured in terms of number of terminal

symbols. We will also use, for any string α ∈ (N ∪ T)*, the additional notation |α| to indicate

the length of α, always in terms of number of terminal symbols. This means that we are not

26 This relevant fact, as well as the alternative definition, was highlighted by an annonymous reviewer.

 80

referring directly to the length of α, but to the length of the string of terminal symbols that α

would eventually derive.

Given two islands [A, i, j] and [B, j+d, l], separated by a distance d, four possible types of

relationship can be considered. In their definitions, symbol r stands for a production from

grammar G, while α, β, γ, δ, µ, η, and ϕ represent strings over (N ∪ T)*. We take the liberty of

extending the meaning of the expression |string|, in such a way that it indicates the length of

string in terms of terminal symbols (therefore, whenever string contains a nonterminal element,

we assume the length in terminals of the constituent derived from this nonterminal). The

corresponding four definitions follow:

(23)






 =→∈= βγβα dBAXrPrdBAR ,: |),,(1

(24)






 +=⇒→∈= δβµδγβα dBHHAXrPrdBAR ,,: |),,(

*
2

(25)






 +=⇒→∈= βµµδγβα dAHBHXrPrdBAR ,,: |),,(

*
3

(26)






 ++=⇒⇒→∈= ηβµϕηµδγβα dBHAHHHXrPrdBAR ,,,:|),,(

*

2

*

121
4

These relationships are more easily understandable by showing their graphical representation,

which is depicted in figures 3 to 6:

 Figure 3. Relationship R1

 81

 Figure 4. Relationship R2

 Figure 5. Relationship R3

 Figure 6. Relationship R4

In order to compute the likelihood of each relationship, we will use the following simpler

probabilities Pi (for i = 1..3), being S1 and S2 symbols from the grammar (S1, S2 ∈ (N ∪ T)), and

r a production from the grammar. Notice that, except in the case of P1, probabilities Pi are not

associated to relationships Ri, since they are the elementary probabilities used in order to

calculate the more complex probabilities corresponding to relationships R1 to R4. These

elementary probabilities are obtained by means of the data culled from the training corpus.

 Figure 7. Probability P1

 82

That is, P1 (d / r, S1, S2) denotes the probability that two islands labelled S1 and S2 are found at

distance d, whenever both constituents are generated by the same production r, at the same level

(see figure 7). Therefore, we can define the accumulated P1 as:

(27)),/()/(
1

21
1

21
1 ∑

∈

=
Rr

acc ,SSrdP,SSdP

On the other hand, P2 (d / S1, S2) denotes the probability that one symbol S1 generates S2 in one or

more steps, in such a way that S2 is found at a distance d of the beginning of the constituent

generated by S1 (see figure 8). It would correspond to the probability of the right constituent H

in figure 4 (or equivalently, of constituent H2 in figure 6).

 Figure 8. Probability P2

Finally, P3 (d / S1, S2) represents the probability that S1 derives S2 in one or more steps, in such a

way that S2 is found at a distance d of the end of the constituent generated by S1 (this probability

is represented in figure 9). It can be considered that it would correspond to the probability of the

left constituent H in figure 5 (or of constituent H1 in figure 6).

 Figure 9. Probability P3

These probabilities are pre-computed for each possible pair of islands and distance d=0..limit

(being all cases of d>limit treated as a whole). The limit, that is, the distance from which we will

 83

not particularise, is a parameter that in our experiments will be set to 3, considering average

distances between islands.

Although all types of relationships between two adjacent islands have been defined (see

definitions R1 to R4 in formulae 23 to 26), when implementing the application of the model we

found that the case where both islands are derived in one or more steps from symbols in the

production right-hand side (relationship R4, see figure 6) highly increased the complexity of

probability computation. On the other hand, preliminary experiments did not show that the

improvement obtained was worth the increase in complexity (mainly because of the data

sparseness problems which will be more thoroughly described in chapter 5). Therefore, we have

decided to constrain our notion of neighbourhood27, so that in our probabilities we will account

only for those situations in which there is one rule that includes directly at least one of the

islands considered.

The application of the neighbouring model to the expansions and predictions is then defined

as follows in formulae 28 to 35. For the first two cases, we include as well the version of the

formula which would also consider relationship R4 so that it can be seen how the complete

formulae would look like. It can then be observed that they entail an additional complexity

which has been heuristically discarded, but which might be perfectly tackled:

• For expansion to the right of an island [A, i, j], being w the sentence and [B, j + d, l] the

closest island to the right:

 (28)

)),/(),/(

),/(),/((

),/(]),,[,]/,,([

31

2
),3(

0

1

1

AHxPBHxdP

BHxPHAxdP

BAdPldjBG,wjiAP

acc

NH

dmin

x
acc

acc
right

island

×−

+×−

+=+

∑ ∑
∈ =

The first addend accounts for cases of A and B being in the same rule right-hand side, while the

second one accounts for all possibilities of B being derived in one or more steps from a

nonterminal H which is in the same production right-hand side as A, plus all possibilities of A

being derived in one or more steps from a nonterminal H which is in the same rule right-hand

side as B.

The complete version, which would take into account also relationship R4, is represented in

formula 28`. It can be observed that it implies a new addend which accounts for all possibilities

of both A and B being derived in one or more steps respectively from two nonterminals H1 and

H2, which happen to be in the same production right-hand side. This new element entails an

additional complexity of Ο(N2).

27 Therefore, in order to get a full coverage, a back-off to other method is needed.

 84

 (28`)

))),/(),/((

),/((

)),/(),/(

),/(),/((

),/(]),,[,]/,,([

2
2

1
3

0

),3(

0
21

1

31

2
),3(

0

1

1

1 2

BHyPAHyxP

HHxdP

AHxPBHxdP

BHxPHAxdP

BAdPldjBG,wjiAP

x

y

NH NH

dmin

x
acc

acc

NH

dmin

x
acc

acc
right

island

×−

×−

+×−

+×−

+=+

∑

∑ ∑ ∑

∑ ∑

=

∈ ∈ =

∈ =

• For expansion to the left of an island [A, i, j], being w the sentence and [B, l, i - d] the

closest island to the left:

(29)

)),/(),/(

),/(),/((

),/(]),,[,]/,,([

31

2
),3(

0

1

1

BHxPAHxdP

AHxPHBxdP

ABdPdilBG,wjiAP

acc

NH

dmin

x
acc

acc
left

island

×−

+×−

+=−

∑ ∑
∈ =

The first addend accounts for cases of B and A being in the same production right-hand side

while the second one accounts for all possibilities of A being derived in one or more steps from

a nonterminal H which is in the same production right-hand side as B, plus all possibilities of B

being derived in one or more steps from a nonterminal H which is in the same rule right-hand

side as A.

Next, we provide the complete version, which considers also relationship R4. The only

difference with formula 29 is the new addend accounting for all possibilities of two

nonterminals H1 and H2 being in the same production right-hand side, from whom B and A are

respectively derived in one or more steps. The complexity of this new addend is Ο(N2).

 (29`)

))),/(),/((

),/((

)),/(),/(

),/(),/((

),/(]),,[,]/,,([

2
2

1
3

0

),3(

0
21

1

31

2
),3(

0

1

1

1 2

AHyPBHyxP

HHxdP

BHxPAHxdP

AHxPHBxdP

ABdPdilBG,wjiAP

x

y

NH NH

dmin

x
acc

acc

NH

dmin

x
acc

acc
left

island

×−

×−

+×−

+×−

+=−

∑

∑ ∑ ∑

∑ ∑

=

∈ ∈ =

∈ =

 85

• For expansion to the right of (or prediction to the right from) an active edge (originated

from an activation of production p) [A→ β . Al α Ar . γ, i, j], being w the sentence and

[B, j+ d, l] the closest island to the right:

(30)

)),/(

)|..((

),,/(]),,[,]/,,..([

2

),3(

0

*

11
,,1

1

BxdP

xprob

BApdPldjBG,wjiAAAP

n

dmin

x
n

TNdn

rrl
right

edge

n

γ

ϕϕγγ

γαβ

ϕγ

−

×=⇒

+=+→

∑∑
=

−
∈∈≤≤ ∗

Where α and β ∈ (N ∪ T)*. In this formula, γ represents a string of n terminal and nonterminal

symbols (γ ∈ (N ∪ T)n), each one represented by a subindex. The idea is the same as for the

previous case, albeit particularising to the production of the active edge, and taking into account

the symbols yet to be recognised of the active edge, at the right of the second dot (symbols

γ1...γn). Either α, β or γ might be empty (in the latter case, n= 0).

• For expansion to the left of (or prediction to the left from) an active edge (from a

production p) [A→ β . Al α Ar . γ, i, j], being w the sentence and [B, l, i - d] the closest

island to the left:

(31)

)),/(

)|..((

),,/(]),,[,]/,,..([

3

),3(

0

*

11
,,1

1

BxdP

xprob

ABpdPdilBG,wjiAAAP

n

dmin

x
n

TNdn

lrl
left

edge

n

β

ϕϕββ

γαβ

ϕβ

−

×=⇒

+=−→

∑∑
=

−
∈∈≤≤ ∗

Where α and γ ∈ (N ∪ T)*. In this formula, β represents a string of n terminal and nonterminal

symbols (β ∈ (N ∪ T)n), each one represented by a subindex. Again, the idea is the same as for

the extension of an island, particularising to the production of the active edge, and regarding the

symbols yet to be recognised of the active edge, at the left of the first dot (symbols β1...βn,

starting from right to left). Once more either α, γ or β might be empty (in the latter case, n= 0).

Prob is a recursive function that, given the “trained” grammar G, provides for the

distribution of probabilities of the lengths of any subsequence of terminal and nonterminal

symbols of the grammar.

The particular cases of expansion of either the first island of the sentence to the left or the

last island to the right must be taken into account, as we find no category of reference at a

certain distance, but simply the distance to the beginning or the end of the sentence. The same

 86

applies to the expansion/prediction from an active edge to the left/right when no more islands

are found in this direction. These cases are considered as a simplification of the previous cases:

• For expansion to the right of an island [A, i, j] which is the last island of the sentence so

far, being l the length of the sentence:

(32)),/(),/(,-)]/,,([31 ∑

∈

−+−−=
NH

acc
right

island AHjlPAjlPG,wjiAP

When one of the two islands is missing, P1 just takes into account the probability that

productions containing the only island in their right-hand side are at the given distance from the

beginning (missing the first island) or the end (missing the second island) of the production

right-hand side.

We simplify to consider only this P1 plus the probability that the island forms part of a

hypothetical last constituent.

• For expansion to the left of an island [A, i, j] which is the first island of the sentence up

to the moment:

(33)),/(),/(,-)]/,,([21 ∑

∈

+−=
NH

acc
left

island AHiPAiPG,wjiAP

The idea is the same but symmetrical: we simplify to consider only this P1 plus the probability

that the island forms part of a hypothetical first component.

• For expansion to the right of (or prediction to the right from) an active edge (originated

from an activation of production r) [A→ β . Al α Ar . γ, i, j], so that there is no island to

its right yet, being l the length of the sentence:

 (34)),,/(,-)]/,,..([1 −−=→ rrl

right
edge ArjlPG,wjiAAAP γαβ

Where α, β, and γ ∈ (N ∪ T)*.

• For expansion to the left of (or prediction to the left from) an active edge (from

production r) [A→ β . Al α Ar . γ, i, j], so that there is no island to its left yet:

 (35)),,/(,-)]/,,..([1
lrl

left
edge AriPG,wjiAAAP −=→ γαβ

 87

Where α, β, and γ ∈ (N ∪ T)*.

Extensions/predictions of active edges simplify even more the formula, for as they refer to a

concrete edge, they consider only the probabilities at the same level.

Despite being a more informed method, in the evaluation process (see sections 5.3 and 5.4)

we have found that neighbouring’s performance does not improve local’s. After an accurate

analysis of the behaviour of the neighbouring parsing process, several heuristics have been

adopted regarding the neighbouring strategy. Some of them may involve backing-off to other

method at a certain moment or using certain kind of smoothing in the neighbouring probabilities

(see sections 5.5 to 5.7). However, first of all, it has been observed that, although neighbouring

probabilities work quite well when applied to the step of bottom-up extension of the edges,

when applied to top-down prediction they generate a significant edge overhead. To counteract

this effect, some limitations have been imposed to the application of neighbouring probabilities

during the prediction process. These heuristic limitations, which have been applied to any

version (pure or hybrid, smoothed or not) of the neighbouring strategy, are the following ones:

1. For the initial determination of the edges to be used for prediction:

• For distances between adjacent islands between 0 <= d < 2, local probability acts as

a filter, that is, only when local probability is greater than zero will the neighbouring

probability be used to determine if and when the edge will be used for prediction.

• For distances d >2, it has been observed that (mainly due to the data sparseness

inherent to the neighbouring model, see section 5.3) the information provided by the

neighbouring model seems not to be informative enough, so neighbouring

probabilities are discarded, and local probabilities are directly used instead.

2. Once determined the edges from which predictions will be launched (and in which

order), the top-down process continues recursively launching new predictions from these

active edges, searching for edges with which to combine (see section 3.2). These

subsequent recursive predictions will also be guided only by local probabilities. In order

to avoid the creation of an excessive number of edges, a threshold has been empirically

set, so that only the edges whose local prediction probability is higher than this threshold

will be used for prediction.

In order to limit as much as possible the number of computations at run time, the probabilities

mentioned above are pre-computed, using the frequencies of distributions of lengths learnt from

 88

the training corpus. Probabilities consider distances from 0 to limit, as well as a single case for

distances greater than limit. The computation is performed in two steps. Firstly, we construct

matrixes M1 to M4, containing the following probabilities:

1. M2 [|N+T| × |N+T| × (2+limit)]: conventional P1 (accumulated P1 is computed on the fly

from its values).

2. M1 [|N+T| × 2 × (2+limit)]: P1 for the particular case of the first/last island of the

sentence (second dimension denotes both cases).

3. M3 [|N+T| × |N+T| × 4]: conventional P2(we just consider distances 0..3).

4. M4 [|N+T| × |N+T| × 4]: conventional P3(we just consider distances 0..3).

Next, these matrixes are used to compute the matrixes that will provide the final probabilities

(strictly speaking, likelihood scores, since as in the local model, no normalisation is performed):

1. Result2 [|N+T| × |N+T| × (2+limit)]: table containing the probabilities of each pair of

categories to be at a certain distance. Used for the conventional extension of islands.

2. Result1 [|N+T| × 2 × (2+limit)]: simpler table, to account for the cases of extension to

the left of the first island of the sentence (as well as to the right of the last one). The

second dimension of the table indicates the direction of extension: value 1 corresponds

to probabilities of extensions to the left of the first island of the sentence; value 2

corresponds to probabilities of extensions to the right of the last island of the sentence.

3. Result2L and Result2R [|N+T| × |N+T| × (2+limit)]: tables containing the probabilities of

conventional extension/prediction of active edges, respectively to left and right.

4. Result1L and Result1R [|N+T| × (2+limit)]: simpler tables for the particular case of

probabilities of extension/prediction of active edges, respectively to the left when no

more islands to the left are found, or to the right when there are no more islands to the

right.

Needless to say that these matrixes are represented using suitable data representation techniques

in order to efficiently deal with their sparseness.

3.5.3 A simple example

Let us just trace the beginning of the analysis of a sentence in order to get a feeling for how

stochastic parameters are used. We will use the grammar we have extracted from the Penn

Treebank (described in detail in section 5.2.2 of chapter 5), which owns 941 productions,

 89

|N|=28, and |T|=41. With such a grammar, we will try and parse the following simple sentence in

English:

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

 “The train (to the city) left late yesterday . ”

 DT VBP -LRB- IN DT NN -RRB- NN JJ RB .

 NNP VB TO NNP NNP RB RB NN

 NN JJ

 VBD

 VBN

PoS tags attached to each word are shown under each one. In order to select the initial islands,

we will employ the criterion of choosing those non ambiguous words, that is, words into a

square, 3,7, and 11 (in this example they happen to be just the punctuation signs). We will focus

on the case of the brackets: while 9 productions of our grammar contain both symbols in their

right-hand side, only 4 rules contain just one of them. This case is therefore simpler, as most of

the alternatives present both islands at the same rule level (we will focus in turn on these ones).

The mentioned productions are shown with their attached probabilities:

r1: PRN → -LRB- NP -RRB- 0.227448

r2: PRN → -LRB- S -RRB- 0.024797

r3: PRN → -LRB- VP -RRB- 0.0222318

r4: PRN → -LRB- PP -RRB- 0.0269346

r5: FRAG → -LRB- " NP PRN SBAR . 0.0020202

r6: FRAG → PP RB SBAR . –RRB- 0.0020202

r7: PRN → -LRB- SBAR -RRB- 0.0132536

r8: FRAG → -LRB- NP : NP -RRB- 0.0020202

r9: LST → LS -RRB- 0.25862

r10: FRAG → -LRB- NP : S . ” -RRB- 0.0020202

r11: PRN → -LRB- NP , NP -RRB- 0.0397600

r12: FRAG → -RRB- WP IN VP . 0.0020202

r13: PRN → -LRB- QP -RRB- 0.0837965

320 rules contain the stop (“.”) at their right-hand side, although we will not consider them in

order to keep the example simple.

 90

Local version of the example

We assume that matrixes Lreachability and Rreachability have been computed, both of

dimension [|N| × |T|], that is, [28 × 41]. With these data, we would start by extending the islands

in both directions, following the formulae for extension of islands described in section 3.5.1:

1. Probability of extension of the island labelled –LRB- to the left (formula 19):

0)()]/3,2,([
:

==−− ∑
−−→ LRBXR

i
left

island
i

RPGLRBP
α

 (as the open bracket never happens to be right-corner of any nonterminal in our grammar)

2. Probability of extension of the island –LRB- to the right (formula 20):

444.0)()]/3,2,([
:

==−− ∑
−−→ αLRBXR

i
right

island
i

RPGLRBP

3. Probability of extension of the island labelled –RRB- to the left (formula 19):

702.0)()]/7,6,([
:

==−− ∑
−−→ RRBXR

i
left

island
i

RPGRRBP
α

4. Probability of extension of the island –RRB- to the right (formula 20):

002.0)()]/76,([
:

==−− ∑
−−→ αRRBXR

i
right

island
i

RPG,RRBP

All but the first pair of <island, direction-of-extension> would be introduced into the extension

heap, according to their probabilities. Next, we would continue to withdraw the pairs from the

heap in order to be processed, in this case starting by extending the pair with the highest

probability, that is, island –RRB- to the left. We would have to combine this island with any

compatible active edge to its left, but at this early stage of the analysis, no active edges exist yet.

Therefore we will create 12 active edges, corresponding to the rules containing category –RRB-

in their right-hand side (what we call the step of bottom-up extension). These active edges must

in turn be introduced into the extension heap according to their extension probability in both

directions.

Out of the just mentioned actives edges, the highest-ranked one would be the one

corresponding to the extension of the active edge [PRN → -LRB- PP .-RRB-., 6, 7], from rule r4

 91

above, to the left, as we can see by applying formula 21 (defined above in section 3.5.1), taking

into account that NN and NNP are the categories attached to the element w6 of the sentence (we

also point out the relevant positions in matrix Rreachability):

left

edgeP ([PRN → -LRB- PP .-RRB-., 6, 7] | G, w) = right_corner* (PP, [NN, NNP])= 0.4475

Rreachability[28 × 41]:

......
..................

......

0.120.32PP

NNPNN

a

Being the most probable one, the latter edge is extracted from the extension heap in order to be

extended. However, the active edge is expecting a constituent PP which does not exist yet, so

no extension is performed. It is important to notice that, at this stage of the analysis, both the

tuples <island, direction> and <active-edges, direction> are already coexisting in the extension

heap.

Although we assume that all the tuples corresponding to the active edges mentioned above

have been inserted in the heap (though we are not listing them here in order to keep this trace

short), the current highest-ranked tuple is the corresponding to the extension of the island

labelled –LRB- to the right (number 2 above). As at the moment it is impossible to combine the

island to the right, a new step of bottom-up extension is performed from this edge (10 active

edges are created from the corresponding rules with the symbol in their right-hand side, for

whom the probability extension to both sides is computed). Similarly, the highest-ranked edge

would be the one corresponding to the extension of the active edge [PRN → .-LRB-. PP -RRB-,

2, 3] (also from rule r4) to the right. We can see it by applying formula 22, considering that TO

and IN are the categories attached to the element w3+1 of the sentence (again, we also include the

relevant positions of the used matrix, Lreachability):

right

edgeP ([PRN → .-LRB-. PP -B-, 2, 3] | G, w) = left_corner* (PP, [TO, IN])= 1.0

 92

Lreachability[28 × 41]:

......
..................

......

01.0PP

TOIN

a

The values of matrix Lreachability indicate that, in our grammar, any component labelled with

category PP ends up deriving a string starting with terminal category IN. Once more, being the

most probable, the latter edge is extracted from the extension heap in order to be extended.

Again, the edge is expecting a constituent PP which does not exist yet and no extension can be

performed. The same would happen with the rest of the edges in the heap, as in this particular

case it happens that all the rules involved combine the terminal symbols labelling the initial

islands with higher level (as to the parse tree) nonterminal symbols. Subsequent bottom-up

extensions do nothing but add new edges which cannot be extended either.

The extension heap therefore empty, the top-down prediction loop must be started from the

existent active edges, again ranked by the probabilities obtained by formulae 21 and 22. The

highest ranked tuple, the prediction <[PRN → .-LRB-. PP -RRB-, 2, 3], right>, would motivate

that, for the only rule containing symbol PP in its left-hand side (PP → IN NP), a new active

edge [PP → .. IN NP, 3, 3] is created. Next, the edge is tried to be combined to the direction of

extension (the right), and this time the attempt if fruitful. A new active edge [PP → .IN. NP, 3,

4] is constructed. Since the chart has been modified, the requirement for returning to a new

extension loop is met, and so on… (we consider we have shown the performance of the

algorithm enough). At this moment, the sentence would be covered as follows:

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

 “The train (to the city) left late yesterday . ”

 DT VBP -LRB- IN DT NN -RRB- NN JJ RB .

 NNP VB TO NNP NNP RB RB NN

 NN JJ

 VBD

 VBN

Without getting into much more detail, the next (more probable) step would imply the

prediction of the nominal phrase (NP) starting at position 5. In two elementary prediction steps

 93

(omitting the additional predictions occasioned by the ambiguity of the terminal categories for

words (5) and (6)), the coverage of the sentence would look like:

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

 “The train (to the city) left late yesterday . ”

 DT VBP -LRB- IN DT NN -RRB- NN JJ RB .

 NNP VB TO NNP NNP RB RB NN

 NN JJ

 VBD

 VBN

Having completed the nominal phrase (label NP, spanning positions 5 and 6), the PRN island,

spanning positions 3 to 7, is also completed. The next step would involve the prediction of the

nominal NP in the position of the main subject, that the existing PRN is modifying (by means of

rule NP → NP PRN, we skip the other rules containing category PRN with which additional

predictions are launched, but that do not finally belong to this first parse). It is important to

remark that in this particular example, the fact that only 3 initial islands exist for an 11 word

sentence (being one of them the final stop, for which no rules in the grammar exist which allow

to extend it directly) entails the abundance of necessary predictions. After these two steps of

prediction, the coverage of the sentence would now be:

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

 “The train (to the city) left late yesterday . ”

 DT NN -LRB- IN DT NN -RRB- NN JJ RB .

 NNP VB TO NNP NNP RB RB NN

 VBP JJ

 VBD

 VBN

Finally, the verbal phrase (VP) which is left in order to find the first complete parse tree is found

by extending to the right the island NP spanning positions 1 to 7, taking into account that there

is an island labelled “.” at a distance 3 to the right. Figure 10 depicts the resulting parse tree.

 94

Figure 10. Local parse tree for the sample sentence

Neighbouring version of the example

We assume that matrixes Result have been pre-computed, their dimensions being:

1. Result2 [69 × 69 × 5]

2. Result1 [69 × 2 × 5]

3. Result2L and Result2R [69 × 69 × 5]

4. Result1L and Result1R [69 × 5]

In the neighbouring approach, we consider also the environment around each island (that is, the

islands and gaps immediately adjacent to it). In order to compute the probabilities of extensions

of the islands, we use the formulae defined in section 3.5.2:

1. Probability of extension of island –LRB- to the left, taking into account that it is the first

island of the sentence (distance 2 from the beginning of the sentence), applying formula

33:

 0.0019)2 ,1(

),/2(),/2(,-)3]/ 2,([21

=−−

=−−+−−−=−− ∑
∈

, LRBResult1

LRBHPLRBPG,w,LRBP
NH

acc
left

island

Result1(extension to the left, that is, we show only the 2-dimension matrix obtained when the

second component equals 1):

 95

...

...

...

...

 0.0040.00190.006LRB

33 2 1 0

a−−

>

We can see the difference with respect to the same case in the local approach. Neighbouring

parameters are more informed than those of the local model (which only considered

grammatical static information), so they are able to capture the possibility that an open bracket

can be extended to the left as soon as it is not the first element of the sentence, while the local

version of the example assigned it null probability.

