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Abstract 
 

The core of this thesis includes two methods for stochastically modelling bidirectionality in 

parsing, as well as a bidirectional island-driven chart parser that uses such stochastic models to 

guide the recognition process. This bidirectional parser starts the analysis process from certain 

dynamically determined positions of the sentence (that is, the islands), proceeding then in both 

directions. Our framework accounts for bidirectional expansion of partial analysis, which 

improves the predictive capabilities of the system.    

The stochastic models provide for the probability of extension of each island to both sides, 

given either a stochastic grammar (local model) or both the grammar and the islands which are 

immediately adjacent to the one being considered (neighbouring model).  

The system has been trained and tested over two wide-coverage corpora: Spanish Lexesp and 

English Penn Treebank, achieving promising results in comparison with the methods used as 

baselines (pure bottom-up and top-down methodologies). Several variants involving hybrids 

between both stochastic methods as well as different types of smoothing have also been devised. 

Results regarding the comparison of these variants of our proposal with both the baselines and 

the previous pure methods are presented and discussed. The former variants mostly outperform 

the latter methods. All the approaches have been evaluated as to both performance and 

accuracy. 

Island-driven methodology implies the existence of a method in order to select the initial 

islands in the sentence being parsed. In this thesis, three methodologies for this selection have 

been evaluated, namely selecting as islands the nonambiguous words in a morphologically 

analysed but non-tagged sentence, selecting as islands the chunks in a previously chunked 

sentence, and simply selecting the islands according to their category. Whatever the island 

selection methodology, our approaches dramatically outperform both baselines. 
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Resumen 
 

El núcleo de esta tesis presenta dos métodos para modelizar estadísticamente la 

bidireccionalidad en el análisis sintáctico, así como un analizador de charts bidireccional 

dirigido por islas que usa los mencionados modelos probabilísticos con el fin de guiar el proceso 

de reconocimiento. Este analizador bidireccional comienza el proceso de análisis a partir de 

ciertas posiciones de la frase, seleccionadas dinámicamente (las islas), procediendo a partir de 

éstas en ambas direcciones. Nuestra metodología tiene en cuenta la extensión bidireccional de 

los análisis parciales, lo cual enriquece las capacidades predictivas del sistema.    

Nuestros modelos probabilísticos proporcionan la probabilidad de extensión de cada isla 

hacia ambos lados, dada una gramática probabilística (en el caso del modelo local) o dadas tanto 

esta gramática como las islas inmediatamente adyacentes a la considerada (en el caso del 

modelo neighbouring).  

El sistema ha sido entrenado y evaluado sobre dos corpus de amplia cobertura, el corpus del 

español Lexesp y el corpus del inglés Penn Treebank. Los resultados obtenidos son  

prometedores en comparación con las dos aproximaciones básicas consideradas (puramente 

ascendente, o bottom-up, y puramente descendente, o top-down). Se han desarrollado también 

diversas variantes, que incluyen distintos métodos híbridos entre los dos modelos 

probabilísticos, así como diferentes tipos de suavizado. En la tesis se presentan y discuten los 

resultados obtenidos al comparar estas variantes de nuestra propuesta tanto con las dos 

aproximaciones básicas como con nuestros modelos puros (obteniendo mayoritariamente 

mejores resultados para estas variantes). Todos los métodos se han evaluado tanto en lo que se 

refiere a su eficiencia como a su corrección (precisión y cobertura). 

La metodología de análisis dirigido por islas implica la existencia de un método para 

seleccionar las islas iniciales dada la frase a analizar. En esta tesis se han desarrollado tres 

diferentes metodologías para esta selección: seleccionar como islas aquellas palabras no 

ambiguas en una frase analizada morfológicamente pero no desambiguada, seleccionar como 

islas los segmentos (chunks) en una frase previamente analizada superficialmente, y 

simplemente seleccionar las islas según su categoría. Sea cual sea la metodología usada para la 

selección de las islas iniciales, nuestras aproximaciones obtienen resultados sumamente mejores 

que ambas aproximaciones básicas. 
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Chapter 1 
 
Introduction 
 
 
1.1   Setting 

 

Two are the goals of the parsing process: to prove that a text is syntactically correct (that is, it 

belongs to a specified language) and to return the structure of the text (that is, the syntactic 

relationships that appear in the text, according to the used formalism). In order to define 

correction, we might use a language model, patterns, good-formation rules, or most frequently, 

a grammar.  

There exist many different parsing algorithms and types of analysers (tabular, like Earley or 

CKY; charts; deterministic, like LL or LR, ...), and several types of grammars (constituent 

grammars, dependency grammars, transformational grammars, logic grammars, ...). We do not 

mean to get in defining these algorithms and formalisms: in chapter 2, we will describe in detail 

some of them, the most recent and /or related somehow to our work. In this thesis, we will be 

using the charts technique ([Kay, 1982]), extended to deal with bidirectionality, and the 

formalism of Context-Free Grammars, extended with probabilities (both in the grammar rules, 

Stochastic Context-Free Grammars, as well as including additional stochastic parameters). 

Although most methods for Context-Free Grammar parsing are based on a uniform way of 

guiding the parsing process (e.g. top-down, bottom-up, left-corner,...), there have recently been 

several attempts to introduce more flexibility, for instance allowing bidirectionality, in order to 

make parsers more sensitive to linguistic phenomena ([Satta & Stock, 1994]; [Sikkel & op den 

Akker, 1996]; [Ritchie, 1999]).  

We can roughly classify such approaches into head-driven and island-driven parsing. They 

respectively assume the existence of a distinguished symbol in each rule, the head, and certain 

distinguished words in the sentence to be parsed, the islands, playing a central role on the 

respective parsing approach. 
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While assigning heads to rules is a heavy knowledge intensive task, islands are dynamically 

determined positions of the sentence (from which the process starts, proceeding in both 

directions). Therefore, selecting islands can be carried out quite straightforwardly: unambiguous 

words, base NPs (in the case of textual input), accurately recognised fragments (in the case of 

speech), might be considered islands. 

The problem is, however, that simply starting with islands or heads does not assure 

improvements over the basic parsing schemata. Only with appropriate heuristics for deciding 

where and in which direction to proceed can we restrict the syntactic search space and therefore 

obtain better results, coming through the obvious overhead that these more complex algorithms 

suppose. 

The core of this thesis includes two methods for stochastically modelling bidirectionality in 

parsing. These models allow the parser to select, out of the set of current islands, the most 

probable island, as well as the most probable side to extend it. As mentioned, we base on the 

formalism of Context-Free Grammars extended with attached probabilities to the grammar rules 

(Stochastic Context-Free Grammars, SCFG), and from this formalism we define two branches 

of additional stochastic parameters: the local model and the neighbouring model.  

The local model is simpler, for it just takes into account information previously contained in 

the stochastic grammar. We denote it static, as the stochastic parameters attached can be 

computed independently of the sentences being analysed. On the other hand, the neighbouring 

model is quite more complex and informed. This model considers also the immediate 

environment around the island being dealt with, that is, the islands and gaps immediately 

surrounding each island, in an intent to restrict the syntactic search space for gaps surrounded 

by two partial analyses (the islands up to the moment). 

This thesis develops as well a bidirectional island-driven parser that uses such stochastic 

models to guide the recognition process. The conventional left-to-right approach of chart 

parsing is enhanced, so that this bidirectional parser starts analysis from certain dynamically 

determined positions of the sentence (the islands), and then proceeds either left to right or right 

to left from the chosen island. Our framework accounts for bidirectional expansion of partial 

analysis, which improves the predictive capabilities of the system.  

We will be using the charts formalism ([Kay, 1982]), extended to deal with the mentioned 

bidirectionality. Therefore, in our chart implementation, the islands are equivalent to the 

inactive edges of the chart, both the originally chosen ones as well as the ones created when 

extending the edges. The goal of the parsing algorithm will be to extend the islands in order to 

cover all the remaining gaps (or fragments of the input sentence between two adjacent islands) 

with islands: parsing proceeds by growing islands of certainty into larger and larger phrases. 

The parsing algorithm works by following a best-first strategy in which the items are 

removed from an agenda according to a sort of figure of merit (also denoted as FOMs, described 
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in section 2.2.1.1). This figure is provided by one of the stochastic models mentioned above, 

and is used to guide the way in which edges to be processed are added to an agenda. When a 

parse has been completed, one simply stops parsing, although there may be items left in the 

agenda (thus saving the time to process these remaining items). The point is that the FOM is 

accurate at selecting those items which are more likely to belong to the correct parse: the idea of 

choosing the most probable island, according to the stochastic model, to be extended in the most 

probable side.  

Basically, the best-first strategy will be a guided bottom-up extension. However, the nature 

of island-driven parsing entails working with dynamically selected positions of the sentence (the 

original islands). This means that there might be portions of the sentence where no island at all 

has been selected, though a constituent may be required by the surrounding analyses as the 

analysis process proceeds. Hence the parser must also implement top-down prediction (either at 

the constituent's left or right boundary) to be sure that no constituent is lost. 

Our system has been previously tested over several toy grammars, in order to get an insight 

into both its behaviour and the preliminary heuristics to be applied. Next, the system has been 

trained and tested over two wide-coverage corpora: Spanish Lexesp and English Penn Treebank. 

Results regarding comparison of several variants of our proposal with the methods we use as 

baselines (straightforward optimised left-to-right bottom-up and top-down methodologies) are 

presented and discussed. 

We start by testing the system using a simple approach to the selection of the initial islands 

(those non-ambiguous words in a tagged but non disambiguated corpus). Both stochastic models 

provide significant improvement as to performance (measured in terms of the average number 

of edges needed to find the first parse). However, they both perform comparably, while one 

would expect the more informed neighbouring model to outperform the simpler local model. 

These results appear to stem from the data sparseness involved in the neighbouring model. That 

is why several variants of the neighbouring models have been devised (hybrids which combine 

neighbouring and local model in different ways, the application of thresholds, and a sort of 

smoothing technique). Most of these variants improve the performance of the local model. 

Nevertheless, when measuring the accuracy of the different methods (by means of  either the 

average probability of the parse trees or average precision/recall figures), and although the 

baselines are basically improved, local model still presents the best results: neither the 

neighbouring model nor their variants (though the latter improve remarkably the results of the 

former) get to outperform the local model. This problem remains an open line of research, for 

which several ideas are being considered (see the conclusions and further lines of research in 

chapter 6). 

A second series of experiments have been carried out in order to test other (more informed) 

methods for island selection. In particular, we have combined the island-driven parser with a 
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previous step of very simple chunking as a method for initial islands selection. The experiments 

using broad-coverage grammars derived from Penn Treebank have been performed, obtaining 

significant improvements. Specially remarkable (as to both performance and accuracy) are the 

results obtained by the exclusively nominal chunking. Once more, the local approach presents 

better results than the neighbouring model. Nevertheless, both models outperform by far the 

results of the previous approach for the selection of islands, suggesting a new line of research 

involving the refinement of these selection methods.  

We hasten to emphasize the main reason why we have decided our approach not to be 

lexicalised: we intend to apply our system to Spanish, a language for which we do not have 

treebanks big enough in order to apply our method as lexicalised (see the description of the 

experiments in chapter 5 for a more detailed explanation of the sparseness problems 

encountered). 

The main motivation of this thesis lies in the interest on stochastically modelling 

bidirectionality (and specifically the island-driven methodology) in parsing from an eminently 

heuristic point of view. It must be taken into consideration that this methodology is highly 

parameterised, their behaviour depending on numerous degrees of liberty (the selection method 

for the initial islands, the specific parsing strategy used, the stochastic model(s) chosen, …). 

Extremely formal models of bidirectional parsing in general (and island-driven parsing in 

particular) have been devised (e.g. [Corazza et al., 1991], [Satta & Stock, 1994], …), but no 

experimentation at all on real corpora has been carried out. The main contribution of this thesis 

would therefore be twofold. On the one hand, we find the two stochastic models developed, as 

well as the novel bi-directional parsing strategy applied. On the other hand, and equally 

significant, there is the evaluation of the methodology carried out over real corpora, which has 

in turn suggested new heuristics and hybrid methodologies, as well as new methods for island 

selection. 

 

1.2   Contents of this thesis 

 

This section is devoted to give the reader an insight into what is included in the reminder of the 

thesis, chapter by chapter. 

 

Chapter 2: State of the Art 

 

This chapter briefly summarises the recent advances in stochastic parsing, specially 

emphasising the ones using our grammar formalism, basic parsing algorithm or similar data 

acquisition system, some of which have inspired this work.  
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A classification of any kind of parsing systems is not straightforward, since different 

classification criteria can be applied, namely the type of analyser employed, the language model 

expressiveness, the way the parameters of the model are acquired or estimated, and whether 

lexical information is used. We have somehow combined all these criteria, starting by 

describing the basic parsing technique we are using, the Charts and its possible extensions. 

Next, considering our parser is stochastic, we will devote a section to a review of the recent 

work in stochastic parsing, presenting the systems according to the feature we intend to 

emphasise. Thus, we first describe the main data acquisition lines (supervised and 

unsupervised), next we focus on the basic description of the language model we use (Stochastic 

Context-Free Grammars, hereinafter SCFGs), and finally we define other parsing systems that, 

being probabilistic, use different language models (they are classified according to either these 

models, the type of parser used, or the learning methodology implemented). Although our 

system is non-lexicalised, the importance of the research line motivates that we devote a section 

to describe lexicalised parsers,  and the same happens with the recent systems which combine 

the results of different systems, to which the following section is devoted. Finally, the last 

section briefly reviews the concept of robust parsing, focusing on chunking systems (due to the 

combination of chunking plus island-driven parsing we have devised, described in chapter 4).  

                                                                     

Chapter 3: Overview of the System 

 

Chapter 3 presents our methodology in detail, by describing its two main components: the 

parsing algorithm and the stochastic models. The chapter starts with a general description of the 

system and its behaviour. It continues with the explanation of both our basic parsing algorithm 

as well as the data structures. The possible variants of the basic algorithm we have developed 

are outlined in the following section. As mentioned, several methods might be applied in order 

to select the initial islands, and we briefly outline them (both the ones we have tested and the 

ones we have not) in this chapter.  

The last part of the chapter focuses on the description of the two stochastic models we have 

devised in order to guide the operation of our best-first algorithm. Both models (local and 

neighbouring) are presented in detail, including the formulae used to compute the probabilities 

of extension/prediction in each particular case. In order to ease the reader to get an insight into 

the way in which the models are applied, an example of a parse is provided. 

 

Chapter 4: Chunking + Island-Driven Parsing 

 

Out of the alternatives mentioned in chapter 3 to select the initial islands, three of them have 

been tested. Two of them, namely selecting those unambiguous words in a non-tagged corpus 
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and heuristically selecting the islands according to the terminal category of each word, are 

highly simple and do not deserve further explanation. Chapter 4 presents the third proposal, 

which combines island-driven parsing plus a previous chunking phase in order to select the 

initial islands. In spite of being more elaborated than the other alternatives, the intention is that 

this step keeps on being quite simple and not involving the necessity of additional knowledge 

sources (the chunk grammar is straightforwardly derived from the original Context-Free 

Grammar). Different kinds of chunks, according both to their category and to their relationship 

with the other chunks in the sentence have been considered. 

 

Chapter 5: Evaluation 

 

The evaluation and discussion of the results appear in chapter 5. We start by briefly describing 

the preliminary experiments carried out with the toy grammars and their results. Next, the 

chapter focuses on the experiments performed on real corpora. Firstly, both the corpora 

(Spanish Lexesp and English Penn Treebank) and grammars used in the experiments are 

described. The obtained results are also outlined, and compared to both baseline methodologies 

(straightforward bottom-up and top-down methods). The experiments analyse the performance 

of the different approaches not only in the general case but also the different behaviours 

according to certain features of  the sentences in the test set. 

That the local model generally attained better results (versus the neighbouring model) led us 

to further research on heuristics to improve the performance of the latter model. These 

heuristics, which basically fall into three different categories, are also described in this chapter, 

together with the results they attain.  

The chapter includes also the evaluation of the quality of the results of the different 

methodologies devised (measured in terms of both the average probability of the analyses and 

the average accuracy – basically precision and recall- of these analyses). Up to the moment, all 

the evaluation has used the first method for island selection (non-ambiguous words). To 

conclude, the chapter describes both the performance and accuracy obtained by the other two 

selection methods, namely the methodology described in chapter 4 (chunking) and the selection 

of initial islands regarding their terminal categories.   

 

Chapter 6: Conclusions 

 

Finally, chapter 6 summarises the work presented in this thesis, as well as the results obtained. 

The chapter also outlines the open lines of research and the further work we are planning to 

carry out. 
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Chapter 2 
 
State of the Art 
  
 
Several criteria might be considered in order to elaborate a classification of recent parsing 

systems. These criteria include, among others, the kind of analyser employed, the grammar 

(and/or additional language models) expressiveness, the way the parameters of the model are 

acquired or estimated (that is, the learning process), and whether lexical information is used or 

not. When building our own classification, we will try to combine these general criteria with the 

fact of whether these systems are relevant or not for our methodology. 

Thus, we will start by describing, in section 2.1, the basic parsing technique we are using, the 

Charts. Section 2.1.2 includes the brief descriptions of other recent systems using also 

extensions of this technique. Next, considering our parser is stochastic, we will devote section 

2.2 to a review of the recent work in stochastic parsing. We will start by classifying systems into 

two sections, according to the way they learn the needed stochastic parameters (subsection 

2.2.1). Subsection 2.2.2 includes the basic description of the language model we use, the 

Stochastic Context-Free Grammars (hereinafter SCFGs). In section 2.2.3, we will define other 

parsing systems that, though being also probabilistic, use different language models. We will 

sort out the systems according to these models, the type of parser used, and the learning 

methodology implemented. Although our system is non-lexicalised, we will include section 

2.2.4 describing the recent relevant line of lexicalised parsers. Section 2.2.5 is devoted to the 

review of the recent systems which combine the results of different systems, either by 

combining parsers, by reranking the results of a parser or by combining the results of a set of 

classifiers. Finally, in section 2.2.6 we will briefly review the concept of robust parsing, 

focusing on chunking systems (this decision is motivated by the fact that a previous chunking 

process is used in one of the versions of our approach, see the description of this methodology 

in chapter 4). 
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2.1   Charts 

 

The technique of the charts, created by Martin Kay  (see [Kay,1982]) arises from the so called 

WFST (Well Formed Substring Tables). WFST are tables, dynamically built, which store the 

results of those nonterminal elements recognised during the parsing process. These results are 

globally accessible, they are not destroyed during the process of backtracking and they can be 

both consulted and used by the parser.  In order to utilise a WFST the parser must be modified 

so that, before tackling the parsing and building of any constituent, a test is performed to check 

that this constituent has not been previously built and added to the table. This mechanism does 

not affect the parsing strategy. Charts extend this formalism so that not only are complete 

constituents stored but also partially confirmed constituents. Charts are applied in their basic 

versions to context-free grammars (or to their procedural extensions). 

A chart can be viewed as a directed graph constructed dynamically and incrementally as the 

analysis takes place. A chart parser is characterised by a domain of items (the edges), that can 

be added to the chart by the parser, and some operators that specify how combinations of items 

of the chart can lead to recognition of other items. Each item is represented by its rule and the 

positions of the sentence where it begins and ends (the words of the sentence it subsumes). A 

dot notation is used to mark whether or not the complete rule is already spanned by the edge. 

Whenever it is, we have a completely analysed constituent (the entries of the WFSTs), and we 

talk about an inactive edge. Whenever it is not, we merely have a goal or hypothesis, a 

constituent not completely analysed yet, and we talk about an active edge. 

An agenda of items that remain to be processed is maintained. At each iteration, the current 

item is pulled off the agenda and added to the chart (unless it is already there, in which case it is 

discarded). If the chart contains items that, in combination with the current item, allow 

recognition of other items not yet present on the chart or on the agenda, these ones are added to 

the agenda. In “exhaustive” chart parsing one removes items from the agenda in some relatively 

simple way, and this process continues until the agenda is empty. There is an initial chart and an 

initial agenda. 