2. Probability of extension of island –LRB- to the right, considering that there is an island

with category –RRB- at a distance 3, according to formula 28:

2.249)3 ,,

)),/(),/3(

),/(),/3((

),/3(7]) ,33 ,[,3]/ 2 ,([

31

2
3

0

1

1

=−−−−

=−−×−−−

+−−×−−−

+−−−−=+−−−−

∑∑
∈ =

RRBLRBResult2(

LRBHxPRRBHxP

RRBHxPHLRBxP

RRBLRBPRRBG,w,LRBP

acc

NH x
acc

acc
right

island

As it has been said before, no attempt has been made to normalise P, so they cannot be

considered true probabilities but likelihood indicators.

3. Probability of extension of island –RRB- to the left, taking into account that there is

island –LRB- at a distance 3, logically it would be the same as the previous point

(applying formula 29).

4. Probability of extension of island –RRB- to the right, considering it has island “.” to its

right, at a distance 3, using formula 28:

0.0142)3 ., ,

)),/(,.)/3(

,.)/(),/3((

,.)/3(])11 ,37 [.,,]/7 6,([

31

2
3

0

1

1

=−−

=−−×−

+×−−−

+−−=+−−

∑∑
∈ =

RRBResult2(

RRBHxPHxP

HxPHRRBxP

RRBPG,w,RRBP

acc

NH x
acc

acc
right

island

 96

Once more we can see that the neighbouring approach assigns higher likelihood to this case

than the local version, which only considered the existence of one rare susceptible production in

the grammar. Neighbouring parameters contemplate the possibility that a closing bracket can be

extended to the right if a stop is found a certain number of positions to the right.

Following the parsing algorithm described in section 3.2, we would introduce all the pairs

<island, direction-of-extension> into the extension heap, as there are no null probabilities.

According to the probabilities, we would choose to expand islands –LRB- and –RRB-

respectively to right and left first (let’s take for instance –RRB-). We are at the same preliminary

stage we described for the local approach: whatever the island to extend, there are no active

edges with which to combine yet. Therefore, we expand bottom-up the selected island,

considering all productions in the grammar containing –RRB- in their right-hand side. In order

to compute the probability of extension of the created active edges, now we would consider the

adjacent islands. Let’s take for example rule r4: PRN → -LRB- PP –RRB-. In order to compute

the probability of extension of the active edge just created, taking into account that the closer

island to the left keeps on being –LRB- (at a distance 3), formula 31 would be applied:

0.222 ,3

),/3()0(),,/3(

),/3()...(

),,/3(36 2 7 6 .. ([

4

3
4

1

3
3

0
1

,31

4
1

]r-,-LRB-,-RRB Result2L[

LRBPPPprobRRBLRBrP

LRBxPxprob

RRBLRBrP]),,LRB]/G,w,[,,RRB PPLRBPRNP

n
x

n1
Nn

left
edge

n

=

=−−×=+−−−−

=−−−×=

+−−−−=−−−−−−−→

∑∑
=

−
∈≤≤

λ

βββ
β

As an example we present also the probability of extension of the same edge to the right. We

would consider that the closer island to the right is the stop (at a distance 3). As the extension of

active edges contemplates only the probability of extension within the current rule, this would

be a particular case of string γ being empty, and therefore the probability is null (according to

formula 30):

0 ,3 .,

,.)/3()...(

,.),/3(11 37 .7 6 .. ([

4

2
3

0
1

,31

4
1

]rRRB-,Result2L[-

xPxprob

RRBrP]),,]/G,w,[,,RRB PPLRBPRNP

n
x

n1
Nn

right
edge

n

=

=−×=

+−−=+−−−−→

∑∑
=

−
∈≤≤

γγγ
γ

We believe the basic idea underlying the extension has been shown. As the neighbouring model

is far more complex, it would be too complicated to try and continue to follow the example up

to the same stage as the local model.

 97

Chapter 4

Chunking + Island-Driven Parsing

Most of the experiments performed with the different variants of our system are based on using

unambiguous words as candidates to initial islands. As an alternative for identifying these initial

islands (see section 3.4), we have tested different kinds of chunks, obtaining a system which

uses our stochastic island-driven chart parser preceded by a chunking process for obtaining the

original islands. This methodology has shown to improve the parsing performance (see [Ageno

& Rodríguez, 2001a]).

What we propose in this chapter is a way of splitting the parsing process into two steps,

allowing the use of a full-coverage CFG. Firstly, a chunking step, in which a partial parsing of

the input is performed. Secondly, the island-driven parsing step, where a probabilistic

bidirectional parsing is performed starting from islands which are the previously detected

chunks.

The chunking process might be carried out either by a non grammar-based chunker or by

using any shallow parser with a grammar of chunks. In the latter case, this grammar may either

be an input or be automatically learnt. The only requirement is that both grammars (the chunk

grammar and the complete one) are compatible. We use a rather loose form of compatibility, as

it is difficult to compare the languages generated (or recognised) by the two grammars. This is

because, for the full grammar, well formed sentences are sequences of terminal symbols derived

from the axiom, whereas for the chunk grammar, well formed sentences consist of chunks (of

different types), possibly isolated from each other, possibly overlapping and, in general,

interleaved with non-chunk material. Thus, if we denote both grammars as:

G1= <T1, N1, S1, P1> the full grammar

G2= <T2, N2, S2
*, P2

* > the chunk grammar

 98

where S2
* = {S2

1, S2
2, …, S2

 n} is a set of symbols from N2 (corresponding to the n different types

of chunks), and P2
* = { P2

1, P2
2, P2

n} is the set of production sets (i.e., each type of chunks owns

its corresponding set of productions), we say that both grammars are compatible iff:

1. T2 ⊆ T1

2. N2 ⊆ N1

3. ∀ S2
i∈ S2

*, S2
i is accessible from S1

In our experiments, we have used a grammar of chunks automatically extracted from the initial

grammar, and we use a version of our own parser to perform this first step. The overall process

is depicted in figure 11 (a particularisation of figure 1 in section 3.1).

Our proposal takes advantage of both a syntactically motivated way of detecting islands

(instead of essentially lexical as in previous approaches) and a stochastic way of guiding the

parsing process (that is, which islands should be extended and in which direction). Non-

ambiguous words have been considered our initial islands in the first proposal, saving at the

same time the necessity of a tagger (see chapter 5). However, we intend to introduce a more

informed method to choose these islands, such as using base noun phrases (hereinafter NPs) as

candidates. Nevertheless, the complexity introduced by this additional step should be minimised

so that it is worth the improvements obtained.

Figure 11. A two-steps approach to parsing

We have approached the methodology in two phases. Firstly, we have just considered base NPs,

that is, according to the definition above, S2
* owns a unique element NP. However, base NPs

(they are defined below) are just one kind of chunks. Other classes might be considered as well

 99

([Abney, 1996]). Our results with base NPs have then been easily extended to other types of

chunks in a second phase.

Finding base NPs is a sensible first step for many Natural Language Processing applications.

Although the task is relatively simple, its difficulty stems from the attempt to obtain a high level

of accuracy. However, as we will show in section 5.9, this accuracy is not that critical anymore

when base NPs are just going to be used as the input for our island-driven parser. In other

words, our proposal does not rely on being able to detect all possible base NPs, and conversely,

the base NPs detected will be acceptable only if they drive to an island-driven analysis. Thus,

we have implemented an extremely straightforward algorithm to find base NPs which, despite

its simplicity, accomplishes an outstanding improvement in the results regarding both efficiency

and quality. Several variations of this algorithm have been tested.

We take our base NPs´ definition from [Cardie & Pierce, 1998], that is, we define base NPs

to be simple, nonrecursive noun phrases (i.e., not containing other noun phrase descendants).

However, we will not apply their method for selection of the chunks. Our algorithm is

composed by three steps:

1. A base NP grammar, a subset of our initial grammar containing only those rules whose

left-hand side is a nonrecursive NP, is extracted.

2. A partial parse to find all possible base NPs for each sentence in the input corpus is

performed by a chunker. For the sake of comparison, PoS for words in the test set are

also ambiguous, so eventually many of these base NPs may not be correct.

3. An eventual process of selection of the obtained chunks, according to their types (see

next paragraph), is carried out.

Three types of base NPs have been distinguished (see figure 12), namely the maximal NPs (the

longest ones out of those starting at a certain position of the sentence), the overlapping NPs

(those overlapping with previous maximal NPs), and the internal NPs (the rest of the NPs

extracted). Selection of chunks has been performed considering these three classes, so that we

have evaluated, for both stochastic models, the following alternatives:

1. Taking every base NP extracted, hereinafter local+chunks1 and neighbouring+chunks1

respectively.

2. Selecting only maximal and overlapping NPs, henceforth local+chunks2 and

neighbouring+chunks2.

3. Culling only those maximal NPs, hereinafter local+chunks3 and neighbouring+chunks3

respectively.

 100

Figure 12. Example of kinds of base NPs

As mentioned above, in a second step other types of chunks have been introduced. We have

considered the types described in [Buchholz et al., 1999], namely NP, VP, PP, ADVP, and

ADJP. Thus, S2
* owns five elements. Independently of incorporating the possibility of different

chunk labels, the three possible relationships among them defined above still remain: a nominal

chunk starting at position 2 and ending at position 5 is considered to overlap with a verbal

chunk starting at position 3 and ending at position 6, and an adjectival chunk starting at position

4 and ending at position 6 would be internal to it, regardless of the different categories of the

chunks. Therefore, we consider the three types of chunks described above, but in order to

distinguish them from the first version with only base NPs, hereinafter we will denote these

strategies local/neighbouring+chunks1/2/3-total. Local/neighbouring+chunks1 strategy, which

initially selects all chunks in the sentence labelled as NPs, should not be therefore confused

with this new set of strategies.

 101

Chapter 5

Evaluation

This chapter covers the main experiments and results obtained by using our system in any of its

variants. We hasten to emphasise that our experiments have been aimed at comparing firstly, in

the same environment, the performance of our island-driven methodology with both the

classical bottom-up and top-down methodologies28. Secondly (but not less important), the

comparison, again into the same framework, of the performance of the local approach versus the

neighbouring approach has also been tackled.

By classical bottom-up (henceforth also BU) we mean a chart parser which starts from the

input sentence and operates by combining the edges of the chart bottom-up and left-to-right.

As to top-down (hereinafter TD as well), we mean the chart parser which starts from the

representation of a sentence and recursively decomposes this representation into its

subconstituents, until deriving specific word classes that can be checked against the actual input

sentence. The top-down decomposition is also performed left-to-right (the leftmost symbol is

the one to be either matched against the next word or rewritten according to the grammar).

Both methodologies have been optimised in such a way that, before creating a new

constituent, a check is made to see if a constituent with the same label and spanning the same

positions (though eventually different to the one being constructed) is already on the chart. If so,

it is used instead of constructing the constituent all over again. This is a significant remark

taking into account the following characteristics of our evaluation:

1. For both baseline methodologies, we consider that the parse returned by the method

is the first analysis found, so that the process will stop as soon as this happens,

possibly leaving items in the agenda.

2. The evaluation is performed in terms of number of created edges.

28 Thanks to the anonymous reviewer who remarked the necessity of including not only bottom-up but
also top-down parser as baselines.

 102

3. The sentences to be analysed are not morphologically disambiguated, so even in the

case of bottom-up parsing we will find the case of trying to construct the same

constituent more than once.

We have started by evaluating the performance of the system using toy grammars and corpora.

The results attained by these preliminary experiments have been useful to get an insight into the

performance of the system and adopt the main heuristics. All this work is summarised in section

5.1.

The next sections (up to the end of the chapter) describe the experiments performed over real

corpora, using real grammars. Thus, section 5.2 is devoted to the description of the corpora and

grammars employed.

Sections 5.3 to 5.10 describe the series of experiments we have carried out in order to

evaluate our methodology. Particularly, section 5.3 devotes to the average general results for

both corpora (Spanish and English). When intending to analyse more thoroughly the results, the

necessity of breaking into smaller pieces imposes. That’s why in section 5.4, detailed results are

described by dividing the sentences in the test set according to several criteria, such as the

length of the sentence, the density of islands, or the ambiguity rate.

The fact that generally better results are attained by the local model (versus the neighbouring

model) has obliged us to investigate on heuristics that allow us to improve the performance of

the latter model. These heuristics are basically different forms of hybrid methodologies by

combining neighbouring and local model. The first kinds of hybrids, described in section 5.5,

consist in backing off from neighbouring to local at a certain point of the analysis process,

according to certain criteria. The second kinds consist in using a series of thresholds for the

different types of neighbouring probabilities used (see section 3.5.2), so that, whenever the

neighbouring probability is lower than the concrete threshold, local probabilities are used. This

latter heuristic is described in section 5.6. Section 5.7 explains the last way in which we have

tried to improve neighbouring results, by applying smoothing techniques in order to try and

overcome the data sparseness from which the method suffers.

Section 5.8 is devoted to the evaluation of the quality of the results of the different

methodologies devised (apart from the performance of each one). This quality is measured using

two methods, namely the average probability of the analyses obtained by each method, and the

average accuracy of these analyses. The accuracy is computed by means of the PARSEVAL

measures (two variants of both precision and recall, described in section 5.8, as well as the

consistent brackets recall rate).

Up to this moment, all evaluations have been performed using the non-ambiguous words as

the island selection technique. Section 5.9 describes both the performance and accuracy

obtained by the variation of the methodology described in chapter 4, that is, the one using

 103

chunking as a method for the selection of the islands. Both methods for selection of islands

(non-ambiguous words and chunks) have been compared, as well as the performance of the

latter method versus both baselines, bottom-up and top-down.

Finally, section 5.10 is devoted to the series of experiments developed in order to find out

whether certain categories (or sets of categories) may be optimal as initial islands, defining then

an additional method for island selection. The new methodology is also compared with both the

two baselines and the chunks (previous section) approach.

Table 1. The toy grammar

Rule Probability
S ⇒ EN 1.0
EN ⇒ GN EN-NOSUBJ 0.4
EN ⇒ EN-NOSUBJ 0.3
EN ⇒ EN-NOOD 0.3
EN-NOSUBJ ⇒ VERB GN COMPS 0.4
EN-NOSUBJ ⇒ VERB GN 0.6
EN-NOOD ⇒ GN VERB COMPS 0.4
EN-NOOD ⇒ GN VERB 0.6
GN ⇒ GN1 0.9
GN ⇒ GN1 REL 0.1
GN1 ⇒ GN2 0.6
GN1 ⇒ GN2 ADJS 0.2
GN1 ⇒ GN2 GP 0.2
GN2 ⇒ DET nom 0.5
GN2 ⇒ nom 0.2
GN2 ⇒ pronom 0.3
DET ⇒ art 0.6
DET ⇒ pos 0.1
DET ⇒ dem 0.1
DET ⇒ quant 0.1
DET ⇒ indef 0.1
REL ⇒ que EN-NOSUBJ 0.5
REL ⇒ que EN-NOOD 0.5
ADJS ⇒ adj ADJS 0.2
ADJS ⇒ adj 0.8
VERB ⇒ VERB1 0.8
VERB ⇒ neg VERB1 0.2
VERB1 ⇒ tv 0.7
VERB1 ⇒ PERIF 0.1
VERB1 ⇒ vhaver part 0.1
VERB1 ⇒ aux inf 0.1
PERIF ⇒ aux prep inf 0.4
PERIF ⇒ aux ger 0.6
COMPS ⇒ GP 0.7
COMPS ⇒ GP COMPS 0.3
GP ⇒ prep GN 1.0

 104

5.1 Preliminary Experiments

A first insight on the possibility of using island-driven chart parsing for syntactic corpus

analysis was necessary, so the behaviour of our methodology has been initially evaluated on

simple data. As to the data sources, we will skip the even more simple previous grammars

explored (between 5 and 12 rules, tested on fictitious sentences), and focus on the results

obtained for the toy context-free grammar showed in table 1, an extremely simple grammar for

Spanish composed by 36 rules (with 15 nonterminal symbols and 17 terminal symbols29), to

whom probabilities have been manually added. From this SCFG, the reachability tables needed

in order to compute the local approach have been calculated (see section 3.5.1).

The system has been tested on a small corpus of 100 sentences extracted from the [Cervell et

al., 1995] Spanish corpus. The sentences have been culled in such a way that they are

grammatical according to the grammar, its average length being 10 words. The initial purpose

was to compare the performance of the baseline approaches with that of our island-driven

methodology, as well as to evaluate the influence of the initial island selection on the

performance of the latter. Hence, although we use the criterion described in the previous section

for this selection (choose as islands those non-ambiguous words in a morphologically labelled

but non tagged corpus), we will also test the possibility of both a non-exhaustive use of these

islands and the use of no selection criterion at all. Therefore, the test corpus has been analysed

using the following methodologies:

• Bottom-Up strategy.

• Top-Down strategy.

• Island-Driven local approach, using as initial island just one element (the first one,

which could be considered a first stage of the bidirectional method, still a little left-

to-right-oriented) from the set of non-ambiguous words.

• Island-Driven local approach, conventionally applied, with the complete set of non-

ambiguous words as initial islands.

• Island-Driven local approach, randomly selecting both the number of initial islands

and the islands themselves out of all the words in the sentence (which implies that

certain initial islands might be ambiguous).

29 We use the conventional terminology in which upper-case symbols represent nonterminals and lower-
case symbols, the terminals of the grammar.

 105

The island-driven neighbouring model has not been tested in these preliminary experiments, as

the training of the model would have required the existence of a large enough corpus of

grammatical sentences which, obviously, is not available for such a simple grammar.

Table 2. Comparative results between unidirectional and island-driven approaches

Sentence length

Island-Driven
one island

Island-Driven
all islands

Island-Driven
random islands

Bottom-Up Top-Down

L < 8 words
Inactive edges 25 20 48 64 27
Active edges 81 71 139 120 136
All Edges 106 91 187 184 163

7 w < L < 13 w
Inactive edges 122 80 123 182 86
Active edges 179 164 269 276 243
All Edges 301 244 492 458 329

12 w < L < 20 w
Inactive edges 185 112 146 236 102
Active edges 310 240 258 333 375
All Edges 495 352 404 569 477

The average number of edges needed in order to find the first parse with each method are shown

in table 2. The corpus has been divided into three subsets according to different sentence lengths

(up to 7 words, between 8 and 12, and larger than 12 words), so as to observe also the influence

of this factor in performance. Several immediate conclusions can be drawn from these data:

• The better performance of the top-down methodology compared to bottom-up was

predictable, taking into account that the ambiguity in order to test the islands

performance has been introduced from the lexicon. Moreover, it has been observed

that, the higher the ambiguity rate, the larger the difference between both

unidirectional methodologies.

• Whenever a sound criterion for island-selection is applied, island-driven approaches

outperform unidirectional strategies. The only exception is the selection of just one

island for sentences with more than 12 words, in which island-driven methodology

presents slightly worse results than top-down approach. We conjecture that this

happens because, for larger sentences, the selection of just one island implies a

higher percentage of top-down prediction needed in order to cover the rest of the

sentence, which in turn implies the corresponding edge overhead. Moreover, the

difference between island-driven and unidirectional methodologies increases with

the length of the sentences, which is a promising fact considering we are aiming at

the analysis of real-size sentences.

• The random selection approach performs quite poorly, even compared to the

unidirectional strategies, the only exception being the case of sentences with more

 106

than 12 words. The fact that this latter case obtains results 18% better than the same

strategy with smaller sentences shows to what extent the results themselves are not

indicative. However, what we do can conclude from these data is the influence of

the island-driven selection criterion in the parser performance.

5.1.1 Island Distribution Measures

So far, we have just tested the extreme options of island-selection (either one or all islands). A

more thorough study of the intermediate cases for this corpus has shown that:

1. The average number of edges decreases as the number of islands selected increases

in 46% of the sentences.

2. The average number of edges decreases as the number of islands selected decreases

in 6% of the sentences.

3. 22% of the sentences do not present a concrete trend.

4. The rest (26%) of the sentences have only one island, so they are not representative.

However, if we select the optimum combination for each number of islands selected, we find

that:

1. The optimum number of edges decreases as the number of islands selected increases

in 15% of the sentences.

2. The optimum number of edges decreases as the number of islands selected

decreases in 11% of the sentences.

3. 48% of the sentences do not present a concrete trend.

4. The rest (26%) of the sentences have only one island, so they are not representative.

5. Within the set with more than one island (74%), the optimum number of edges is

found when selecting all islands in 18% of the sentences.

6. Within the set with more than one island (74%), the optimum number of edges is

found when selecting all but one, two or three islands (when possible) in 52% of the

sentences.

7. The rest of the sentences (30%) present the optimum number of edges when a lower

number of islands is selected.

From the previous results, it follows that a more accurate study of the intermediate cases is

necessary, including an analysis of which particular islands from the set (if any) should be

selected, according to criteria such as the position in the sentence, the sort or part of speech, etc.,

 107

so as to increase performance. With such a purpose, we have defined the following three

measures, which intend to model the distribution of the islands in the sentence:

1. Gap Coverage. If we define a semi-gap to be that gap at the very beginning or end

of a sentence, and we define that a gap is covered when the islands surrounding it

are selected (in case it is a semi-gap, only one island is needed to completely cover

it, two islands are needed for the rest of the gaps in the middle of the sentence), the

gap coverage can be in turn defined as the percentage of borders gap-island (or

island-gap) covered. Two types of coverage are computed:

(36)
totalislandgap

covered islandgap# C1
 # −

−=

(37)
selectedislands

C1
selectedislands

totalislandgap
covered islandgap#

 C2
−

=
−

−
−

=
#

#

 #

Where the total number of gap-islands is 2∗ # gaps + # semi-gaps.

In case all the words in the sentence are islands (there are no gaps to cover),

coverage is defined to be 1.

2. Island Dispersion. If we define a continent to be a set of adjacent islands, and a

taken continent to be a continent in which at least one island is selected, two types

of dispersion can be in turn defined as:

(38)
totalcontinents

continentstaken# DI1
 #

−=

(39)
selectedislands

DI1
selectedislands

totalcontinents
continentstaken#

 DI2
−

=
−

−
=

#

#
 #

Dispersion measure takes into account whether a continent contains selected

islands, independently of their number.

3. Island Density. Density measure considers the percentage of islands selected in each

continent. Two versions of this measure are defined:

(40)
totalcontinents

lengthcontinentcontinent inselectedislands
 DE1 continent

 #

 #∑ −
=

 108

(41)

selectedislands
DE1

selectedislands
totalcontinents

lengthcontinentcontinent inselectedislands

 DE2
continent

−
=

−

−

=

∑

#

#

 #

 #

A new series of experiments has been carried out that selects as initial islands (out of the set of

non-ambiguous words), the first combination of islands which would maximise each of the 6

measures defined above30. The same 100 sentence corpus has been analysed with the island-

driven local approach, obtaining the average results listed in table 3. All the island-driven

approaches outperform the unidirectional ones, though the best results are obtained by the

combinations of islands chosen by means of criteria C1 and DE1. However, the low 6%

improvement obtained with respect to the option which selects all islands might not seem

significant enough for the additional effort in the selection to be worth.

Table 3. Comparative results for the island selection criteria based on measures

Island-Driven
All

islands
C1 C2 DI1 DI2 DE1 DE2

Bottom-
Up

Top-
Down

Edges 224 211 304 263 350 210 302 391 346

An unexpected fact is the systematic worse behaviour of the criteria which scale the result by

the number of islands selected (C2, DI2, and DE2). We have tried to improve the values

obtained by these measures, looking for a more relevant improvement obtained by this criteria

than the one achieved by C1 and DE1. A modification has been devised that would not give that

much weight to this feature, multiplying the quantity by a factor α (α ≤ 1). Thus, instead of

formulae 37, 39, and 41, we would define, respectively, formulae 42, 43, and 44:

(42) C2’ = C1 / α ∗ # islands-selected

(43) DI2’ = DI1 / α ∗ # islands-selected

(44) DE2’ = DE1 / α ∗ # islands-selected

The obtained results are shown in the upper part of table 4, for values of factor α ranging from

0.25 to 1 (in the latter case, the values will correspond to the previous version with no

factorisation). It can be observed that the changes are minimum, and always increasing the

average number of edges with the value of factor α. An additional factorisation has then been

tested, modifying the previous formulae in such a way that, for α = 0, the values will correspond

 109

to measures C1, DI1, and DE1, while for α = 1, the values will continue to be equivalent to C2,

DI2, and DE2. The new formulae are the following ones:

(45) C2’’ = C1 / 1 + (α ∗ # islands-selected − 1)

(46) DI2’’ = DI1 / 1 + (α ∗ # islands-selected − 1)

(47) DE2’’ = DE1 / 1 + (α ∗ # islands-selected − 1)

The corresponding results are listed on the lower part of table 4. It can be observed that the

difference between the values obtained for the different α is more significant, but for all the

three measures there is still a clear tendency of increase of the average number of edges as the α

do, no sign of improvement with respect to the original measures.