Before continuing to define the basic charts parsing schema, we introduce the notations 

regarding the formalism used, the context-free grammars. Following the usual conventions (e.g., 

[Aho & Ullman, 1972]), a formal grammar is defined as a quadruple <T, N, S, P>, consisting of 

a terminal vocabulary T, a nonterminal vocabulary N, a distinguished symbol S ∈  N (the start 

symbol or axiom) and the set of productions or rewriting rules P. T, N, and P are finite sets, T 

and N are disjointed (T ∩ N = ∅ ), and their union can be denoted V (V = T ∪  N). In the case of 

context-free grammars (CFG), the rules of the grammar will be written as A → α, being A∈  N 
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and α ∈  V*. Rules of the form A → w, where w ∈  T will be referred to as lexical rules. A 

nonterminal A that appears in a lexical rule will be called preterminal. 

In our bidirectional chart, where rules can be fired from any point of their right-hand side, 

we will need to use double-dotted rules in order to label the active edges. Given a CFG G of the 

form <T, N, S, P>, a double-dotted rule based on G is a triple (p,l,r) where p is a rule or 

production in P of the form A → A1 … Ak  and l, r are integers such that 0≤ l ≤ r ≤ k. The latter 

integers l and r indicate the limits of the part of the rule right-hand side already covered. Such a 

double-dotted rule will be written as: 

 

A → A1 … Al •Al+1 … Ar •Ar+1 … Ak 

 

 

2.1.1   Charts Parsing Schema 

 

[Sikkel, 1997] presents a unified proposal for the description of syntactic parsing schemata. For 

any parsing schema, the language of formulae which can be used  (the items), the deduction 

rules that allow to deduce new formulae from the existent ones, and the set of hypotheses from 

which to start must be defined. Normally, the set of hypotheses depends on the input string to be 

analysed, and the deduction rules use the grammar being applied. Sikkel distinguishes three 

related concepts:  

 

1. The parsing schema, the most general concept. It gives the reference frame of the 

parsing method being described and it is independent of the specific grammar and the 

specific input string. 

2. The parsing system or instantiated schema. It is the concretion of the parsing schema 

when a specific grammar and string are defined. 

3. The parsing algorithm, which implies the addition of both a specific data representation 

system and a deduction control system to the schema. 

 

A parsing schema is a 3-tuple <X, H, D>, with X the domain or set of manageable entities, H the 

set of hypotheses (normally H ⊆  X), and D the set of deductive steps. The schema can be 

enriched with the sets F (F ⊆  X) of final entities and C (C ⊆  F) of correct entities. 

Sikkel’s deductive approach to the parsing process (parsing as deduction) provides us with a 

highly precise notation to work with charts. When dealing with parsers based on charts, the data 

structures mentioned in point 3 above are the chart itself and the agenda that stores the edges 

pending to be processed in a suitable order. The structure of the agenda might be a stack, a 
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queue or a heap (priority queue), depending on the control mechanism implemented. As to the 

control structures, although the deduction schema applied (CKY, Earley, LC, …) establishes 

some constraints, the charts algorithm must normally require additional constraints. The basic 

schema for a generic chart algorithm follows: 

 

program chart 

{initialise chart with H; 

  initialise agenda with the items that can be deduced without antecedents; 

  while not-empty (agenda) 

 {extract current_item from agenda and place it in chart; 

   for each item which can be deduced with a deductive step that includes current_item 

  {if item is not in agenda nor in chart then add item to agenda} 

 } 

} 

    

As an example, let us briefly present the Earley ([Earley, 1970]) chart parser using Sikkel’s 

formalisation. In this introduction we will be dealing with phrase structure grammars, and we 

will not enter into more complex formalisms, in which the items would contain further 

information. The sentence to be parsed is denoted a1… an . This chart parser would use two 

types of items: 

 

[A→ α•β , i, j]: Earley items (for A→ αβ ∈  P and 0≤ i ≤ j ≤ n) 

[a, j-1, j]:  terminal items representing aj (1 ≤ j ≤ n) 

 

An Earley item [A→ α•β , i, j] is to be recognised by the chart parser iff 

 

α⇒∗  ai+1… aj, and  

S⇒∗  a1… ai Aγ for some γ ∈  T* 

 

The initial chart would contain the terminal items representing the string (we could say that, 

initially, the nodes of the graph correspond to the beginning and the end of the sentence, as well 

as to the spaces between adjacent words, so that, as the sentence to be analysed has n words, 

there will be n+1 nodes). When the j-th word belongs to different categories, say a and b, then 

both items [a, j-1, j] and [b, j-1, j] are present in the initial chart. The initial agenda would 

contain items [S→ •γ, 0, 0] for all productions S→ γ ∈  P.  
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We have considered that the definition of the charts parsing schema following Sikkel’s 

notation can help clarify the algorithm and its comparison to other systems. Therefore, we 

include the definition of this schema, also applied to Earley, in the following paragraphs. 

If the schema being implemented is Earley (which would correspond to a top-down 

strategy), the set of hypothesis H = {[A, j-1, j]| A→ aj ∈  P ∧  1 ≤ j ≤ n}). The set of deductive 

steps D = Dinit  ∪  Dscan  ∪  Dcompl ∪  Dpred can be defined as: 

 

• Dinit = {⇒ [S→ •γ, 0, 0]} 

• Dscan = {[A→ α• aβ, i, j], [a, j, j+1] ⇒ {[A→ αa•β , i, j+1]} 

• Dcompl = {[A→ α• Bβ, i, j], [B→ γ•, j, k] ⇒ {[A→ αB•β , i, k]} 

• Dpred = {[A→ α• Bβ, i, j] ⇒ [B→ •γ, j, j]} 

 

The chart is initialised with the set of hypotheses H and the initial agenda with Dinit, the only 

deductive step with no preconditions. Deductive steps Dscan and Dcompl can be reformulated by 

means of the fundamental rule of the charts: “An action is taken, possibly resulting in the 

introduction of new edges, whenever the introduction of a particular new edge brings the 

operative end of an active edge together, at the same vertex, with the beginning of an inactive 

edge. If the label of the inactive edge is of the kind that the active edge can consume, a new 

edge is introduced, possibly provoking new applications of the fundamental rule. The new edge 

will be either active or inactive depending on the existence of additional elements to the right of 

the dot”. 

Deductive step Dpred can be reformulated with the top-down rule: “Every time an active edge 

[A→ α• Bβ, i, j] is added to the chart, an active edge [B→ •γ, j, j] will be added to its right for 

each rule B→ γ ∈  P”. 

The bottom-up rule (which might correspond to a LC strategy) can be explained as: “Every 

time an inactive edge [A→ γ•, i, j] is added to the chart, an active edge [B→ A•α , i, i] must be 

added to its left for each rule B→ Aα ∈  P”.  

The combination of the basic rule with either the bottom-up or the top-down rule (or any 

smart combination of both ones) will provide each specific parsing methodology, as explained 

(for our methodology) in section 3.2 below. In our bidirectional case, the items corresponding to 

active edges will have the form [A→ α•β•δ , i, j]. 

Different strategies lead to different criteria for organising the agenda. Several heuristics can 

be applied depending on the availability of knowledge sources. [Caraballo & Charniak, 1998] 

derive several figures of merit for guiding this process (see section 2.2.1.1 for a shallow 

presentation of their approach). 
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2.1.2   Chart Extensions 

 

Chart-based algorithms are extremely flexible and have been rather successful for syntactic 

analysis. However, they present some serious problems: 

 

1. The size of the chart increases with the size of the grammar, making the method 

unapproachable for voluminous grammars. 

2. Lots of unnecessary active and inactive edges are created. 

3. It is commonly said that the charts technique brings forward higher flexibility to the 

parsing strategy but, in absence of the appropriate knowledge, a simple bottom-up 

strategy is most often used, eventually corrected with top-down prediction. 

 

Several enhancements have therefore been explored, namely the use of constraint propagation, 

the introduction of the concept of bidirectionality as opposed to the previously seen 

unidirectional systems, and the enrichment of the formalism using unification mechanisms. 

 

Constraint Propagation 

 

In his PhD thesis, J.F. Quesada ([Quesada, 1997]) presents a system, SCP, to delimit the search 

space and limit the proliferation of new edges (in fact, SCP  limits directly the number of active 

edges, but indirectly the inactive edges are also limited). The fundamental idea is to pre-

compile, from the grammar, a series of reachability and adjacency matrixes which act as 

constraints that filter the creation of new edges. The categories that may hold either a lowest 

leftmost or lowest rightmost position (respectively left-corner and right-corner) are 

predetermined, so that the prediction of edges that cannot take part in the derivation of a specific 

sentence is avoided. This idea is similar to our local approach (see section 3.5.1). Quesada 

reports excellent results. An implementation of the algorithm using unification can be found in  

[Quesada & Amores, 2000], in the frame of the automatic translation system Doxa.  

 

Bidirectionality 

 

Bidirectionality represents a way of taking advantage of the flexibility intrinsically allowed by 

the charts mechanism. It can be introduced in two points of the chart algorithm. The first one is 

the application of the rules: regardless of the parsing strategy, in the classic chart schema rules 

are fired from left to right, that is, the dot in the dotted rule shifts from left to right, from the 

initial position (all the constituents of the right-hand side of the rule are goals) to the final 

position (the edge is inactive and there are no goals left to satisfy). The second point is the way 
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in which the sentence to be analysed is traversed, also from left to right in the classic schema. 

Whatever the point of introduction, the underlying idea is the same: “start by trying to find the 

main word, because this will tell you most about what else to look for” [Kay, 1989]. It is the 

concept of main word what may change depending on the approach (main linguistically 

speaking, or main as the word which is capable of reducing the syntactic search space the most).  

 Head-driven chart parsers represent the first direction. A distinguished symbol, the head, is 

marked in the right-hand side of each rule, so that the application of the rule will start from this 

symbol (not from the leftmost right-hand side symbol as conventionally) and proceed in both 

directions. This approach arises some problems, regarding the mark-up of the grammar (the 

method depends deeply on the goodness of the selected heads, so that the performance of the 

algorithm may degrade considerably in case the chosen heads are not correct) and the parsing 

algorithm. 

As to the mark-up (assignment of the head to each rule of the grammar), two lines have been 

followed: linguistically motivated methods (such as the use of head-driven grammatical 

formalisms as the Head Grammars, HG, or the Head-Driven Phrase Structure Grammars, 

HPSG, see [Kay, 1989]  or [Bouma & van Noord, 1993]), and systems in which the assignment 

of the head is done according to a stochastic base (see [Satta & Stock, 1994] or [Corazza et al., 

1991]). 

Regarding the parsing algorithm, the main difference lies in the use of double-dotted rules 

(defined also in section 2.1), so that the expansion is performed from the head outwards in both 

directions. Hence the inactive edges will correspond to the items in which the first dot has no 

constituents to its left, nor the second dot to its right. Obviously the control of the application of 

the deductive steps gets more complicated: not only must the item priority be determined (its 

position in the agenda), but also its direction of expansion. [Sikkel & op den Akker, 1996] and 

[Nederhof & Satta, 1994] analyse the generalisation of several chart parsing strategies for the 

bidirectional case. The best known is the one obtained by generalising the Left Corner (LC) 

strategy, the Head Corner (HC) approach. [Nederhof & Satta, 1994] present also a formalism, 

the Extended Head Grammar (EHG) that assigns to each rule not only the head but also a tree 

which defines a complete hierarchy in the constituents of the right-hand side of the rule. [van 

Noord, 1997] presents an efficient implementation of a head-corner parser which makes use of 

selective memoisation (only maximal projections of a head1 are memoised, so that they are 

computed only once) combined with goal-weakening (combination of a number of slightly 

different goals into a single more general goal) techniques to speed up the parser. 

A recent version of head-driven parsing is key-driven parsing. It is a bottom-up, chart-based, 

bidirectional head-driven parser, the difference lying in that, instead of selecting the head 
                                                           
1 Those projections of a head which unify either with the start symbol or with a non-head daughter of a 
rule. 
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according to linguistic criteria, it is done in such a way that rule applicability (with respect to all 

categories derived by the grammar) is constrained. Hence, the term key daughter is used to refer 

to the argument position in each rule that is the best discriminator with respect to the other 

categories that the grammar derives. The key daughter of each rule is analysed first, before the 

other daughter(s) are instantiated. Its selection is generally done by considering the amount and 

specificity of information encoded for each argument2, considering the parser was developed for 

an HPSG environment, the PAGE platform (at the DFKI in Saarbrücken). An extended version 

of this parser, the so called ‘hyper-active’ parser ([Oepen & Carrol, 2000]) is currently being 

used in both the PAGE and the LKB3 platforms. 

[Ritchie, 1999] presents a proposal (the Bidirectionally strategy-marked context-free 

grammar, BSCFG) in which one or more constituents are marked in each rule. If the left-hand 

side symbol is marked, the rule can be used top-down, if any of the right-hand side symbols are 

marked the rule may be used bottom-up from the analysis of such constituent. Therefore we 

may find purely bottom-up, purely top-down or hybrid rules. 

The second point of introduction of bidirectionality (the way in which the sentence to be 

analysed is traversed) is represented by our proposal, island-driven parsing (see [Satta & Stock, 

1994], [Ageno & Rodríguez, 1996] or any of our subsequent references). Instead of starting the 

parsing process from all the words in the sentence (bottom-up) or incorporating words as they 

are needed (LC), we start from several elements of the sentence (the islands), which are 

dynamically selected. Two main problems arise: the first one is linguistic (how to select the 

islands), whereas the second one is the parsing control, that is, the order in which islands must 

be extended. Both aspects are widely discussed in the remainder of this thesis, along with 

additional references to related work. 

 

Unification 

 

A fruitful extension of chart parsing consists in going beyond context-free grammars, using 

more expressive grammars. Chart parsing has been widely used within the logic grammar (or 

unification grammar) paradigm. In such approaches, categories are not longer reduced to be 

members of a finite vocabulary, but are complex ones, owning an internal (sometimes 

unlimited) structure. Prolog terms and typed ([Carpenter, 1993]) or free ([Shieber, 1985], 

[Wintner, 1997]) feature structures have been used for representing such complex categories.  

                                                           
2 This strategy would somehow correspond, in our methodology, to the alternatives of selection of islands 
which take into account lexical and syntactic ambiguity criteria in order to constrain the search space, see 
section 3.4. 
3 The platform from the CSLI at Stanford. 



 27

The fundamental combination rule of the charts, described above in section 2.1.1, would now 

be expressed as follows: “An action is taken, possibly resulting in the introduction of new 

edges, whenever the introduction of a particular new edge brings the operative end of an active 

edge [A → α• B1β, i, j] together, at the same vertex, with the beginning of another inactive edge 

[B2 → γ•, j, k]. If the unification of B1 and B2 produces B3, a new edge [A → αB3•β , i, k] is 

introduced, possibly provoking new applications of the fundamental rule”. 

The top-down rule would now read: “Every time an active edge [A → α• B1β, i, j] is added to 

the chart, then for each rule B2 → γ ∈  P such that B1 and B2 can be unified and the product of 

their unification is B3,  an active edge [B3 → •γ, j, j] will be introduced”. 

Finally, the bottom-up rule would read: “Every time an inactive edge edge [A1 → γ•, i, j] is 

introduced into the chart, then an active edge [B → •  A3α, i, i] should be added to its right for 

each rule B → A2α ∈  P such that A1 and A2 can be unified and the product of their unification is 

A3”. 

It can be observed that the only important modification to the basic algorithms is the 

substitution of unification operations for certain equality tests, with their implied increase in 

cost. 

 

2.2   Stochastic Parsers 

 

In order to tackle the task of full parsing of unrestricted text, a certain number of problems must 

be considered, such as the ones listed in [Carroll, 1993]: 

 

1. The difficulty to select the units to be parsed when dealing with unrestricted text, that is, 

the difficulty to segment the text in analysable units. 

2. The difficulty to decide which is the correct analysis whenever the parser provides a 

large number of syntactically correct analyses. 

3. The problem of tuning a general purpose grammar to a specific corpus. 

4. The problem of obtaining plausible analyses out of the coverage scope of the grammar. 

 

In the current state of the art, there does not seem to be any alternative to cope with such 

problems other than the use of stochastic methods. There might exist some exceptions, such as 

the Alvey project (ANLT, Alvey Natural Language Tools, see for instance [Grover et al., 

1989]), the Slot grammar formalism ([McCord, 1990]), or the systems based on the PNLP 

(Programming Language for Natural Language Processing) approach, like the one developed at 

IBM (PEG, PNLP for English Grammar, see [Jensen, 1991]), or Microsoft’s Natural Language 

Processing System (NLPWin, see [Jensen et al., 1993]), which accepts sentences and delivers a 
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detailed syntactic analysis, together with a logical form representing an abstraction of the 

meaning. However, the volume of engineering and linguistic work involved in all these projects 

has been enormous, and the adaptation of these systems would also require a great deal of 

additional effort.  

The application of stochastic models, both to the global syntactic parsing process (such as 

the Stochastic Context-Free Grammars), as well as to certain decisions in the parsing process 

(such as probabilistic LR parsers, or those parsers incorporating probabilistic model for certain 

tasks as the pp-attachment) can take place in different ways. The key idea is to assign 

probabilities to various items: the most likely tree, the most likely rule in a context, the most 

likely decision in a context (where the notion of context may vary, from words in a sentence to 

part-of-speech (PoS) categories in a tagged sentence or subtrees in a partially analysed 

sentence). Assigning these probabilities will allow to determine the likelihood of word 

sequences and their interpretation. The goal will be to accomplish the parsing of unrestricted 

natural language texts with an acceptable level of accuracy. The introduction of the stochastic 

methodologies implies a change of notation: we used to define a grammar, and the parser would 

decide whether a certain sentence was grammatical with respect to this grammar; now we define 

a language model, that is, a way of assigning a probability to any sequence of words from the 

vocabulary, so that whenever the probability is greater than 0, we will say that the sentence 

belongs to the language. Different types of language models have been devised, including: 

 

1. Uniform. 

2. Finite state. 

3. N-grams. 

4. Grammar based. 

5. Other: 

• Decision trees. 

• Maximum entropy… 

 

[Abney et al., 1999] group all these language models into two main approaches. The first one 

uses directly the definition of a stochastic grammar (not necessarily a SCFG), defining the 

probability of a parse tree as the probability of producing that tree by means of a fixed (e.g. top-

down) rule application sequence. The other approach defines the probability of a tree as the 

probability that a certain shift/reduce stochastic parsing automaton outputs that tree. These two 

models are proved to be only weakly equivalent, leading to different learning behaviours.  

Some of these models will be detailed further in the following sections (in particular, the 

formalism on which we base our work, Stochastic Context-Free Grammars, in section 2.2.2). 

However, first we will address another relevant issue, such as the acquisition of the knowledge 
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necessary to perform the analysis. This knowledge includes the productions of a grammar 

(whenever we are dealing with a grammar-based method) as well as the additional stochastic 

parameters of the model. A fruitful exposition of the probabilistic aspects of syntax can be 

found in [Manning, 2002]. 

 

2.2.1   Parameter Estimation 

 

Most language models impose the need of learning a number of parameters. For instance, if a 

word 3-gram is used, and being V the vocabulary, |V|3 parameters need to be estimated, each one 

corresponding to p(wi|wi-1, wi-2). If a PoS 3-gram is used, and T is the set of terminal categories 

(i.e., the tag set), the number of parameters would now be  |T|3. 

In case we are using stochastic context-free grammars (SCFGs, see section 2.2.2), there are 

two possibilities. The first one, whenever a wide-coverage grammar is available: therefore, only 

the probabilities attached to the rules have to be learnt, that is, |P| parameters if P is the set of 

grammar productions. Most of the existent broad-coverage grammars are built for the English 

language. Some of the most important are the ones developed within the above mentioned 

Alvey project ([Grover et al., 1989]), CLE framework (CLARE grammar, see [Alshawi, 1992]), 

TOSCA project (affix grammar4, see [Oostdijk, 1991]), and the LinGO project5 at the Stanford 

CSLI (the English Resource Grammar, see [Sag & Wasow, 1999], based on the HPSG 

framework). Whenever a wide-coverage grammar is not available, both the grammar and the 

probabilities must be learnt (see [Pereira & Schabes, 1992] as well as section 2.2.1.2 below). 

Two main approaches can be adopted in order to perform the process of learning of the 

parameters of a language model: supervised learning, in which we have available a set of 

examples (sentences + their corresponding parse trees) which can be used as training data, and 

unsupervised learning, which uses unanalysed text. Either of both methodologies might be 

applied to the learning of the grammar, on one hand (whenever we are using a grammar based 

approach), and to the learning of the rest of the stochastic parameters, on the other hand.  

Section 2.2.3.3 below will be devoted to alternative systems specially characterised by using 

Machine Learning techniques for the learning process. 

 

2.2.1.1   Supervised Learning 

 

The obvious problem with this kind of learning is the necessity of a syntactically analysed 

corpus (a treebank), with the heavy load of linguistic knowledge and intensive labour it entails. 

Treebanks can be built either manually or semi-automatically. In the latter case the corpus is 
                                                           
4 Extended to other European languages in the framework of the DoRo project ([Santalla, 1999]). 
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analysed using an available grammar (normally a fragmental grammar), and the result must be 

supervised in an ulterior process in order to verify the correctness of the analyses or complete 

them when necessary.  The use of syntactic editors (or tree editors) is fundamental in these 

tasks. 

The only large-scale syntactically annotated corpus for English which is publicly available is 

the Penn Treebank (2.6 million words, see [Marcus et al., 1993] or [Taylor et al., 2001])6. Its 

main problem (aside, of course, from being limited to the English language) is that the set of 

labels it uses is quite reduced. Its second version, PTB-II (whose WSJ portion is used in some 

experiments of this work, see chapter 5), though not solving the mentioned drawbacks, presents 

more consistent annotations, as well as an improved annotations style (see [Marcus et al., 

1994]). The Penn Treebank used the Fidditch parser [Hindle, 1983] as a pre-processing, and its 

annotation is based on context-free syntactic representations with additional trace-filler 

annotations for discontinuous constituents. 

Other recent and notable contribution to this area is the NEGRA Treebank ([Brants et al., 

2000]), a treebank of German newspaper texts (350,000 tokens by mid 1999), annotated using a 

hybrid framework that combines Phrase-Structure and Dependency Grammars. They have used 

an interactive annotation mode that suggests new phrases (plus their probabilities) to the 

annotator, who can accept or reject the suggestion. The LinGO project, mentioned above, is 

constructing an English Treebank for HPSGs ([Oepen et al., 2002]). The Prague Dependency 

Treebank (Czech language, see [Böhmová et al., 2000]) uses automatic initial category 

assignments and a subsequent manual correction step, to perform Dependency Grammar 

annotations.  

[Moreno et al., 2000] and [Moreno et al., 2001] describe a project to build a Spanish 

Treebank, in which the annotation is performed by a tagger and a chunker, and the debugging is 

carried out by means of a graphic tree-drawer, a feature checker (for both syntactic and semantic 

features are included), and a generator of phrase-structure rules. The syntax level is superficial, 

the parse trees being bracketed embedded structures. The treebank contains a total of 1,500 

sentences. [Civit & Martí, 2002] describe the basic principles for the design of a Spanish 

Treebank, as a starting point for the dawning project 3LB7.  

Following the 1999 ATALA Treebank Workshop, a special issue was edited ([Abeillé, 

2000]) which contains some other references on recent treebanks as well as on topics about the 

use of treebanks in general. 

                                                                                                                                                                          
5 http://lingo.stanford.edu/ 
6 We do not include the well-known corpus SUSANNE ([Sampson, 1995]), as its size is far smaller (only 
128,000 words manually annotated, with syntactic annotations of constituents and functions). 
7 3LB (http://www.dlsi.ua.es/projectes/3lb/) is a project which aims at building three syntactically and 
semantically annotated corpora for Spanish, Catalan, and Basque (100,000 words in the case of Spanish). 
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In case we already have the grammar (or we are dealing with a non grammar-based model), 

and we intend to learn the stochastic parameters of the language model, we should have 

available a treebank with granularity and labelling levels compatible with the grammar to which 

we intend to attach the parameters. As to SCFGs (see section 2.2.2), in case we have labelled 

material available it is not difficult to estimate the values of the probabilities attached to their 

rules, using the Maximum Likelihood Estimation (MLE) procedure. Let us assume that the 

learning corpus has been analysed and is composed by a set of N parse trees: {ψ1, …, ψN}. The 

probability attached to rule A → α would then be: 
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where the counters are calculated using the counting function f(A → α ; ψ), which indicates the 

number of times rule A → α has been used to build tree ψ, in the following way: 
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If MLE is applied to the grammar induction task, the induced grammar will be the one that 

confers the maximum probability to the learning corpus (say O). Instead, [Chen, 1996] uses a 

Bayesian approach, together with the Minimum Description Length (MDL) criterion. That is, 

being O the learning corpus, and using the Bayes’ theorem: 

 

(3)   G = argmaxG P(G/O) = argmaxG P(O/G) × P(G) 

 

And combining with the MDL criterion: 

 

(4)   G = argminG  [l(O/G) + l(G)] 

 

Treebank Grammars (transformations and uses) 

 

Although claimed to be poor models of language in several respects, [Charniak, 1996] and 

[Charniak, 1997] have shown that SCFGs (see section 2.2.2) can achieve at least respectable 

results on parsing the Penn Wall Street Journal corpus, using a supervised training approach. 

[Charniak, 1996] describes results for a SCFG trained and tested on the Penn WSJ Treebank. 

The author starts by extracting a treebank grammar, that is, directly reading the production rules 

off all the parse trees contained in the treebank. This is no kind of learning at all, but simply 
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recovering explicitly a grammar that already existed implicitly. Charniak, from the hand-parsed 

sentences contained in what he calls a “preliminary version” of the Penn WSJ  corpus, derived a 

grammar with 10,605 productions8, obtaining a precision and recall of about 80% (for sentences 

up to 40 words) when adding what he calls a right-branching correction (to redress the centre-

embedding bias of the CFG and favour the right-branching tendency of the English language). 

[Johnson, 1998] discusses the effects that the kinds of tree representations in a treebank 

corpus can have on the accuracy of a SCFG estimated from that corpus. In particular the paper 

studies the effect of varying the tree structure of PP-attachment, in order to counteract the 

independence assumptions implicit in any SCFG (and consequently, in the corpus of trees from 

which it is derived). He also shows how conditioning the probabilities of structures on the 

context (in particular on the label of the parent of each constituent) within which they appear 

leads to a much better parsing model. Using the same Penn WSJ Treebank, to which he applies 

the different transformations defined, he shows that the best performing option is the Parent 

transform (the mentioned encoding of the label of the parent in each nonroot nonterminal node), 

with average recall and precision improved by 8% with respect to the SCFG conventionally 

induced from the treebank.   

[Krotov et al., 1998] presents a series of proposals in order to compact this treebank 

grammar, in an attempt to improve its scarce generalisation capacity, something that [Charniak, 

1996] had already started to state. The authors analyse the growth of the grammar size in terms 

of the corpus size and realise that, on the one hand, it is far from saturation (in fact the grammar 

size shows a growth of exponent ½), and on the other hand, most of the induced productions 

present a low frequency (half of the rules are only used once). The original size of the grammar 

was 15,421 rules (achieving a performance of 70% recall and 78% precision). The simple 

elimination of those rules occurring just once resulted in a reduction of half the number of rules, 

at no price of precision and coverage. A more drastic reduction is produced when iteratively 

eliminating the rules which can be covered by other pre-existent rules: a 1,122 productions 

grammar is obtained, though at the price of a major drop in precision and coverage. Finally, the 

authors propose the use of linguistic criteria in order to select the rules to be eliminated. In 

particular, a probabilistic version of the grammar is used (the probabilities estimated by simply 

counting as explained in formulae 1 and 2 above), so that a rule (possibly covered by others) is 

eliminated only when the probability of the tree generated by this rule is smaller than that of the 

others. In the case of combining this criterion with the deletion of the rules showing up once, the 

grammar size reduces to 4,820 productions, with only a slight reduction in precision, while with 

only the former criterion the grammar size is 6,417, at no cost in quality.  

                                                           
8 [Gaizauskas, 95] reports the extraction of a grammar with 17,534 productions from  the 49,208 hand-
parsed sentences in the Wall Street Journal portion of the Penn Treebank II. 
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 Alternative proposals for transformation of the Penn Treebank grammar can be found also 

in [Sekine, 1998]. Specially attractive is the idea (firstly described in [Sekine & Grishman, 

1995]) of inducing a grammar with only two nonterminal symbols (noun phrase and sentence). 

The rules of this grammar would then have attached an (also induced) intermediate structure 

(including other nonterminals), as well as a probability P(rule, structure | nonterminal). The 

system is oriented towards information extraction applications. 

[Goodman, 1996] considers that, instead of searching for the highest probability parse 

(Viterbi-style), one could try to maximise any other evaluation metric, using a different parsing 

algorithm for each specific metric. In fact, he presents the “Labelled Recall Algorithm” and the 

“Bracketed Recall Algorithm”, and compares them to the Labelled Tree (Viterbi) Algorithm, 

showing that each algorithm generally works best when evaluated on the criterion that it 

optimises. The evaluation is performed firstly on the ATIS portion of the Penn Treebank, with a 

SCFG induced directly from the treebank, and secondly on a portion of the Penn Treebank (also 

inducing a SCFG, simplified to be binary branching). 

[Caraballo & Charniak, 1998] use the treebank grammar from [Charniak, 1996] to evaluate 

their approach for improving performance of best-first probabilistic chart parsing. They devise 

several figures of merit (FOMs), which intend to measure how “promising” a constituent 

(inactive edge of the chart) is to contribute to the most probable parse. The best performing 

FOM is the boundary trigram estimate (conditioned on the context on both sides of the 

constituent), getting to reduce the number of edges required for a full parse into the thousands. 

[Charniak et al., 1998] extend the previous work to use this best performing FOM to rank not 

only the completed constituents, but also the active (incomplete) edges of the chart. Although 

this extension implies the need to transform the grammar (so that all productions are either 

unary or binary), it is very much worthwhile: the approach provides a factor of 20 reduction in 

the number of edges required to find the first parse, as well as improving accuracy over 

exhaustive parsing. Taking [Charniak et al., 1998]’s work as a starting point, [Blaheta & 

Charniak, 1999] calculate two new FOMs, considering additional factors. The first FOM takes 

into account additionally the competitors of the edge, the amount of work done, and the 

correctness of the edge: the edge count is lowered by almost a half while reducing accuracy 

only by 0.24%. A second FOM extends the previous one by using a demeriting factor which 

tries to favour those edges with fewer competitors: the average edge count drops to almost 40% 

of the result in [Charniak et al., 1998], at the expense of only 0.28% accuracy loss. 

As it will be mentioned in section 3.5, it is important to remind that (the figures being 

completely different) our stochastic models perform also as FOMs that, combined with our 

edge-based agenda, are used to guide the decisions along the parsing process, but based on the 

concept of islands and applying these FOMs to their extension. In all the sequence of works 

described in the previous paragraph, the average amount of edges required to find a first parse is 
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considered to be the number of edges that are popped from the agenda. We must emphasize the 

difference with respect to our proposal (see chapter 5, regarding the evaluation), in which we 

measure the amount of edges required as the number of edges that need to be created. 

 

2.2.1.2   Unsupervised Learning 

 

Being clearly preferable, unsupervised learning of linguistically plausible structures is generally 

acknowledged to be a much harder problem. It must be remarked that, although for 

unsupervised learning the learning corpus does not have to be syntactically annotated, it must be 

morphologically analysed and PoS-tagged (with the notable exception of [Yuret, 1998], 

commented at the end of this section), which would imply a certain cost in case it is not readily 

available.  

[Fujisaki et al., 1989] propose an iterative unsupervised learning algorithm, in which, after 

an initialisation, an iterative process is performed until convergence. This iteration will firstly 

get all the possible parses for each sentence in the training set, secondly compute the 

probabilities of each derivation tree, and thirdly re-estimate the probabilities of the rules (using 

a variant of the Baum-Welch algorithm, [Baum, 1972]). Viterbi algorithm (see section 2.2.2) is 

used (as a probabilistic version of the CKY algorithm, [Younger, 1967]) in order to efficiently 

select the most probable analysis after training.  Experiments with a hand-crafted context-free 

grammar (2,118 rules, but used in Greibach Normal Form9, with which number of rules turns to 

be 7,550) are described. The model is trained on 4,206 sentences and tested on 84 sentences, 

and 85% of accuracy is reported. 

[Chitrao and Grishman, 1990] describe an iterative process working on unannotated corpus 

to estimate the rule probabilities of a SCFG (see section 2.2.2), using fine grained statistics to 

try and capture context-sensitivity by means of a system of heuristic penalties (the expansion 

probability of a nonterminal being conditioned on its parent). The training set is composed by 

300 sentences while the test set is composed by 140 sentences, and the number of incorrect 

parses decreases from 44% (without statistics) to 26% (with them). 

However, the basic unsupervised learning algorithm is the one known as Inside/Outside 

([Baker, 1979]).  This method is an efficient application of the family of algorithms called 

Expectation Maximisation (EM), which are very useful either in the absence of annotated 

examples or in general, in the case of incompleteness of the training data. The algorithm uses 

some initial parameters (such as the rule probabilities) generated either randomly or from a 

small annotated corpus. From these parameters, the total likelihood of the corpus is calculated, 

and the model parameters are re-estimated. The process is repeated with the new parameters, so 
                                                           
9 A CFG is in GNF if every rule has the form A→ aα, where a ∈  T and α is either empty or composed 
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that the system performs several iterations, until convergence is accomplished. The 

Inside/Outside algorithm is guaranteed not to decrease the log-likelihood of the training corpus. 

Normally convergence to a local optimum is accomplished after quite a few iterations. The main 

drawbacks of the Inside/Outside algorithm are that it is rather costly (O(n3)), and, after all, it is 

somehow supervised (it needs a PoS-tagged corpus). Besides, there is the problem of getting 

stuck in local optima, because the algorithm is very sensitive to the initialisation of the 

parameters. [Rosenfeld, 1999] presents the Inside/Outside algorithm as a generalisation of the  

forward-backward algorithm for training Hidden Markov Models to a training algorithm for 

SCFGs. 

[Lari & Young, 1990] apply the Inside/Outside algorithm to several simple artificial 

languages, obtaining very interesting results. [Pereira & Schabes, 1992] use the first version of 

the Wall Street Journal corpus (labelled with 48 terminal categories and 15 nonterminal 

categories), and build the complete grammar (all the possible rules in CNF). The resulting 

grammar has 15 x 48 = 720 unary rules and 15 x 15 x 15 = 3,375 binary rules, that is, 4,095 

rules as a whole. They apply the Inside/Outside algorithm to this initial grammar and eliminate 

those rules with null probability. Unfortunately the Inside/Outside algorithm is unsuccessful at 

inducing linguistically plausible structures.  The same authors propose to use a semisupervised 

learning in which the training corpus will be manually bracketed (partially annotated), and they 

slightly modify the algorithm so that the only fragments considered valid are the ones not 

including crossing brackets. Not only the grammars obtained this way are more faithful to the 

linguistic criteria (implicitly contained in the learning corpus), but also the processing time 

decreases remarkably (O(n) time in front of O(n3) time for the original algorithm). Tests are 

made on the ATIS corpus (90% bracketing accuracy reported), whereas [Schabes et al., 1993] 

describe the application of the method to the WSJ (reporting also bracketing accuracies of 

around 90% for sentences of up to 15 words). [Black et al., 1992] describe also a statistical 

parsing model which is estimated in a partially supervised way, using the Inside/Outside 

algorithm. A very similar algorithm to that of [Pereira & Schabes, 1992] is applied to the data of 

a treebank, in order to estimate the probabilities attached to the rules of a hand-crafted grammar 

for the restricted domain of computer manuals. 

[Briscoe & Waegner, 1992] suggest a hybrid solution. In particular they propose the use of 

two grammars whose union would produce the definite grammar: one explicit grammar, hand-

built following linguistic criteria from the Alvey grammar (ANLT, see [Grover et al., 1989]), 

and one implicit grammar, which should be induced. The explicit grammar is composed by 

2,316 rules, and the original implicit one (created from the projections X  of 156 terminal 

                                                                                                                                                                          
only by any number of nonterminal symbols.  
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categories) has 7,772 rules. After 6 iterations of the Inside/Outside algorithm, a grammar with 

3,789 rules and a coverage of 93.5% is obtained. 

[Yuret, 1998] tackles the grammar induction task from unannotated corpora (not even 

morphologically), modelling the relation of attraction or repulsion between words by means of 

the mutual information measure. Mutual information measures the affinity between words: 

when high, it indicates that both words tend to appear together (or close) with a significantly 

higher frequency than separated.  

 

2.2.2   SCFGs 

 

Stochastic Context-Free Grammars (SCFGs) are the most extended language model, and the one 

on which our work is based. Therefore, we will devote a whole section to their formal definition 

and the description of their properties. The basic notation regarding CFGs has already been 

described in the introduction of section 2.1.  

Given a CFG G, a syntax or parse tree based on G is a rooted, ordered tree whose 

nonterminal nodes are labelled with elements of N and whose terminal nodes are labelled with 

elements of T. Those nodes immediately dominating terminal nodes will be referred to as 

preterminal; the other nonterminal nodes will be referred to as nonlexical. A syntax tree based 

on G is said to be well-formed with respect to G if for every nonterminal node with label A and 

daughter nodes labelled A1, …, Ak, there is a rule in P of the form A → A1 … Ak. We shall 

distinguish between a tree that is compatible with the rules of the grammar, and a tree that also 

spans a sentence. A syntax tree is said to be generated by a grammar G iff: 

 

1. The root node is labelled with S (the distinguished symbol). 

2. The tree is well-formed with respect to G. 

 

The conventional rewrite interpretation of CFGs will also be used in the definition of our 

stochastic models. Given two strings w1 and w2∈  V*, then w1 directly derives w2,  if w1 = δAγ, w2 

= δαγ, and A → α is a rule in P. Similarly, w1 derives w2  (in one or more steps) if the reflexive 

transitive closure of A directly derives α (written A →* α to indicate the application of one or 

more rules in order to derive string α from nonterminal A). 

A stochastic (or probabilistic) context-free grammar (SCFG) is a context-free grammar in 

which every rule has attached a probability. That is, for every rule of a grammar G, A →α ∈  PG, 

a probability P(A →α) must be possible to be defined. It is usually imposed the constraint that 

the addition of the probabilities of all those rules expanding the same nonterminal must be 110: 

                                                           
10 Lots of the existent systems also require that the grammar is in Chomsky Normal Form (CNF). 
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(5)   1)P(A
GP)(A

=→∑
∈→α

α  

 

Using an auxiliary notation Aij to denote a nonterminal node A of the parse tree spanning 

positions of the sentence from i through j,  we can define the three assumptions of the model: 

 

1. Place invariance:  ∀ i,j, P(Aij → ζ ) is the same. 

2. Context freedom:  P(Aij → ζ | anything outside i through j) = P(Aij → ζ ) 

3. Ancestor freedom:  P(Aij → ζ | any ancestor nodes above Aij) = P(Aij → ζ ) 

 

The probabilities attached to the rules can be used either to heuristically guide the parsing 

process or to select the most probable parse tree(s). The probability of a certain derivation (that 

is, a parse tree) can be computed by multiplying the probabilities of all the productions applied 

in the derivation process. Let ψ be a finite parse tree well-formed with respect to G, and f the 

counting function (already defined in section 2.2.1.1, formula 2), such that f(A → α ; ψ) 

indicates the number of times rule A → α has been used to build tree ψ. Then we can write: 

 

(6)   );f(A

P)(A G

)P(A)P( ψα

α
αψ →

∈→
∏ →=  

 

If we define ψG as the set of parse trees ψ mentioned above, it would be interesting that the 

probability distribution P(ψ) were such that: 

 

(7)   1)P( =∑
Ψ∈ Gψ

ψ  

 

This is not always like that (see, for instance [Chi & Geman, 1998]), for it depends on the 

probability distribution over the rules, P(A → α). However, if, as usual, the estimation of the 

probabilities is carried out by means of the MLE algorithm (see section 2.2.1.1), it can be 

proved that this property holds. [Chi, 1999] generalises this approach by means of the relative 

weighted frequency method. 