Table 4. Comparative results for the selection criteria based on factored measures

Edges α = 0 α = 0.25 α = 0.50 α = 0.75 α = 1.0
C2’ --- 304 304 304 304
DI2’ --- 338 338 338 350
DE2’ --- 301 301 301 302
C2’’ 211 218 272 270 304
DI2’’ 263 263 263 263 350
DE2’’ 210 241 264 263 302

An additional test was carried out in which all three measures were lineally combined as β∗ C1 +

δ∗ DI1+ ε∗ DE1 (with 0≤ <β, δ, ε ≤ 1). The idea was to try and find the optimum combination

<β, δ, ε> which minimised the average number of edges. It was observed that some measures

had more influence than others (the concrete ranking was first DE1, second C1, and third rank

for DI1, as could be expected from the results in table 3), so that, for instance, whenever DE1

was not zero, the average number of edges returned by the resulting criterion was always the

same as if the only measure considered was DE1. Therefore, not being able to improve previous

results, the line was not further explored.

5.1.2 Island Categories

The previous section pointed out that another factor to consider when trying to increase

performance through the initial island selection might be the particular category of the words

(and their relationships to the grammar). In order to explore this line, we have defined the

following two measures:

30 In the case of measure C1, value 1.

 110

1. NR(category) is the number of occurrences of category in the righthand sides of the

rules of the grammar.

2. INR(category) is the number of rules that a category may eventually fire (either

directly of indirectly).

Whenever we are dealing with a combination of more than one island, both NR and INR values

are taken to be the addition of the individual values for each category. The sentences of a subset

of our test corpus have been analysed, for each possible number of selected islands, using as

initial islands those combinations producing the maximum and minimum values of NR and INR.

There does not seem to be a systematic behaviour, but the trend indicates that the combinations

with minimum NR values produce a lower number of edges than those with maximum NR

values, and the difference is even higher if we compare, for the same number of islands

selected, the combinations with minimum INR versus the ones with maximum INR. These

results are expectable, since one might think that a lower degree of ambiguity in the grammar

should produce less edges, as the search space is being pruned.

Since the previous experiments have shown that the best results are often obtained by a

selection of not all islands but (informally speaking) almost all of them, an additional

experiment has been conducted in which a subset of the test corpus (those sentences with more

than two original islands) is analysed by the island-driven parser, using the following

combinations of initial islands:

1. The combination selecting all islands (all nonambiguous words in the sentence).

2. Those combinations taking all but one island. According to the island discarded, four

variants are considered:

� Discard the island with the highest NR.

� Discard the island with the lowest NR.

� Discard the island with the highest INR.

� Discard the island with the lowest INR.

3. Those combinations taking all but two islands. According to the two islands

discarded, the same four variants of point 2 are considered.

Table 5. Comparative results for the island selection based on measures NR and INR

All but one island All but two islands All
islands max

NR
min
NR

max
INR

min
INR

max
NR

min
NR

max
INR

min
INR

Edges 271 299 309 300 306 341 342 308 333

Table 5 shows the corresponding results (where “max NR” column indicates discarding the

island with the highest NR, and so on). The trend described above is corroborated, since the

 111

average number of edges is smaller if the discarded islands present higher NR or INR values.

However, it can be observed that the optimum number of edges is the one obtained by the

approach selecting all nonambiguous words as islands. Therefore, these measures by themselves

do not seem to be valid as criteria to discard some of the original islands. However, a last

experiment was carried out trying to combine the optimum results obtained by the maximum

coverage approach defined in section 5.1.1 (see measure C1 in table 3) with the fact that

minimum values of (specially) INR provide a good selection criterion whenever not all islands

are chosen. Therefore, assuming that a complete coverage is desirable, but better if not at the

prize of taking all islands, we will analyse the sentences in the complete corpus set with the

combination of initial islands c satisfying the following requirements:

1. Combination c (of n islands, value INR = v) gives a value of coverage C1 = 1.

2. No combination c1 of n1 islands, n1 < n, gives a value of coverage C1 =1.

3. No other combination of n islands gives a value INR < v.

The resulting average number of edges is 241 (12.4% more than in the case where just the

maximum C1 criterion was employed), which finally discards completely the selection based on

the grammatical ambiguity of the categories.

Certainly, many of the experiments performed have not lead to significant results. In fact,

some of them have just been outlined or have not even been included in this thesis. Yet, what

can be drawn from these preliminary experiments, both from the global figures as well as from

the particular cases with have been examined, can be summarised as follows:

1. The island-driven methodology is definitely worth it with respect to the

unidirectional strategies.

2. The significance of the criterion for the selection of the initial islands cannot be

underestimated.

3. The nonambiguous selection criteria fixed, it looks like it generally benefits not to

select all nonambiguous islands, but those immediately surrounding gaps and non-

contiguous (dispersed islands). However, it is difficult to generalise this point to any

grammar and corpus, and the improvement obtained (versus the case of selecting all

islands) is not relevant enough.

4. The influence of the concrete categories when selecting initial islands is uncertain.

The corollary to these conclusions might be that it is complicated to assure to what extent these

facts can be extrapolated to other grammars and corpora, in particular to real grammars and

corpora. This is what we will be intending to do in the rest of the chapter.

 112

5.2 Experiments on Real-Size Corpora: Setting

If the temporal efficiency of the parser is attributable to its architecture, its effectiveness is

largely a function of the grammar. The grammar is viewed, not as a linguistic description, but as

a programming language for recognisers. This is an important remark for, as it will be shown

below, the results are highly dependent on the quality of the grammar used. Our methodology

does not supply a specific knowledge source (as in [Collins, 1997]), but it can be applied to any

existent SCFG. As seen in section 5.1, we have tested it with several artificial grammars,

obtaining some initial conclusions. However, we wished to compare our strategies using a

grammar as close as possible to a real one. These experiments, which have been described in

[Ageno & Rodríguez, 2000] and [Ageno & Rodríguez, 2001b], evaluate our methodology both

on a Spanish corpus and grammar as well as on an English one. Subsections 5.2.1 and 5.2.2

describe both corpora and grammars.

The first criterion chosen for the selection of the islands has been to consider as initial

islands those non-ambiguous words. As in the previous section, efficiency has been measured in

terms of the number of inactive and active edges created during the parsing process, that is, the

ones required to find the first parse.

5.2.1 Lexesp Corpus

On the one hand, we have used the Lexesp31 Spanish corpus, 5.5 Mw of written material

including general news, sports news, literature, scientific articles, etc. (for a deeper description

see for instance [Sebastián et al., 2000]). Lexesp corpus aims to be a balanced and general

sample of modern Spanish language usage. As such, the length of the sentences is variable

(though long sentences are usual), subordinate clauses appear very frequently and there are

several types of text such as dialogues or narrations which present a broad variety of different

(and eventually complex) sentence structures. Lexesp corpus is not syntactically annotated, but

simply morphologically analysed (and not disambiguated32), and sentence boundaries are not

indicated either.

Lacking a complete grammar for Spanish, we have been obliged to use an extension of an

available chunk grammar. In particular, the original chunk grammar was able to recognise:

1. Nominal, adjectival, verbal, prepositional, and adverbial phrases.

31 Constructed during Lexesp II project (‘Base de Datos Informatizada de la Lengua Española’, Special
Action APC96-0125), a multidisciplinary effort headed by the Psychology Department of the University
of Barcelona, in collaboration with the Psychology Department of the University of Oviedo.
32 In fact, though we have not used it, a small fragment (about 100Kw) of Lexesp corpus has been

 113

2. Lexical and syntactic coordination (with some ambiguities).

3. Subordination marks.

4. Check of agreement within nominal phrases.

This grammar was then extended by means of the addition of 18 sentence-level rules in order to

be able to recognise complete sentences. The final grammar included 704 rules, 123

nonterminal symbols and 310 terminal (Eagles compliant) ones ([Castellón et al., 1998]). The

complete tag set is described in Appendix A, and the nonterminal categories are described level

by level in Appendix B.

As mentioned, our methodology belongs to the type of supervised methods (see section

2.2.1), that is, we need a syntactically annotated corpus in order to learn the stochastic

parameters of our two models. Hence, a sort of small treebank had to be created on the way. The

first problem arising in such a complex corpus as Lexesp was the determination of the syntactic

boundaries of the sentences. A highly simple sentence splitter, mainly based on the detection of

certain punctuation signs, was used for this task. Secondly, the sentences had to be syntactically

analysed, for which the bottom-up chart parser was used (see the end of section 3.2). It is

important to emphasise that no subsequent manual correction at all has been performed after any

of both processes. With an obtained training corpus of 10,000 sentences, the learning process

consisted of the following two phases:

1. The probabilities attached to the context-free grammar rules were firstly learnt by

means of the training corpus. We use the Maximum Likelihood Estimation procedure

already described in section 2.2.1.1 (formulae 1 and 2).

2. The stochastic parameters for both models were learnt from both the training corpus

and the previously obtained SCFG. As regards the local model, the data structures

containing the elementary probabilities, the Lreachability and Rreachability tables

can be obtained directly from the SCFG (see section 3.5.1). As to the neighbouring

model, in a first step, we use an extension of the aforementioned Maximum

Likelihood Estimation procedure in order to calculate, from the training corpus, the

probabilities of length distributions in the right-hand sides of the SCFG productions

(length in terms of number of terminal symbols). This step produces a SCFG

extended with this additional information (say SCFG+d). The data structures

containing the elementary neighbouring probabilities, matrixes M1 to M4 (see

section 3.5.2) can then be computed from this SCFG+d. Finally, matrixes Result,

manually PoS-tagged, and the rest has been automatically tagged using the RELAX PoS-tagger.

 114

containing the definite neighbouring parameters, are computed from M1 to M4 (see

also section 3.5.2).

A corpus of 1,000 sentences was reserved for testing. The average length of the sentences in the

test set was 13.15 words. This low average length is due to the fact that the sentences in the test

set had to be covered by the grammar, and the low quality of the grammar implied that the

coverage was very poor, and most of the longer sentences were not recognised.

As mentioned above, the first criterion chosen for the selection of the islands has been to

consider as initial islands those non-ambiguous words. Therefore, the analysis of these

sentences must be performed without previous PoS-tagging.

5.2.2 Penn Treebank Corpus

On the other hand, we have used the Wall Street Journal portion of the English Penn Treebank

II ([Marcus et al., 1994]), which comprises 1.25 Mw of 1989 Wall Street Journal material, and

that hereinafter will be referred to as PTB-II. Being only journal articles (specifically belonging

to the economics domain), the sentence structure is far more homogeneous. The corpus is

annotated with a labelled bracket structure that allows for the extraction of predicate-argument

structure. Nevertheless, all trees have been stripped off their semantic tags, co-reference

information and quotation marks.

As we also lacked a complete English grammar, we adopted the typical solution (when

dealing with PTB-II) consisting in extracting the grammar underlying the bracketing. The

obtained grammar had 26 nonterminal symbols and 45 terminal ones (the list of part-of-speech

tags is described in Appendix A, while the nonterminal labels are summarised in Appendix B).

However, its size (17,534 rules) was simply too big to contemplate for our parser. Therefore,

and given that many of the rules occur so infrequently, we have applied a simple thresholding

mechanism to prune rules from the grammar ([Gaizauskas, 1995]). This mechanism consists

simply in removing all rules that account for fewer than n% of rule occurrences of rules in each

category. In our case we have used n=22, obtaining a grammar with 941 rules and the same

number of terminal and nonterminal symbols. This reduction of the grammar has shown to keep

a coverage of 60% over the test corpus. This reduction of coverage does not affect our

experiments, inasmuch as our goal is to compare our methodologies with our baselines in the

same framework, that is, given a grammar, and not to test grammar accuracy.

In order to estimate the parameters of both stochastic models (plus the probabilities attached

to the grammar rules), a training corpus of 48,208 sentences directly extracted from the treebank

has been used. The training methodology is exactly the same as the one already described for

Lexesp in the previous section (points 1 and 2). While local parameters can be considered

 115

accurately learnt, neighbouring parameters are far more complex, which implies the sparseness

problems that will be described below. A corpus of 1,000 sentences extracted randomly from

sections 13 and 23 (from those sentences covered by our grammar) was used for testing.

Average length of the test set is 21.5 words.

As regards the selection of the initial islands (non-ambiguous words in the first version of the

evaluation process), it has been mentioned in the previous section that for corpus Lexesp we

were already dealing with a categorised but non-tagged corpus. However, for the Penn Treebank

(already morphologically disambiguated), we had to perform a previous process of ambiguation

of the input sentences (that is, add to each word all its possible tags). The coverage of our

reduced grammar subsequently increased, so that in a significant percentage of the cases we

have been able to parse the sentences due to the process of ambiguation of its terminal

categories. It is important to remark that, on the other hand, the possibility of incorrect decisions

during the parsing process has also increased.

5.3 Global Results

Overall figures corresponding to both corpora (using both pure local and neighbouring

approaches) are shown in table 6. In general, the use of SCFGs has proven to be relatively

successful if an appropriate grammar for a given language is available, along with a large

enough labelled corpus of written sentences so that production probabilities, as well as the rest

of the stochastic parameters of the models, can be estimated with acceptable precision.

As stated in [Allen, 1995], the following three features can be considered to make a good

grammar for a language:

• Generality, that is, the range of sentences the grammar is able to analyse correctly.

• Selectivity, i.e., the range of non-sentences that the grammar identifies as

problematic.

• Understandability, that is, the simplicity of the grammar itself.

In the case of the Spanish experiments, unfortunately we have had to deal with the following

drawbacks:

1. A grammar lacking generality: we had to deal with a low quality grammar, for the

more complete grammar for Spanish we had available was simply a chunk grammar,

coarsely extended so as to allow us to recognise complete sentences. Spanish being a

 116

free word order language, the importance of having available accurate sentence level

productions is higher than in English.

2. An extremely large tag set (310 tags, see Appendix A), mainly because each main

syntactic category has several variants codifying features such as gender, number,

person, tense, etc. This fact leads to the existence of a high percentage of unary rules

whose only function is to group together the tags corresponding to the same main

syntactic function by means of a pre-terminal, in order to avoid a combinatorial

explosion of rules. The understandability of the grammar is then highly reduced.

3. The lack of a treebank for such a grammar (or any!). Therefore, in order to perform

the learning process, we had to previously segment the training corpus into

sentences, analyse it using the bottom-up parser, and then utilise such parses as the

training set. This means that both the probabilities attached to the context-free

grammar as well as the stochastic parameters attached to both models reflect the

behaviour of the bottom-up parser instead of the one corresponding to the correct

parses. Somehow we have been, as you would put it in Spanish, “throwing stones at

our own roof”.

In fact, the application of the final version of the grammar to the complete Lexesp corpus did

not get to 10% of coverage. Moreover, this small percentage which was recognised

corresponded to the simpler and shorter sentences. That is why the average sentence length of

the training and test corpus is far smaller than in the case of the English experiments, despite the

average length of Spanish sentences is longer than that of English sentences.

Table 6. Comparative results for corpora PTB-II and Lexesp and the pure approaches

 Local Neighbouring Bottom-Up Top-Down
PTBII

Inactive edges 2569 1488 2525 1627
Active edges 13777 14402 54638 19301
All Edges 16346 15890 57163 20928

Lexesp
Inactive edges 116 120 143 116
Active edges 648 959 645 5669
All Edges 764 1079 788 5785

These facts have shown to be relevant for the global results: although top-down baseline is

widely overcome by all the other methods, we find that the local method hardly gets to

outperfom the baseline bottom-up (improvement of 3%). Moreover, the most striking thing is

the larger difference between a more informed method such as neighbouring and the bottom-up

baseline. A more detailed analysis suggests that, on the one hand, the neighbouring method,

whose parameters are more complex, is more prejudiced by such a defective learning process,

 117

and on the other hand, the shape of the grammar, with a high percentage (65 %!) of unary rules,

particularly those of the form “preterminal → terminal” (82% of the unary ones), prevents from

performing a suitable step of (particularly initial) extension of islands, which affects the rest of

the parsing process.

As to the English experiments, the results are really good, both models outperforming by far

both baselines. A problem with inducing grammars from the Penn Treebank is that, because the

trees are very flat, there are lots of rare kinds of flat trees with many children (see the part of

section 2.2.1.1 above devoted to tree-bank grammars and in particular to PTB’s scarce

generalisation capacity). In our case, the flatness itself is a benefit for our methodology, as well

as the bigger length of the right-hand sides of its rules (3.59 elements in average versus 1.62 for

Lexesp), as it allows the expansion of several islands at the same level. However, the variety of

trees provokes that the neighbouring method suffers from data sparseness.

As mentioned in section 3.3 and justified in section 3.5.2, by strict application of

neighbouring probabilities we do not get a full coverage, making necessary a back-off to other

exhaustive method (that is, local, bottom-up, or top-down). Using the same test set, as expected

neighbouring plus local as a back-off improves by far the results of neighbouring plus bottom-

up (for PTB corpus, the first alternative obtains an average number of edges of 15,890 versus an

average of 25,460 edges obtained by the latter option). Therefore, henceforth (as well as in the

table above) by neighbouring we will mean the neighbouring model plus a back-off to local

method when no analysis is found. We have also applied the heuristics mentioned in section

3.5.2 aimed at improving neighbouring performance. In particular, the aforementioned

threshold for the neighbouring predictions has been empirically set to 0.1 (avoiding the creation

of around a 7% of unnecessary edges).

Finally, and although it is not our subject of interest here, we would like to remark about

quite an astonishing found, which is the difference in the performance of top-down baseline

with respect to bottom-up for both corpora and grammars. As stated in [Klein & Manning,

2001], top-down filtering introduces a penalty regarding the number of edges, as rules whose

left-corner cannot be built are anyway introduced in the chart. This fact was apparent when

dealing with Spanish corpus Lexesp (and almost led us to discard testing the top-down baseline

for the Penn Treebank corpus!), and the problem got worse because of the particular shape of

the grammar (and consequently the parse trees) mentioned above: small production right-hand

sides and parse trees with more levels, which would oblige the parser to operate for quite some

time, rewriting rules from the grammar before the actual words in the sentence get to be

considered. However, one significant advantage of top-down methods (see for example [Allen,

1995]) is that they will never consider word categories in positions where they could not happen

in a grammatical sentence. In the case of our modified (ambiguated) Penn Treebank corpus,

where (as mentioned above) parse trees are flatter, this feature has been critical, considering we

 118

are analysing highly ambiguous input sentences. When parsing such sentences, the bottom-up

parser must take into account all senses of each word and construct structures that may not lead

to a grammatical sentence. This justifies the far better results obtained by the top-down method

compared to the bottom-up baseline (63% reduction in the average number of edges).

Additionally, we have subsequently evaluated the modified versions of the local model

which compute the scorings basing on the maximum of the probabilities of the derivations

instead of on their summations. As mentioned at the end of section 3.5.1, this modification has

been performed in two stages, producing the corresponding approaches which will be

hereinafter denoted local-max1 and local-max2. The evaluation has been performed only for the

Penn Treebank corpus, and the results are listed in table 7. It can be observed that the gradual

scoring change produces gradual slight improvements in the average number of active edges,

which make up for the even more slight gradual increases in the number of inactive edges. That

is, the more we base our choice of scores on maximisation of derivation probabilities instead of

on summation of derivation probabilities, the more the total average number of edges decrease,

obtaining a final 2.7% improvement. This percentage is relevant enough to make us think about

a new line of further future work.

Table 7. Comparative results for corpora PTB-II and the local approaches

 Local Local-max1 Local-max2
PTBII

Inactive edges 2569 2579 2581
Active edges 13777 13403 13320
All Edges 16346 15982 15901

5.4 Detailed Results

We have tried to test the behaviour of each method according to the kind of sentences being

parsed. The idea is to be able to figure out in which cases a more informed model should be

applied, using then a sort of hybrid method which chooses the approach on the way. Therefore,

the test corpus has been divided into groups according to several criteria, and the average

number of edges needed to parse the sentences of each group has been computed for our

methods as well as for the baseline bottom-up. The tendencies for both corpora and languages

have been similar, so we only include the detailed results for corpus PTB-II. The performance

of our approaches is quantitatively more appealing than bottom-up’s for all cases, though

differences vary and may indicate in turn different behaviours of the models. The examined

criteria have been the following ones:

1. Length of the sentence (L = #words), starting from group 0 (L<10) to group 9 (L>38).

 119

2. Ambiguity rate, A = #tags / #words. Ambiguity groups range from 0 (A<2) to 9 (A>3.5).

3. Density of islands, D = #islands / #words. Densities span from group 0 (D<.25) to group

9 (D>.70).

4. Maximum Island Distance, MID = length of the longest gap. We consider MID values

from MID<2 (group 0) to MID>11 (group 9).

5. Island Dispersion, DI = Σ length_of_gaps / #gaps. Dispersions span from group 0

(DI<1.5) until group 9 (DI>7).

Figures 13 to 18 depict the obtained results for PTB-II. For the sake of clarity, we present the

results in linear and logarithmic scales, though only for the case of criterion 1 (figures 13 and

14).

0

14000

28000

42000

56000

70000

84000

98000

112000

126000

140000

154000

168000

182000

196000

210000

0 1 2 3 4 5 6 7 8 9

av
er

ag
e

nu
m

be
r

of
 e

dg
es

sentence length groups

Local
Bottom-Up

Neighb.1

Figure 13. Average #edges/sentence for each group of sentences of a certain length

5

5.5

6

6.5

7

7.5

8

8.5

9

0 1 2 3 4 5 6 7 8 9

L
og

4
of

 a
ve

ra
ge

 n
um

be
r

of
 e

dg
es

sentence length groups

Local
Bottom-Up

Neighb.1

Figure 14. Average #edges/sentence for each group of lengths, in logarithmic scale

 120

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

70000

75000

0 1 2 3 4 5 6 7 8 9

av
er

ag
e

nu
m

be
r

of
 e

dg
es

ambiguity groups

Local
Bottom-Up

Neighb.1

Figure 15. Average #edges/sentence for each group of sentences of a certain ambiguity rate

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

70000

0 1 2 3 4 5 6 7 8 9

av
er

ag
e

nu
m

be
r

of
 e

dg
es

density groups

Local
Bottom-Up

Neighb.1

Figure 16. Average #edges/sentence for each group of sentences of a certain island density

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

70000

75000

80000

85000

90000

95000

100000

105000

0 1 2 3 4 5 6 7 8 9

av
er

ag
e

nu
m

be
r

of
 e

dg
es

MID groups

Local
Bottom-Up

Neighb.1

Figure 17. Average #edges/sentence for each group of sentences of a certain MID

 121

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

70000

75000

0 1 2 3 4 5 6 7 8 9

av
er

ag
e

nu
m

be
r

of
 e

dg
es

dispersion groups

Local
Bottom-Up

Neighb.1

Figure 18. Average #edges/sentence for each group of sentences of a certain island

dispersion

As regards sentence lengths, notice that both local and neighbouring always outperform bottom-

up, the performance gap increasing in absolute value with the sentence length. Local's

performance keeps above neighbouring’s in all groups except for the longest sentences, which

is encouraging if we mean to deal with real corpus. We have included also the same figure in

logarithmic scale, so that it can be observed how the difference between the methods keeps

constant, whatever the sentence length. As sentences get more ambiguous, bottom-up’s

performance degrades notoriously, whereas our methods’ is smoother and more nearly

monotonic. Regarding the island density, as the number of islands gets close to the total number

of words, performance of baseline bottom-up is more comparable to local and neighbouring

(albeit the latter is always better). MID’s graphic presents a suspicious similarity with length’s

one (though the increment of number of edges is more gradual). By computing the crossover

between both measures, we have seen that this may happen because the cases of larger gaps

often overlap with the cases of the larger sentence lengths. Once more local and neighbouring

dispersions are quite comparable, as well as smoother and more nearly monotonic than bottom-

up’s.

5.5 Results on Hybrid Methods

So far, in order to reach a complete coverage of the corpus for the neighbouring model, a back-

off is performed whenever a parse ends unsuccessfully. Using this strategy, neighbouring’s

performance does not improve local’s. Hence, why not try the back-off before? We have

developed two new heuristic strategies, the difference between them lying in the criteria

employed to advance the change to the local approach. In the first one, we will back off when a

percentage of the sentence has been covered by the islands that are being extended. In the

second one, whenever a certain number of extension-prediction loops have been performed. The

motivation in both cases is the impression that, as islands grow bigger (augmenting the density

 122

of space covered by islands), local predictions seem to be more accurate, so that the more

informed neighbouring predictions are no longer needed. Contrary to the extension

probabilities, it looks like the neighbouring prediction probabilities force the parser to

concentrate on edges which are plausible around the current portion of the sentence, generating

multiple parses for the same substring (the effect is stressed by the fact that in top-down

prediction the combinatorial explosion is higher). The fact that the figures of independent merit

might work accurately as relative measures for ranking different parses of the same area of the

sentence, but not as well as absolute measures for ranking parses of different areas of the string

had also been observed by [Blaheta & Charniak, 1999] in their figures of merit. In our case, we

notice that, whereas the neighbouring island extension probabilities work rather accurately

globally, the neighbouring prediction ones present this flaw.