A problem related to stochastic grammars is the computation of the probability of a sentence 

(which we can use as its likelihood measure)11. Obtaining the most probable parse tree for a 

sentence, obviously without having to generate all of them (it can be accomplished at a cubic 

                                                           
11 An obvious but inefficient way of computing it is to generate all the parse trees for the sentence, 
calculate the probability of each one and add them. 



 38

cost by means of Viterbi algorithm, see for example [Manning & Schütze, 1999] for a detailed 

description), or obtaining the k most probable parse trees, are other significant problems. It must 

be taken into account that using stochastic grammars allows us the extension of the grammars 

out of their coverage, by assigning small probabilities to the rules that permit this extension. 

Under these circumstances, for most of the applications, it will be enough to deal with the k 

most probable parse trees (with k very often reduced to 1).    

The last problem that must be considered is the learning process. SCFGs present a wide 

casuistry of collaboration between linguistics and statistics to this effect. As mentioned in 

section 2.2.1, two types of information must be acquired, namely the context-free grammar 

itself and the probabilities attached to the rules. If one is dealing with language models which 

imply the extension of SCFGs, such as in our work, additional stochastic parameters should 

eventually be learned. Very often the construction of the kernel of the SCFG is carried out using 

linguistic knowledge. We can find from manual construction until grammar induction (from 

previously annotated corpora), as well as the use of artificial grammars or grammars built 

manually but completed automatically. Sections 2.2.1.1 and 2.2.1.2 above deal with this 

problem as well as the learning of the stochastic parameters of the model.  

 

2.2.3   Other Probabilistic Formalisms 

 

SCFGs (described in the previous section) present advantages and disadvantages, such as the 

following ones: 

 

• They introduce an idea of the probability of a parse,  

• but not a very good one, as lexical information (such as lexical cooccurrence 

measures) is not considered. 

• SCFGs are good for grammar induction: whilst CFGs cannot be induced without 

negative (ungrammatical) examples, SCFGs can.  

• Robustness. 

• SCFGs give a probabilistic language model for a natural language. 

• In practice a SCFG is a worse language model than a 3-gram: 

• One obvious limitation has to do with the assumption of independence in the    

production probabilities. Not only are the rules context-free, but also their 

probabilities. Lets take a rule like N→N N to define the noun compounds in 

English. It happens with the correct trees obtained when parsing probabilistically 

the noun phrases “toy coffee grinder” and “cat food tin” that:  

   P([N [N toy] [N [N coffee] [N grinder]]]) = P([N [N [N cat][N food]][N tin]])  
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Moreover, the probability of the corresponding incorrect parse trees that would be 

built by applying twice the rule N→N N is also the same. Ideally, these derivations 

should be kept probabilistically distinct, as they correspond to different 

interpretations. 

• SCFGs do not allow to establish such a significant distinction as the point of the 

parse derivation where a rule is applied. For instance, let us take rule NP → Pro, in 

which a noun phrase expands as a pronoun. It is probable that P(NP → Pro) should 

be greater in a subject position than elsewhere12, but only a global probability can 

be attached to the rule. 

• Possibility of combination of SCFGs and 3-grams. 

• SCFGs give too much of the probability mass to very short sentences (smaller trees 

imply less rules and are thus more probable than greater ones). 

• Problem of sparseness: difficulty to correctly learn those situations which are not very 

frequent (or even not occurring) in the training corpus. 

  

There exist several approaches that intend to introduce contextual aspects (capturing more fine 

grained probabilistic distributions), or lexical information in the language models (models 

containing parameters corresponding to lexical dependencies), or else approaches which intend 

to model not the language itself but certain aspects of the decisions the parser must take. In this 

section, we will briefly describe several of those of these approaches not yet involving lexical 

information (for section 2.2.4 is devoted to these ones). Each one will be classified according to 

the used formalism or model, the type of knowledge acquisition method used, or the kind of 

analyser employed, depending on the factor we consider more significant (though most of them 

might also be classified in different sections). 

It is also important to take into account the fact that probabilistic parsing models fall into two 

main categories, namely discriminative models and generative models. Discriminative models 

estimate the probability of a parse given a sentence, assigning probability mass to all parse trees 

possible for a given sentence. On the other hand, generative models assign probability mass 

jointly over all sentence-parses pairs. In natural language, a generative model looks from the 

point of view of the speaker who is generating a sentence, whereas a discriminative model looks 

from the point of view of a listener who knows what words were said but must determine their 

structure. 

 

 

                                                           
12 This case might be valid as an example, although for instance [Magerman & Marcus, 1991] have 
observed in treebanks statistics that this may not be true.  
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2.2.3.1   Alternative models 

 

Dependency Grammars 

 

The Probabilistic Link Grammar Model of [Lafferty et al., 1992] (Grammatical Trigrams) 

might be considered the earliest work on probabilistic Dependency Grammars. The model is 

generative, specifying a distribution over the space of parse/sentence pairs, and it is trained in 

an unsupervised way (by means of an approach similar to the Inside-Outside algorithm). 

Although we include it in this section, the model is lexicalised  (and as such, it could have also 

fit in section 2.2.4). 

Another related proposal is Lynx ([Venable, 2001]). Both Grammatical Trigrams and Lynx 

are probabilistic models based on Link Grammars ([Sleator & Temperley, 1993]). Also [Eisner, 

1996a], in his model C, uses a dependency grammar, in this case with unlabelled links (as 

opposed to the labelled links or connectors representing grammatical relationships between 

words of the Link grammars). The latter and other systems using dependency grammar-based 

formalisms are described in section 2.2.4. 

[Carroll & Charniak, 1992] also focus on Dependency Grammars, by defining an inductive 

algorithm for the creation of the grammar which performs incrementally. A new rule is 

introduced only if any of the sentences in the learning corpus is not correctly analysed by means 

of the current rule set.  

 

Increase Context Sensitivity 

 

The systems Pearl ([Magerman & Marcus, 1991] ) and Picky ([Magerman & Weir, 1992]) use 

context-sensitive derivation probabilities. The basic idea is to try and maximise the probability 

of a correct derivation for each of the sentences in the corpus (as opposed to the Inside-

Outside’s idea of maximising the addition of the probabilities of the sentences in the corpus 

given a grammar). In Pearl, for instance, the application probability of a rule is modelled as a 

conditional probability, conditioned on the context in which the mother category appears. A 

chart parser (PUNDIT) is employed, and probabilities are estimated by simply counting the 

application of the rules in the ATIS portion of the Penn Treebank. An accuracy of 88% is 

reported. 

 

ID/LP Grammars 

 

In an experiment based on the use of a grammar in ID/LP format, [Sharman et al., 1990] factor 

out the probabilities concerning immediate dominance (associated with ID rules) from those 
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concerning linear precedence (associated with LP rules). They describe a supervised learning 

method in which the initial probabilities (based on the frequency of ID and LP relationships) are 

learnt from a manually annotated corpus (one million words). An accuracy of 88% is 

accomplished in a small test set of 42 sentences (extracted from the training corpus). 

 

History Based Grammars 

 

[Black et al., 1993] present a more general framework, the History Based Grammars. In this 

system, the term history is equivalent to context: the application of a rule is conditioned on 

arbitrary aspects of the context of the parse tree (the context information being both the 

dominating production and the syntactic and semantic categories of the words in the prior 

derivations; in this sense, it can be considered also a sort of lexicalised model (see section 

2.2.4). The system could have been also included in the subsection devoted to decision trees of 

section 2.2.4, as decision tree probability models (see [Jelinek et al., 1994]), trained from a 

treebank (computer manuals domain) are used to score the different derivations of sentences 

produced by a hand-written broad-coverage feature-based unification grammar (672 rules, 21 

features). The parsing accuracy ranges from 60% to 75%. 

 [Hermjakob & Mooney, 1997] present a knowledge and context-based system (CONTEX) 

which, applying machine learning techniques, uses supervisedly learnt parse action examples to 

generate a deterministic shift-reduce parser. The learning algorithm uses, as the one in the 

paragraph above, decision trees (in particular, a extended version of the standard ID3 model for 

more general hybrid decision structures), in combination with decision lists; it starts by 

assigning to each parse tree from the training corpus a sequence of shift-reduce parsing 

operations needed to produce the tree. In order to learn the specific action to be performed at 

any point of the derivation, the system relies heavily on an enriched context (to the left and right 

of each word), encoded in features which include morphological, syntactic, and semantic 

information (the previously built structure, a subcategorisation table, and a knowledge base with 

semantic information about the words in the lexicon; once more, this method could then have 

been classified as lexicalised). The methodology is evaluated on a subset of sentences from the 

WSJ (only the ones fully covered by the 3000 most frequent words in the corpus). The impact 

of the number of features is analysed, so that, with all 205 features, the highest labelled 

precision and recall (respectively of 89.8% and 89.6 %) are reported. However,  it must be taken 

into account, not only that the domain is restricted, but also the significant difference of 

annotation style with the Penn Treebank (which implies that the LR and LP figures are not 

straightforwardly comparable with other systems). 

In [Hermjakob, 2001], CONTEX is tuned for a Question Answering (Q&A) application by 

simply providing a manually-built complementary treebank (containing 1153 questions). Tested 
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on 179 questions from TREC-8 and TREC-9 Q&A competitions, CONTEX achieved a labelled 

precision of 95.71% and a labelled recall of 95.45%.  

 

Stochastic Unification Formalisms 

 

[Brew, 1995] presents a stochastic version of the Head-Driven Phrase Structure Grammar 

(HPSG) formalism which allows to assign probabilities to type-hierarchies. Re-entrancy poses a 

problem: in some cases, even if two features have been constrained to the same value by 

unification, the probabilities of their productions are assumed to be independent. The resulting 

probability distribution is then normalised so that probabilities sum to one, which leads to 

problems with grammar induction as pointed out by [Abney, 1997]. This latter work defines 

stochastic attribute-value grammars, shows why one cannot directly transplant context-free 

grammar methods to the attribute-value grammar case (basically what was done in [Brew, 

1995]) and gives an adequate (though yet to be shown if practicable due to its computational 

cost) algorithm for computing the maximum-likelihood estimate of their parameters (using 

Montecarlo sampling techniques). 

[Johnson et al., 1999] argue that this algorithm cannot be used for realistic-size grammars 

and propose instead a pair of methods based on another kind of log-linear model13, Markov 

Random Fields. They apply these algorithms to the estimation of the parameters of a stochastic 

version of a Lexical-Functional Grammar. 

 

2.2.3.2   Alternative parsers 

 

Data Oriented Parsing 

 

 The most extreme case is that of those analysers that do without the grammar. Rens Bod’s Data 

Oriented Parsing (DOP, see [Bod, 1995]) is the most relevant example. DOP distinguishes from 

other stochastic approaches in that it skips the step of induction of a stochastic grammar from a 

corpus. Instead of grammar, the parser uses a corpus annotated with syntactic information, so 

that all fragments (i.e. subtrees) in this hand-annotated corpus, regardless of size and 

lexicalisation, are considered as rules of a probabilistic grammar. For an input sentence, the 

entire tree is constructed as a combination of tree fragments in such a way that the product of 

the probabilities is maximum. In training, a parameter is explicitly estimated for each sub-tree. 

In searching for the best parse, calculating the score for a parse in principle requires summing 

over an exponential number of derivations underlying a tree, which in practice is approximated 

                                                           
13 Other forms of log-linear models are discussed in section 2.2.4. 
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by sampling a sufficiently large number of random parsing derivations from the forest (using 

Monte Carlo techniques). [Bod, 1995] describes how the system is trained with 500 sentences 

from the ATIS section of the Penn Treebank corpus (350,000 subtrees), and tested on 100 trees, 

obtaining 64% parse accuracy, 75% sentence accuracy, 94.8% bracketing accuracy and 98% 

coverage.  

Bod’s sampling technique is so extremely time consuming, that it turns out to be prohibitive 

for larger domains such as the WSJ portion of the Penn Treebank. For this corpus, in [Bod, 

2000], he employs a Viterbi n-best search using a CKY algorithm and estimates the most 

probable parse from the 1,000 most probable derivations. He reports a labelled precision (LP) of 

88.6% and a labelled recall (LR) of 88.3% (see section 5.8.2 for a description of these metrics). 

The work described in [Bod, 2001] aims at finding the minimal set of fragments which achieve 

maximal parse accuracy. He tests constraints according to the subtree size, the lexical context, 

the structural context, and the nonheadword dependencies, obtaining the highest parse accuracy 

by employing only two constraints on the fragment set: number of words in the fragment 

frontiers restricted to 12 (LP of 90.8% and LR of 90.5%) and depth of unlexicalised fragments 

restricted to 6 (LP of 90.8% and LR of 90.6%). However, he finally arguments that probably 

these constraints differ from corpus to corpus, and are related to data sparseness effects. 

A recent article by Mark Johnson ([Johnson, 2002]) discusses that, from a theoretical point 

of view, it is difficult to find a motivation for the parameter estimation methods used by Bod, 

for its parameter estimation techniques do not correspond to maximum-likelihood estimation 

nor to a discriminative criterion. 

 

Probabilistic LR Parsing 

 

The standard LR methodology performs a Left-to-right scan of the input and constructs a Right-

most derivation in reverse. [Ng & Tomita, 1991] extend the well-known generalised LR parsing 

algorithm from Tomita [Tomita, 1986] by attaching probabilities to the nodes of the graph-

structured stack which constitutes the kernel of the algorithm. Part of their proposal deals with 

how to consistently maintain these probabilities (initially derived from the probabilities attached 

to the rules of the SCFG) considering the three operations of the graph-structured stack 

(merging, local ambiguity packing, and splitting). However, it is not possible to use an 

algorithm like Viterbi in order to compute the most probable parse. We have extended their 

methodology for computing the probabilistic parse table for left-recursive SCFGs (by encoding 

the item dependencies in terms of systems of linear equations), adapting it for the computation 

of our local model probabilities (see section 3.5.1).  

Other LR parsing approaches using SCFGs as a source include [Wright, 1990], [Wright & 

Wrigley, 1989], and [Wright et al., 1991]. In all of them, an LR parse table is derived from the 
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context-free grammar but, in addition, the rule probabilities are distributed among sets of 

actions in the LR table. The distribution is carried out so that it can be assured that the product 

of the probabilities associated to those LR actions performed in the derivation of any analysis 

will be exactly the same as the probability which would have been assigned to this analysis by 

the SCFG. 

[Carroll, 1993] discusses the latter and other methodologies and presents, together with Ted 

Briscoe, a more ambitious proposal (see also [Briscoe & Carroll, 1993]). They start from a 

unification grammar (the ANLT grammar), from which a context-free backbone grammar is 

automatically derived, together with an associated residue containing the dependencies between 

features and values not contained in the context-free grammar. The parser must associate the 

reduce operations of the LR table with a filter based on the unification of the features contained 

in the residue. The backbone grammar generated from the ANLT grammar had 575 categories 

and more than 2,000 productions, and an LR parse table was automatically generated for this 

grammar. As opposed to [Ng & Tomita, 1991], the probabilistic model consists in attaching 

probabilities not to the context-free rules, but to the actions in the LR table. The model is then 

more context sensitive. In the experiments described, the learning is supervised, the training 

corpus being composed by a set of LR parse histories (with human intervention to correct the 

transition in the LR parse table). [Carroll & Briscoe, 1996] improve the system, achieving 

labelled constituent recall and precision results of 82.9% and 83.9% respectively (for a corpus 

of 250 sentences extracted form the ones covered by the system).  

[Inui et al., 1998] base on Bricoe and Carrol’s work, but improve it by formalising their 

model in such a way that it provides probabilistically well-founded distributions. Although they 

focus on the formal and qualitative aspects of the model, they show how their refinement is 

expected to improve parsing performance. 

It is worth noting that recent work by [Nederhof & Satta, 2002], which investigates on the 

problem of extending parsing strategies to probabilistic parsing strategies, concludes that LR 

parsing cannot be extended to become a probabilistic parsing strategy, because it lacks the 

property denoted as SPP (strong predictiveness property). In other words, probabilistic LR 

parsing algorithms might not preserve all the SCFG probability distributions, which means that 

LR parsers may sometimes lead to less accurate models than the grammars from which they are 

constructed. 

 

2.2.3.3   Alternative learning methodologies  

 

Most recent learning methodologies involve the use of Machine Learning (ML) approaches. 

Although basic learning techniques have already been described in section 2.2.1 (and some of 
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them could also be considered ML techniques, such as the EM14), we devote this section to 

parsing systems specifically based on this learning area. In general, ML techniques permit to 

acquire some kind of knowledge from a concrete data domain, obtaining a description in some 

representation language which explains observations and helps predicting new observations. 

ML field has provided a range of learning algorithms as well as general approaches that, in the 

application to parsing (either full or shallow), have permitted to use corpora to learn the models 

underlying data, predict unseen observations and compact the knowledge needed in the parsing 

process. However, there are some specific learning algorithms (such as Transformation- based 

error-driven learning, [Brill, 1993], or the Maximum Entropy algorithm, [Ratnaparkhi, 1997], 

both described below), which have been devised directly in the field of NLP. Most of these 

learning paradigms are supervised, though a small number of them are unsupervised. 

 

Transformation Based (Error-Driven) Learning 

 

[Brill, 1993] has applied TBL to grammar induction and parsing. The approach consists in 

learning a ranked list of transformational rules so that, starting from an initial imperfect binary 

right-branching tree for a sentence, the sequential application of each rule may transform a piece 

of the original tree, and in the end obtain a parse tree with fewer errors. The firing of each rule is 

basically conditioned on a context of one or two tags, so that the learning process (performed 

through a greedy search according to the largest error decrease criterion) needs quite a few 

number of sentences (150 /250 sentences for the ATIS and WSJ corpora) for obtaining the same 

accuracy of contemporary systems. 

 

Instance-Based Learning 

 

Also denoted memory-based or case-based learning, instance-based algorithms (IBL) are a 

supervised way of inductively learning from examples, that are taken into account in order to 

classify new examples by analogy (the most similar instances are retrieved from memory, and 

used for extrapolation). Memory-based learning is a direct descendant of the classical k-NN (k 

Nearest Neighbour) approach to classification. 

[Simmons & Yu, 1992] apply the idea to a context sensitive shift reduce (SR) parser. SR 

parsing is suitable for this classification proposal, since it breaks the parsing process into simple 

parse actions (shift, reduce, and fin), allowing the construction of an example base of parse 

states with their correct parse actions. A parse action is assigned to each parse state basing on 

                                                           
14 The frontier between statistical and ML methods is a controversial issue. 
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information on the parse stack and the input buffer. The parser works on the level of PoS tags 

and windows over the text with a context of five words to the left and to the right. 

The ILK Group at the Tilburg University has developed the TiMBL (Tilburg Memory-Based 

Learning Environment), a general instance-based algorithm which makes a compression of the 

base of examples into a tree-based structure, the IGTree (see [Daelemans et al., 1997]), which in 

turn is used to classify new examples. The memory-based algorithms implemented in the 

TiMBL package have been successfully applied to a large range of NLP tasks, including 

shallow parsing (see [Daelemans et al., 1999]) and more recently, full parsing: [Veenstra & 

Daelemans, 2000] construct a memory-based shift reduce (MBSR) parser, inspired by 

[Simmons & Yu, 1992]’s work. However, the corpus used to test the latter approach is quite 

simple, so the extension to show that the parser can also be applied to real-world data 

(particularly to the WSJ portion from the Penn Treebank) is announced. 

[Cardie, 1993a] addresses the lexical, semantic, and structural disambiguation of full 

sentences (in limited domains), within an information extraction environment. In a supervised 

training phase, the parser creates a case base of domain-specific context-sensitive word 

definitions. Then, given an unknown word and the context in which it occurs, an eventual robust 

parser could retrieve the definitions from the case base in order to infer the necessary syntactic 

and semantic features for the unknown word and then continue processing the text. The case 

retrieval algorithm is basically a k-NN algorithm, but it assumes all features are equally 

important for learning each type of knowledge, which intuitively seems not to be true. 

Therefore, the system takes advantage of decision trees for identifying the relevant features to 

be included in the k-NN case retrieval (the approach is fully described in [Cardie, 1993b]). 