Returning to the two new heuristic strategies, needless to say both the optimum percentage

and number of cycles have been computed empirically according to a validation set. In this case,

all the experiments have been tested only on the PTB-II, mainly due to the difference in the

quality of the results obtained. In figure 19, we have presented the average number of edges for

a number of cycles from 0 (purely local approach) to 30 (what we have regarded as an “infinite”

number of cycles, that is, purely neighbouring approach). These averages are computed for a

subset of 100 sentences randomly chosen from our 1,000 sentences’ test set. There are two clear

minima for 1 and 4 cycles (henceforth respectively neighb-1cycle and neighb-4cycles), and it

can be seen that performance degrades for both pure approaches.

5000

5500

6000

6500

7000

7500

8000

8500

9000

9500

10000

10500

11000

11500

12000

12500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

A
ve

ra
ge

 n
um

be
r

of
 e

dg
es

Number of cycles

Neighb.+local after x cycles

Figure 19. Average #edges/sentence for each number of neighbouring cycles

In figure 20, we have represented the average number of edges for a coverage percentage from

0% (purely local approach) to 100% (purely neighbouring approach). There is a clear minimum

for 40% of coverage (hereinafter neighb-40%), and again performance degrades for non-mixed

methodologies.

A more thorough study reveals that one main advantage of the neighbouring approach with

respect to the local one is the extension at lexical level: as mentioned above, neighbouring

 123

probabilities are more accurate at capturing the absolute ranking of islands to be extended, for

the information they consider allows for an overall view that the local model lacks. That is why

simply starting the parsing process by introducing terminal and pre-terminal edges into the

extension heap according to neighbouring probabilities, and then backing off to the local model,

represents an improvement in most cases (around 55% in average!). Neighbouring probabilities

guide the analysis at a preliminary stage of the extension of the islands, backing off to the local

model whenever the former approach would have to start a much more blind process of

prediction. The ‘guiding’ potential of the neighbouring model during the extension is higher

but, due to the sparseness of the training data, lots of potentially possible cases are assigned

probability zero and must be left behind for prediction, which introduces far more overhead than

the extension.

5000

5500

6000

6500

7000

7500

8000

8500

9000

9500

10000

10500

11000

11500

12000

12500

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

av
er

ag
e

nu
m

be
r

of
 e

dg
es

% of sentence coverage

Neighb. + local when x% covered

Figure 20. Average #edges/sentence for each percentage of coverage of the sentence

Besides, whenever a back-off to the local model must be performed, all lexical edges (and not

only the islands) have to be re-introduced in the extension heap in order to be sure of getting a

full coverage. The fact that in some cases this mode of operation gets a better performance than

a pure local or neighbouring approach might indicate that in these cases, the original islands

have not been correctly chosen33, and points at a new direction of research in other methods of

selection.

The criteria described above have been applied to the complete test set for the three optima

obtained. Results can be seen for the cycles approach and the five criteria in figures 21 to 25.

Except for the single case of MID strictly smaller than 2, the two neighb-cycles approaches

clearly outperform both purely local and neighbouring approaches. We have not considered it

relevant to include the results obtained by the neighb-40% approach, since they are rather

similar.

33 Let’s recall that the current island-selection criterion is simply to choose as islands all those words
having only one PoS tag.

 124

0

14000

28000

42000

56000

70000

84000

98000

112000

126000

140000

154000

168000

182000

196000

210000

0 1 2 3 4 5 6 7 8 9

av
er

ag
e

nu
m

be
r

of
 e

dg
es

sentence length groups

Local
Bottom-Up

Neighb.1
Neighb-1cycle

Neighb-4cycles

Figure 21. Average #edges/sentence for each group of length’s sentences and for each

method

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

70000

75000

0 1 2 3 4 5 6 7 8 9

av
er

ag
e

nu
m

be
r

of
 e

dg
es

Ambiguity groups

Local
Bottom-Up

Neighb.1
Neighb-1cycle

Neighb-4cycles

Figure 22. Average #edges/sentence for each
group of ambiguity rate and for each method

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

70000

0 1 2 3 4 5 6 7 8 9

av
er

ag
e

nu
m

be
r

of
 e

dg
es

density groups

Local
Bottom-Up

Neighb.1
Neighb-1cycle

Neighb-4cycles

Figure 23. Average #edges/sentence for each
group of island density and for each method

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

70000

75000

80000

85000

90000

95000

100000

105000

0 1 2 3 4 5 6 7 8 9

av
er

ag
e

nu
m

be
r

of
 e

dg
es

MID groups

Local
Bottom-Up

Neighb.1
Neighb-1cycle

Neighb-4cycles

Figure 24. Average #edges/sentence for each
group of MID and for each method

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

70000

75000

0 1 2 3 4 5 6 7 8 9

av
er

ag
e

nu
m

be
r

of
 e

dg
es

Dispersion groups

Local
Bottom-Up

Neighb.1
Neighb-1cycle

Neighb-4cycles

Figure 25. Average #edges/sentence for each
group of island dispersion and method

It has also been tested whether the behaviour of the coverage approach remains constant when

changing the prediction threshold (defined in section 3.5.2). Results can be seen in figure 26.

The minimum corresponds to threshold = 0.9, and a coverage of 40%; it can be observed that

the tendency is quite similar for all thresholds.

 125

5000

5500

6000

6500

7000

7500

8000

8500

9000

9500

10000

10500

11000

11500

12000

12500

13000

13500

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

A
ve

ra
ge

 n
um

be
r

of
 e

dg
es

% of sentence coverage

Neighb.0
Neighb.1
Neighb.3
Neighb.5
Neighb.7
Neighb.9

Neighb1.0

Figure 26. Average #edges/sentence for each percentage of coverage of the sentence

Up to now, we have regarded coverage as the number of words of the sentence covered by an

island, initial islands included. This implies obviously that results rely on the initial selection,

and sentences in which more initial islands are chosen are somehow ‘favoured’. Therefore we

have also tested what we have denominated gained coverage, namely the number of words

covered by an island, excluding the original ones. In figure 27, the obtained results can be seen

for the extreme prediction thresholds, 0.1 and 0.9. The minimum has shifted from 40% to 15%,

which is logical taking into account that the average percentage of chosen islands for our test

corpus is 32.7 %. It can also be observed that, on one hand, there is not such a clear optimum as

in the conventional coverage, but an optimum area between coverages of 15% and 25% (even

larger, 35%, for threshold 0.1), which indicates a bigger robustness of the approach. On the

other hand, we can see that the curves are less symmetrical that those of figure 20, that is, the

average number of edges sharply falls when adding the previous steps of neighbouring coverage

to the pure local approach, while the improvement obtained from the pure neighbouring side of

the graphic is much smoother. These results confirm the previously remarked importance of the

neighbouring lexical extension process as well as the first steps of neighbouring extension.

Once the process starts involving too many neighbouring prediction steps, performance

degrades.

5000

5500

6000

6500

7000

7500

8000

8500

9000

9500

10000

10500

11000

11500

12000

12500

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

A
ve

ra
ge

 n
um

be
r

of
 e

dg
es

% of sentence coverage

Neighb.1 + local when abs. x% covered
Neighb.9 + local when abs. x% covered

Figure 27. Average #edges/sentence for each percentage of gained coverage of the sentence

 126

5.6 Results on Hybrid Methods using Thresholding

It has been mentioned in section 5.3 that the neighbouring statistical parameters learnt by our

training process might not be correct, due to the sparseness of the input data. A more accurate

analysis of the number of occurrences in the training corpus of the rules that are used to

calculate the probability distribution of the lengths of each rule reveals that in a lot of cases the

number of occurrences is insufficient. A significant number of distributions are learnt by means

of just one or two occurrences. We can definitely conclude that the neighbouring model needs a

more relevant training set. Let’s therefore test another hybrid method in which we will consider

that, from the moment decisions in the neighbouring approach are being made by means of such

examples, the use of this model does not make sense anymore, and a back-off to local model is

necessary. Additional justification for this approach can be found in section 5.7, where more

smoothing experiments are described.

Several experiments have been carried out in order to evaluate the most adequate threshold

from which to consider that a probability is not informative enough (as it is learnt by means of a

not sufficient number of occurrences), making necessary a back-off to the local model. For each

matrix of pre-computed probabilities, the distribution of values has been studied, and according

to it, a threshold has been defined. For a subset of sentences, a battery of experiments have been

performed, each one gradually applying the threshold to the following probabilities:

1. Extension probabilities (T1).

2. Prediction probabilities (T2).

3. Lexical extension probabilities, preterminal – terminal (T3).

4. Particular prediction probabilities (Tp).

Both T1 and T2 refer to the conventional probabilities. T3 refers to a certain type of extension

probabilities, the probability that one terminal symbol is derived from a certain preterminal. As

to Tp, it indicates a special treatment devoted to certain prediction probabilities, which we intend

to explain next. When distances between adjacent islands34 are bigger than the parameter limit

defined by the user (3 in our case, see section 3.5.2), the lack of occurrences in the training set is

particularly critical. This leads to a typical situation, previously mentioned: lots of prediction

edges entering the prediction heap with high probabilities, learnt by means of a ridiculous

number of occurrences. Hence, prediction explodes locally, not allowing the use of other more

suitable edges, situated in other areas of the sentence, which remain on the agenda with lower

probability values. As a result, neighbouring probabilities are not informative anymore as a

34 Also common for the particular case of the first/last island of the sentence.

 127

guide to the process. In order to counteract the effects of this situation, a particular type of

threshold (Tp) has been introduced. In fact, this threshold is composed by two figures: the

number of edges entering the prediction heap in a single step and the average prediction

probability of these edges, so that, whenever both values exceed the corresponding values of Tp

during the neighbouring parsing process, a back-off to local method is performed.

Table 8. Different thresholds used in the experiments of figure 28

Method

T1 T2 T3 Tp
Edges Prob.

0 (Local) --- --- --- --- ---
1 (Neighbouring) --- --- --- --- ---
2 0.001 --- --- --- ---
3 0.001 0.001 --- --- ---
4 0.1 --- --- --- ---
5 0.1 0.01 --- --- ---
6 0.1 0.01 0.001 --- ---
7 0.1 0.01 0.1 --- ---
8 0.1 0.01 0.001 75 0.9
9 0.1 0.01 0.001 50 0.9
10 0.1 0.01 0.001 25 0.9
11 0.1 0.01 0.001 15 0.9
12 0.1 0.01 0.001 15 0.8
13 0.1 0.01 0.1 15 0.8
14 0.1 0.01 0.001 15 0.7
15 0.1 0.01 0.1 15 0.7
16 0.1 0.01 0.001 10 0.7
17 0.1 0.01 0.1 10 0.7

Figure 28 depicts the comparison of the average edge number for the different values of the

thresholds. These values have been selected considering the average values of each type of

probability. Method 0 corresponds to local35, 1 to conventional neighbouring (see section 5.3),

and methods 2 to 17 to increasingly restrictive applications of thresholds (as shown in table 8).

2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500
3600
3700
3800
3900
4000
4100
4200
4300
4400

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

A
ve

ra
ge

 n
um

be
r

of
 e

dg
es

Parsing method

Threshold application

Figure 28. Average #edges/sentence for the test subset and for each method studied

35 Bottom-up has been avoided in purpose, as its number of edges is significantly larger and it would have
prevented the rest of the data from being seen in detail.

 128

A particularly steep fall is found from method 8, which is when the application of threshold Tp

starts, the following methods corresponding to different values of Tp. An improvement of

around 50% with respect to local and neighbouring performance is accomplished.

Once the different values and combinations of thresholds tested, the optima have been

applied to the whole test set. The obtained results are depicted in figure 29. This time, method 0

corresponds to bottom-up. As to the rest of the methods, the correspondence is the following

one:

1. Conventional local.

2. Conventional neighbouring.

3. Method 6 above.

4. Method 7 above.

5. Method 16 above.

6. Method 17 above.

Positions 3 and 4 in figure 29 correspond to the applications of the first three simple thresholds

(the only difference being respectively the value of threshold number 3, the one related to the

neighbouring lexical probabilities). Therefore, we can see the wide difference between them and

positions 5 and 6, which correspond respectively to applications of these latter thresholds plus

the optimal value for threshold Tp (10 edges entering the heap with an average probability

greater than 0.7), henceforth denoted respectively neighb-thresh1 and neighb-thresh2. The

average number of edges needed to perform the parsing process significantly decreases with

respect to the rest of the methods (around 45% for local and neighbouring, not to mention

bottom-up!).

8000

12000

16000

20000

24000

28000

32000

36000

40000

44000

48000

52000

56000

60000

0 1 2 3 4 5 6

A
ve

ra
ge

 n
um

be
r

of
 e

dg
es

Parsing method

Threshold application

Figure 29. Average #edges/sentence for the test set and for each method studied

 129

5.7 Smoothing by Frequencies

Derived from the key idea described in the previous section, we have devised another type of

smoothing, this time directly dealing with the frequencies of the occurrences in the training

corpus. Several levels of smoothing have been applied to these frequencies, from which the

statistical parameters have been therefore computed.

In order to decide the concrete levels of smoothing to be tested, the frequencies of

occurrences have been preliminary analysed, zooming into the problematic areas. It has been

mentioned (at the end of section 3.5.2) that, in order to compute the stochastic parameters of the

neighbouring model, four initial matrixes (M1 to M4) are firstly computed, containing the basic

probabilities P1, P2, and P3 (also described in section 3.5.2). A modification can be made to the

algorithm, so that besides computing the probabilities, the frequencies of occurrences of each

case of derivation (given the pair of nonterminal or terminal symbols and the distance between

them) are also computed, giving as a result four equivalent matrixes of frequencies.

Histograms of frequencies have been calculated for each matrix, using initially homogeneous

frequencies fringes, which have been zoomed in at certain areas. The smoothing technique will

consist in defining a frequency threshold, so that those probabilities in matrixes M1 to M4

corresponding to frequencies under the threshold will be set to 0. From these derived basic

matrixes, the Result matrixes providing the final scorings (see section 3.5.2) will be computed,

and used to evaluate the parser with the neighbouring model on the same test set as the previous

sections.

Table 9. Comparative results for the different smoothing levels

 Inactive Edges Active Edges Total Edges
Neighbouring 1488 14402 15890
Neighb-smooth1 1468 12573 14041
Neighb-smooth2 1466 12361 13827
Neighb-smooth3 1430 11874 13304
Neighb-smooth4 1432 11469 12901
Neighb-smooth4a 1424 11855 13279
Neighb-smooth4b 1446 12057 13503
Neighb-smooth4c 1436 11500 12936
Neighb-smooth4c0 1438 11774 13212
Neighb-smooth4c1 1438 11825 13263
Neighb-smooth4c2 1431 11749 13180
Neighb-smooth4c3 1430 11876 13306
Neighb-smooth4ac 1425 11455 12880
Neighb-smooth4c012 1436 11501 12937

Table 9 presents the obtained results. Three increasingly restrictive levels of smoothing have

been defined (hereinafter smooth1, smooth2, smooth3), experiments showing that each level

outperforms the previous one. For the following level (smooth4), performance starts to slightly

 130

degrade (as to the number of active edges). In order to try and guess to which of matrixes’ new

smoothing is due this degradation, the latter smoothing level has been then applied individually

to each of the matrixes, keeping smooth3 as the level for the rest (smooth4a, smooth4b, and

smooth4c respectively for matrixes M2, M3, and M436). Matrix M3 seems to perform definitely

better with smoothing level smooth3. However, this is not so straightforward as to matrix M4,

which motivates that an additional refinement is evaluated, by independently applying the latter

level of smoothing to each of the 4 2-dimension matrixes of which 3-dimension matrix M4 is

composed (as explained in section 3.5.2, the third dimension refers to the distance between

constituents, and distances considered range from 0 to 337): these smoothings are denoted

smooth4c0 to smooth4c3. Furthermore, the combination of the optimal results is also evaluated

(smooth4ac, that is, applying the new level of smoothing only to matrixes M2 and M4, and

smooth4c012, i.e., applying smooth4 only to submatrixes M4[0], M4[1], and M4[2]). Smooth4ac

is the best performing smoothing level overall but, although it outperforms both pure local and

neighbouring approaches, it is overcome by far by the rest of the hybrid approaches (see table

11 below).

The following natural step has been to apply the neighbouring hybrid methodologies

(described in sections 5.5 and 5.6) starting from the optimal smoothed matrixes (smooth4ac).

Table 10 lists the results obtained, where each hybrid approach is denoted by the same name,

only with an added infix smooth4ac. Although all the hybrid and thresholded approaches

outperform the pure smoothed neighbouring results by more than a 30%, we can surprisingly

see that two of the hybrid approaches (neighb-4cycles and neighb-40%) get worse results when

smoothed. We can hypothesise that a reason might be that the optimal smoothing for the pure

neighbouring methodology is not the optimal smoothing for these hybrid approaches, because it

makes null too many probabilities, which somehow cuts off and manages to improve

performance when dealing with a completely neighbouring parsing process, but that are relevant

to the first neighbouring steps executed by the neighb-4cycles and neighb-40%. This reinforces

our hypothesis that it is not that the neighbouring parameters are not at all correct, but that the

islands chosen, the shape of the grammar and other circumstances make that, when dealing with

a pure neighbouring process, top-down prediction explodes in such a way that performance is

improved by radically cutting off the process. However, when we are dealing with a hybrid

approach which restricts the neighbouring phase, the importance of the neighbouring

probabilities for the preliminary steps is apparent. It would still be necessary to compute the

optimal smoothings directly on the hybrid/thresholded results.

36 No further smoothing is applied to matrix M1, as it is considered that the rest of the frequencies are
significant enough not to be eliminated from the probability computation.
37 Where 3 is the parameter limit, indicating distances equal or greater than 3.

 131

Table 10. Comparative results for hybrid methods using smoothed neighbouring stochastic
matrixes

 Inactive Edges Active Edges Total Edges
Neighb-smooth4ac 1425 11455 12880
Neighb-smooth4ac-1cycle 1180 7008 8188
Neighb-smooth4ac-4cycles 1193 7447 8640
Neighb-smooth4ac-40% 1203 7674 8877
Neighb-smooth4ac-thresh1 1199 7157 8356
Neighb-smooth4ac-thresh2 1172 7044 8216

On the other hand, the thresholded approaches (neighb-smooth4ac-thresh1 and neighb-

smooth4ac-thresh2) improve their results when previously smoothing the probabilities, that is,

the benefits of cutting off the neighbouring process for small values of the neighbouring

parameters increase when these small values are besides discarded from the original

frequencies, which is sound, since we are somehow adopting the same approach but from

different perspectives.

Finally, the optimal result (not only out of the smoothed versions but also the optimal result

overall so far) is obtained by a hybrid smoothed approach (neighb-smooth4ac-1cycle, the hybrid

method which backed off from neighbouring to local after just one neighbouring cycle, but

using smoothed parameter matrixes). It seems that the significant frequencies removed which

made both smoothed neighb-smooth4ac-4cycles and neighb-smooth4ac-40% get worse do not

belong to the lexical frequencies, the only neighbouring step performed by this approach.

Although a thorough study that confirms the hypothesis has not been carried out yet, it seems

obvious that the distances between lexical categories must generally be more frequent, and

probably mostly not discarded by the smoothing process, while when generalising these results

for the nonterminal categories according to the grammar, the casuistry increases and derives

lower frequencies, which are indeed discarded when they should not to.

Table 11. Comparative results between pure and hybrid/smoothed methods for corpus PTB

 Inactive Edges Active Edges Total Edges
Bottom-Up 2525 54638 57163
Top-Down 1627 19301 20928
Local 2569 13777 16346
Neighbouring 1488 14402 15890
Neighb-1cycle 1162 7193 8355
Neighb-4cycles 1164 7355 8519
Neighb-40% 1179 7381 8560
Neighb-thresh1 1193 7550 8743
Neighb-thresh2 1173 7383 8556
Neighb-smooth4ac-1cycle 1180 7008 8188
Neighb-smooth4ac-thresh1 1199 7157 8356
Neighb-smooth4ac-thresh2 1172 7044 8216

As a summary of sections 5.5, 5.6, and 5.7, we present table 11, showing the optimal results

accomplished by the hybrid/thresholded/smoothed approaches, in comparison with the pure

 132

methods. All these hybrid methods provide significant improvement with respect to the single

methods, performing in turn quite comparably. These results suggest that any additional

improvement would come through somehow smoothing the stochastic parameters obtained by

the neighbouring methodology.

5.8 Assessing the Quality of Obtained Parses

So far, the evaluation of the parse tree returned by each method has been performed on the basis

of the number of edges created in order to complete the analysis. Nothing has been done as

regards the quality of the result. In this line, two kinds of measures will be considered: the

likelihood of the obtained parse tree and the accuracy metrics. These measures have also been

calculated only for corpus PTB-II.

It is important to emphasise once more that our aim is not to evaluate the quality of the parse

obtained by each method (whatever the methodology, we get a single parse tree, the first one

obtained) as an absolute value, but the relative value, as a comparison between the quality

measures obtained by the different methodologies into the same framework (see the

introduction of this chapter).

5.8.1 Likelihood of the Resulting Parse Tree

Any parse tree obtained from a parser guided by a grammar is obviously correct (i.e.,

grammatical). In the absence of lexical information, the choice between several grammatical

parse trees for a sentence must be performed on the basis of their likelihood (or probability)38.

The probability of a parse tree is usually regarded as the product of the rule probabilities (see

section 2.2.2). As we are working following a logarithmic scale, that is, we use the logarithm of

the probability, we will compute the sum of the logarithms of the rules appearing in the parse

tree instead.

Firstly, we intended to evaluate, for each sentence in our test corpus, both the maximum and

minimum probabilities out of all the possible parse trees, so that the probabilities of the parse

trees for each method could be, somehow, “ranked”. This was our first problem, as for a big

percentage of the sentences, not even the overall number of possible analysis could be computed

(see [Carroll, 1993] for a reasoning on how complex this computation can get to be). Let’s take

into account that, being this one a tough task with the original sentences, it even gets worse

when ambiguating them. The problem had to be overcome by computing a sort of Viterbi-like

algorithm that provided us with the best and worst probabilities for a given sentence.

38 Although, as discussed in sections 2.2.2 and 2.2.3, this measure is far from being a good quality

 133

The second problem appeared when proved that, for most of the Penn Treebank parse trees

of the sentences in the test set, at least one rule existed which did not belong to our reduced

grammar (see justification in section 5.2.2). As it was unfeasible to allow the presence of rules

whose probability had not been estimated, these sentences had to be ignored. The test set then

reduced to 96 sentences.

Average probabilities were computed for the sentences in this test subset and for each basic

method, as well as for the optimal hybrid approaches, concretely the following:

1. Penn Treebank parse tree.

2. First analysis returned by the baseline bottom-up method.

3. First analysis returned by the baseline top-down method.

4. Local analysis.

5. First version of the modification of the local analysis which partially replaces

summations of derivation probabilities with maximisation of derivation probabilities,

local-max1.

6. Second version of local analysis which completely replaces derivation probability

summations with maximisation of them, local-max2.

7. Neighbouring analysis (with back-off to local only in case it cannot be completed).

8. Neighbouring analysis (with back-off to local after islands cover 40% of the sentence),

neighb-40%.

9. Neighbouring analysis (with back-off to local after 1 cycle of neighbouring operation),

neighb-1cycle.

10. Neighbouring analysis (with back-off to local after 4 cycles of neighbouring operation),

neighb-4cycles.

11. Neighbouring analysis (with back-off to local according to the first optimal threshold),

neighb-thresh1.

12. Neighbouring analysis (with back-off to local according to the second optimal

threshold), neighb-thresh2.

13. Neighbouring analysis (with the stochastic parameters smoothed by means of the

optimal smoothing-by-frequencies obtained and with back-off to local after 1 cycle of

neighbouring operation), neighb-smooth4ac-1cycle.

14. Neighbouring analysis (with the stochastic parameters smoothed by means of the

optimal smoothing-by-frequencies and with back-off to local according to the first

optimal threshold), neighb- smooth4ac-thresh1.

indicator.

 134

15. Neighbouring analysis (with the stochastic parameters smoothed by means of the

optimal smoothing-by-frequencies and with back-off to local according to the second

optimal threshold), neighb- smooth4ac-thresh2.

Due to the way in which the parse probability is computed, shorter derivations, since they

involve fewer rules, tend to obtain higher probabilities, almost regardless of the training data.

Most systems redress this bias, for instance by normalising the derivation probability (see e.g.

[Caraballo & Charniak, 1998]). In our case, besides computing the conventional averages, we

have also computed sort of a normalisation, by taking into account the number of nonterminals

in the tree, say n (computing the n-root of the original probability obtained). Average results for

both types of probabilities can be seen in table 12.