 

Other ML-based Models 

 

The basic idea in Explanation-Based Learning (EBL, see [Rayner & Cater, 1996] is that 

grammar rules (specially in any specific domain) tend to combine much more frequently in 

some ways than in others. Given a sufficiently large corpus parsed by the original (general) 

grammar, it is possible to learn the common combinations of rules and chunk them into macro-

rules ([Samuelsson, 1994] defines an entropy threshold for automatically deriving these macro-

rules). The result is a specialized grammar, with a larger number of rules but a simpler structure 

(and a coverage which is a strict subset of that of the original grammar). In practice, parsing is 

shown to be faster (3 to 4 times of speed up for an LR parser) at a price of only 5% coverage 

loss, using a training corpus of a few thousand utterances. 

[Zelle & Mooney, 1996] describe a methodology to automate the construction of parsers 

based on another ML-based learning methodology, Inductive Logic Programming (ILP). They 

have developed a system, CHILL, which begins with a well-defined parsing framework, shift-
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reduce parsing, and uses ILP to learn control strategies within this framework (inductively 

learning a deterministic shift-reduce Prolog parser that maps sentences into parses). CHILL 

represents a highly flexible application of ILP, allowing the induction over unbounded lists, 

stacks, and trees. They describe the application of the system to the automatic induction of 

parses that map natural language database queries into an executable logical form. 

Besides, there has been some research using both neural networks and symbolic induction to 

learn parsers that produce case-role analyses ([Miikkulainen, 96]). In NLP, neural networks 

have been used basically to address low-level problems, although there are examples of 

application to more complex problems such as parsing (sometimes in combination with 

symbolic approaches such as the above mentioned example). It is beyond the scope of this 

review to get into further details, we will just mention a pair of recent references ([Mayberry  & 

Miikkulainen, 1999] and [Sopena & Alegre, 2000]) and a survey of applications of neural 

networks to NLP ([López, 1998]15). 

 

2.2.4   Lexicalised Statistical Parsers 

 

Most recent parsing systems heavily rely on lexicalisation, that is, the specialisation of the 

features of the stochastic models according to the lexical items, to accomplish high accuracy on 

real-world texts, giving rise to the so called Lexicalised Statistical Parsers. Lexicalised 

formalisms allow to express syntactic preferences that are sensitive to lexical words, as well as 

to control the word selection. In fact, it is widely assumed in the parsing community that there is 

an accuracy ceiling whose overcoming comes through introducing lexical information in the 

models. According to [Satta, 2000], the wide diffusion of lexicalised techniques is mainly due to 

“the capability of lexicalised formalisms to control syntactic acceptability, when it is sensitive 

to individual words in the language, and word selection, accounting for genuinely lexical factors 

as well as semantic and world knowledge conditions”. A considerable research effort has been 

devoted to the problem of defining statistical parameters associated with lexicalised models, as 

well as to the problem of the specification of algorithms for statistical estimation of these 

parameters (though possibly less effort to the problem of parsing itself using these models).  

In our work, we have developed a non-lexicalised approach, mainly due to two reasons. On 

the one hand, the problems of data sparseness and biasing to the training corpus encountered in 

the experiments have made us discard a lexicalised version which would have only deteriorated 

the situation. On the other hand, we intend to be able to apply our method to languages such as 

Spanish or Catalan, for which we cannot have available large enough annotated corpora in order 

to learn the lexicalised version of the parameters defined in section 3.5. However, aware as we 

                                                           
15 Written in Spanish. 
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are of the importance of the issue, we devote this entire section to the review of the most 

relevant lexicalised stochastic systems. We hasten to emphasise that once more, there is an 

intersection among the classification criteria, as all the approaches described in this section 

implement ML-based acquisition methods, and could have also been included in section 2.2.3.3 

accordingly. 

An important part of these recent stochastic parsers use bilexical grammars. In bilexical 

grammars, each grammatical rule is specialised for two individual words, that is, each word type 

idiosyncratically prefers particular complements with particular head words. The first three 

subsections (dependency-based models, head automaton grammars and lexicalised context-free 

grammars) describe parsing systems relying on probabilistic or weighted versions of bilexical 

grammars.  

[Carroll & Weir, 1997] discuss about how to attach the frequency information needed by a 

parser to lexicalised grammar formalisms. Although they use LTAGs (see the corresponding 

subsection below into this section) as a representative framework, their remarks can be 

generalised to any lexicalised grammar formalism. Basically the idea is to identify the nature of 

non determinism in the grammar derivations, and then determine the role that frequency 

information plays in order to identify the ways in which this information can be associated with 

the grammar. Four ways are described, using increasing fined-grained frequency information 

and derivational context (as they denote it, the approaches respectively use context-free, node-

dependent, locally-dependent, and globally-dependent frequency information). 

 

Dependency-Based Models 

 

For each constituent, a head, its most important lexical item, is defined. Two types of 

dependency-based statistics are normally collected: the one modelling the dependency between 

the rule used to expand a phrase (constituent) and the head of such phrase, and the one 

modelling the dependency between the head of a phrase and the head of a subphrase 

(descendant). Basically the methodology consists of attaching headwords to each syntactic 

category in the parse tree, and incorporate the lexical probabilities into the stochastic model.  

A remarkable and highly popular parser, quite difficult to classify (as it owns elements of 

lexicalised, treebank-based, and dependency-based parsers), is Collins’ parser16. Initially 

described in [Collins, 1996], it was improved in [Collins, 1997], and fully described in [Collins, 

1999]. 

Collins uses a supervised learning approach, with Penn Treebank as a knowledge source, for 

estimating the parameters of his model. The key of his proposal is a very well motivated trade-

                                                           
16 The parser executables can be downloaded from ftp://ftp.cis.upenn.edu/pub/mcollins/misc/ 
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off between the expressiveness of the statistical model and the independence assumptions that 

must be done for assuring a sound estimation of the parameters given the corpus. In the model, a 

parse tree is represented as a sequence of decisions corresponding to a head-centered top-down 

derivation of the tree.  

Independence assumptions are linguistically motivated and encode the X-bar schema, 

subcategorisation preferences, ordering of the complements, placement of adjuncts, and lexical 

dependencies among others. All the preferences are expressed by means of probabilities 

conditioned on lexical heads.  

Collins proposes up to seven alternative parameterisation schemata with an increasing order 

of complexity, as well as a smart backing-off strategy for dealing with sparseness. The seven 

alternatives follow: 

 

1. Using a simple SCFG, i.e., the parse tree is represented as a sequence of n events, each 

one representing the application of a context-free rule. 

2. Representing the parse tree as n events, where events are dependencies between two 

words in the sentence (head and modifier), i.e., <wi → hi>. 

3. Dependencies + directions, that is, events are of the form <wi → hi, directioni>, being 

directioni either L or R (indicating whether wi is placed to the left or to the right of hi).  

4. Dependencies + directions + relations, i.e., eventi =<wi → hi, directioni, relationi>, where 

relationi is a triple < modifieri, parenti, headi> which represents the grammatical relation 

between the two words. For instance, <IBM → acquired, L, < NP, S, VP>>would be an 

event belonging to this level. 

5. Dependencies + direction + relations + subcategorisations. In this case, a parse tree is 

represented as n + m events, the first n events are as before and the other m as 

subcategorisation frames. 

6. Including a distance measure between wi and hi in the previous schema. 

7. Including the PoS-tags of words wi and hi. 

 

In Collins approach, lexicalised SCFGs are composed by rules of the form: 

 

(8)   P(h) → Ln(ln) … L1(l1) H(h) R1(r1) … Rm(rm) 

 

being P the parent category, H the head, and Li (respectively Ri) categories occurring at a 

distance i to the left (right) of the head. h, li, ri, … represent the lexical items. 

The generative model involves the estimation from the PTB of the probability of each rule, 

i.e., the probability of generating the right part conditioned on the left part. Collins decomposes 
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this probability into three factors, accounting for the probability of generating the head H, given 

the parent, the probability of generating the components to the left, and finally the probability of 

generating the components to the right. Independence assumptions are introduced in order to 

make the model feasible. 

This basic model is further extended by introducing distances (taking into account some 

idiosyncratic features). The parser was trained with the Penn Treebank (about 40,000 

sentences). The results were around 85% of labelled and bracketed recall. In [Collins, 1997], 

other improvements (such as the distinction of complements and adjuncts, subcategorisation 

issues, and wh-movement) are incorporated into the model, finally obtaining an accuracy above 

88%. 

 [Charniak, 1997] presents a similar proposal which combines head word bigram statistics 

with a SCFG (the grammar read off a treebank and the probabilities supervisedly learnt from it). 

The system adds a new useful statistic to guide the parser decisions: the type of the parent will 

also condition the probability of a rule. When parsing a sentence, the system makes no attempt 

to find all possible parsers, but it uses techniques described in [Caraballo & Charniak, 1998] 

(described in turn in section 2.2.1.1) to select constituents that promise to contribute to the most 

probable parses (according to the simple probabilistic CFG distribution). However, as the 

current probability distribution is different, these techniques just allow to ignore improbable 

parses, and the resulting chart contains the constituents along with information on how they 

combine to form parses. The constituents are assigned the probability given the lexicalised 

model, and the parser returns the parse with the overall highest probability according to this full 

distribution. The parser is trained and evaluated on the Wall Street Journal portion of the Penn 

Treebank, where labelled recall and precision of 86% are obtained (for sentences with 100 or 

less words). 

 [Eisner, 1996a] besides presenting a novel dynamic-programming bottom-up dependency 

parser, proposes three lexicalist probabilistic models for dependency grammars, namely A, a 

bigram lexical affinity model (modeling words’ preferences to associate with each other), B, a 

sense tagging model (modeling tags’ preferences to follow each other), and C, a generative 

model (modeling how each word generates sequences of left and right children). [Eisner, 1996b] 

describes an additional model D (a variant of model B, which conditions decisions also on the 

actually available words), includes the final results for the experiments, and compares his parser 

to [Collins, 1996] above. The parser was trained on a corpus of dependency structures derived 

from the WSJ sentences in the Penn Treebank. Surprisingly, the best performing model (as to 

dependency accuracy) is D (92.6%), and not C, as it would have been expected. A variant of 

model C which also generates the distances of each child from the head, improves model C’s 

accuracy to 90.4%. Though not getting to improve model D’s accuracy, we remark the point if 
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only because of the parallelism with our neighbouring approach (see section 3.5.2); like in our 

case, the addition of the distances leads to a probability model which does not sum to 1.  

 

Head Automaton Grammars 

 

[Alshawi, 1996] describes lexicalised head automata, a formalism representing parse trees by 

means of head-modifier relations. For each head, a sequence of left and right modifier words is 

defined together with their corresponding relations. A head automaton grammar (HAG), is 

defined as a function that defines a head automaton for each element of its (finite) domain. A 

head automaton is an acceptor for a language of string pairs <x,y> (the left and right modifiers), 

so that the language generated by the entire grammar is defined by expanding the special start 

symbol $ into x$y for some <x,y> and then recursively expanding the words in strings x and y. A 

generative probability model is provided (Alshawi describes five parameter types), as well as a 

parsing algorithm which is a analogous to the CKY algorithm (with a temporal cost of O(n5)). 

[Eisner & Satta, 1999] provide a translation from head automaton grammars to bilexical 

CFGs, obtaining then a parsing algorithm for HAGs performing in time O(n4). Moreover, if the 

HAGs belong to the particular subclass of split head automaton grammars17, a O(n3) parsing 

algorithm is described. 

[Eisner, 2000] introduces a new formalism, derived from dependency grammars, which can 

be considered a particular case of the head automaton grammars, the weighted bilexical 

grammars. Weighted bilexical grammars extend the idea of bilexical grammars so that, instead 

of capturing black-and-white selectional restrictions (say, either a certain verb subcategorises a 

certain noun or not), gradient selectional restrictions are captured: each specific word is 

equipped with a probability distribution over possible dependents. Then, the parser task will be 

to find the highest-weighted grammatical dependency tree given an input sentence. A new 

parsing algorithm for bilexical grammars (variant of the one described in [Eisner, 1996a]) is 

introduced which improves performance with respect to the previous and usually used version. 

The paper shows as well how the formalism can be used to model other bilexical approaches. 

 

Lexicalised Context-Free Grammars 

 

[Eisner & Satta, 1999] define a bilexical context-free grammar as a CFG in which every 

nonterminal is lexicalised at some terminal symbol (its lexical head), which is inherited from the 

constituent’s head child in the parse tree. Such grammars have the obvious advantages of 

encoding lexically specific preferences and controlling word selection, at the cost of a 
                                                           
17 A split HAG contains only split head automatons. A split head automaton can only accept a pair <x,y> 
by reading all of y and then reading all of x. 



 52

significant increment in size (the number of rules grows with the square of the size of the 

terminal vocabulary), which makes standard context-free grammars parsers (CKY-based 

variants, O(n5)) inefficient. The paper presents a O(n4) recognition algorithm for bilexical CFGs 

(in CNF), plus a improved version which, having the same asymptotic complexity, is often 

faster in practice. The conversion of the algorithm into one capable of recognising stochastic 

bilexical CFGs (where each lexicalised nonterminal has attached a probability distribution over 

the productions with this nonterminal as a left-hand side) can straightforwardly be performed by 

recursively reconstructing the highest probability derivation for every item at the end of the 

parse. 

[Satta, 2000] generalises the concept by defining lexicalised context-free grammars (LCFG) 

as CFGs in which every nonterminal is lexicalised at one or more terminal symbols, which are 

inherited from the nonterminals in the production right-hand side. Then, the degree of 

lexicalisation of a LCFG can be defined, so that bilexical CFGs own a degree of lexicalisation 

of 2. Their major limitation is that they cannot capture relationships involving lexical items 

outside the actual constituent (in contrast with history-based models). The main motivation 

underlying the definition of the formalism is the study of the computational properties which are 

common to the generative formalisms described in the previous subsections (such as [Alshawi, 

1996], [Eisner, 1996a], [Charniak, 1997], and [Collins, 1997]) in order to develop an efficient 

parsing algorithm which can be directly applied to these formalisms. This happens with the 

dynamic-programming bottom-up parser defined in [Eisner & Satta, 1999], O(n4) (whose 

technique can also be applied to improve parsing of LTAGs, defined below in this section) and 

the modification to deal with split grammars O(n3). They also present an enhanced version of 

the top-down parser performing O(n4).  

 

LTAGs 

 

LTAGS (Lexicalised Tree Adjoining Grammars) represent another example of lexicalised 

probabilistic parsers. They are an extension of the TAG formalism (see for instance [Joshi, 

1987]), for which a probabilistic model was devised by [Resnik, 1992], in which each 

elementary structure (initial or auxiliary tree) has a lexical item on its frontier, the anchor.  

[Schabes, 1992] describes a very similar probabilistic model, and derives an unsupervised 

version of the inside-outside algorithm to deal with stochastic TAGs. 

 The main difficulty lies in defining the initial grammar rules. [Joshi & Srinivas, 1994] use n-

grams statistics in order to find an elemental structure for each lexical item: then, richer 

structures can be attached to lexical items (the supertags), and each elementary tree would 

correspond to a supertag which combines both phrase structure information and dependency 

information in a single representation. The disambiguation performed by the supertags can be 
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regarded as a preliminary syntactic parse (almost-parsing) which filters an important number of 

elementary trees, before the conventional step of combination of trees by means of adjunction 

and substitution operations. Srinivas’ thesis ([Srinivas, 1997]) gives additional models and 

results.  

It is not our intention to get in much more detail into the extensive literature about this 

formalism. Just adding some other pointer, as the work described in [Nederhof et al., 1998], 

where an algorithm for efficiently computing prefix probabilities for a stochastic TAG is 

proposed, [Satta, 1998], where Giorgio Satta provides an excellent review on techniques for 

recognition and parsing for TAGs, or [Eisner & Satta, 2000], which describe a proposal of a 

more efficient algorithm for parsing LTAGs.  

[Xia et al., 2001] describe a methodology to extract LTAG grammars from annotated 

corpora, and [Sarkar, 2001] explores some new machine learning techniques to enable statistical 

parsers to take advantage of unlabelled data, by exploiting the representation of stochastic TAGs 

to view parsing as a classification task. Emphasis is given to the use of lexicalised elementary 

trees and the recovery of the best derivation for a given sentence rather than the best parse tree. 

Somehow related to our proposal, [Alonso et al., 2001] define a new model of automata for 

the description of bidirectional parsing strategies for TAGs. The main advantage of this new 

model is that it allows for the separation between the description of the strategy and its 

execution. 

 

Decision Tree Models 

 

David Magerman ([Magerman, 1995]) has been a pioneer in the use of decision trees for 

syntactic parsing: he considers a very wide variety of possible conditioning information and 

uses a decision-tree learning scheme to pick those that seem to give the most purchase. Three 

different decision-tree models are used for 1) the PoS tagging, 2) the node expansion, and 3) the 

node labelling. The decisions are based on lexical and contextual information of the parent and 

the child of the node. Coverage and precision of around 86% are reported. 

[Haruno et al., 1999] have developed a parser for Japanese using also decision trees. The 

most difficult part of a Japanese dependency parser is the construction of the modification 

matrix, the structure in which it is represented how a bunsetsu (Japanese segment) is likely to 

modify another. The key idea is the construction of the modification matrix by mixing a set of 

sequentially generated decision trees (in turn generated by means of the Adaboost algorithm, 

[Freund & Schapire, 1997]). The new parser achieves an accuracy of 85% (significantly 

outperforming the conventional stochastic parsers for Japanese). The authors talk about 

extending their methodology to other languages. 
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Other related systems have already been mentioned in section 2.2.3.1, when talking about 

History-based Grammars in general (and CONTEX system in particular). 

 

Probabilistic Feature Grammars 

 

In a probabilistic feature grammar ([Goodman, 1997], [Goodman, 1998]), each non-terminal is 

represented as a vector of feature-value pairs. Then, assuming binary-branching rules, the 

probability of application of a rule can be decomposed as the incremental prediction of the 

feature values of each of the two members of its right-hand side. As all conditioning variables 

are encoded through features, different factors such as lexical dependencies or distance features 

can be dealt with in a unified way. Probabilistic feature grammars put the emphasis on 

parameter estimation: having chosen the features, the parameters of the model are specified by 

choosing an order for the features being predicted and then making independence assumptions 

and choosing a back-off order for smoothing. The model is tested on the WSJ portion of the 

Penn Treebank (the formalism allows for efficient computations of the inside-outside 

probabilities for unsupervised training), where the features considered are the non-terminal 

label, the headword, the head PoS, distance features, and additional context (modifier non-

terminals generated at earlier stages of the derivation). A recall of 84.8% and a precision of 

85.3% are reported.   

 

Maximum Entropy Models 

 

Other current line of research is that of the maximum entropy models, whose use has become 

very popular lately in various areas of NLP. If [Rosenfeld, 1994] applied it to speech 

recognition tasks and [Berger et al., 1996] to automatic translation, Ratnaparkhi applies it in his 

thesis ([Ratnaparkhi, 1998]) to several tasks: segmentation, morpho-syntactic disambiguation, 

pp-attachment, and syntactic parsing. [Ratnaparkhi, 1999] describes the latter application, which 

is also an example of lexicalised parser. Maximum entropy (ME) models overcome the 

limitations of independence among the variables. Without the need of an explicit grammar, they 

can learn, from a labelled set of examples, the model which has maximum entropy out of all the 

models compatible with this set of examples. In other words, given a collection of facts, ME 

models choose a model which is consistent with all the facts, but otherwise as uniform as 

possible. 

The basic element of any ME model are the features, binary-valued functions with two 

parameters, a context x and an output y, which determine statistics one feel are important to 

model the process. A constraint is an equation between the expected value of a feature function 



 55

f in the model, p(f), and its expected value in the training data, )(~ fp . That is, following the 

nomenclature in [Berger et al., 1996]:  

 

(9)   )(~)( fpfp =  

 

Given n features fi, the idea is that the resulting model p satisfies the corresponding constraints, 

i.e., it belongs to the subset C of P (P being the space of all probability distributions), defined 

as: 

 

(10)   C ≡ { p ∈  P | )(~)( ii fpfp =  for i ∈  {1, 2, …, n}}   

 

As mentioned above, the maximum entropy approach determines that, among the models p ∈  C, 

the most uniform distribution must be selected. And the most uniform distribution will be the 

one maximising the conditional entropy, the latter defined as: 

 

(11)   )|(log)|()(~)(
,
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Therefore, the model with maximum entropy H(p) (which can be shown to be always unique) 

should be selected as follows: 

 

(12)  )(argmax * pHp
Cp∈

=   

 

However, in general, whenever we can have any number of constraints, a parametric form must 

be defined. Without getting into detailed explanations, a parameter λi must be introduced for 

each feature fi (the more relevant the feature to the value of the probability, the higher the 

absolute value of the associated λ), so that the maximum entropy model subject to the 

constraints C has now the parametric form: 
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Where Zλ(x) is a normalising function, and the parameter values λ* can be determined by 

maximising the so called dual function Ψ(λ). Ψ(λ) is computed in turn by means of the theory 

of Lagrange multipliers, and depends on p and λ. Therefore, in practice, any algorithm for 
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finding the maximum λ* of  Ψ(λ) can be used to find the maximum p∗  of H(p) for p ∈  C (see 

formula 12 above). Once again, to keep it short we do not get into further details, which can be 

found for instance in [Berger et al., 1996]). 