 Table 12. Average probabilities for each method

 Probability Normalised Probability
PTB 0.932 0.933
Bottom-Up 0.636 0.466
Top-Down 0.590 0.500
Local 0.774 0.618
Local-max1 0.755 0.585
Local-max2 0.721 0.325
Neighbouring 0.389 0.350
Neighb-40% 0.641 0.298
Neighb-1cycle 0.675 0.330
Neighb-4cycles 0.590 0.437
Neighb-thresh1 0.609 0.512
Neighb-thresh2 0.600 0.405
Neighb-smooth4ac-1cycle 0.671 0.377
Neighb-smooth4ac-thresh1 0.615 0.457
Neighb-smooth4ac-thresh2 0.609 0.450

The obtained results quite differ for both types of probabilities. The maximum average

probability corresponds, as expected, to the Penn Treebank parse trees. It must be reminded that

rule probabilities were estimated according to the sentences in the PTB. The following methods

are the local and the local-max1 approaches, being the fourth rank occupied by the local-max2

methodology for the conventional probabilities, versus neighb-thresh1 approach for the

normalised probabilities (in this latter case, local-max2 approach descends to the penultimate

position). Bottom-up behaves similarly for both measures (it is ranked eighth for conventional

probabilities and sixth for normalised probabilities). However, top-down parses, which were

ranked in the penultimate place for average conventional probabilities, accomplish a fifth place

for normalised probabilities (presumably because top-down parses systematically contain more

rules).

 135

5.8.2 Other Evaluation Metrics

As an additional evaluation of our models, we have tried to compute the similarity of the PTB

parse tree with the parse trees returned by our methods, both the homogeneous as well as the

hybrid ones. We use the traditional PARSEVAL measures [Black et al., 1991]: recall (an

attempt to measure coverage) and precision (a standard measure of accuracy). The specific

metrics computed are the ones described in [Goodman, 1996] plus two precision rates, namely

the following ones:

1. Labelled Recall Rate (LR): number of constituents in the evaluated parse tree that

coincide completely (both label and spanning) with one in the PTB parse, divided by the

total number of constituents in the PTB parse tree.

2. Bracketed Recall Rate (BR): number of constituents in the evaluated parse tree that span

the same as anyone in the PTB parse, divided by the total number of constituents in the

PTB parse tree.

3. Consistent Brackets Recall Rate (CBR): number of constituents of the evaluated parse

tree not crossing with anyone in the PTB parse divided by the total number of

constituents of the evaluated parse tree.

4. Labelled Precision Rate (LP): number of constituents in the evaluated parse tree that

coincide completely (both label and spanning) with one in the PTB parse, divided by the

total number of constituents in the evaluated parse tree.

5. Bracketed Precision Rate (BP): number of constituents in the evaluated parse tree whose

spanning coincides with anyone in the PTB parse, divided by the total number of

constituents of the evaluated parse tree.

In other words, recall indicates the portion of the Treebank constituents that are hypothesised,

whereas precision is the portion of hypothesised constituents that are correct. Therefore, metrics

1 and 4 compute recall and precision by considering both the spanning and the label of each

parse constituent, and metrics 2 and 5 are less strict, and look only for match of constituents,

ignoring the nonterminal label. Metric 3 is even less strict and considers only the constituents

whose intervals cross, that is, that could never be in the same parse tree.

Table 13 shows the obtained results for the 1,000 sentences of the test set. Both the bottom-

up and the top-down parse trees are also compared to PTB ones in order to evaluate whether our

methodology represents an advance with respect to simpler non-stochastic approaches. It is

important to remark that “Viterbi” parse trees (the ones which maximise the probability) and

what we have denoted “worse” parse trees (the ones minimising the probability) are going to be

our upper and lower bounds, since the specific features of our framework (partial grammar, non-

 136

tagged sentences) do not allow to compare our results with other systems. As to the hybrid

methods, the ones giving optimal results (regarding the number of generated edges) have been

compared. This includes neighb-40%, neighb-1cycle, and neighb-4cycles, as well as the

neighbouring model modified by applying different thresholds to the expansion/prediction

probabilities (neighb-thresh1 and neighb-thresh2), and the neighbouring model in which the

stochastic parameters have been computed by previously smoothing by frequencies (using the

most optimum smooth level obtained). The subsequent modifications to the local approach

(local-max1 and local-max2) have also been evaluated.

Table 13. Evaluation metrics

 LR BR CBR LP BP
Viterbi 0.577 0.633 0.746 0.541 0.592
Bottom-Up 0.412 0.514 0.705 0.299 0.369
Top-Down 0.378 0.488 0.673 0.261 0.332
Local 0.423 0.497 0.640 0.344 0.403
Local-max1 0.416 0.489 0.631 0.337 0.394
Local-max2 0.419 0.494 0.633 0.341 0.400
Neighbouring 0.373 0.460 0.675 0.230 0.282
Neighb-40% 0.412 0.483 0.641 0.318 0.370
Neighb-1cycle 0.416 0.488 0.644 0.318 0.372
Neighb-4cycles 0.394 0.469 0.634 0.294 0.348
Neighb-thresh1 0.401 0.477 0.639 0.304 0.360
Neighb-thresh2 0.405 0.483 0.641 0.306 0.364
Neighb-smooth4ac-1cycle 0.406 0.479 0.639 0.312 0.367
Neighb-smooth4ac-thresh1 0.394 0.469 0.632 0.301 0.356
Neighb-smooth4ac-thresh2 0.396 0.468 0.630 0.301 0.355
“Worse” 0.347 0.445 0.696 0.175 0.223

Clearly the best results correspond to the ‘Viterbi’ parses, as well as the ‘worse’ parses obtain

the worst qualifications for all measures except one. Top-down parses, which obtained better

efficiency results (regarding average number of edges) than bottom-up, are comfortably

outperformed by bottom-up parses in all the accuracy measures.

With respect to the comparison between our methods and basic bottom-up and top-down, the

three local approaches present considerably better results, followed by neighb-1cycle and

neighb-40%. It can be observed that, although the pure local methodology obtains better results

than the local maximisation approaches for all the measures, the accuracy of the latter improves

with the degree of application of the maximisation, so that the local-max2 figures are almost

comparable to the pure local ones (with an average decrease of only 0.86%). This fact contrasts

with the fact that both probability measures decreased with the degree of maximisation (as it can

bee seen in table 12).

Hybrid and thresholded neighbouring approaches (smoothed or not) always outperform pure

neighbouring results. However, the smoothed versions always present worse results than their

non-smoothed equivalents. Specially striking are the CBR figures: better results are obtained by

 137

methods that do not stand out for the other measures, as even the ‘worse’ parse trees.

Seemingly the reason is that these parses are mainly composed by unary and binary rules

(average length of 1.6 for the rules used by “worse” versus 2.0 for those in local), which makes

more difficult a crossing bracket to happen.

Although only the hybrid methods giving better average number of edges have been included

in table 13, we have also studied the effects of the different back-off strategies on the accuracy.

In general, it can be observed that, with the exception of the CBR metric, accuracy starts

improving for the first stages of the hybrid approaches (until number of cycles equals 3, until

coverage equals 35%), and then gradually degrades as back-off to local is postponed.

 5.9 Chunking + Island-Driven Results

So far, non-ambiguous words have been considered our initial islands, saving at the same time

the necessity of a tagger. However, we wish to evaluate how badly the criterion chosen for the

selection of islands can influence the final results of the parser. In particular, we have explained

in chapter 4 how we intend to introduce a more informed method to choose the islands, such as

using chunks as candidates.

5.9.1 Setting of the Experiments

The system has been tested on the PTB-II corpus. The base NP derived grammar (as described

in chapter 4), which is composed by 33 rules, is listed in table 14. A more thorough study has

shown that, in our ambiguated test corpus, in average 74% of each sentence is "covered" by a

nominal chunk. The average number of chunks per position where a chunk starts is 1.75. As to

the three types of chunks defined, we have found that in average per sentence, about 24% are

maximal NPs, 12% are overlapping NPs and 63% are internal NPs. The most frequent rules are

the ones generating directly NN and NNP, but we have observed that several "long" rules (right-

hand side with 3 elements, when the longest is 4) appear in the first positions of the frequency

rank.

As to the extension to other types of chunks, the PP chunk has been discarded, for the only

rule deriving it (PP => preposition NP), does not apply to our definition of chunk (see chapter

4). The derived grammar then presents the following composition:

- VP: 5 rules.

- ADVP: 2 rules.

- ADJP: 13 rules.

 138

Table 14. The derived base NP grammar

Rules
NP ⇒ NN NNS
NP ⇒ DT NNS
NP ⇒ DT NNP
NP ⇒ JJ NNS
NP ⇒ DT JJ NN NN
NP ⇒ NNP NNP POS
NP ⇒ PRP$ NNS
NP ⇒ DT NNP NN
NP ⇒ NNP NNP NNP
NP ⇒ DT NN POS
NP ⇒ NN
NP ⇒ EX
NP ⇒ DT
NP ⇒ CD
NP ⇒ CD NNS
NP ⇒ DT JJ NNS
NP ⇒ NN NN
NP ⇒ DT NN NN
NP ⇒ PRP$ NN
NP ⇒ CD NN
NP ⇒ NNP POS
NP ⇒ DT NNP NNP
NP ⇒ NNP NNP
NP ⇒ JJ NN
NP ⇒ DT JJ NN
NP ⇒ JJ NN NNS
NP ⇒ JJ JJ NNS
NP ⇒ DT NN
NP ⇒ PRP
NP ⇒ $ CD
NP ⇒ NNP CD
NP ⇒ NNS
NP ⇒ NNP

Initially, we have applied a combined derived grammar, containing the 53 rules corresponding

to all the types of chunks considered. Table 15 lists those rules of this complete chunk grammar

corresponding to the added VP, ADVP and ADJP (the base NP rules are already listed in table

14). The results of the experiments (described in the next section) which used this grammar to

perform the chunking step, though outperforming the nonambiguous approach, do not improve

the results obtained for only base-NPs (also described in the next section) neither as to

performance nor as to accuracy. Therefore we have discarded more investigation (testing

individually each new type of chunks, etc.).

 139

Table 15. The rest of the combined derived grammar

Rules
ADJP ⇒ VBN
ADJP ⇒ RB JJ
ADJP ⇒ RBS JJ
ADJP ⇒ RB
ADJP ⇒ JJ
ADJP ⇒ RBR JJ
ADJP ⇒ RB VBN
ADJP ⇒ JJR
ADJP ⇒ $ CD
ADJP ⇒ JJ CC JJ
ADJP ⇒ RB JJR
ADJP ⇒ CD NN
ADJP ⇒ JJ JJ
ADVP ⇒ RB RB
ADVP ⇒ RB
VP ⇒ VB
VP ⇒ VBZ
VP ⇒ VBP
VP ⇒ VBN
VP ⇒ VBD

5.9.2 Results

We start by describing in detail the results obtained for the case of base NPs as chunks. We dare

compare our chunking approach with plain methods such as bottom-up and top-down, which do

not take advantage of this pre-process. This is because an experiment on the performance of

bottom-up using as an input the test sentences previously chunked (treating these chunks as

terminal categories) resulted in a 56% coverage, due to the poor accuracy of the base NPs

extracted. Anyway, we compared the average results for this subset of 560 sentences, being

12,517 edges for the "BU+chunks" method in front of the 5,833 edges of local+chunks2. We

conclude that, if we want to keep simple and completely automatic this pre-process, it definitely

makes no sense to apply it to such unidirectional strategies.

Overall figures for base NPs are shown in table 16. This table includes the results for all

three sorts of defined base NPs (see chapter 4). Both local and neighbouring strategies

dramatically outperform the baselines (specially bottom-up). Again, the results show that

certainly the neighbouring model suffers from data sparseness. This drawback has been partially

overcome by using both hybrid techniques and smoothing, as seen in sections 5.5 to 5.7 (though

the combination of these techniques with this method of island selection has not been tested).

Focusing on the differences due to the two methods of island selection, we find that the base

NPs approach outperforms the nonambiguous one (hereinafter, local-noamb and neighbouring-

 140

noamb). Moreover, we observe a more significant improvement when being more selective with

the base NPs (56% for local+chunks2). Surprisingly we find that the longest-match strategy

(local+chunks3), the one most often used in application systems, performs slightly worse than

local+chunks2. The fact that our stochastic model permits to select the most appropriate base

NPs to be dealt with may explain that it is worth it to try and compensate the lack of accuracy of

the base NPs selection process by adding more alternative base NPs to the initial set.

Table 16. Comparative results for corpus PTB-II

PTB-II Inactive edges Active edges Total edges
Bottom-Up 2525 54638 57163
Top-Down 1627 19301 20928
Local-noamb 2569 13777 16346
Local+chunks1 1180 9631 10811
Local+chunks2 634 6524 7158
Local+chunks3 674 6593 7267
Neighb-noamb 1488 14402 15890
Neighb+chunks1 1457 12610 14067
Neighb+chunks2 982 8849 9831
Neighb+chunks3 1045 9434 10479

We have also included an experiment in which we start from the same test set, but (correctly)

tagged instead of ambiguous (this is somehow unrealistic, since for novel text no perfect part-

of-speech tags would be available). There is a subsequent loss of coverage due to the fact that

we were able to find an analysis for some sentences due to other PoS categories, which is not

significant, our purpose being to compare the different methodologies for the same set. It does

not make sense to include the nonambiguous approaches, as all the words in each sentence

would have been initial islands. Table 17 lists the obtained results. We can observe that both the

local and neighbouring approaches outperform both bottom-up and top-down baselines by far,

being the improvement even larger (89% versus previous 87% with respect to the optimum

local+chunks2 methodology for bottom-up, and 70% versus previous 65% for top-down). Local

approaches keep on achieving better results than neighbouring for all variants except

local+chunks1, but now all types of neighbouring outperform this one. The ranking among the

three types of neighb+chunks is still the same, but the differences between them reduce

significantly (from 30% to 7%), suggesting that the neighbouring method is less sensitive to the

fact that some chunks might not be correct and may have to be dissolved. As to the local

approach, we find that for a tagged corpus the system behaves conventionally, performing better

for the longest-match strategy.

As explained in the previous section, we have also tested the use of other types of chunks,

altogether in a combined derived grammar. We have applied the same three strategies to the

selection of chunks, taking into account the length and situation of each chunk and disregarding

its type. As mentioned, each method is named as its equivalent for base-NPs, adding a suffix “-

 141

total”. The obtained figures can be seen in table 18. We have included again both our bottom-up

and top-down baselines and the nonambiguous results.

Table 17. Comparative results for tagged corpus PTB-II

PTB-II Inactive edges Active edges Total edges
Bottom-Up 699 16439 17138
Top-Down 313 5406 5719
Local+chunks1 382 2878 3260
Local+chunks2 183 1771 1954
Local+chunks3 181 1542 1723
Neighb+chunks1 513 3922 4435
Neighb+chunks2 306 2339 2645
Neighb+chunks3 312 2392 2704

It can be observed in table 18 that both the baselines (bottom-up and top-down) and the

nonambiguous approaches are outperformed by the chunks-total approaches, and also that the

methodology using all chunks performs better for both stochastic models with respect to using

all base-NPs. However, the optimal behaviour still corresponds to the base-NPs strategy.

Possibly the reason lies is the fact that the chunks might not be definite members of the parse

tree, but may be “disintegrated” whenever we are not able to get a complete analysis containing

them. It might happen that the other kinds of chunks are more sensitive to this methodology,

and have to be broken more often than the base NPs. The computation of the average number of

chunks that must be broken in our test set for both cases confirms our hypothesis: 68% and 65%

of the initial base-NPs are dissolved respectively in the local+chunks1 and neighb+chunks1

strategies, whereas 79% and 76% of the chunks are broken respectively in the local+chunks1-

total and neighb+chunks1-total approaches. In both cases, these percentages are rather high (it

must me remarked once more that we are dealing with a highly ambiguous corpus), though it

can be observed that the neighbouring methodology always dissolves less chunks, whatever the

type of these ones.

Table 18. Comparative results for corpus PTB-II and all types of chunks

PTB-II Inactive edges Active edges Total edges
Bottom-Up 2525 54638 57163
Top-Down 1627 18301 19928
Local-noamb 2569 13777 16346
Local+chunks1-total 1243 7350 8593
Local+chunks2-total 733 7495 8228
Local+chunks3-total 773 7589 8362
Neighb-noamb 1488 14402 15890
Neighb+chunks1-total 1453 11663 13116
Neighb+chunks2-total 1298 11393 12691
Neighb+chunks3-total 1321 11516 12837

 142

5.9.3 Quality Measures

Once more, we perform an additional evaluation of the parse trees returned by each method by

comparing both the likelihood of the parse trees and the similarity measures defined in section

5.8. Let us again remark that our aim is to compare our approaches against each other as well as

against our baselines (bottom-up and top-down methods) in the same environment

 Table 19. Average probabilities for each method

 Probability
PTB 0.932
Bottom-Up 0.636
Top-Down 0.590
Local-noamb 0.774
Local+chunks1 0.658
Local+chunks2 0.832
Local+chunks3 0.822
Local+chunks1-total 0.591
Local+chunks2-total 0.823
Local+chunks3-total 0.806
Neighb-noamb 0.389
Neighb+chunks1 0.513
Neighb+chunks2 0.655
Neighb+chunks3 0.625
Neighb+chunks1-total 0.461
Neighb+chunks2-total 0.581
Neighb+chunks3-total 0.573

Likelihood of the Resulting Parse

Average probabilities for each basic method39 are compared to the chunks results in table 19.

Again, the maximum average probability corresponds to the PTB parses. The following method

is the local approach. Although the introduction of base NPs implies a reduction for chunks1,

again chunks2 and chunks3 represent a significant improvement. As to the neighbouring model,

the change from the nonambiguous approach to the base NPs systematically improves the

probability, being specially striking the case of neighb+chunks2, which improves it by more

than 40%. Thus, by choosing the appropriate chunk method, neighbouring approach also

outperforms both the bottom-up and top-down methodologies. The chunks-total strategy

methods perform systematically slightly worse than their equivalent base-NPs. This means that

bottom-up probability is higher than all chunks-total approaches except the local+chunks2-total

and local+chunks-total3 ones, and that, though top-down probabilities are overcome by all

local-total approaches, they are higher than the ones obtained by all the neighbouring-total

39 Again results correspond to the subset of sentences for which all the rules employed in the PTB parse-
trees belonged also to our reduced grammar.

 143

methods. These results confirm our decision that considers optimal the use of only base NP

chunks.

Other evaluation metrics

Additionally, we have tried to compute the similarity of the PTB parse tree with the parse trees

returned by our composed methods by using the metrics described in section 5.8.2. Table 20

shows the obtained results for the 1,000 sentences in the test set. We show again both bottom-up

and top-down results in order to evaluate whether our composed methodology represents an

advance with respect to the simpler methodologies. “Viterbi” and “worse” parses, our upper and

lower bounds, are also included once more.

Table 20. Evaluation metrics for untagged corpus

 LR BR CBR LP BP
Viterbi 0.577 0.633 0.746 0.541 0.592
Bottom-Up 0.412 0.514 0.705 0.299 0.369
Top-Down 0.378 0.488 0.673 0.261 0.332
Local-noamb 0.423 0.497 0.640 0.344 0.403
Local+chunks1 0.402 0.478 0.643 0.298 0.352
Local+chunks2 0.433 0.506 0.634 0.398 0.462
Local+chunks3 0.427 0.500 0.636 0.384 0.449
Local+chunks1-total 0.355 0.431 0.624 0.256 0.309
Local+chunks2-total 0.422 0.499 0.632 0.382 0.451
Local+chunks3-total 0.400 0.476 0.619 0.356 0.422
Neighb-noamb 0.373 0.460 0.675 0.230 0.282
Neighb+chunks1 0.402 0.487 0.666 0.275 0.332
Neighb+chunks2 0.401 0.481 0.646 0.309 0.368
Neighb+chunks3 0.395 0.479 0.649 0.301 0.362
Neighb+chunks1-total 0.357 0.442 0.647 0.237 0.292
Neighb+chunks2-total 0.364 0.445 0.648 0.260 0.315
Neighb+chunks3-total 0.362 0.444 0.643 0.259 0.316
“Worse” 0.347 0.445 0.696 0.175 0.223

As expected, the best results correspond to the “Viterbi” parse trees, and the “worse” ones

obtain the worst ranks for all but one measure. Local model, which outperformed both top-down

(in four out of the five measures) and bottom-up (in three out of the five measures) using the

nonambiguous approach, improves results even more when using chunks3 and (specially)

chunks2. Neighbouring model, which did not get to improve both bottom-up and top-down

methodologies using the nonambiguous approach, gets quite comparable (with respect to

bottom-up) and higher (with respect to top-down) values with the chunks2 approach. As to the

chunks-total strategies, again they achieve slightly lower results than their equivalent for base-

NPs, confirming our preference for the latter approach. Somewhat surprisingly we find once

more that, for the CBR measure, better results are obtained by methods that are not well-ranked

for the other measures. The main reason seems to be once more that these parse trees are

 144

basically composed by unary and binary rules (average length of 1.6 for the rules used by

“worse” against 2.1 for the rules used by local-chunks2). Then, it is more unlikely that a

crossing bracket occurs.

It is important to compare the different methods between the upper and lower bounds, as all

the results are rather low due to the fact that sentences were not tagged. A new set of

experiments was conducted in order to evaluate the effects of tagging the corpus in the accuracy

of the results. The test set was previously disambiguated and then parsed by means of all the

chunks approaches plus the BU and TD methods (see table 21). Obviously it made no sense to

test the nonambiguous approaches, as all words in each sentence would have been islands. We

emphasise once more that starting from a correctly disambiguated corpus is unrealistic, for any

tagged corpus would imply the existence of a certain error rate. To what extent would this error

affect the accuracy of the parses, the same way that our starting from disambiguated corpus has

been affected, remains unexplored.

Table 21. Evaluation metrics for tagged corpus

 LR BR CBR LP BP
BU 0.674 0.707 0.814 0.496 0.519
TD 0.680 0.711 0.805 0.510 0.533
Local+chunks1 0.683 0.705 0.798 0.530 0.547
Local+chunks2 0.750 0.770 0.827 0.668 0.686
Local+chunks3 0.746 0.767 0.826 0.661 0.679
Neighb+chunks1 0.660 0.685 0.789 0.482 0.500
Neighb+chunks2 0.717 0.743 0.810 0.583 0.603
Neighb+chunks3 0.720 0.744 0.810 0.586 0.605

It can be observed that local approaches systematically obtain better measures than BU, as well

as all the neighbouring approaches but the first one. As to TD method, it can be observed that

the addition of the disambiguation preprocess makes its accuracy increase, getting to outperform

BU (which had obtained better results when dealing with a non tagged test set). Top-Down

method then gets to overcome the poorer performance approaches local+chunks1 and

neighbouring+chunks1, though the other two local and neighbouring approaches comfortably

overcome their values. Increases of around 30% in recall and 25% in precision are

accomplished by adding the previous tagging process.

It seems clear that it is impossible to get certain accuracy figures if our grammar is not

complete and does not contain all the rules that the (so considered) correct parses contain.

Therefore, trying to be even more realistic, we have selected the subset of test sentences for

which the PTB parses contain only rules belonging to our reduced grammar. Then, the accuracy

metrics have been calculated for this subset and the different methods. The obtained values are

listed in table 22. Logically, the metrics increase even more for every method. However, while

both the labelled and bracketed recall increase generally by around 15-18%, both the labelled

 145

and bracketed precision increase by around 23- 26% (with no apparent differences among the

increases in the different methods). Within this framework, figures are quite comparable to

others published elsewhere.

Table 22. Evaluation metrics for tagged corpus and subset of sentences

 LR BR CBR LP BP
Bottom-Up 0.824 0.837 0.897 0.676 0.687
Top-Down 0.816 0.839 0.883 0.681 0.700
Local+chunks1 0.829 0.846 0.892 0.714 0.726
Local+chunks2 0.906 0.914 0.934 0.888 0.896
Local+chunks3 0.904 0.913 0.934 0.887 0.894
Neighb+chunks1 0.797 0.810 0.870 0.644 0.655
Neighb+chunks2 0.858 0.873 0.905 0.777 0.789
Neighb+chunks3 0.860 0.875 0.906 0.778 0.790

5.10 Initial Islands by Category

As described in section 3.4, whatever the method in which the initial islands are selected,

several refinements might be applied, such as considering criteria based on both the degree of

ambiguity of the lexical categories of each word, as well as the degree of ambiguity of the

categories according to the grammar. As a preliminary step, we have carried out a series of

experiments introducing the terminal category as a criterion for selection of the islands. The

goal of these experiments is determining whether certain categories or sets of categories are

better initial islands that others.

As opposed to the previous experiments, in this case we have used a (correctly)

morphologically disambiguated corpus from the beginning as a test set. Also derived from the

experience of the previous experiments (see the last part of section 5.9.3), we have extracted a

different test set, in which all the sentences are such that their Penn Treebank parse tree is

composed merely by rules belonging to our reduced grammar (see section 5.2.2 for a

remainder). This set is also composed by 1,000 sentences, and its average sentence length is

15.52 words.

The idea is to test which categories/sets of categories are optimal, for each methodology. The

behaviour of both pure methods (local and neighbouring) will be tested. We will apply a greedy

strategy for the experiments, starting by testing the behaviour of each single category as initial

island, analysing the obtained results, and choosing the optimal ones to be combined (in pairs)

and tested. For each combination of n islands, the same strategy is applied in order to get the

concrete combinations of n+1 islands to be tested, from n = 1 to n = 9. With 45 terminal

categories, we obtain quite a high number of combinations. Therefore, we will perform the

evaluation on a subset of the test set composed by 100 sentences, and only the optimal

combinations will be used to analyse the complete test set. In order to avoid the results to be

 146

overfitted according to the subset, we have carried out sort of a cross-validation, testing the

chosen combinations of n categories as initial islands on two subsets of 100 sentences, and

using the results on both subsets to determine the combinations of n+1 categories to be tested.

Finally, the optimal combinations have been evaluated on the complete test set (1,000

sentences). These combinations have been selected not only according to the performance

criterion (average number of edges needed to find the first parse), but also according to the

accuracy (measured in terms of the five figures described in section 5.8.2), as we have tried to

find a trade-off between both criteria.

Table 23 shows the results obtained by the optimal combinations, sorted according to the

average number of (inactive + active) edges. The terminology employed appends the name of

the model used plus the set of terminal categories used as initial islands, separated by the

symbol ‘+’ (see Appendix A for a list and description of the terminal categories in PTB-II). For

the sake of comparison, the results obtained for the new test corpus by both the baseline bottom-

up and the three varieties of the two models starting from base NPs (see section 5.9) have been

included. Besides the three columns corresponding to the number of edges, two additional

informative columns have been included, namely the number of sentences for which no initial

islands could be chosen40 (because no category from the considered set in that case was present

in the sentence), and the average island density (number of original islands divided by the

number of words in the sentence). It can be observed that the chunking approach (except in the

case of selecting all base-NPs) performs better that any combination of categories for both

models. As to the number of edges, the optimal neighbouring combinations generally obtain

better results than the local ones. However, it has been impossible to find common optima for

both models. The reason stems directly from the nature of both models: as mentioned at the

beginning of this section, local model optima are closely linked to the grammar and the

ambiguity of the terminal categories in their rules, while the neighbouring model optima are

dynamically dependent on the categories of the adjacent islands (the neighbours). As usual, the

bottom-up approach is outperformed by far by all the combinations (72% better for the worst

case!).

Table 23. Comparative results for the optimal combinations of categories

PTB-II Not
applied

Island
density

Inactive
edges

Active
edges

Total
edges

Local+chunks2 --- --- 104 841 945
Local+chunks3 --- --- 105 848 954
Neighb+chunks2 --- --- 179 1394 1573
Neighb+chunks3 --- --- 179 1394 1573
Neighb+PRP$+TO+VBG 613 0,072 285 1743 2029
Neighb+TO+VBG 664 0,069 287 1759 2046

40 In this case, the first element of the sentence is selected as the only island.

 147

Neighb+PRP$+TO 678 0,068 287 1761 2049
Neighb+TO+VBG+WP 651 0,07 287 1765 2052
Neighb+PRP$+TO+WP 662 0,069 288 1766 2054
Neighb+TO+VBG+POS+PRP$ 548 0,075 290 1777 2068
Neighb+PRP$+TO+POS 604 0,071 289 1779 2069
Neighb+PRP$+TO+MD 522 0,073 291 1783 2075
Neighb+TO+VBG+POS 595 0,072 292 1792 2084
Neighb+TO+VBG+POS+WP 582 0,074 291 1794 2086
Local+chunks1 --- --- 243 1847 2090
Neighb+TO+POS 658 0,068 291 1801 2092
Neighb+PRP$+VB 483 0,076 296 1798 2094
Neighb+PRP$+VB+VBG 429 0,081 296 1805 2101
Neighb+PRP$+VB+WP 470 0,077 296 1805 2101
Neighb+PRP$+VB+WP+VBG 418 0,082 297 1815 2112
Neighb+WP+VB 514 0,074 297 1826 2124
Neighb+WP+VB+VBG 455 0,079 298 1828 2126
Neighb+PRP$+VB+POS 428 0,08 299 1848 2148
Neighb+PRP$+VB+WP+POS 415 0,082 299 1853 2153
Local+JJ+PRP+POS+CD 173 0,116 183 2221 2404
Local+JJ+PRP+POS+MD 188 0,114 190 2356 2546
Local+JJ+PRP+POS+CC 168 0,116 188 2360 2549
Local+JJ+POS+CD 238 0,102 190 2375 2566
Local+CC+.+PRP+POS+CD+MD+RB+JJ 1 0,223 186 2392 2579
Local+CC+.+MD+POS+VBG+CD+RB+JJ+PRP 1 0,231 186 2394 2580
Local+JJ+POS+CD+MD 171 0,113 193 2388 2581
Local+CD+POS+JJ+VBG 209 0,109 191 2391 2582
Local+CC+.+PRP+POS+CD+RB+JJ 1 0,208 184 2404 2588
Local+CC+.+PRP+POS+VBG+CD+JJ+RB 1 0,216 184 2405 2590
Local+CD+POS+JJ+CC 160 0,116 191 2402 2593
Local+CC+.+PRP+POS+CD+MD+JJ 1 0,204 184 2455 2640
Local+CC+.+PRP+POS+VBG+CD+JJ+MD 1 0,212 185 2456 2641
Local+CC+.+PRP+POS+CD+JJ 1 0,189 183 2466 2649
Local+CC+.+PRP+POS+VBG+CD+JJ 1 0,197 183 2468 2651
Local+JJ+PRP+POS+CD+. 1 0,17 184 2480 2665
Local+CC+.+PRP+POS+JJ 1 0,17 189 2615 2804
Local+CC+.+PRP+POS+VBG+JJ 1 0,178 189 2616 2805
Neighb+.+RB 1 0,084 298 2649 2947
Neighb+chunks1 --- --- 341 2616 2957
Neighb+WP+.+RB 1 0,086 298 2664 2962
Neighb+PRP$+.+RB 1 0,09 298 2665 2964
Neighb+.+POS+RB 1 0,092 297 2694 2992
Neighb+PRP$+.+POS+RB 1 0,098 298 2709 3007
Neighb+WP+.+POS+RB 1 0,094 298 2708 3007
Local+CC+.+PRP+POS+CD+MD+RB 1 0,163 207 2892 3100
Local+CC+.+PRP+POS+CD+MD 1 0,143 207 2988 3195
Local+CC+.+PRP+POS+CD 1 0,128 206 3035 3241
Local+CC+.+PRP+POS+VBG+CD 1 0,136 206 3034 3241
Local+CC+.+MD+POS+CD+RB 1 0,145 215 3079 3294
Local+CC+.+MD+POS+CD 1 0,125 215 3192 3407
Local+CC+.+PRP+POS+VBG 1 0,117 211 3203 3415
Bottom-Up --- --- 490 11729 12219

 148

Table 24 shows the accuracy metrics for the same optimal combinations of table 23. Besides the

columns corresponding to the five metrics, an additional column Accuracy which sums them all

has been included, as well as an Accuracy Rate which is simply calculated by normalising using

the maximum and minimum values (for this latter calculus, the values for bottom-up method are

not considered, that’s why its accuracy rate is negative). The different methods have been sorted

according to the Accuracy. Although the figures are generally higher than in the previous

sections (due to the two factors explained before, the disambiguation of the corpus and the fact

that all the corresponding PTB parses contain only rules from our reduced grammar), once more

the local approach obtains better results than the neighbouring approach. For both

methodologies, again the chunking approach (except when choosing all the base-NPs) performs

better than any of the combinations of categories as initial islands. Once more, the bottom-up

baseline obtains worse results than any of our approaches.

Table 24. Evaluation metrics for the optimal combinations of categories

PTB-II LR BR CBR LP BP Accur. Accur.
Rate

Local+chunks2 0,835 0,844 0,870 0,825 0,834 4,208 1,000
Local+chunks3 0,835 0,844 0,870 0,825 0,833 4,207 0,999
Local+CC+.+PRP+POS+CD 0,830 0,852 0,883 0,794 0,815 4,174 0,957
Local+CC+.+PRP+POS+CD+MD 0,830 0,851 0,882 0,793 0,814 4,170 0,952
Local+CC+.+PRP+POS+VBG+CD 0,829 0,850 0,882 0,794 0,814 4,169 0,950
Local+CC+.+PRP+POS+CD+MD+JJ 0,830 0,847 0,876 0,797 0,814 4,164 0,944
Local+JJ+PRP+POS+CD+. 0,831 0,848 0,876 0,797 0,812 4,164 0,944
Local+CC+.+PRP+POS+VBG 0,829 0,850 0,882 0,792 0,811 4,164 0,944
Local+CC+.+MD+POS+CD 0,829 0,851 0,884 0,789 0,810 4,163 0,943
Local+CC+.+PRP+POS+VBG+CD+JJ+MD 0,829 0,846 0,875 0,797 0,814 4,161 0,940
Local+CC+.+PRP+POS+CD+JJ 0,829 0,846 0,875 0,796 0,812 4,158 0,936
Local+CC+.+PRP+POS+VBG+CD+JJ 0,828 0,845 0,874 0,796 0,812 4,155 0,932
Local+CC+.+PRP+POS+JJ 0,828 0,845 0,875 0,791 0,808 4,147 0,922
Local+CC+.+PRP+POS+VBG+JJ 0,828 0,845 0,874 0,791 0,807 4,145 0,920
Local+CC+.+PRP+POS+CD+MD+RB 0,827 0,847 0,879 0,785 0,805 4,143 0,917
Local+CC+.+MD+POS+CD+RB 0,827 0,848 0,882 0,783 0,803 4,143 0,917
Local+CC+.+PRP+POS+CD+MD+RB+JJ 0,826 0,843 0,872 0,788 0,805 4,134 0,906
Local+CC+.+MD+POS+VBG+CD+RB+JJ+PRP 0,825 0,842 0,872 0,788 0,805 4,132 0,903
Local+CC+.+PRP+POS+CD+RB+JJ 0,826 0,843 0,872 0,787 0,804 4,132 0,903
Local+JJ+POS+CD+MD 0,827 0,844 0,877 0,782 0,798 4,128 0,898
Local+CC+.+PRP+POS+VBG+CD+JJ+RB 0,825 0,842 0,871 0,787 0,803 4,128 0,898
Local+CD+POS+JJ+VBG 0,827 0,843 0,876 0,782 0,796 4,124 0,893
Local+JJ+POS+CD 0,827 0,843 0,876 0,780 0,794 4,120 0,888
Local+CD+POS+JJ+CC 0,826 0,842 0,875 0,780 0,795 4,118 0,885
Local+JJ+PRP+POS+CD 0,823 0,838 0,869 0,782 0,796 4,108 0,873
Local+JJ+PRP+POS+MD 0,819 0,836 0,868 0,774 0,790 4,087 0,846
Local+JJ+PRP+POS+CC 0,816 0,832 0,865 0,772 0,787 4,072 0,827
Neighb+chunks3 0,783 0,798 0,838 0,714 0,727 3,860 0,557
Neighb+chunks2 0,783 0,797 0,838 0,714 0,727 3,859 0,555
Neighb+PRP$+.+POS+RB 0,773 0,795 0,860 0,628 0,645 3,701 0,354
Neighb+WP+.+POS+RB 0,772 0,793 0,858 0,627 0,644 3,694 0,345

 149

Neighb+PRP$+.+RB 0,772 0,794 0,859 0,623 0,641 3,689 0,339
Neighb+.+POS+RB 0,771 0,792 0,857 0,626 0,643 3,689 0,339
Neighb+WP+.+RB 0,770 0,792 0,857 0,622 0,639 3,680 0,327
Neighb+.+RB 0,769 0,791 0,856 0,621 0,639 3,676 0,322
Neighb+PRP$+VB+VBG 0,749 0,765 0,827 0,633 0,646 3,620 0,251
Neighb+PRP$+TO+VBG 0,750 0,765 0,829 0,630 0,644 3,618 0,248
Neighb+TO+VBG+POS+PRP$ 0,749 0,764 0,828 0,630 0,643 3,614 0,243
Neighb+PRP$+VB 0,748 0,764 0,826 0,629 0,642 3,609 0,237
Neighb+PRP$+VB+WP+VBG 0,747 0,763 0,825 0,630 0,644 3,609 0,237
Neighb+PRP$+TO+POS 0,749 0,764 0,829 0,627 0,639 3,608 0,236
Neighb+TO+VBG+WP 0,749 0,765 0,828 0,626 0,639 3,607 0,234
Neighb+PRP$+TO 0,748 0,764 0,829 0,625 0,639 3,605 0,232
Neighb+TO+VBG 0,748 0,764 0,828 0,626 0,639 3,605 0,232
Neighb+PRP$+TO+WP 0,748 0,764 0,829 0,625 0,638 3,604 0,231
Neighb+TO+VBG+POS+WP 0,748 0,764 0,827 0,626 0,638 3,603 0,229
Local+chunks1 0,746 0,758 0,822 0,633 0,643 3,602 0,228
Neighb+TO+VBG+POS 0,748 0,763 0,827 0,626 0,638 3,602 0,228
Neighb+PRP$+VB+POS 0,747 0,762 0,825 0,627 0,640 3,601 0,227
Neighb+PRP$+VB+WP 0,746 0,762 0,825 0,627 0,640 3,600 0,225
Neighb+PRP$+TO+MD 0,746 0,762 0,828 0,624 0,636 3,596 0,220
Neighb+PRP$+VB+WP+POS 0,745 0,761 0,825 0,625 0,638 3,594 0,218
Neighb+WP+VB+VBG 0,745 0,761 0,823 0,625 0,639 3,593 0,217
Neighb+TO+POS 0,747 0,763 0,827 0,621 0,634 3,592 0,215
Neighb+WP+VB 0,744 0,760 0,824 0,622 0,636 3,586 0,208
Neighb+chunks1 0,722 0,736 0,815 0,570 0,580 3,423 0,000
Bottom-Up 0,702 0,721 0,816 0,565 0,580 3,384 -0,050

At least for our corpus and test set, no particular category or group of categories seems to

generally behave as a good initial island. Whatever the combination of categories, both the

performance and accuracy are overcome by the approach that selects certain base-NPs as initial

islands, for both stochastic models. That’s the reason why we have not continued to explore this

line.

 150

 151

Chapter 6

Conclusions

A complete methodology for bidirectional island-driven parsing of natural language has been

developed. The approach aims at defining scoring functions (FOMs) to drive the bidirectional

chart parsing algorithm, basing on context-free grammars extended with attached probabilities

(SCFGs). This methodology includes three main sections, which are detailed next.

Firstly, the definition of the stochastic model needed in order to deal with bidirectionality in

island-driven parsing. Two stochastic models have been devised. Both models are supervised,

starting from a SCFG, and then adding the corresponding stochastic parameters of each model.

These models provide for the probability of extension of each island and active edge in the chart

structure. In order to do it, they use information based on either the stochastic grammar (local

model) or both the grammar and the immediately adjacent islands (neighbouring model). Even

if these models are still far from being the optimal scoring functions to guide the search in the

island-driven parsing process, we find they constitute a valuable contribution to the solution of

the problem.

Secondly, the design and implementation of a bidirectional chart parser. A chart parser has

been built that uses such models in order to guide its search for a best first parse. Such models

can be used either independently or in combination. In fact, the structure of the parser has been

designed in such a way that it allows the implementation of both the two unidirectional non-

stochastic approaches considered (bottom-up and top-down) as well as the variety of different

bidirectional strategies regarded. The latter include head-driven methodology, island-driven

pure methodologies (using only either local or neighbouring models), and hybrid methodologies

which combine either both models or an stochastic model with a unidirectional approach. The

election of the specific hybrid combinations evaluated has been heuristic, since it stems mainly

from the necessity of optimising the performance of the neighbouring model. It includes the

back-off from neighbouring to local, thresholding of the neighbouring parameters, and

smoothing of the neighbouring probabilities.

 152

Thirdly, the study of the possibilities as to the selection of the initial islands from which

analysis will proceed. Several alternatives have been considered, though only three of them

have been completely evaluated into our framework. Two of them can be considered the main

methodologies for the selection of these islands devised, namely selecting as islands the non-

ambiguous words in a morphologically analysed but non-tagged sentence, and selecting as

islands the chunks in a previously chunked sentence. A third simpler methodology has been

explored which consists in selecting the islands according to their category.

The work in this thesis can be considered as eminently heuristic. As it can be deduced from

the previous paragraphs, the island-driven methodology presents so many parameters or degrees

of freedom, that only through testing and evaluation can one try and find the best alternatives as

to the three lines described above. Therefore, extensive experimentation has been carried out,

and we have been specially concerned with the design of an adaptive environment in which

these parameters can be easily changed.

First, preliminary experiments have been performed, using Spanish toy grammars being

tested on small corpora, in order to initially evaluate whether the methodology was worth at all.

Parsing performance has been measured in terms of the average number of edges created to

complete one analysis of each sentence. The performance of our proposal has been compared to

that of the unidirectional approaches which will be used as baselines, the top-down and the

bottom-up strategies. From these experiments we have been able to conclude that, as our island-

driven approach always outperforms the baselines, the continuation of the work was justified. It

has also been observed that the larger the sentences, the larger the improvement of our

bidirectional methodology. However, we have not been able to clearly determine any general

criteria for selection of the initial islands, or rather, for the selection of initial islands out of the

fixed set of islands (nonambiguous words) in the case of these preliminary experiments.

Therefore, we have decided to see whether both our results extrapolate to real-sized cases and

we can find additional criteria by investigating further these cases.

Thus, extensive experiments with broad coverage grammars and real corpora of Spanish and

English have been carried out. Parsing performance has been analysed according to several

metrics of the input sentence (sentence length, ambiguity rate, MID41, island dispersion, and

island density). Whatever the island selection methodology out of the three ones described

above, our approaches dramatically outperform both baselines, top-down and (specially)

bottom-up strategies.

For the first island-selection strategy (simply selecting those nonambiguous words), training

and testing over the PTB-II English corpus, local approach improves bottom-up results by more

than 71% and top-down results by 18%, while neighbouring approach gets to improve bottom-

41 Maximum Island Distance, see section 5.4.

 153

up results by 72% and top-down’s by over 20%. As to the experiments over Spanish corpus

Lexesp, the deficient quality of the grammar used (merely a extension of a pre-existent chunk

grammar) and the fact that the set of parses used as a training set were not manually tested, but

performed directly by the bottom-up parser, entailed that the more informed neighbouring

methodology did not manage to accurately learn its stochastic parameters, so only the local

model improved the bottom-up baseline. Surprisingly, for the Spanish experiments, top-down

results are far worse than bottom-up’s, and obviously, than both of our stochastic approaches.

These latter experiments for Spanish (as compared to the ones for English) have allowed to

evaluate the relevance of the quality of the input knowledge sources for the performance.

As mentioned, several hybrid methods, which combine local and neighbouring approaches,

have also been defined and evaluated. Their performance always improves the single ones’. In

fact, all the hybrid methods outperform the optimal pure approach, neighbouring, by between

46% and 48%. The optimal method is one of the back-off approaches combined with smoothing

of the neighbouring probabilities, neighb-smooth4ac-1cycle (defined in section 5.7). After all

these experiments we can conclude that, using the first island selection criterion, and regarding

performance, neighbouring approach is the optimal, as long as its main drawback, data

sparseness, is overcome by smoothing somehow (using any of the methods defined in sections

5.5 to 5.7) the learnt stochastic parameters.

Besides evaluating performance, other measures have been considered, including the

likelihood of the different parse trees and its similarity to the PTB ones (what we have generally

denoted as accuracy). Local method, followed by two of the back-off approaches, neighb-1cycle

and neighb-40% (defined in section 5.5), present the best results.

The second island-selection strategy, consisting in preceding the stochastic island-driven

parser by a chunking process for identifying the initial islands, has been proved useful for

improving parsing performance without loss of coverage. It uses a SCFG from which a

grammar of chunks can be automatically extracted. The chunking process can be carried out

quite straightforwardly in a very efficient way. The island-driven chart parsing process is then

performed basing on either of the stochastic models previously described.

The system has been tested on PTB-II corpus with remarkable results. For instance, the local

method using the firstly mentioned island-selection mechanism (local-noamb) reduces the

bottom-up average number of (active + inactive) edges by a factor of 4, whereas the chunking

criterion reduces it by 8. We conclude that, although both methods clearly outperform both

baselines (bottom-up and top-down), the use of a more informed strategy, the base NPs

proposal, provides a more significant improvement, specially when only maximal and

overlapping NPs (see definitions in chapter 4) are selected. As to the accuracy measures

considered (the likelihood of the different parse trees and its similarity to the PTB ones), mostly

our parses outperform both bottom-up and top-down results, obtaining quite comparable figures

 154

in all cases. The change of island-selection strategy also improves these evaluation metrics. We

have investigated the extension of the use of chunks others than base NPs. The results obtained

suggest that the effort of the latter additional chunking may not be worth it.

A third island selection strategy, consisting in selecting the islands according to their

category, has been explored. Using the test corpus, the idea has been to try and find the optimal

category or set of categories obtaining the best trade-off between performance and accuracy.

Unfortunately, although the best combinations still outperform the baseline strategies, they are

in turn outperformed by the previously mentioned chunking approach. Moreover, we have not

been able to find out any tendencies or common features in the optimal sets of categories which

works for both the local and neighbouring models.

Summing up, we have demonstrated that, whatever the island selection strategy, our island-

driven methodology improves the efficiency (measured in terms of the number of chart edges)

of the usual unidirectional techniques, and that the percentage of improvement increases with

the length of the sentence. Such a contribution is highly relevant, considering that stochastic

context-free parsing with large (real-sized) grammars is a problem that might not be tractable

for long (real-sized) sentences. Moreover, these natural language sentences might be corrupted,

which would render the application of unidirectional strategies impossible or, at least, much

harder.

6.1 Further Work

Considering the results and conclusions summarised in the previous introduction of this chapter,

several lines of further work to be done can be outlined. Some of them would involve further

significant research, whilst others refer to details or additional experimentation which might be

carried out in the existing framework. They can be distilled into the following six points:

• Chapter 3 introduced an alternative42 to our scoring function for the local model, in

which maximum of the probabilities of derivations was used instead of our addition

of the probabilities. The preliminary results obtained (showed in chapter 5) are

promising, since the average number of edges decreases a 3% with respect to our

conventional local approach and, although the average probability of the parses is

significantly lower, the accuracy measures are lower but quite comparable.

Therefore, we consider that the application of this modification to the neighbouring

(and its different variants) might be the natural following line.

42 Suggested a posteriori by an annonymous reviewer, to whom we are extremely grateful.

 155

• Performance improvement over baseline methodologies seems unquestionable.

However, accuracy remains to be increased, specially for the neighbouring model.

In fact, as mentioned in section 3.5, our hybrid approaches share the motivation

with the ideas of ‘work’ and ‘competitorship’ of [Blaheta & Charniak, 1999], thus

pointing out a possible extension for improving both performance and accuracy.

• [Blaheta & Charniak, 1999] also provide interesting ideas to deal with data-

sparseness which may be applied to our neighbouring model.

• Since section 1.1 it has been justified why our method is non-lexicalised, all the

more as we have found the data-sparseness problems in the neighbouring approach.

However, taking into account current project 3LB43, in which a treebank for Spanish

is being constructed, a lexicalised version of our system might be considered.

Obviously such an extension would require the thorough study and use of the

corresponding back-off and data-sparseness techniques which are being employed

by the lexicalised systems currently found in the literature.

• It has been commented many times along this thesis how heavily the performance

obtained relies on the initial island selection methodology. Specifically, we have

proved the importance of using more informed methods. Alternative methods for

this selection, both the ones described in section 3.4 but not evaluated, as well as

any others that may arise, might be devised and evaluated. This evaluation might

include the combination of the promising hybrid/smoothing techniques designed for

the neighbouring model with these new selection methods. The test of this

combination should start from the chunk approach described in chapter 4, for to

what extent the success of the hybrid/smoothing techniques is dependent on the

specific island selection method is a point still to be evaluated.

• Island-driven parsing’s most natural application is robust parsing, considering

specially the cases of a possibly corrupted input (mainly dealing with speech

processing, but also whenever we might find non-grammatical sentences).

However, we have not evaluated the behaviour of our methodology in such cases,

nor have we compared it with more conventional strategies. This is another

promising line of research, since we would be applying the methodology in its a

priori more favourable environment.

43 FIT-15050-2002-244, http://www.dlsi.ua.es/projectes/3lb/index_en.html

 156

 157

References

[Abeillé, 2000] Abeillé A. (ed.) “Building and Using Syntactically Annotated Corpora”

Language and Speech series, Kluwer, Dordrecht, 2000.

http://treebank.linguist.jussieu.fr/toc.html.

[Abney, 1991] S. Abney “Parsing by Chunks” In R. Berwick, S. Abney, and C. Tenny (eds.)

Principle-Based Parsing. Kluwer Academic Publishers, 1991.

[Abney, 1994] S. Abney “Partial Parsing” Tutorial presented in the International Conference

on Applied Natural Language Processing (ANLP 94). Stuttgart, 1994.