In the application of ME models to parsing described in [Ratnaparkhi, 1999], the 

performance of the parser is modelled by means of elementary actions of the shift and reduce 

type (usual in LR parsers). Therefore, each of the 4 procedures defined for the parsing process 

has associated a set of possible actions, so that, given the sequence of actions up to a certain 

moment, the procedure must predict the following most probable action. The system is based on 

the model PX (a | b), X being one of the 4 possible procedures of analysis, a being a valid 

elementary action for this procedure, and b being the context or history.  

As to the features, their two parameters (x, y) are a context and an action. The features are 

built from the so called contextual predicates (cp), which examine the context in order to verify 

the presence or absence of certain information. The general scheme of the features is: 
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Ratnaparkhi trains his system from a set of templates that attach to each of the parsing 

procedures. These templates incorporate the type of factors the author considers relevant for the 

analysis: constituent headwords, headword combinations, generalisations (morpho-syntactic 

categories, constituent syntactic categories), and limited forms of look-ahead. The learning 

process is very simple, just counting, so that the features that appear less than 5 times in the 

corpus are rejected. Using 40,000 sentences from the PTB corpus, 1,060,000 features are 

incorporated to the model (most of them lexicalised), each one attached to one of the 

procedures. The system obtains notable results in terms of both coverage (85.3%) and precision 

(87.5%). The possibilities of manually examining the induced features and the incorporation of 

other criteria remain to be explored. 

[Charniak, 2000] presents a parser based upon a probabilistic generative model, an extension 

of the ones described above ([Charniak, 1997] and [Collins, 1997], see the dependency-based 

models subsection). The probabilistic model is maximum-entropy-inspired, since it reformulates 

the basic maximum entropy probability function so as to consider the conditioning information 

of Markov grammar statistics18 as “features”, though it is ultimately smoothed by means of 

deleted interpolation (instead of the standard feature selection of pure ME models). Charniak 

                                                           
18 In a pure mth-order Markov SCFG, given the left-hand side label l of a rule, the right-hand side can be 
probabilistically generated conditioning on l and on the m previously generated pieces of the right-hand 
side. Charniak’s model is not pure in that the probability is also conditioned on other information outside 
the current constituent (basically the label, head, and head-PoS for the parent of the constituent). 
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uses his bottom-up best-first chart parser (already described in [Charniak, 1997]) to generate the 

candidate parses, and his top-down generative model to evaluate them (in a process which, for 

each constituent, first guesses its preterminal, then its lexical head, and then its expansion into 

further constituents). The experiments are performed on the WSJ portion of the Penn Treebank, 

using a third-order Markov grammar (instead of the tree-bank grammar from [Charniak, 1997]), 

obtaining labelled recall and precision of respectively 89.6% and 89.5% (for sentences with 100 

words or less).  

Closely related to ME models are also the Gibbs distributions discussed by [Abney, 1997] 

(see the end of section 2.2.3.1) and [Chi, 1999]. 

 

Structured (and other Grammar-Based) Language Models 

 

[Chelba & Jelinek, 1998] propose an alternative to introduce linguistic knowledge into language 

models. The language model in question is based upon parsing: the Structured Language Model 

(SLM). The key idea is that the history (see section 2.2.3 above) will not reduce to the sequence 

of words already recognised, but it will include also syntactic structure, which allows to model 

long-distance dependencies. The syntactic structures used by the SLM are basically lexicalised 

binary trees, in which the tree nodes are labelled with the words which act as heads (the 

headwords) of each constituent. The operation of SLM is based on the execution of prediction 

actions and building actions, so that the linguistic structure is incorporated by means of two 

stochastic models attached to such prediction and building actions (that is, predictions are based 

upon the parser state). These models use as a context the preceding two exposed headwords 

(topmost headword in the largest constituent that contains the word being predicted). They 

evaluate the predictive power of the model on the Penn Treebank corpus, achieving a reduction 

of 5% in test-data perplexity with respect to the standard trigram language model19. This 

reduction gets to 11% by linearly interpolating the model with the trigram model. 

[Roark, 2001] proposes a broad-coverage lexicalised probabilistic top-down parser which is 

also applied to language modeling for speech recognition. The idea is quite simple: the top-

down parser is able to build a set of rooted candidate parse trees from left to right over the 

string; therefore, a generative probability can be computed for each prefix string from the 

probabilistic grammar, and hence a conditional probability for each word given the previous 

words and the grammar (basically conditioning on parents and siblings of the rules’ left-hand 

sides). The resulting grammar-based language model, as the SLM, also computes the probability 

of the next word conditioning on the two prior heads of the constituents, but as opposed to it, 

incrementally and generatively from the probabilistic grammar. The experiments on the same 
                                                           
19 In which the probability of a string is broken down into conditional probabilities for each word given 
the two previous words. 
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corpus produce a perplexity reduction of almost 4%, which reduces to almost 8% if we compare 

both interpolations with the trigram model. 

Also a grammatical language model, although with a different philosophy, is the work 

described in [Charniak, 2001]. The idea is to try and apply the performance of the immediate-

head parsers (parsers that condition all events below a constituent upon the lexical head of such 

constituent, such as the ones described in previous sections: [Collins, 1999], [Charniak, 2000], 

[Ratnaparkhi, 1999] or [Magerman, 1995]) to create grammar-based language models. The 

parser underlying the model is the one described in [Charniak, 2000], with the pertinent 

modifications so that it can be assured that the model returns true probabilities. Evaluating the 

system on the same Penn Treebank corpus, the so-called immediate bihead language model 

(meaning that probabilities involve at most two lexical heads) reduces the perplexity of both 

Roark’s system and the SLM. An extension (the immediate trihead model), which redefines the 

concept of head for constituents of base noun-phrases (considering also the grandparent head in 

certain cases), obtains a subsequent perplexity reduction of 10% with respect to the bihead 

model, 14% with respect to Roark’s system, and of 17.7% with respect to the SLM20. 

 

2.2.5   Parser Combination and Reranking 

 

[Henderson & Brill, 1999] describe a methodology for combining three input parsers in order to 

improve parsing results. The three parsers combined are the systems described in [Collins, 

1997], [Charniak, 1997], and [Ratnaparkhi, 1997] (the three of them already reviewed in section 

2.2.4). The two techniques used for combining parsers are parser hybridation and parser 

switching. The first one is based on combining the substructures of the three input parsers in 

order to produce a better parse; two hybridation strategies are used, namely constituent voting 

(non-parametric, the parsers vote on the membership of a certain constituent to the final parse) 

and naïve Bayes classifiers. The second technique, parser switching, chooses among entire 

candidate parsers; again, two strategies are tested, a non-parametric version (similarity 

switching, choosing the parse which is most similar –as to constituents- to the rest of the parses) 

and a parametric version (naïve Bayes again). Experiments on the WSJ portion of the Peen 

Treebank show that all the combining techniques accomplish better accuracy than any of the 

single three parsers, and that the method is robust, as the addition of a poor parser (a non-

lexicalised SCFG parser) hardly affects the results. 

[Collins, 2000] proposes two machine-learning methodologies for reranking the output of a 

given probabilistic parser (in this paper his own parser, [Collins, 1999], already described in 

section 2.2.4). The idea is that in a first step the base parser returns a set of candidate parses 
                                                           
20 In all these comparisons, we are considering the pure models and not their interpolation with the 
trigram model, which improve all perplexity figures. 



 59

(initially ranked according to the probabilities the parser has attached to them), and then a 

second step tries to improve this ranking, considering additional features of the trees, which 

may be easy to consider to compare parse trees, but not so much to introduce into the derivation 

process. Both approaches are discriminative, since they aim to optimise a criterion which is 

directly related to error rate. The first reranking technique in based on a generalisation of 

SCFGs, Markov Random Fields (already used in an approach described in section 2.2.3.1, 

[Abney, 1997]), while the second one is based on using boosting ([Schapire & Singer, 1999]) 

ranking techniques (here the ranking is a simple binary distinction between the highest scoring 

parse and the other ones). The methodology was evaluated on the Penn WSJ Treebank, 

including features ranging from rules or bigrams (pairs of nonterminals to the left and right of 

the rule’s head), to features involving the distance between headwords. The first approach was 

too inefficient to run on the full data set, so only the boosting approach could be compared. This 

latter model achieves a 1.5% increase in labelled recall and precision over the base parser, and 

very similar accuracy to [Charniak, 2000]’s parser, which somehow is also based on adding new 

features to a previous parser ([Charniak, 1997]). 

[Collins, 2001] gets more deeply into the differences between parametric maximum-

likelihood estimation methods (explicitly modelling the distributions) and distribution-free 

methods (models assuming that the training and test examples are generated from the same 

distribution, though it is unknown, so the results hold across all distributions). Two methods are 

proposed, the first one, as in  [Collins, 2000], is an application of the Adaboost algorithm to 

rerank the output of an existing parser, while the second one uses the Perceptron or Support 

Vector Machines (SVM) algorithms (it goes beyond the purpose of this section to get further 

into the descriptions of these algorithms). This second method is based on the representation of 

parse trees through tree kernels (a mechanism allowing to convert them into efficiently treatable 

high dimensional feature spaces). It is described in more detail in [Collins & Duffy, 2001], as 

well as applied (concretely the voted perceptron algorithm) on the ATIS portion of the Penn 

Treebank, for reranking the results of an SCFG. [Collins & Duffy, 2002] extend the results to 

the WSJ portion of the Penn Treebank, starting from the parses produced by model 2 of 

[Collins, 1999]. The tree kernel allows the representation of all subtrees in the training data (the 

same representation used by DOP), so that the perceptron algorithm uses both the result from 

the base model as well as the subtrees information to rank the trees. The method accomplishes 

improvements of 0.5% and 0.6% respectively in labelled precision and recall with respect to the 

base model. 

[Carreras et al., 2002] present an approach to partial parsing (though potentially applicable to 

full parsing) which bases on 1) using local classifiers to recognise partial parsing patterns, and 

2) using global inference methods to combine the results of these classifiers in a way that 

provides a coherent inference that satisfies some global constraints. Although this ensembles of 
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classifiers technique had already been explored (see for instance [Punyakanok & Roth, 2000], 

that tests non-overlapping constraints), this work applies it to a deeper and more difficult level 

of partial parsing, embedded clause identification. This way, the best decomposition of a 

sentence into clauses is selected by means of a dynamic programming scheme which considers 

previously identified partial solutions, and applies learning at several levels (for detecting 

beginnings and ends of potential clauses and for scoring partial solutions, including three 

different scoring functions). Adaboost algorithm with confidence rated predictions (see 

[Schapire & Singer, 1999]) is used as learning method. The approach is evaluated using the 

CoNLL-2001 competition ([Tjong Kim Sang & Déjean, 2001]) corpus, outperforming the best 

system presented in the mentioned competition (in fact, also proposed by two of the authors, 

[Carreras & Márquez, 2001]). 

 

2.2.6   Robust Parsers 

 

The 90’s have seen a significant increase in the research on robust parsing: an indicator of this 

interest is that the last two editions of the CoNLL shared task (CoNLL-2000 [Tjong Kim Sang 

& Buchholz, 2000] and CoNLL-2001 [Tjong Kim Sang & Déjean, 2001]) have been devoted to 

robust parsing tasks (respectively chunking and clause identification). Robust parsing can be 

widely considered as parsing applied to non-restricted texts. Therefore, the application of 

syntactic parsing techniques to a non-restricted corpus, the use of ML techniques for creating or 

refining grammars, or the simplification of grammars in order to increase efficiency (by means 

of the application of finite state techniques) fall into this research field.  

The levels of precision and coverage achieved by wide-coverage syntactic parsers (be them 

probabilistic or not), are far from being enough for most NLP applications. Faced with the 

difficulty to get global but precise enough parses, two main strategies have been adopted: 1) 

obtaining global but shallow parses, and 2) obtaining precise but local parses. By robust parsing 

one usually denotes the family of techniques employed to achieve both types of analysis.  

The first line, shallow parsers, are usually extensions of grammatical taggers, in which the 

text is enriched not only with the grammatical category corresponding to each word, but also 

with a syntactic tag indicating the shallow syntactic function (subject, pre-modifier, auxiliary, 

main verb, etc.). On the other hand, partial parsers have a different goal, obtaining partial 

information, though as complete as possible, about the syntactic relationships corresponding to 

fragments of the text. Partial parsing includes three types of approaches: fragmental parsers, 

cooccurrence analysers, and phrasal parsers.  

Fragmental parsers use a complete grammar, but base their robustness on capacities such as 

proposing partial analyses whenever a complete analysis is not achieved, omitting certain links 

whenever not enough evidence to built them is found, etc. As to cooccurrence analysers, their 
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goal is the extraction of tuples of words that syntactically cooccur, the difference among the 

variety of systems lying in the quantity of syntactic information they use to attain this goal. 

Phrasal parsers (spotters and chunkers) aim at recognising phrases (noun phrases, prepositional 

phrases, verbal phrases, etc.) from simple but very specialised and efficient processors (finite 

state machines, simple context-free parsers, heuristic rules, and more recently, using ML 

techniques).  

Recently there has been increasing interest in facilitating the parsing process in full parsing 

(guided by broad-coverage Context-Free Grammars) in order to improve performance. Besides 

the research line (already described in section 2.2.1.1) which consists in guiding the process by 

certain type of heuristics, usually informed by stochastic models (normally SCFGs or 

extensions), mainly two directions have been followed: 1) deriving a regular approximation of 

the initial grammar [Nederhof, 2000] and generating a language that could be either a subset or 

a superset of the language generated by the original grammar (as close as possible to such 

language), and 2) splitting the parsing process into a sequence of simpler steps, each one 

governed by a simple, usually regular, grammar ([Ciravegna & Lavelli, 1999], [Abney,  1996]).  

Both directions present advantages and limitations. In the first case, only an approximation of 

the original language is obtained. This may be enough for some applications but insufficient for 

others, depending on the distance between the language generated by the original grammar and 

the approximation. In the second case, the grammar must be structured as a cascade of simpler 

grammars, which prevents us from using a general-purpose pre-existing grammar.  

In this review, it is not our intention to examine thoroughly each type of approach, but 

simply to focus on recent approaches to chunking, which has been used as a complement to our 

methodology (as a technique to select initial islands, see chapter 4, which also includes the basic 

definitions involved). More information about robust parsing in general can be found in [Abney, 

1994] an excellent tutorial, though obviously a little obsolete, as quite a number of new 

methodologies (specially ML-based) have been applied lately. A more updated tutorial is 

[Vergne, 2000]. As to research in chunking, we will limit to briefly mention some recent 

interesting systems next. We will indifferently mention methodologies following the two main 

lines, that is, linguistic approaches (those using grammatical rules manually defined by means 

of a certain formalism), and ML-based approaches (as mentioned, most of the latest research).  

The term chunk was firstly proposed by [Abney, 1991], who used Hidden Markov Models to 

solve the task. [Skut & Brants, 1998a] have also applied HMM in order to recognise structures 

more complex than chunks (not only the borders but also the internal structure), focusing on 

noun phrases. In fact, NP chunks have received far more attention than the other types of 

chunks. However, other classes (verbal phrases, prepositional phrases, adjectival phrases, and 

adverbial phrases) can also be considered. An example is the chunker included in the partial 

parser Cass ([Abney, 1996]). Abney has applied finite state transducers (rules of the chunk 



 62

grammar correspond to regular expressions and therefore can be transformed into automata) to 

recognise chunks belonging to all these types. In our proposal, we have used only base-NPs in a 

first step, and then extended to all the above mentioned types in a subsequent step. As presented 

in section 5.9 below, experimental results indicate that, for our purposes, the only-base-NPs 

approach achieves more efficient and accurate results.  

[Vergne, 2000] describes system GREYC, an example of chunker based on symbolic rules 

that establish conditions and produce actions on the current unit and its context. The system 

uses a dictionary of functional words which are used as initial words of a chunk, so that a set of 

patterns can be activated for each functional word indicating the kind of chunk and the 

compulsory and optional elements that compose it. 

Practically all ML techniques have been applied to the task. Apart from the HMM one 

mentioned above, [Ramshaw & Marcus, 1995] have been pioneers in using these techniques, 

applying transformation-based learning (see section 2.2.3.3 above), though working only with 

noun-phrase chunking. This is the first system in which chunking is approached as a labelling 

technique: transformation rules are applied to an initial labelling. Its main disadvantage is the 

high computational cost of the learning process, in order to determine the best rule application 

order. 

In his thesis, Lluís Padró ([Padró, 1997]) proposes a hybrid combination of symbolic rules 

and probabilistic models using an optimisation technique, relaxation labelling: given a set of 

tags, variables, and constraints, it obtains the combination of labels attached to each variable 

which maximises the global consistency value. [Voutilainen & Padró, 1997] apply this 

methodology by combining an n-gram model with a set of contextual syntactic constraints in 

order to detect noun phrases. The used constraints are bigrams, trigrams and manually defined 

linguistic contraints. 

Ratnaparkhi describes, also in his thesis ([Ratnaparkhi, 1998]), the application of the 

maximum entropy models (see section 2.2.4) to chunking. [Skut & Brants, 1998b] also take 

profit of maximum entropy estimation techniques in order to combine different parameters or 

knowledge sources to estimate the contextual model. 

[Cardie & Pierce, 1998] identify basic noun phrases (NPs) by means of grammatical rules 

extracted from a corpus annotated with these phrases. First, an initial NP grammar is obtained 

from the training corpus, and secondly, chunks are detected by matching lexical tags with 

grammar rules; whenever more than a rule can be applied, the one covering a higher number of 

lexical tags (the longest matching) is selected. Grammar rules whose precision falls below a 

certain threshold are removed in order to improve performance. The basic operation of this 

system has inspired the implementation of our simple chunking methodology (see chapter 4), 

though our chunk grammar is directly extracted from the complete grammar. 



 63

[Veenstra, 1999] applies instance-based learning to the detection of noun, verbal and 

prepositional phrases. As mentioned in section 2.2.3.3, a classifier is built by storing a set of 

examples (represented by means of feature arrays). The TiMBL environment described in 

section 2.2.3.3 is employed. [Buchholz et al., 1999] present complete results for all the types of 

chunks described above. 

[Osborne, 1999] implements an inductive method, based on the minimum description length 

(MDL) principle, in order to increase the coverage of a stochastic DCG. It can also be 

considered a hybrid approach, since it starts from a manually defined set of initial rules. It aims 

at a more complex task, detecting recursive noun phrases. 

[Pla, 2000] proposes a methodology which combines morpho-syntactic disambiguation and 

chunking, based on different language models obtained from corpora labelled with linguistic 

information. In particular, grammatical language models are obtained by means of a ML 

algorithm, Error Correcting Grammatical Inference. These models are then extended by means 

of smoothing techniques in order to guarantee a complete language coverage. All the inferred 

models are represented by means of a homogeneous formalism, finite state machines. 

Specially interesting are the results obtained by applying combination of chunkers. It is 

worth underlining that, in the chunking CoNLL-2000 competition, the three systems achieving 

the best overall results used techniques based on combination of methods (see related parsing 

methodologies in section 2.2.5). Thus, [Kudoh & Matsumoto, 2001], which obtained the first 

rank in CoNLL-2000, have approached the problem by means of Support Vector Machines, 

obtaining excellent results, as well as [Zhang et al., 2001] using Regularised Winnow. 