[Abney, 1996] S. Abney “Partial Parsing via Finite-State Cascades” Proceedings of the

ESSLLI-96 Robust Parsing Workshop, 1996.

[Abney, 1997] S. Abney “Stochastic Attribute-Value Grammars” Computational Linguistics,

23 (4), 1997.

[Abney et al., 1999] S. Abney, D. McAllester, and F. Pereira “Relating Probabilistic Grammars

and Automata” Proceedings of the 37th Annual Meeting of the Association for Computational

Linguistics. Maryland, 1999.

[Ageno & Rodríguez, 1996] A. Ageno and H. Rodríguez “Using Bidirectional Chart Parsing

for Corpus Analysis” Report LSI 96-12-R. Barcelona, 1996.

[Ageno & Rodríguez, 2000] A. Ageno and H. Rodríguez “Extending Bidirectional Parsing with

a Stochastic Model” Proceedings of the 3rd International Workshop on Text, Speech and

Dialogue (TSD 2000). Brno, 2000.

[Ageno & Rodríguez, 2001a] A. Ageno and H. Rodríguez “Chunking + Island-Driven Parsing =

Full Parsing” Proceedings of the 3rd Conference on Recent Advances in Natural Language

Processing, RANLP. Tzigov Chark, Bulgaria, 2001.

[Ageno & Rodríguez, 2001b] A. Ageno and H. Rodríguez “Probabilistic Modelling of Island-

Driven Parsing” Proceedings of the 7th International Workshop on Parsing Technologies.

Beijing, 2001.

[Aho & Ullman, 1972] A.V. Aho and J.D. Ullman “The Theory of Parsing, Translation, and

Compiling. Volume 1: Parsing” Prentice-Hall, Englewood Cliffs, NJ, 1972.

 158

[Aït-Mokhtar et al., 2001] S. Aït-Mokhtar, J-P. Chanod, and C. Roux “A Multi-Input

Dependency Parser” Proceedings of the 7th International Workshop on Parsing Technologies.

Beijing, 2001.

[Allen, 1995] J. Allen “Natural Language Understanding” Benjamin Cummings, Redwood

City, CA, 1995.

[Alonso et al., 2001] M.A. Alonso, V.J. Díaz, and M. Vilares “Bidirectional Automata for Tree

Adjoining Grammars” Proceedings of the 7th International Workshop on Parsing Technologies.

Beijing, 2001.

[Alshawi, 1992] H. Alshawi “The Core Language Engine” MIT Press, 1992.

[Alshawi, 1996] H. Alshawi “Head Automata and Bilingual Tiling: Translation with Minimal

Representations” Proceedings of the 34th Annual Meeting of the Association for Computational

Linguistics. Santa Cruz, CA, 1996.

[Baker, 1979] J. K. Baker “Trainable Grammars for Speech Recognition” In Jared J. Wolf and

Dennis H. Klatt (eds.), Speech Communication Papers presented at the 97th Meeting of the

Acoustical Society of America. MIT, Cambridge, MA., 1979.

[Baum, 1972] L. Baum “An inequality and associated maximization technique in statistical

estimation for probabilistic functions of Markov processes” Inequalities, III, 1-8, 1972.

[Berger et al., 1996] A.L. Berger, S.A. Della Pietra, and V.J. Della Pietra “A Maximum Entropy

Approach to Natural Language Processing” Computational Linguistics, 22 (1), 1996.

[Black et al., 1991] E. Black, S. Abney, D. Flickinger, C. Gdaniec, R. Grishman, P. Harrison, D.

Hindle, R. Ingria, F. Jelinek, J. Klavans, M. Liberman, M. Marcus, S. Roukos, B. Santorini, and

T. Strzalkowski. “A Procedure for Quantitatively Comparing the Syntactic Coverage of English

Grammars” Proceedings of the Speech and Natural Language Workshop, pp. 306-311, Pacific

Grove, CA. DARPA, 1991.

[Black et al., 1992] E. Black, J. Lafferty, and S. Roukos “Development and Evaluation of a

Broad-Coverage Probabilistic Grammar of English-Language Computer Manuals” Proceedings

of the 30th Annual Meeting of the Association for Computational Linguistics, pages 185-192,

1992.

[Black et al., 1993] E. Black, F. Jelinek, J. Lafferty, D. Magerman, R. Mercer, and S. Roukos

“Towards History-Based Grammars: Using Richer Models for Probabilistic Parsing”

Proceedings of 31st Annual Meeting of the Association for Computational Linguistics. Ohio,

1993.

[Blaheta & Charniak, 1999] D. Blaheta and E. Charniak “Automatic Compensation for Parser

Figure-of-Merit Flaws” Proceedings of the 37th Annual Meeting of the Association for

Computational Linguistics. Maryland, 1999.

[Bod, 1995] R. Bod “Enriching Linguistics with Statistics: Performance Models of NL” Ph.D.

Thesis, ILLC Dissertation Series 1995-14. Academische Pers, Amsterdam, 1995.

 159

[Bod, 2000] R. Bod “Parsing with the Shortest Derivation” Proceedings of the 18th

International Conference on Computational Linguistics (COLING 2000). Saarbrücken, 2000.

[Bod, 2001] R. Bod “What is the Minimal Set of Fragments that Achieves Maximal Parse

Accuracy?” Proceedings of the 39th Annual Meeting of the Association for Computational

Linguistics. Toulouse, 2001.

[Bouma & van Noord, 1993] G. Bouma and G. van Noord “Head-driven Parsing for Lexicalist

Grammars: Experimental Results” Proceedings of the 6th European Chapter of the ACL, pp. 71-

80, 1993.

[Böhmová et al., 2000] A. Böhmová, J. Hajic, E. Hajicová, and B. Hladká “The Prague

Dependency Treebank: A Three level Annotation Scenario” In Anne Abeillé (ed.), Building and

using syntactically annotated corpora. Language and Speech series, Kluwer, Dordrecht, 2000.

[Brants et al., 2000] T. Brants, W. Skut, and H. Uszkoreit “Syntactic annotation of a German

newspaper corpus” In Anne Abeillé (ed.), Building and using syntactically annotated corpora.

Language and Speech series, Kluwer, Dordrecht, 2000.

[Brew, 1995] C. Brew “Stochastic HPSG” Proceedings of the 7th Conference of the European

Chapter of the ACL. Dublin, 1995.

[Brill, 1993] E. Brill “Automatic Grammar Induction and Parsing Free Text: A Transformation-

Based Approach” Proceedings of the 31st Annual Meeting of the Association for Computational

Linguistics, pp. 259-265. Ohio, 1993.

[Briscoe & Carroll, 1993] T. Briscoe and J. Carroll “Generalised Probabilistic LR Parsing of

Natural Language (Corpora) with Unification-Based Grammars” Computational Linguistics, 19

(1), pp. 25-59, 1993.

[Briscoe & Waegner, 1992] T. Briscoe and N. Waegner “Robust Stochastic Parsing Using the

Inside-Outside Algorithm” Proceedings of the AAAI Workshop on Statistically-Based NLP

Techniques. San José, CA, 1992.

[Buchholz et al., 1999] S. Buchholz, J. Veenstra, and W. Daelemans W. “Cascaded

Grammatical Relation Assignment” Proceedings of the EMNLP/VLC-99, the Joint SIGDAT

Conference on Empirical Methods in Natural Language Processing and Very Large Corpora,

1999.

[Caraballo & Charniak, 1998] S.A. Caraballo and E. Charniak “New Figures of Merit for Best-

First Probabilistic Chart Parsing” Computational Linguistics, vol. 24 (2), June1998.

[Cardie, 1993a] C. Cardie “A Case-Based Approach to Knowledge Acquisition for Domain-

Specific Sentence Analysis” Proceedings of the 11th National Conference on Artificial

Intelligence. AAAI Press / MIT Press, 1993.

[Cardie, 1993b] C. Cardie “Using Decision Trees to Improve Case-Based Learning”

Proceedings of the 10th International Conference on Machine Learning. Morgan Kaufmann,

1993.

 160

[Cardie & Pierce, 1998] C. Cardie and D. Pierce D. “Error-Driven Pruning of Treebank

Grammars for Base Noun Phrase Identification” Proceedings of the joint 36th Annual Meeting

of the ACL and 17th COLING Conference, pp. 218-224. Montreal, 1998.

[Carpenter, 1993] B. Carpenter “Compiling Typed Attribute-Value Logic Grammars”

Proceedings of the 3rd International Workshop on Parsing Technologies. Tilburg/Durbuy, 1993.

[Carreras & Márquez, 2001] X. Carreras and L. Màrquez “Boosting Trees for Clause Splitting”

Proceedings of the Computational Natural Language Learning Workshop (CoNLL-2001).

Toulouse, 2001.

[Carreras et al., 2002] X. Carreras, L. Màrquez, V. Punyakanok, and D. Roth “Learning and

Inference for Clause Identification” To appear in Proceedings of the 14th European Conference

on Machine Learning (ECML 2002). Helsinki, 2002.

[Carroll & Charniak, 1992] G. Carroll and E. Charniak “Two Experiments on Learning

Probabilistic Dependency Grammars from Corpora” In Carl Weir, Stephen Abney, Ralph

Grishman, and Ralph Weischedel (eds.), Working Notes of the Workshop Statistically-Based

NLP Techniques, pp. 1-13. Menlo Park, CA, AAAI Press, 1992.

[Carroll, 1983] J. A. Carroll “An Island Parsing Interpreter for the Full Augmented Transition

Network Formalism” Proceedings of the 1st Conference of the European Chapter of the

Association for Computational Linguistics (EACL). Pisa, 1983.

[Carroll, 1993] J. A. Carroll “Practical Unification–based Parsing of Natural Language” Ph.D.

Thesis. Computer Lab., Univ. of Cambridge, 1993.

[Carroll & Briscoe, 1996] J. Carroll and T. Briscoe “Apportioning Development Effort in a

Probabilistic LR Parsing System trough Evaluation” Proceedings of the ACL/SIGDAT

Conference on Empirical Methods in Natural Language Processing. University of Pennsylvania,

PA, 1996.

[Carroll & Weir, 1997] J. Carroll and D. Weir “Encoding Frequency Information in Lexicalized

Grammars” Proceedings of the 5th ACL/SIGPARSE International Workshop on Parsing

Technologies. MIT, Cambridge, MA, 1997.

[Castellón et al., 1998] I. Castellón, M. Civit, J. Atserías “Syntactic Parsing of Unrestricted

Spanish Text” Proceedings of the 1st International Conference on Language Resources and

Evaluation, pp. 603-609. Granada, 1998.

[Cervell et al., 1995] S. Cervell, S. Climent, and R. Placer “Using MACO and MDS to Tag

Balanced Corpus of Spanish” AcquilexII Working Paper 59, 1995.

[Charniak, 1996] E. Charniak “Tree-Bank Grammars” Proceedings of the 13th National

Conference on Artificial Intelligence and 8th Innovative Applications of Artificial Intelligence

Conference (AAAI 96, IAAI 96). Portland, Oregon, 1996.

 161

[Charniak, 1997] E. Charniak “Statistical Parsing with a Context-Free Grammar and Word

Statistics” Proceedings of the 14th National Conference on Artificial Intelligence, AAAI

Press/MIT Press. Menlo Park, 1997.

[Charniak et al., 1998] E. Charniak, S. Goldwater, and M. Johnson “Best-First Edge-Based

Chart Parsing” Proceedings of the 6th Annual Workshop for Very Large Corpora, 1998.

[Charniak, 2000] E. Charniak “A Maximum-Entropy–Inspired Parser” Proceedings of the 2nd

Meeting of the North American Chapter of the Association for Computational Linguistics.

Pittsburgh, Pennsylvania, 2000.

[Charniak, 2001] E. Charniak “Immediate-Head Parsing for Language Models” Proceedings of

the 39th Annual Meeting of the Association for Computational Linguistics. Toulouse, 2001.

[Chelba & Jelinek, 1998] C. Chelba & F. Jelinek “Exploiting Syntactic Structure for Language

Modeling” Proceedings of the 36th Annual Meeting of the ACL and COLING-98. Montreal,

1998.

[Chen, 1996] S.F. Chen “Building Probabilistic Models for Natural Language” PhD Thesis.

Harvard University, 1996.

[Chi & Geman, 1998] Z. Chi and S. Geman “Estimation of Probabilistic Context-Free

Grammars” Computational Linguistics, 24 (2), pp. 298-305, 1998.

[Chi, 1999] Z. Chi “Statistical Properties of Probabilistic Context-Free Grammars”

Computational Linguistics, 25 (1), 1999.

[Chitrao & Grishman, 1990] M. Chitrao and R. Grishman “Statistical Parsing of Messages”

Proceedings of the Speech and Natural Language Workshop, Hidden Valley, PA, pages 263-

266. Morgan Kaufman Publishers, 1990.

[Ciravegna & Lavelli, 1999] F. Ciravegna and A. Lavelli “Full Text Parsing using Cascades of

Rules: an Information ExtractionPerspective” Proceedings of the 9th Conference of the

European Chapter of the Association for Computational Linguistics. Bergen, 1999.

[Civit & Martí, 2002] M. Civit and M.A. Martí “Design Principles for a Spanish Treebank”

Proceedings of the 1st Workshop on Treebanks and Linguistic Theories. Sozopol, 2002.

[Collins, 1996] M.J. Collins “A New Statistical Parser Based on Bigram Lexical Dependencies”

Proceedings of the 34th Annual Meeting of the Association for Computational Linguistics. Santa

Cruz, CA, 1996.

[Collins, 1997] M.J. Collins “Three Generative, Lexicalised Models for Statistical Parsing”

Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and

8th Conference of the European Chapter of the Association for Computational Linguistics.

Madrid, 1997.

[Collins, 1999] M. Collins “Head-Driven Statistical Models for Natural Language Parsing”

PhD Thesis. University of Pennsylvania, 1999.

 162

[Collins, 2000] M. Collins “Discriminative Reranking for Natural Language Parsing”

Proceedings of the International Conference on Machine Learning, ICML, 2000.

[Collins, 2001] M. Collins “Parameter Estimation for Statistical Parsing Models: Theory and

Practice of Distribution-Free Methods” Proceedings of the 7th International Workshop on

Parsing Technologies (Invited Talk). Beijing, 2001.

[Collins & Duffy, 2001] M. Collins and N. Duffy “Convolution Kernels for Natural Language”

Proceedings of Neural Information Processing Systems (NIPS 14), 2001.

[Collins & Duffy, 2002] M. Collins and N. Duffy “New Ranking Algorithms for Parsing and

Tagging: Kernels over Discrete Structures, and the Voted Perceptron” Proceedings of the 40th

Annual Meeting of the Association for Computational Linguistics. Philadelphia, PA, 2002.

[Corazza et al., 1991] A. Corazza, R. De Mori, R. Gretter, and G. Satta “Stochastic Context-

Free Grammars for Island-Driven Probabilistic Parsing” Proceedings of the 2nd International

Workshop on Parsing Technologies. Cancun, 1991.

[Corazza et al., 1991a] A. Corazza, R. De Mori, R. Gretter, and G. Satta “Computation of

Probabilities for an Island-Driven Parser” IEEE Transactions on Pattern Analysis and Machine

Intelligence, 13 (9), 1991.

[Corazza et al., 1994] A. Corazza, R. De Mori, R. Gretter, and G. Satta “Optimal Probabilistic

Evaluation Functions for Search Controlled by Stochastic Context-Free Grammars” IEEE

Transactions on Pattern Analysis and Machine Intelligence, 16 (10), 1994.

[Daelemans et al., 1997] W. Daelemans, A. van den Bosch, and T. Weijters “IGTree: Using

Trees for Compression and Classification in Lazy Learning Algorithms” D. Aha (ed.),

Artificial Intelligence Review 11, Special Issue on Lazy Learning. Kluwer Academic

Publishers, 1997.

[Daelemans et al., 1999] W. Daelemans, S. Buchholz, and J. Veenstra “Memory-Based Shallow

Parsing” Proceedings of the Computational Natural Language Learning Workshop (CoNLL-

99). Bergen, 1999.

[Earley, 1970] J. Earley “An Efficient Context-Free Parsing Algorithm” Communications of

the ACM, 13 (2), pp. 94-102, 1970.

[Eisner, 1996a] J. Eisner “Three New Probabilistic Models for Dependency Parsing: An

Exploration” Proceedings of the 16th International Conference on Computational Linguistics,

COLING-96. Conpenhagen, 1996.

[Eisner, 1996b] J. Eisner “An Empirical Comparison of Probability Models for Dependency

Grammar” Technical Report IRCS-96-11, Institute for Research in Cognitive Science, Univ. Of

Pennsylvania, 1996.

[Eisner, 2000] J. Eisner “Bilexical Grammars and Their Cubic-Time Parsing Algorithms” In

Harry Bunt and Anton Nijholt (eds.), Advances in Probabilistic and Other Parsing

Technologies. Kluwer Academic Publishers, 2000.

 163

[Eisner & Satta, 1999] J. Eisner and G. Satta “Efficient Parsing for Bilexical Context-Free

Grammars and Head Automaton Grammars” Proceedings of the 37th Annual Meeting of the

Association for Computational Linguistics. Maryland, 1999.

[Eisner & Satta, 2000] J. Eisner and G. Satta “A Faster Parsing Algorithm for Lexicalised Tree-

Adjoining Grammars” Proceedings of the 5th International Workshop on Tree Adjoining

Grammars. Paris, 2000.

[Freund & Schapire, 1997] Y. Freund and R. Schapire “A decision-theoretic generalization of

on-line learning and an application to boosting” Journal of Computer and System Sciences,

55(1), pages 119-139, 1997.

[Fujisaki et al., 1989] T. Fujisaki, F. Jelinek, J. Cocke, E. Black, and T. Nishino “A Probabilistic

Parsing Method for Sentence Disambiguation” Proceedings of the 1st International Workshop

on Parsing Technologies. Pittsburgh, PA, 1989.

[Gaizauskas, 1995] R. Gaizauskas “Investigations into the Grammar Underlying the Penn

Treebank II” Research Report CS-95-25, University of Sheffield, 1995.

[Goodman, 1996] J. Goodman “Parsing Algorithms and Metrics” Proceedings of the 34th

Annual Meeting of the Association for Computational Linguistics, pages 177-183. Santa Cruz,

CA, 1996.

[Goodman, 1997] J. Goodman “Probabilistic Feature Grammars” Proceedings of the 5th

International Workshop on Parsing Technologies. MIT, Cambridge, MA, 1997.

[Goodman, 1998] J. Goodman “Parsing Inside-Out” PhD Thesis, Harvard University, 1998.

[Grover et al., 1989] C. Grover, T. Briscoe, J. Carroll, and B. Boguraev “The Alvey Natural

Language Tools Grammars” Technical Report 162, Computer Lab., Univ. of Cambridge.

Cambridge, 1989.

[Halteren, 2000] H. van Halteren “Chunking with WPDV Models” Proceedings of the

Computational Natural Language Learning Workshop (CoNLL-2000) and LLL-2000. Lisbon,

2000.

[Haruno et al., 1999] M. Haruno, S. Shirai, and Y. Ooyama “Using Decision Trees to Construct

a Practical Parser” Machine Learning 34, pages 131-149. Kluwer Academic Publishers, 1999.

[Henderson & Brill, 1999] J.C. Henderson and E. Brill “Exploiting Diversity in Natural

Language Processing: Combining Parsers” Proceedings of the 1999 Joint SIGDAT Conference

on Empirical Methods in NLP and Very Large Corpora (EMNLP/VLC-99). Maryland, MD,

1999.

[Hermjakob & Mooney, 1997] U. Hermjakob and R.J. Mooney “Learning Parse and Translation

Decisions From Examples With Rich Context” Proceedings of the 35th Annual Meeting of the

Association for Computational Linguistics and 8th Conference of the European Chapter of the

Association for Computational Linguistics. Madrid, 1997.

 164

[Hermjakob, 2001] U. Hermjakob “Parsing and Question Classification for Question

Answering” Proceedings of the Workshop on Open-Domain Question Answering at ACL-

2001. Toulouse, 2001.

[Hindle, 1983] D. Hindle “Deterministic Parsing of Syntactic Non-Fluencies” In Proceedings

of the 21st Annual Meeting of the Association for Computational Linguistics. Cambridge, MA,

1983.

[Horowitz & Sahni, 1978] E. Horowitz and S. Sahni “Fundamentals of Computer Algorithms”

Computer Science Press, 1978.

[Inui et al., 1998] K. Inui, V. Sornlertlamvanich, H. Tanaka, and T. Tokunaga “Probabilistic

GLR Parsing: a New Formatisation and its Impact on Parsing Performance” Journal of Natural

Language Processing, Vol. 5, No. 3, 1998.

[Jelinek & Lafferty, 1991] F. Jelinek and J. Lafferty “Computation of the Probability of Initial

Substring Generation by Stochastic Context-Free Grammars” Computational Linguistics, 17(3),

1991.

[Jelinek et al., 1994] F. Jelinek, J. Lafferty, D. Magerman, R. Mercer, A. Ratnapharki, and S.

Roukos “Decision Tree Parsing using a Hidden Derivation Model” Proceedings of the Human

Language Technology Workshop (ARPA 94), pp. 272-277. Morgan Kaufmann Publishers,

1994.

[Jensen, 1991] K. Jensen “A Broad-Coverage Natural Language análisis System” In M. Tomita

(ed.), Current Issues in Parsing Technology. Kluwer, Dordrecht, 1991.

[Jensen et al., 1993] K. Jensen, G. E. Heidorn, and S. D. Richardson (eds.) “Natural Language

Processing: The PLNLP Approach” Kluwer, USA, 1993.

[Johnson, 1998] M. Johnson “ PCFG Models of Linguistic Tree Representations”

Computational Linguistics, 24 (4), 1998.

[Johnson et al., 1999] M. Johnson, S. Geman, S. Canon, Z. Chi, and S. Riezler “Estimators for

Stochastic “Unification-Based” Grammars” Proceedings of the 37th Annual Meeting of the

Association for Computational Linguistics. Maryland, 1999.

[Johnson, 2002] M. Johnson “The DOP Estimation Method is Biased and Inconsistent”

Computational Linguistics, 28 (1), 2002.

[Joshi, 1987] A. K. Joshi “An Introduction to Tree Adjoining Grammars” In A.. Manaster-

Ramer (ed.), Mathematics and Language, pages 87-115. John Benjamins Publishing Co.

Amsterdam, 1987.

[Joshi & Srinivas, 1994] A. K. Joshi and B. Srinivas “Disambiguation of Super Parts of Speech

(or Supertags): Almost Parsing” Proceedings of the 15th International Conference on

Computational Linguistics (COLING 94). Kyoto, 1994.

 165

[Kay, 1982] M. Kay “Algorithm Schemata and Data Structures in Syntactic Processing” In B.

Grosz, K. Spark Jones, and B.L. Webber (eds.), Readings in Natural Language Processing,

pp.35-70. Morgan Kaufmann, Los Altos, 1982.

[Kay, 1989] M. Kay “Head-Driven Parsing” Proceedings of the 1st International Workshop on

Parsing Technologies. Pittsburgh, PA, 1989.

[Klein & Manning, 2001] D. Klein and C. Manning “Parsing with Treebank Grammars:

Empirical Bounds, Theoretical Models, and the Structure of the Penn Treebank” Proceedings of

the 39th Annual Meeting of the Association for Computational Linguistics. Toulouse, 2001.

[Klein & Manning, 2001a] D. Klein and C. Manning “Parsing and Hypergraphs” Proceedings

of the 7th International Workshop on Parsing Technologies. Beijing, 2001.

[Klein & Manning, 2002] D. Klein and C. Manning “A* Parsing: Fast Exact Viterbi Parse

Selection” Stanford Technical Report, 2002.

[Krotov et al., 1998] A. Krotov, M. Hepple, R. Gaizauskas, and Y. Wilks “Compacting the Penn

Treebank Grammar” Proceedings of the 36th Annual Meeting of the ACL and COLING-98.

Montreal, 1998.

[Kudoh & Matsumoto, 2001] T. Kudoh and Y. Matsumoto “Chunking with Support Vector

Machines” Proceedings of the 2nd Meeting of the North American Chapter of the ACL

(NAACL 2001). Pittsburgh, PA, 2001.

[Lafferty et al., 1992] J. Lafferty, D. Sleator, and D. Temperley “Grammatical Trigrams: A

Probabilistic Model of Link Grammar” Proceedings of the AAAI Conference on Probabilistic

Approaches to Natural Language Processing, 1992.

[Lari &Young, 1990] K. Lari and S.J. Young “The Estimation of Stochastic Context-Free

Grammars using the Inside-Outside Algorithm” Computer Speech and Language, Vol. 4, pp.

35- 56, 1990.

[López, 1998] J. López “Un Enfoque Neuronal para la Desambiguación del Significado” Ph.D.

Thesis, Univ. Politècnica de Catalunya, 1998.

[Magerman & Marcus, 1991] D.M. Magerman and M. Marcus “Pearl: A Probabilistic Chart

Parser” Proceedings of the 5th European Chapter of the Association for Computational

Linguistics, 1991.