[Halteren, 2000] obtained the second rank in the CoNLL-2000 competition with a methodology 

based on Weighted Probability Distribution Voting. [Tjong Kim Sang, 2000] attained the third 

rank by means of a voting system in which the set of chunkers involved have learned the chunk 

model from different representations; supervised learning is used, as well as a (once more) case-

based classifier (in fact the system uses also TiMBL software). 

As we do, other systems take advantage of the fact that partial parsers that produce chunked 

structures for raw text are so widespread, in order to develop systems which process these 

structures as an input for a deeper syntactic analysis (e.g., [Aït-Mokhtar et al., 2001] use them 

among other types of inputs in order to robustly produce deep dependency relations, at sentence 

and inter-sentential level). 
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Chapter 3 
 
Overview of the System 
 
 
After the review of chapter 2, we will focus on the complete description of our system. We will 

start by giving an overview of the whole methodology in section 3.1, and continue to describe 

the general parsing algorithm in section 3.2 (including both the algorithm and the data structures 

used). The algorithm admits several variations: they are described in section 3.3. Section 3.4 

comments on the problem of selection of the original islands and lists some alternatives. As 

mentioned, our algorithm is guided by probabilities, which are obtained by means of an 

stochastic model. Section 3.5 presents the two stochastic models which have been developed in 

order to compute these probabilities, which can function either individually or in combination. 

The last part of section 3.5 describes the steps followed by the algorithm (using both stochastic 

models) in a simple parsing example, in order to clarify the methodology and the way in which 

the algorithm works in combination with both stochastic models. 

 

3.1   Description of the Overall Methodology 

 

Island-driven parsing was firstly developed (named simply ‘island parsing’) as a technique for 

parsing with Augmented Transition Networks (ATNs), in the framework of the HWIM speech 

understanding project ([Woods et al., 1976]). Later, [Carroll, 1983] extended this parser in order 

to enable it to interpret any grammar which conformed to Wood’s original full ATN 

specification ([Woods, 1970]). This latter work also presented some interesting suggestions for 

future research in island-driven parsing.  

Recent work in island-driven parsing (including ours), applies to the charts formalism. In 

island-driven parsing, the conventional left-to-right approach of chart parsing is enhanced with 

two features: the bidirectionality (parsing can take place either left to right or right to left) and 

the islands themselves (dynamically determined positions of the sentence from which the 
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process starts, proceeding in both directions). Island-driven flexibility permits the use of optimal 

heuristics that cannot be applied to unidirectional strategies. These heuristics are based on two 

stochastic models, which allow to select the most probable island, to be extended to the most 

probable side. These models, local and neighbouring, will be described in section 3.5. Let us 

simply advance that the local model is simpler whereas the neighbouring model is quite more 

complex and informed. 

 

Figure 1. General architecture of the system 
 

Figure 1 depicts the general methodology: starting from a CFG, a training process is performed 

in order to learn both the probabilities attached to the context-free grammar rules and the 

parameters of the stochastic models. This knowledge source will be the input to the island-

driven parsing process, along with the text to be parsed, in which a previous step of selection of 

the initial islands has been carried out. Section 3.4 describes several alternatives for this 

selection. As long as we have an input context-free grammar along with a parsed training corpus 

in order to learn the stochastic parameters, our method is completely independent of the 

knowledge source and the language, in contrast with approaches as [Collins, 1997]. 

 

3.2   Description of our Bidirectional Chart Parsing Algorithm + Data Structures 

 

In our chart implementation, initially selected islands will be created as inactive edges, so that 

all the subsequent inactive edges arisen from these original islands will also be considered 

islands. We define a gap as each fragment of the input sentence spanning between adjacent 

islands. The goal of the algorithm will be to extend the islands in order to cover all the 



 67

remaining gaps with islands (or inactive edges): parsing proceeds by growing islands of 

certainty into larger and larger phrases (hence getting smaller and smaller gaps). 

The parsing algorithm works by following an agenda-based approach. However, instead of 

adopting an “exhaustive” approach (in which one would remove items from the agenda in a 

simple way such as the common last-in/first-out, until the agenda is empty), a best-first strategy 

is adopted, that is, the items are removed from the agenda according to a sort of figure of merit 

(FOMs, see section 2.2.1.1). When a parse (or eventually several parses) have been completed, 

one simply stops parsing, possibly leaving items on the agenda (and therefore saving the time to 

process these remaining items). The idea is that the FOM selects those items which are more 

likely to belong to the correct parse, this likelihood being computed by one of the two stochastic 

models presented in section 3.5. A priority queue, implemented as a heap, is used to deal with 

the idea of choosing the most probable island, according to the stochastic model, to be extended 

to the most probable side. In fact, the heap's sorting criterion will always be a real number 

representing a probability attached in a way or another to each chart edge. It is important to 

remark that both the inactive and the active edges are introduced into the agenda (as opposed to 

the traditional strategy, which only adds incomplete constituents). 

In island-driven parsing one must deal with cases in which no island at all has been selected 

within the portion of the input where a constituent is required by the surrounding analyses. 

Hence the parser must employ top-down prediction to be sure that no constituent is lost. 

Obviously, this prediction may take place either at the constituent's left or right boundary. 

Therefore, we will talk about prediction to the left or to the right. 

 

……. 
<[PRN → -LRB- PP .-RRB-., 6, 7], left, 0.447> 

<[ -LRB-, 2, 3], right, 0.444> 
<[ -RRB-, 6, 7], right, 0.002> 

………. 
Figure 2. An example of heap contents 

 

Two different instances of heap (though with identical type of contents) are currently used by 

the algorithm: the extension heap and the prediction heap. An element of any of both heaps 

consists of a bidirectional chart edge (either active or inactive at the extension heap, always 

active at the prediction one), a direction attribute indicating whether the edge must be 

extended/used for prediction to the left or to the right, and a probability attribute stating the 

probability of extension/fruitful prediction of the edge in question to the indicated direction. 

Null probabilities are not considered at all, that is, whenever an extension/prediction probability 

is zero, the attached edge is not introduced in the heap and is not considered anymore.  

An example of heap containing several inactive and active edges is depicted in figure 2. It 

corresponds to the first steps of the example in section 3.5.3 (local stochastic model version). 
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Taking into account that we are using the conventional double-dotted rule notation for the edges 

of the chart (see section 2.1), we can notice that the first element, with the highest probability, 

indicates the extension to the left of an active edge spanning from position 6 to 7 of the 

sentence, by means of rule PRN → -LRB- PP -RRB-, so that in our bidirectional algorithm, the 

covered part of the right-hand side of the rule up to the moment is category -RRB-. The other 

two elements of the heap correspond to islands (or inactive edges): the island labelled -LRB-, to 

be extended to the right, and the island labelled -RRB- to be extended to the right. In fact, the 

first active edge arises from the extension to the left of island -RRB-. 

The algorithm performs a combination of bottom-up expansion and top-down prediction, 

guided by the stochastic parameters. It consists of a loop composed by two stages: 

 

1. A purely bottom-up phase which operates with the extension heap as an agenda. It 

extends the bidirectional chart edges contained in the heap and in turn might add new 

elements to it, always according to the attached probability. At the very first step of this 

phase, only those inactive edges representing islands are taken into account. The order in 

which the extension  (if any) of the existing islands to the possible sides will be carried 

out is therefore determined by the computed probabilities (though once the process 

started up, new elements with higher probabilities may be added that would delay the 

extension of certain islands). 

2. Whenever the first phase does not lead to a complete analysis, a top-down prediction 

phase is started. It uses a prediction heap which will be updated at the beginning of every 

step of this type, only with those active edges adjacent to a gap (and not used in a 

previous prediction phase yet), always according to a computed probability for each 

edge and direction. Therefore, a coverage structure must be maintained, storing which 

elements of the sentence form part of an island. This second phase lasts until coverage is 

incremented (i.e. one of the islands grows in one direction), which is when we will go 

back to the first stage, presumably with a non empty extension heap. The key idea is to 

limit prediction as much as possible, going back to the extension phase as soon as an 

increment of coverage is detected. This is because the prediction process, being top-

down, implies an uncontrolled growth of the prediction heap (and consequently of the 

chart) with a lot of useless active edges.  

 

It is important to emphasise that the algorithm is modularly structured, using the Object 

Oriented methodology and its features, such as inheritance and polymorphism. Hence, both the 

strategy and the type of stochastic parameters can be easily customised in order to allow for the 

heuristic experimentation on which this thesis is based.  
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In particular, the basic strategy that has just been described above is the one that postpones 

top-down prediction as much as possible in favour of the bottom-up extension. This is a 

decision that has been taken heuristically, once confirmed that top-down prediction, 

unavoidable in our island-driven methodology, introduces high edge overhead. However, just 

by changing a parameter, the strategy might be adapted so as to: 

 

1. Use just the bottom-up extension (though in the island-driven case this would imply 

that depending on the initial islands selected, a parse might not be found for a 

grammatical sentence).  

2. Use just the top-down prediction (though this would imply a much higher number 

of edges). 

3. Implement a head-driven strategy, whenever the grammar is appropriately marked: 

islands are not selected, and a bidirectional bottom-up extension is performed. 

4. Change the way in which the extension/prediction steps are combined, either 

starting from the latter, or introducing other criteria to change from one step to the 

other. 

 

The other possibility of parameterisation is the use of the stochastic parameters which guide the 

analysis process. As it will be described in section 3.5, we have devised two different stochastic 

models. The system allows for: 

 

A. The selection of a single model to guide the whole parsing process. 

B. The selection of no model at all, in order to implement the unidirectional strategies 

which are not guided by probabilities. 

C. The selection of an initial model which, depending on certain criteria, might change 

to another one or even to giving up using a model at all. This variation is more 

thoroughly described in the next section. 

 

In fact, the combination of alternatives 1 and B above gives rise to the version used to 

implement the bottom-up version of the charts algorithm which will be used as one of our 

baselines for evaluating our methodology (see chapter 5). Likewise, the simple top-down 

strategy, that is, the combination of alternatives 2 and B, is used as an additional baseline for 

comparison. Head-driven strategy (alternative 3) was discarded in the evaluation, since we had 

not available grammars whose rules were suitably marked with the heads. 

As an additional parallelism, it is worth noting that recent work by [Klein & Manning, 

2001a] uses also an agenda-based chart parser for SCFGs, but extends the best-first approach by 

viewing parsing as best-path finding in a certain hypergraph (in which edges are nodes and 
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paths map to parses). Then, shortest paths (computed in this work by means of a dynamic 

extension of Dijkstra’s algorithm) correspond to Viterbi parses, as long as the current best 

known Viterbi score of and edge is used as the edge’s priority for insertion in the agenda. We do 

not get into details about neither the computation of this score nor the concrete algorithm, but 

simply point out that, as we do, their algorithm also need two agendas (the finishing and the 

exploration agenda) in order to respectively maintain edges and traversals (pairs active-inactive 

edge to be combined), and that, as in our case, it can also work with a variety of control 

strategies. 

 

3.3   Possible Variations of the Basic Algorithm: Hybrids 

 
Several forms of controlling the basic iteration described in section 3.2 have been tested. 

Obviously the most straightforward way is to guide the insertion/extraction from the heap 

always according to the same stochastic model (alternative A in section 3.2 above), though 

other hybrid alternatives might be considered, such as combining both models (the sounder idea 

would be starting with the more informed model and under certain circumstances back-off to the 

simpler model) or even combining any of the (or both) models with a blind purely bottom-up 

left-to-right strategy.  

So far, we have tested strategies which start working with one of the stochastic models and, 

at a certain moment, back-off to either the other model or the purely bottom-up strategy, ending 

the analysis process with no more changes of strategy. The decision of the combinations to be 

tested is not gratuitous, but founded by the following two facts: 

 

1. Back-off is necessary in some cases in order to guarantee complete coverage, that is, that 

grammatical sentences are always completely analysed. In particular, in order to reach a 

complete coverage of the corpus for the neighbouring model, a back-off to other method 

must be performed whenever the parsing process ends unsuccessfully. Section 3.5.2, 

where the neighbouring model is completely described, includes the justification why 

backing off to either local model or any of the non-stochastic methods (bottom-up or 

top-down) is indispensable for assuring full coverage when using the neighbouring 

model. 

2. Back-off is suitable in some cases in order to avoid degradation in performance. 

Contrary to the previous point, in these cases the back-off may not be carried out when 

the initial method has been exhausted, but at a certain previous point. The specific point 

is what defines the different hybrid strategies. 

 



 71

The unavoidable back-off described in point 1 above has shown to be much more efficient to the 

local model than to the pure bottom-up. Using this strategy, however, neighbouring’s 

performance does not improve local’s. Hence, we have tested other heuristic strategies that 

perform the back-off, again to local model, before (point 2 above). The following four hybrid 

methodologies have been devised:  

 

1. Back-off from neighbouring to local whenever a certain number of extension-prediction 

loops have been performed.  

2. Back-off from neighbouring to local when a percentage of the sentence has been covered 

by the islands that are being extended.  

3. The number of parameters of the neighbouring model is larger than local's (as will be 

seen in section 3.5). This implies that the neighbouring statistical parameters learnt by 

our training process might not be correct, due to the sparseness of the input data. A more 

accurate analysis of the number of occurrences in the training corpus of the rules that are 

used to calculate the probability distribution of the lengths of each rule reveals that in a 

lot of cases the number of occurrences is insufficient. A significant number of 

distributions are learnt by means of just one or two occurrences. We can definitely 

conclude that the neighbouring model needs a more relevant training set. Therefore we 

have tested another hybrid method in which we will consider that, from the moment 

decisions in the neighbouring approach are being made by means of such examples, the 

use of this model does not make sense anymore, and a back-off to local model is 

necessary. We accomplish this goal by applying thresholds to the extension and 

prediction probabilities. The type of the thresholds in question is completely heuristic, so 

they will be defined in detail in the chapter devoted to evaluation. 

4. As a consequence and justification of the previous point, we have also tested another 

type of smoothing, this time directly focusing on the frequencies of the occurrences in 

the training corpus. Several levels of smoothing are applied to these frequencies, from 

which the statistical parameters are therefore computed.  

 

3.4   Initial Island Selection: Alternatives 

 

As mentioned, island-driven parsing starts by concentrating on those islands which, a priori, 

seem to be most likely part of the preferred analysis. Island-driven parsing is an approach 

specific to natural language processing, which arose in order to deal specially with cases where 

certain parts of the input might be corrupted, rendering the analysis left-to-right impossible. 

However, its interesting features can also be useful in cases where certain parts of the input are 
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considered to provide more useful information to drive the parsing process. Several sound 

strategies can be proposed in order to select the initial islands in each sentence, including the 

following ones: 

 

1. Unambiguous words, if we are dealing with a corpus which is morphologically analysed 

but non PoS-tagged. 

2. Base NPs, or other types of chunks, if we have available some sort of shallow parser. 

3. Proper Nouns. 

4. Punctuation signs.  

5. Specific patterns, when dealing with highly structured texts such as the case of parsing 

dictionary definitions. 

6. Accurately detected segments of an input, if we are dealing with a speech recogniser. 

This approach, starting from words which have been hypothesised with high acoustic 

evidence by an acoustic processor, has been proposed by [Corazza et al., 1991a]. 

7. Apart from the previous strictly syntactic criteria, other semantic criteria might be 

considered. It seems intuitive that islands being those items presenting certain significant 

semantic features could be definite in order to prune and guide the analysis process. 

However, this option is the less defined. 

 

Independently of the concrete strategy used, once the initial islands selected, other factors might 

be studied, such as the number of islands or their layout.  

In particular, we have tested strategies 1 and 2 (see chapters 4 and 5). Being one of the 

parameters of our system, it is straightforward that another source of improvement could be the 

method of selection of the islands. Several refinements of the first strategy have been devised, 

consisting basically in applying a less restrictive criterion which, instead of regarding as islands 

only those words with lexical ambiguity zero, might consider a combination of criteria based on 

both: 

 

1. A low degree of ambiguity as to the lexical categories of the word.  

2. A low degree of ambiguity as to the categories according to the grammar, that is, as to 

the occurrence of the given symbol in the right-hand side of the productions of the 

grammar.  

 

However, the preliminary part of these experiments (introducing the terminal category as a 

criterion for selection of the islands), completely developed, achieved no relevant results. At 

least for our corpus and test set, no particular category (or set of categories) seems to generally 

behave as a good initial island. These experiments were initiated with the toy grammars (see 
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section 5.1), and are extensively described for the real-sized grammar and corpora in section 

5.10. That no significant results where obtained led us to not continuing to explore in this line. 

 

3.5   Stochastic Models 

 

Given a Stochastic Context-Free Grammar (SCFG), what we try to model is the likelihood of 

extending (either to the right or to the left) an (either inactive or active) edge, or partial analysis, 

growing islands of "certainty". Our models provide sort of Figures of Merit (FOMs) as 

[Charniak et al., 1998] or [Blaheta & Charniak, 1999], in order to deliver a single best-first 

analysis, but basing on the concept of islands and applying these FOMs to their extension. 

[Klein & Manning, 2002] extend the alternative to best-first search already commented at the 

end of section 3.2 ([Klein & Manning, 2001a]), with a generalisation of A* search, in which the 

scores are a combination of a known best inside score of an edge (the distance from the start 

point to it) and a conservative estimate of the outside score (the distance remaining to the 

goal)21. For the latter score, several alternatives are proposed. All of them are based on 

summarising, in different (richer and richer) ways, the outside context of the edge being 

evaluated, and finding the score of the best parse of any context which fits that summary. There 

is a rough correspondence between the combination of their SXL and SXR estimates (which 

include in the summary respectively the tag adjacent to the left and to the right) and our local 

approach (see section 3.5.1). This technique guarantees that the first parse obtained is the most 

likely (Viterbi) parse, something that neither our method nor the rest of the best-first approaches 

cited above can assure. 

Focusing on stochastic models for island-driven parsing, [Corazza et al., 1991a] provide a 

theoretical framework for computing the probability that a SCFG generates sequences of islands 

intermixed with gaps. Basing on the inside probabilities (see section 2.2.1.2) and the prefix-

string probabilities defined by [Jelinek & Lafferty, 1991], and dealing only with grammars in 

CNF, they provide a definition for the probability that a partial tree generates substrings of a 

sentence (islands) with a gap in between, and followed by an eventual gap (the prefix-string-

with-gap probabilities, or their symmetrical case, the suffix-string-with-gap probabilities). This 

scoring is based on computing the sum of the probabilities of all the possible completions of the 

partial tree. However, they show that, whereas the time complexity of their computation is 

unacceptable whenever the length of the gap in the middle of both islands is unknown (it 

requires the solution of a quadratic system of equations), an alternative computationally-

affordable method can be tackled whenever this length is known. This theoretical methodology 

is not put into practice. 
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[Corazza et al., 1994] define a new scoring method which represents a tighter upper-bound, 

as they compute the probability of the most likely derivation instead of the sum of all of them. 

An algorithm to calculate this score (the probability of the most likely trees that can generate a 

sentence, when this sentence consists of an arbitrary sequence of islands and gaps) is described. 

This algorithm performs in cubic-time (with respect to the length of the input), always for 

SCFGs in CNF. This theoretical methodology is not practically evaluated either. 

In our framework, two basic models have been studied22. The first one, the local model, is 

static, as it just takes into account grammatical information. The second one, the neighbouring 

model, considers also the immediate environment around the island being dealt with, that is, the 

islands and gaps immediately surrounding each island (in order to apply the main feature of the 

bidirectional approaches, namely the restriction of the syntactic search space whenever we have 

unrecognised gaps with (recognised) partial analyses around them). Both approaches are based 

on the summation of the probabilities of the possible derivations, although, at the end of section 

3.5.1, the possibility of a change to the maximisation of this probability23 is outlined. 

As it will be shown throughout the experiments described in chapter 5, performance is highly 

improved, but the accuracy remains to be increased. In fact, the idea of our hybrid proposals has 

the same motivation as the ideas of “work” and “competitorship” described in [Blaheta & 

Charniak, 1999] thus pointing out a possible extension for improving both our performance and 

accuracy. [Blaheta & Charniak, 1999] also provides some interesting ideas to deal with the data-

sparseness which may be applied to our neighbouring model. 