[Magerman & Weir, 1992] D.M. Magerman and C. Weir “Probabilistic Prediction and Picky

Chart Parsing” Proceedings of the Speech and Natural Language Workshop (DARPA 92). New

York, 1992.

[Magerman, 1995] D.M. Magerman “Statistical Decision-Tree Models for Parsing”

Proceedings of the 33rd Annual Meeting of the Association for Computational Linguistics.

Cambridge, MA, 1995.

[Manning & Schütze, 1999] C.D. Manning and H. Schütze “Foundations of Statistical Natural

Language Procesing” MIT Press, 1999.

 166

[Manning, 2002] C.D. Manning “Probabilistic Syntax” To appear in R. Bod, J. Hay, and S.

Jannedy (eds.), “Probabilistic Linguistics”. MIT Press, 2002.

[Marcus et al., 1993] M.P. Marcus, B. Santorini, and M.A. Marcinkiewicz “Building a Large

Annotated Corpus of English: the Penn Treebank” Computational Linguistics, 19 (2), 1993.

[Marcus et al., 1994] M.P. Marcus, G. Kim, M.A. Marcinkiewicz, R. MacIntyre, A. Bies, M.

Ferguson, K. Katz, and B. Schasberger “The Penn Treebank: Annotating Predicate Argument

Structure” Proceedings of the 1994 Human Language Technology Workshop, 1994.

[Mayberry & Miikkulainen, 1999] M.R. Mayberry and R. Miikkulainen “SARDSRN: A Neural

Network Shift-Reduce Parser” Proceedings of the 21st Annual International Joint Conference

on Artificial Intelligence (IJCAI 99). Stockholm, 1999.

[McCord, 1990] M.C. McCord “Slot Grammar: A System for Simpler Construction of Practical

Natural Language Grammars” In R. Studer (ed.), International Symposium on Natural

Lnaguage and Logic. Springer Verlag, 1990.

[Miikkulainen, 1996] R. Miikkulainen “Subsymbolic Case-Role Analysis of Sentences with

Embedded Clauses” Cognitive Science, 20 (1), 1996.

[Moreno et al., 2000] A. Moreno, R. Grishman, S. López, F. Sánchez, and S. Sekine “A

Treebank of Spanish and its Application to Parsing” Proceedings of the 2nd Conference on

Language Resources and Evaluation (LREC2000), pages 107-111. Athens, 2000.

[Moreno et al., 2001] A. Moreno, S. López, F. Sánchez, and R. Grishman “Building and Using

Syntactically Annotated Corpora”, chapter “Developing a Spanish Treebank” Language and

Speech. Kluwer, Dordrecht, 2001.

[Nederhof & Satta, 1994] M-J. Nederhof and G. Satta “An Extended Theory of Head-Driven

Parsing” Proceedings of the 32nd Annual Meeting of the Association for Computational

Linguistics, 1994.

[Nederhof et al., 1998] M-J. Nederhof, A. Sarkar, and G. Satta “Prefix Probabilities from

Probabilistic Tree Adjoining Grammars” Proceedings of the 36th Annual Meeting of the ACL

and COLING-98. Montreal, 1998.

[Nederhof, 2000] M-J. Nederhof “Practical Experiments with Regular Approximation of

Context-free Languages” Computational Linguistics, 26(1), pp. 17-44, 2000.

[Nederhof & Satta, 2002] M-J. Nederhof and G. Satta “Probabilistic Parsing Strategies” In J.

Dassow, M . Hoeberechts, H. Jürgensen, and D. Wotschke (eds.), Descriptional Complexity of

Formal Systems (DCFS), Pre-Proceedings of a Workshop. London (Canada), 2002.

[Ng & Tomita, 1991] S-K. Ng and M. Tomita “Probabilistic LR Parsing for General Context-

Free Grammars” Proceedings of the 2nd International Workshop on Parsing Technologies,

pages 154-163. Cancun, 1991.

[van Noord, 1997] G. van Noord “An Efficient Implementation of the Head-Corner Parser”

Computational Linguistics, 23 (3), 1997.

 167

[Oepen & Carrol, 2000] S. Oepen and J. Carroll “Performance Profiling for Parser Engineering”

In D. Flickinger, S. Oepen, H. Uszkoreit, and J. Tsujii (eds.), Journal of Natural Language

Engineering. Special Issue on Efficient processing with HPSG: Methods, systems, evaluation.

Cambridge University Press, Cambridge, 2000.

[Oepen et al., 2002] S. Oepen, E. Callahan, D. Flickinger, and C.D. Manning “LinGO

Redwoods – a Rich and Dynamic Treebank for HPSG” Proceedings of the LREC 2002

Workshop “Beyond PARSEVAL – Towards Improved Evaluation Measures for Parsing

Systems”. Las Palmas de G.C., 2002.

[Oostdijk, 1991] N. Oostdijk “Corpus Linguistics and the Automatic Analysis of English”

Rodopi, Amsterdam, 1991.

[Osborne, 1999] M. Osborne “MDL-based DCG Induction for NP Identification” Proceedings

of the Computational Natural Language Learning Workshop (CoNLL-99). Bergen, 1999.

[Padró, 1997] L. Padró “A Hybrid Environment for Syntax Semantic Tagging” PhD Thesis,

Univ. Politècnica de Catalunya. Barcelona, 1997.

[Pereira & Schabes, 1992] F. Pereira and Y. Shabes “Inside-Outside reestimation from Partially

Bracketed Corpora” Proceedings of the 30th Annual Meeting of the Association for

Computational Linguistics, 1992.

[Pla, 2000] F. Pla “Etiquetado Léxico y Análisis Sintáctico Superficial basado en Modelos

Estadísticos” PhD Thesis, Univ. Politècnica de Valencia. Valencia, 2000.

[Punyakanok & Roth, 2000] V. Punyakanok and D. Roth “The Use of Classifiers in Sequential

Inference” Proceedings of NIPS-13, The 2000 Conference on Advances in Neural Information

Processing Systems, 2000.

[Quesada, 1997] J.F.Quesada “El Algoritmo SCP de Análisis Sintáctico mediante Propagación

de Restricciones” PhD Thesis, Univ. of Sevilla, 1997.

[Quesada & Amores, 2000] J.F. Quesada and J.G. de Amores “Diseño e Implementación de

Sistemas de Traducción Automática” Univ. de Sevilla, Servicio de Publicaciones, 2000.

[Ramshaw & Marcus, 1995] L. Ramshaw and M.P. Marcus “Text Chunking Using

Trasnformation-Based Learning” Proceedings of the 3rd ACL Workshop on Very Large

Corpora. Cambridge, MA, 1995.

[Ratnaparkhi, 1997] A. Ratnaparkhi “A Linear Observed Time Statistical Parser based on

Maximum Entropy Models” Proceedings of the 2nd Conference on Empirical Methods in

Natural Language Processing. Providence, R.I., 1997.

[Ratnaparkhi, 1998] A. Ratnaparkhi “Maximum Entropy Models for Natural Language

Ambiguity Resolution” PhD Thesis, Univ. of Pennsylvania, 1998.

[Ratnaparkhi, 1999] A. Ratnaparkhi “Learning to Parse Natural Language with Maximum

Entropy Models” Machine Learning, 34, pp. 151-175, 1999.

 168

[Rayner & Cater, 1996] M. Rayner and D. Cater “Fast Parsing using Pruning and Grammar

Specialization” Proceedings of the 34th Annual Meeting of the Association for Computational

Linguistics. Santa Cruz, CA, 1996.

[Resnik, 1992] P. Resnik “Probabilistic Tree-Adjoining Grammars as a Framework for

Statistical Natural Language Processing” Proceedings of the 14th International Conference on

Computational Linguistics (COLING 92), 1992.

[Ritchie,1999] G. Ritchie, “Completeness Conditions for Mixed Strategy Bidirectional Parsing”

Computational Linguistics, 25 (4), 1999.

[Roark, 2001] B. Roark “Probabilistic Top-Down Parsing and Language Modeling”

Computational Linguistics, 27 (2), 2001.

[Rosenfeld, 1994] R. Rosenfeld “Adaptive Statistical Language Modeling: A Maximum

Entropy Approach” PhD Thesis, Univ. of Carnegie Mellon, CMU-CS-94-138, 1994.

[Rosenfeld, 1999] R. Rosenfeld “Notes on Probabilistic Context-Free Grammars” Carnegie

Mellon University, 1999. http://www.cs.cmu.edu/~roni/11761-s01/

[Sag & Wasow, 1999] I. Sag and T. Wasow “Syntactic Theory: A Formal Introduction” CSLI

Publications, 1999.

[Sampson, 1995] G. Sampson “English for the Computer: The SUSANNE Corpus and Analytic

Scheme” Oxford University Press, 1995.

[Samuelsson, 1994] C. Samuelsson “Grammar Specialization through Entropy Thresholds”

Proceedings of the 32nd Annual Meeting of the Association for Computational Linguistics,

1994.

[Santalla, 1999] M.P. Santalla “An AGFL Grammar for Phrase Level Analysis in Spanish”

Ph.D. Thesis, Univ. of Santiago de Compostela, 1999.

[Sarkar, 2001] A. Sarkar “Applying Co-Training Methods to Statistical Parsing” Proceedings of

the 2nd Meeting of the North American Chapter of the ACL (NAACL 2001). Pittsburgh, PA,

2001.

[Satta & Stock, 1994] G. Satta and O. Stock “Bidirectional Context-Free Grammar Parsing for

Natural Language Processing” Artificial Intelligence, Vol. 69, pp. 123-164, 1994.

[Satta, 1998] G. Satta “Recognition and Parsing for Tree Adjoining Grammars” Tutorial

presented at the 4th International Workshop on Tree Adjoining Grammars (TAG+4).

Pennsylvania, 1998.

[Satta, 2000] G. Satta “Parsing Techniques for Lexicalized Context-Free Grammars”

Proceedings of the 6th International Workshop on Parsing Technologies (invited talk). Trento,

2000.

[Schabes, 1992] Y. Schabes “Stochastic Lexicalised Tree-Adjoining Grammars” Proceedings

of the 14th International Conference on Computational Linguistics (COLING 92), 1992.

 169

[Schabes et al., 1993] Y. Schabes, M. Roth, and R. Osborne “Parsing the Wall Street Journal

with the Inside-Outside Algorithm” Proceedings of the 6th Conference of the European Chapter

of the Association for Computational Linguistics, 1993.

[Schapire & Singer, 1999] R. E. Schapire and Y. Singer “Improved Boosting Algorithms using

Confidence-Rated Predictions” Machine Learning, 37 (3), 1999.

[Sebastián et al., 2000] N. Sebastián, M.A. Martí, M.F.Carreiras, and F. Cuetos “LEXESP:

Léxico Informatizado del Español” Edicions de la Universitat de Barcelona, 2000.

[Sekine & Grishman, 1995] S. Sekine and R. Grishman “A Corpus-based Probabilistic

Grammar with Only Two Non-terminals” Proceedings of the 4th International Workshop on

Parsing Technologies. Prague and Karlovy Vary, 1995.

[Sekine, 1998] S. Sekine “Corpus-based Parsing and Sublanguage Studies” PhD Thesis, New

York University, 1998.

[Sharman et al., 1990] R. Sharman , F. Jelinek, and R. Mercer “Generating a Grammar for

Statistical Training” Proceedings of the Speech and Natural Language Workshop (DARPA 90).

Hidden Valley, CA, 1990.

[Shieber, 1985] S. Shieber “Using Restriction to Extend Parsing Algorithms for Complex

Feature-based Formalisms” Proceedings of the 23rd Annual Meeting of the Association for

Computational Linguistics, 1985.

[Sikkel & op den Akker, 1996] K. Sikkel and R. op den Akker “Predictive Head-Corner Chart

Parsing” In Harry Bunt and Masaru Tomita (eds.), Recent Advances in Parsing Technology,

chapter 9, pages 169-182. Kluwer Academic, Netherlands, 1996.

[Sikkel, 1997] K. Sikkel “Parsing Schemata” Springer Verlag, 1997.

[Simmons & Yu, 1992] R. Simmons and Y. Yu “The Acquisition and Use of Context-

Dependent Grammars for English” Computational Linguistics, 18 (4), 1992.

[Skut & Brants, 1998a] W. Skut and T. Brants “Chunk Tagger: Statistical Recognition of Noun

Phrases” Proceedings of the ESSLLI Workshop on Automated Acquisition of Syntax and

Parsing. Saarbrücken, 1998.

[Skut & Brants, 1998b] W. Skut and T. Brants “A Maximum-Entropy Partial Parser for

Unrestricted Text” Proceedings of the 6th Workshop on Very Large Corpora. Montreal, 1998

[Sleator & Temperley, 1993] D.D. Sleator and D. Temperley “Parsing English with a Link

Grammar” Proceedings of the 3rd International Workshop on Parsing Technologies.

Tilburg/Durbuy, 1993.

[Sopena & Alegre, 2000] J.M. Sopena and M. Alegre “ANNP: A Neural Network Parser for

Real World Texts” Proceedings of the 15th International Conference on Pattern Recognition,

(ICPR 2000). Barcelona, 2000.

[Srinivas, 1997] B. Srinivas “Complexity of Lexical Descriptions and its Relevance to Partial

Parsing” Ph.D. Thesis, University of Pennsylvania, 1997.

 170

[Taylor et al., 2001] A. Taylor, M. Marcus, and B. Santorini “Building and Using Syntactically

Annotated Corpora”, chapter “The Penn Treebank: an overview” Language and Speech.

Kluwer, Dordrecht, 2001.

[Tjong Kim Sang, 2000] E.F. Tjong Kim Sang “Text Chunking by System Combination”

Proceedings of the Computational Natural Language Learning Workshop (CoNLL-2000) and

LLL-2000. Lisbon, 2000.

[Tjong Kim Sang & Buchholz, 2000] E.F. Tjong Kim Sang and S. Buchholz “Introduction to

the CoNLL-2000 Shared Task: Chunking” Proceedings of the Computational Natural Language

Learning Workshop (CoNLL-2000) and LLL-2000. Lisbon, 2000.

[Tjong Kim Sang & Déjean, 2001] E.F. Tjong Kim Sang and H. Déjean “Introduction to the

CoNLL-2001 Shared Task: Clause Identification” Proceedings of the Computational Natural

Language Learning Workshop (CoNLL-2001). Toulouse, 2001.

[Tomita, 1986] M. Tomita “Efficient Parsing for Natural Language” Kluwer Academic

Publishers, 1986.

[Veenstra, 1999] J. Veenstra “Memory-Based Text Chunking” In N. Fakotakis (ed.), Machine

Learning in Human Language Technology, Workshop at ACAI-99. Chania, 1999.

[Veenstra & Daelemans, 2000] J. Veenstra and W. Daelemans “A Memory-Based Alternative

for Connectionist Shift-Reduce Parsing” ILK Report 00-12, 2000.

[Venable, 2001] P. Venable “Lynx: Building a Statistical Parser from a Rule-Based Parser”

Proceedings of the Student Research Workshop of the NAACL. Pittsburgh, PA, 2001.

[Vergne, 2000] J Vergne “Trends in Robust Parsing” Tutorial presented at the 18th

International Conference on Computational Linguistics (COLING 2000). Saarbrücken, 2000.

http://users.info.unicaen.fr/∼ jvergne/tutorialColing2000.htm

[Voutilainen & Padró, 1997] A. Voutilainen and L. Padró “Developing a Hybrid NP Parser”

Proceedings of the 5th Conference on Applied Natural Language Processing. Washington D.C.,

1997.

[Wintner, 1997] S. Wintner “An Abstract Machine for Unification Grammars” PhD Thesis,

cmp-lg/9709013, 1997.

[Woods, 1970] W.A. Woods “Transition Network Grammars for Natural Language Analysis”

Communications of the ACM, 13 (10), 1970.

[Woods et al., 1976] W.A. Woods, M. Bates, G. Brown, B. Bruce, C. Cook, J. Klovstad, J.

Makhoul, B. Nash-Webber, R. Schwartz, J. Wolf, and V. Zue “Speech Understanding Systems”

Final Technical Progress Report 3438. Bolt, Beranek, and Newman, Cambridge (Mass.), 1976.

[Wright, 1990] J. Wright “LR parsing of probabilistic grammars with input uncertainty for

speech recognition” Computer Speech and Language, 4, pp. 297-323, 1990.

 171

[Wright & Wrigley, 1989] J. Wright and E. Wrigley “Probabilistic LR parsing for speech

recognition” Proceedings of the 1st International Workshop on Parsing Technologies.

Pittsburgh, PA, 1989.

[Wright et al., 1991] J. Wright, E. Wrigley, and R. Sharman “Adaptive probabilistic

generalized LR parsing” Proceedings of the 2nd International Workshop on Parsing

Technologies. Cancun, Mexico, 1991.

[Xia et al., 2001] F. Xia, C. Han, M. Palmer, and A.K. Joshi “Automatically Extracting and

Comparing Lexicalized Grammars for Different Languages” Proceedings of the 17th

International Joint Conference on Artificial Intelligence (IJCAI 2001). Seattle, 2001.

[Younger, 1967] D.H. Younger “Recognition of Context-Free Languages in Time n3”

Information Control, 10 (2), pp.189-208, 1967.

[Yuret, 1998] D. Yuret “Discovery of Linguistic Relations using Lexical Attraction” PhD

Thesis, MIT, 1998.

[Zelle & Mooney, 1996] J.M. Zelle and R.J. Mooney “Learning to Parse Database Queries

using Inductive Logic Programming” Proceedings of the 13th National Conference on Artificial

Intelligence. Portland, OR, 1996.

[Zhang et al., 2001] T. Zhang, F. Damerau, and D. Johnson “Text Chunking using Regularized

Winnow” Proceedings of the 39th Annual Meeting of the Association for Computational

Linguistics. Toulouse, 2001.

 172

 173

Appendix A

Tag Sets

Lexesp Corpus Tag Set

The tag set used to annotate the Lexesp corpus consists of a set of Eagles compliant labels that

were specially developed for Spanish and Catalan. These labels are composed by 1 to 10

symbols, so that the first symbol codifies the main syntactic category, the second one codifies

the sub-category (if any), and the rest of the symbols of each label (if any) codify other features

such as gender, number, person, tense, etc.

Being the full tag set too large (310 tags), we have found more indicative to include a list of

the syntactic categories and sub-categories, in the following table:

Main Category Sub-category Number of
additional
features

Usage

A Q 5 Adjective, qualifier
C C 2 Conjunction, coordinate
C S 2 Conjunction, subordinate
D D 5 Determiner, demonstrative
D P 5 Determiner, possessive
D T 5 Determiner, interrogative
D E 5 Determiner, exclamative
D I 5 Determiner, indefinite
F aa 0 Left exclamative, ¡
F ca 0 Right exclamative, !
F ai 0 Left interrogative, ¿
F ci 0 Right interrogative, ?
F c 0 Comma, ,
F ap 0 Left bracket, (
F cp 0 Right bracket,)
F co 0 Double quote, "
F dp 0 Colon, :
F g 0 Dash, -
F p 0 Stop, .
F pc 0 Semicolon, ;
I - 0 Interjection

M C 4 Numeral, cardinal

 174

M O 4 Numeral, ordinal
N C 5 Noun, common
N P 5 Noun, proper
P P 6 Pronoun, personal
P D 6 Pronoun, demonstrative
P X 6 Pronoun, possessive
P I 6 Pronoun, indefinite
P T 6 Pronoun, interrogative
P R 6 Pronoun, relative
R G 3 Adverb, general
S PS 2 Preposition
S PC 2 Contraction
T D 3 Article, definite
T I 3 Article, indefinite
T P 3 Article, personal
V MI 4 Verb, main, indicative
V MS 4 Verb, main, subjunctive
V MM 4 Verb, main, imperative
V MC 4 Verb, main, conditional
V MN 4 Verb, main, infinitive
V MG 4 Verb, main, gerund
V MP 4 Verb, main, participle
V AI 4 Verb, auxiliary, indicative
V AS 4 Verb, auxiliary, subjunctive
V AM 4 Verb, auxiliary, imperative
V AC 4 Verb, auxiliary, conditional
V AN 4 Verb, auxiliary, infinitive
V AG 4 Verb, auxiliary, gerund
V AP 4 Verb, auxiliary, participle
W - 0 Date
X - 0 Residual
Y - 0 Abbreviation
Z - 0 Number

Penn Treebank II Corpus Tag Set

The tag set used to annotate the Penn Treebank is composed by 45 tags, which are listed in the

following table:

Category Usage
CC Coordinating conjunction
CD Cardinal number
DT Determiner
EX Existential there
FW Foreign word
IN Preposition or subordinating conjunction
JJ Adjective

JJR Comparative adjective
JJS Superlative adjective
LS List item marker
MD Modal
NN Noun, singular or mass

NNS Noun, plural

 175

NNP Proper noun, singular
NNPS Proper noun, plural
PDT Predeterminer
POS Possessive ending
PRP Personal pronoun

PRP$ Possessive pronoun
RB Adverb

RBR Comparative adverb
RBS Superlative adverb
RP Particle

SYM Symbol
TO Infinitive marker to
UH Interjection
VB Verb, base form

VBD Verb, past tense
VBG Verb, gerund or present participle
VBN Verb, past participle
VBP Verb, non-3rd person singular, present
VBZ Verb, 3rd person singular, present
WDT Wh-determiner
WP Wh-pronoun

WP$ Possessive wh-pronoun
WRB Wh-adverb

Pound sign
$ Dollar sign
. Stop
, Comma
: Colon, semi-colon

-LRB- Left bracket, (
-RRB- Right bracket,)

“ Left double quote
” Right double quote

 176

 177

Appendix B

Syntactic Structure

Lexesp Corpus Syntactic Structure

The nonterminal symbols set used for annotating Lexesp corpus is composed by 123 categories.

As commented in sections 5.2.1 and 5.3, a high percentage of these symbols are preterminal

categories which mainly group together the large number of existent terminal labels. We have

omitted these 50 elements in the following table, as well as the 43 additional ones which appear

mainly in the left-hand side of unary or binary rules with just preterminals in their right-hand

side. Also related to our comments in sections 5.2.1 and 5.3, it can be observed in the table the

simplicity of the structure of the sentence-level categories. Since the grammar observes subject-

verb agreement, the existence of the three persons and both numbers for each main phrase is

necessary.

Level Category Usage
FRASE Sentence
PROP Proposition

Clause

PROP1 Proposition
SADV Adverbial phrase

SV Verb phrase + other phrases
GRUP-VERBAL Verb phrase
GRUP-VERB1S Verb phrase, 1st person, singular
GRUP-VERB1P Verb phrase, 1st person, plural
GRUP-VERB2S Verb phrase, 2nd person, singular
GRUP-VERB2P Verb phrase, 2nd person, plural
GRUP-VERB3S Verb phrase, 3rd person, singular
GRUP-VERB3P Verb phrase, 3rd person, plural

GRUP-INF Infinitive phrase
SN Noun phrase ([Det] + GRUP-NOM∗)

GRUP-NOM1S Noun phrase, 1st person, singular
GRUP-NOM1P Noun phrase, 1st person, plural
GRUP-NOM2S Noun phrase, 2nd person, singular
GRUP-NOM2P Noun phrase, 2nd person, plural
GRUP-NOM3S Noun phrase, 3rd person, singular
GRUP-NOM3P Noun phrase, 3rd person, plural

GRUP-COOR-N1P Conjunction phrase, 1st person

Phrase

GRUP-COOR-N2P Conjunction phrase, 2nd person

 178

GRUP-COOR-N3P Conjunction phrase, 3rd person
GRUP-SP Prepositional phrase

S-ADJ Adjective phrase
GRUP-ADJS Adjective phrase, singular
GRUP-ADJP Adjective phrase, plural

GRUP-COOR-AS Adjective coordinate, singular
GRUP-COOR-AP Adjective coordinate, plural

GRUP-COMPLEX-SPECS Determiner phrase, singular

GRUP-COMPLEX-SPECP Determiner phrase, plural

Penn Treebank II Corpus Syntactic Structure

The following table contains the list of 26 nonterminal labels with which the Penn Treebank II

is annotated. Only the labels are listed, not the grammatical functions nor the semantic roles.

Additional information can be found in [Marcus et al., 1994].

Level Category Usage
S Simple declarative sentence

SINV Subject-auxiliary inversion
SBAR Relative or subordinate clause

SBARQ Wh-question

Clause

SQ SBARQ = wh-element + SQ
RRC Reduced relative clause

FRAG Clause fragment
VP Verb phrase
NP Noun phrase

ADJP Adjective phrase
PP Prepositional phrase

ADVP Adverbial phrase
WHNP Wh-noun phrase

WHADVP Wh-adverbial phrase
WHADJP Wh-adjectival phrase

WHPP Wh-prepositional phrase
QP Quantifier phrase

PRT Particle
UCP Unlike coordinated phrase
PRN Parenthetical
NX Head of a complex noun phrase

NAC Not a constituent (certain prenominal
modifiers in a noun phrase)

INTJ Interjection
CONJP Conjunction phrase

X Unknown, uncertain

Phrase

LST List marker