 

3.5.1   The Local Model 

 

The local approach is based on regarding the probability of an edge to be extended (and the 

same applies to the prediction) as the probability of the next symbol to be expanded having the 

terminal(s) symbol(s) in the corresponding position of the sentence as either left or right corner 

(according to the expansion/prediction direction).  

Let G be a Stochastic Context-Free Grammar, following the usual notational conventions 

(see sections 2.1 and 2.2.2). Let Ri ∈  P be the i-th production of G and P(Ri) its attached 

probability. 

As mentioned above, we will employ the usual double-dotted rule notation for the edges of 

the chart (see section 2.1). [A, i, j] is an island of category A spanning positions in the sentence 

i+1 to j (in turn corresponding to words wi+1 and wj respectively), and {left|right}_corner are 

functions from N × T to [0,1], being {left|right}_corner (A, a) the probability that a derivation 

                                                                                                                                                                          
21 See section 2.2.1.2 for the definition of inside/outside probabilities. 
22 A third model, the global approach, was tried with no remarkable results. 
23 Suggested by an anonymous reviewer. 
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tree rooted A could have symbol a as a {left|right} corner. In other words, the left corner 

probability left_corner (A, a) would denote the probability that starting with the nonterminal 

symbol A, successive application of rules from grammar G produce a string starting with 

terminal symbol a (in the case of our sample island, the left corner relationship would mean that 

symbol a would occupy position i+1 in the sentence, that is, wi+1= a). As to the right corner 

relation, the right corner probability right_corner (A, a) would denote the probability that 

starting with the nonterminal symbol A, successive application of rules from grammar G 

produce a sequence ending with terminal symbol a (in the case of our sample island, the right 

corner relationship would imply that symbol a would be at position j in the sentence, that is, wj= 

a). This means that we will only be looking at derivations of strings over set {Ax | x ∈  T*}. 

We have borrowed from [Jelinek & Lafferty, 1991] the notation P(A<<i,j) to denote the sum 

of the probabilities of all trees with root node A resulting in word strings whose initial substring 

is wi wi+1 … wj. However, in our case we will restrict to the computation of the probability 

P(A<<i,i). Moreover, we will pre-compute these probabilities, independently of the particular 

sentence, for each pair of <nonterminal, terminal>. Therefore, we will take the license to refer to 

the terminal symbol instead of its position in the sentence, and we can define that:  
 

 (15)   )/(),( _:, GaAPaAcornerleftTaNA <<=∈∈∀    

 

A symmetrical notation can be used for the right_corner. Extending [Jelinek & Lafferty, 

1991]’s notation to the bidirectional case, P(A>>i,j) would denote the sum of the probabilities of 

all trees with root node A resulting in word strings whose ending substring is wi wi+1 … wj. Once 

more, in our case we will restrict to the computation of the probability P(A>>j,j), and take the 

license again to refer to the terminal symbol instead of its position in the sentence. Then we can 

define that:  

 

 (16)   )/(),( _:, GaAPaAcornerrightTaNA >>=∈∈∀    

 

Similarly, left_corner* is a function from (N ∪  T) × 2T to [0,1], being left_corner* (A, l) the 

probability that a derivation tree rooted A could have any of the symbols of a list l (containing 

only terminal symbols) as a left_corner: 

 

 (17)   If A ∈  N:      ∑
∈

=
la

aAcornerleftlAcornerleft ),(_),(*_   

          If A ∈  T:      1),(*_ =lAcornerleft       if A ∈  l 

                                     0),(*_ =lAcornerleft       otherwise 
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Right_ corner*  probabilities are symmetrically defined, as the probability that a derivation tree 

rooted A could have any of the symbols of list l of terminal symbols as a right_corner:   

 (18)   If A ∈  N:      ∑
∈

=
la

aAcornerrightlAcornerright ),(_),(*_   

          If A ∈  T:      1),(*_ =lAcornerright       if A ∈  l 

                                 0),(*_ =lAcornerright     otherwise 

 

The elementary probabilities defined above, left_corner and right_corner, are pre-computed and 

stored in two structures. These data structures have been denoted the Lreachability and the 

Rreachability tables, and their dimensions are [|N| × |T|]24. These tables can be efficiently 

accessed (when needed) in order to compute the definite probabilities: 

 

• For expansion to the left of an island (inactive edge) labelled A:  

 

    (19)   )()]/,,([
:
∑

→

=
AXR

i
left

island
i

RPGjiAP
α

      

 

Where α ∈  (N ∪  T)*. Rules of the form X →αAβ are not considered, since expansions like 

these ones will only take place on the Bottom-Up/Top-Down extensions (see section 3.2). 
 

• For expansion to the right of an island (inactive edge) labelled A:  

 

    (20)   )()]/,,([
:
∑

→

=
αAXR

i
right

island
i

RPGjiAP       

 

Where α ∈  (N ∪  T)*. As in formula 19, rules of the form X →βAα are not considered either. 

 

• For expansion to the left of (or prediction to the left from) an active edge (being w the 

sentence, and li the list of terminal categories attached to word wi): 

 

     (21)   ),(*_),]/,,..([ i
left

edge lBcornerrightwGjiBAP =→ γβα   

  

Where α, β, and γ ∈  (N ∪  T)*. 

                                                           
24 Notation |A| indicates the cardinality of a set A. 
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• For expansion to the right of (or prediction to the right from) an active edge (being w 

the sentence, and lj+1 the list of terminal categories attached to word wj+1): 

 

     (22)   ),(*_),]/,,..([ 1+=→ j
right

edge lBcornerleftwGjiBAP γβα  

 

Where α, β, and γ ∈  (N ∪  T)*. 

 

As to the expansion of the islands (first two formulae), note that the parser does not compute the 

partition function (normalising constant) for its distributions, so the numbers that both formulae 

return cannot be regarded as true probabilities, but simply scorings.  

As to the active edges (formulae 21 and 22), obviously either α, β, or γ might be empty. In 

this case, the intention is essentially that the probability models the likelihood of this edge to be 

useful for the definite analysis, considering its situation in the sentence. That is why the same 

formula is applied to both the extension and prediction stages. 

Computing the reachability tables is far from being a trivial problem. In a first approach, the 

computation of these tables was performed by following a methodology based on [Horowitz & 

Sahni, 1978]. In this methodology, nonterminals were first topologically sorted according to the 

so called precedence relationship (a nonterminal A is said to precede another nonterminal B 

whenever A has B as a left [right] corner). Next, the tables were computed by calculating the 

transitive closure (assuming the previously computed order), by incrementally doing 

(Rreachability was computed symmetrically): 

 

Lreachability [i, j] ⇐  Lreachability [i, j] + Lreachability [i, k] × Lreachability [k, j] 

 

The drawback for this technique was that, in order to be able to perform both topological sorts, 

the grammar cannot be neither left-recursive nor right-recursive. Therefore, a different approach 

had to be adopted. We have developed an algorithm that is an extension (to be able to deal with 

bidirectionality) of [Ng & Tomita, 1991]’s approach for massively recursive grammars. For 

each of both relationships, the interdependencies between nonterminals are represented as a 

linear equations system. The problem has been that we encountered equations systems of 

unfeasible dimensions for our real-size grammars25. Therefore, the process had to be 

decomposed into the following three steps: 

 

                                                           
25 A previous toy grammar composed by 96 context-free rules and 58 nonterminal symbols, gave rise to a 
coefficients matrix of dimension [3364 x 3364]… 
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1. As nonterminal interdependencies (both the left and right reachabilities) can be 

considered as a graph, we can firstly calculate the strongly connected components of 

such a graph. Each strongly connected component is composed by those elements which 

are completely interrelated. In order to calculate these components, we use the 

conventional three-steps algorithm which: 1) computes the reflexive transitive closure 

according to the direct [right or left] reachability relation, 2) transposes the previous 

matrix, and 3) calculates the intersection between both matrixes. 

2. Next, the linear system of equations corresponding to each connected component 

(presumably of a far smaller dimension) can be independently solved. We use a version 

of the Gaussian Elimination method optimised to take advantage of the sparseness of the 

coefficients matrix of this system of equations. 

3. Finally, an algorithm which combines the results obtained for each connected component 

is computed, in order to obtain the solution for the whole system. This combination 

algorithm is composed by two steps: 

 

1. The strongly connected components are sorted according to the aforementioned 

precedence partial relationship. When applied to components, the precedence is an 

extension of the same relationship applied to individual symbols, by considering all 

the individual elements in each component (notice that, dealing with strongly 

connected components, a cycle can never happen in the precedence relationship, and 

therefore, the recursivity problem found in the first method is completely avoided). 

2. The results for each connected component are incrementally combined, 

incorporating in each step a new component according to the previously computed 

order. Basically we sort of compute the transitive closure of the components, in such 

a way that each incremental step is in turn composed by four loops. These loops 

account for the different types of relationships encountered among the components, 

and require the use of two temporal matrixes. 

 

As it can be observed in formulae 19 to 22, all our scores are based on summations of the 

probabilities of the derivations, always according to our SCFG. Therefore, what we are 

describing is a class of events that belong to possibly different strings. However, in practice we 

will be applying this figure to a single string (or item, in the middle of the parsing process) to be 

expanded, which will rarely be derived with such a probability. An alternative might be defining 

the probabilities of extension/prediction as the maximum of the probabilities of the derivations, 

instead of their addition, providing then what might be considered as a more realistic upper 
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bound26. This strategy would correspond to the work in [Corazza et al., 1994] and [Klein & 

Manning, 2002] already described in the introduction of this chapter. We have applied this new 

strategy gradually, in two stages: 

 

1. Maximum is applied to the extension of (or prediction from) active edges (formulae 21 

and 22). This means changing the definition of the elementary functions left-corner and 

right-corner (formulae 17 and 18), so that they return the maximum probability of the 

derivations instead of the addition of the probabilities of the derivations. 

2. Additionally to the approach described in the previous point, maximum is also applied 

to the extension of islands (inactive edges). This means that in formulae 19 and 20, the 

addition of the production probabilities is simply replaced by the maximum of them. 

 

However, the potential possibilities of this new proposal have been noticed when all the 

evaluation task had already been developed. Therefore, it has also been tested and compared 

with the results of the original local approach, but the additional applications of the local model 

(such as its use as a back-off of the neighbouring method, described in the following section, or 

the evaluation with other types of islands, described in chapter 4), have only been tested with 

our original local approach. 

 

3.5.2   The Neighbouring Model 

 

In this approach, in order to take the decision of extending an island we will consider the 

information provided by the neighbours, that is, the islands and gaps immediately surrounding 

such island, as well as distances to them (the lengths of the gaps). Roughly speaking, we intend 

to model the distances (in terms of number of terminal symbols) between nodes in the parse 

tree, and guide the decisions accordingly. Therefore, the probabilities of length distributions for 

each rule of the grammar must be previously learnt from a training corpus. 

An additional motivation may be to try and capture dependencies between pairs of words 

that are not adjacent, or even that are more than two words apart (the latter, what trigram 

language models would model).  

Using the same conventions as in the local model, let G be a Stochastic Context-Free 

Grammar (see sections 2.1 and 2.2.2). Let Ri ∈  P be the i-th production of G and P(Ri) its 

attached probability. Distances between islands are measured in terms of number of terminal 

symbols. We will also use, for any string α ∈  (N ∪  T)*, the additional notation |α|  to indicate 

the length of α, always in terms of number of terminal symbols. This means that we are not 

                                                           
26 This relevant fact, as well as the alternative definition, was highlighted by an annonymous reviewer. 
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referring directly to the length of α, but to the length of the string of terminal symbols that α 

would eventually derive. 

Given two islands [A, i, j] and [B, j+d, l], separated by a distance d, four possible types of 

relationship can be considered. In their definitions, symbol r stands for a production from 

grammar G, while α, β, γ, δ, µ, η, and ϕ represent strings over (N ∪  T)*. We take the liberty of 

extending the meaning of the expression |string|, in such a way that it indicates the length of 

string in terms of terminal symbols (therefore, whenever string contains a nonterminal element, 

we assume the length in terminals of the constituent derived from this nonterminal). The 

corresponding four definitions follow:  
 

(23)   






 =→∈= βγβα dBAXrPrdBAR ,: |),,(1     

 

(24)   






 +=⇒→∈= δβµδγβα dBHHAXrPrdBAR ,,: |),,(

*
2  

 

(25) 






 +=⇒→∈= βµµδγβα dAHBHXrPrdBAR ,,: |),,(

*
3  

 

(26) 






 ++=⇒⇒→∈= ηβµϕηµδγβα dBHAHHHXrPrdBAR ,,,:|),,(

*

2

*

121
4  

 

These relationships are more easily understandable by showing their graphical representation, 

which is depicted in figures 3 to 6:  

 

 Figure 3. Relationship R1 
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      Figure 4. Relationship R2 

 

      Figure 5. Relationship R3 

 

                                        Figure 6. Relationship R4 

 

In order to compute the likelihood of each relationship, we will use the following simpler 

probabilities Pi (for i = 1..3), being S1 and S2 symbols from the grammar (S1, S2 ∈  (N ∪  T)), and 

r a production from the grammar. Notice that, except in the case of P1, probabilities Pi are not 

associated to relationships Ri, since they are the elementary probabilities used in order to 

calculate the more complex probabilities corresponding to relationships R1 to R4. These 

elementary probabilities are obtained by means of the data culled from the training corpus.  

 

     Figure 7. Probability P1 
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That is, P1 (d / r, S1, S2) denotes the probability that two islands labelled S1 and S2 are found at 

distance d, whenever both constituents are generated by the same production r, at the same level 

(see figure 7). Therefore, we can define the accumulated P1 as:  
 

(27)   ),/()/(
1

21
1

21
1 ∑

∈

=
Rr

acc ,SSrdP,SSdP  

 

On the other hand, P2 (d / S1, S2) denotes the probability that one symbol S1 generates S2 in one or 

more steps, in such a way that S2 is found at a distance d of the beginning of the constituent 

generated by S1 (see figure 8). It would correspond to the probability of the right constituent H 

in figure 4 (or equivalently, of constituent H2 in figure 6).  

 

    Figure 8. Probability P2 

 

Finally, P3 (d / S1, S2) represents the probability that S1 derives S2 in one or more steps, in such a 

way that S2 is found at a distance d of the end of the constituent generated by S1 (this probability 

is represented in figure 9). It can be considered that it would correspond to the probability of the 

left constituent H in figure 5 (or of constituent H1 in figure 6). 

 

    Figure 9. Probability P3 

 

These probabilities are pre-computed for each possible pair of islands and distance d=0..limit 

(being all cases of d>limit treated as a whole). The limit, that is, the distance from which we will 



 83

not particularise, is a parameter that in our experiments will be set to 3, considering average 

distances between islands.  

Although all types of relationships between two adjacent islands have been defined (see 

definitions R1 to R4 in formulae 23 to 26), when implementing the application of the model we 

found that the case where both islands are derived in one or more steps from symbols in the 

production right-hand side (relationship R4, see figure 6) highly increased the complexity of 

probability computation. On the other hand, preliminary experiments did not show that the 

improvement obtained was worth the increase in complexity (mainly because of the data 

sparseness problems which will be more thoroughly described in chapter 5). Therefore, we have 

decided to constrain our notion of neighbourhood27, so that in our probabilities we will account 

only for those situations in which there is one rule that includes directly at least one of the 

islands considered.  

The application of the neighbouring model to the expansions and predictions is then defined 

as follows in formulae 28 to 35. For the first two cases, we include as well the version of the 

formula which would also consider relationship R4 so that it can be seen how the complete 

formulae would look like. It can then be observed that they entail an additional complexity 

which has been heuristically discarded, but which might be perfectly tackled: 

 

• For expansion to the right of an island [A, i, j], being w the sentence and [B, j + d, l] the 

closest island to the right: 
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The first addend accounts for cases of A and B being in the same rule right-hand side, while the 

second one accounts for all possibilities of B being derived in one or more steps from a 

nonterminal H which is in the same production right-hand side as A, plus all possibilities of A 

being derived in one or more steps from a nonterminal H which is in the same rule right-hand 

side as B.   

The complete version, which would take into account also relationship R4, is represented in 

formula 28`. It can be observed that it implies a new addend which accounts for all possibilities 

of both A and B being derived in one or more steps respectively from two nonterminals  H1  and 

H2, which happen to be in the same production right-hand side. This new element entails an 

additional complexity of Ο(N2).  

                                                           
27 Therefore, in order to get a full  coverage, a back-off to other method is needed. 
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• For expansion to the left of an island [A, i, j], being w the sentence and [B, l, i - d ] the 

closest island to the left: 
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The first addend accounts for cases of B and A being in the same production right-hand side 

while the second one accounts for all possibilities of A being derived in one or more steps from 

a nonterminal H which is in the same production right-hand side as B, plus all possibilities of B 

being derived in one or more steps from a nonterminal H which is in the same rule right-hand 

side as A. 

Next, we provide the complete version, which considers also relationship R4. The only 

difference with formula 29 is the new addend accounting for all possibilities of two 

nonterminals H1 and H2 being in the same production right-hand side, from whom B and A are 

respectively derived in one or more steps. The complexity of this new addend is Ο(N2). 
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• For expansion to the right of (or prediction to the right from) an active edge (originated 

from an activation of production p) [A→ β . Al α Ar . γ, i, j], being w the sentence and  

[B, j+ d, l] the closest island to the right:  
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Where α and β ∈  (N ∪  T)*. In this formula, γ represents a string of n terminal and nonterminal 

symbols (γ ∈  (N ∪  T)n), each one represented by a subindex. The idea is the same as for the 

previous case, albeit particularising to the production of the active edge, and taking into account 

the symbols yet to be recognised of the active edge, at the right of the second dot (symbols 

γ1...γn). Either α, β or γ might be empty (in the latter case, n= 0). 

 

• For expansion to the left of (or prediction to the left from) an active edge (from a 

production p) [A→ β . Al α Ar . γ, i, j], being w the sentence and [B, l, i - d] the closest 

island to the left: 
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Where α and γ ∈  (N ∪  T)*. In this formula, β represents a string of n terminal and nonterminal 

symbols (β  ∈  (N ∪  T)n), each one represented by a subindex. Again, the idea is the same as for 

the extension of an island, particularising to the production of the active edge, and regarding the 

symbols yet to be recognised of the active edge, at the left of the first dot (symbols β1...βn, 

starting from right to left). Once more either α, γ or β might be empty (in the latter case, n= 0). 

Prob is a recursive function that, given the “trained” grammar G, provides for the 

distribution of probabilities of the lengths of any subsequence of terminal and nonterminal 

symbols of the grammar.  

The particular cases of expansion of either the first island of the sentence to the left or the 

last island to the right must be taken into account, as we find no category of reference at a 

certain distance, but simply the distance to the beginning or the end of the sentence. The same 
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applies to the expansion/prediction from an active edge to the left/right when no more islands 

are found in this direction. These cases are considered as a simplification of the previous cases: 

 

• For expansion to the right of an island [A, i, j] which is the last island of the sentence so 

far, being l the length of the sentence: 
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When one of the two islands is missing, P1 just takes into account the probability that 

productions containing the only island in their right-hand side are at the given distance from the 

beginning (missing the first island) or the end (missing the second island) of the production 

right-hand side. 

We simplify to consider only this P1 plus the probability that the island forms part of a 

hypothetical last constituent.  

 

• For expansion to the left of an island [A, i, j] which is the first island of the sentence up 

to the moment: 
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The idea is the same but symmetrical: we simplify to consider only this P1 plus the probability 

that the island forms part of a hypothetical first component.  

 

• For expansion to the right of (or prediction to the right from) an active edge (originated 

from an activation of production r) [A→ β . Al α Ar . γ, i, j], so that there is no island to 

its right yet, being l the length of the sentence: 

 
       (34)   ),,/(,-)]/,,..([ 1 −−=→ rrl

right
edge ArjlPG,wjiAAAP γαβ  

 

Where α, β, and γ ∈  (N ∪  T)*. 

 

• For expansion to the left of (or prediction to the left from) an active edge (from 

production r) [A→ β . Al α Ar . γ, i, j], so that there is no island to its left yet: 

 

       (35)   ),,/(,-)]/,,..([ 1
lrl

left
edge AriPG,wjiAAAP −=→ γαβ  
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Where α, β, and γ ∈  (N ∪  T)*. 

 

Extensions/predictions of active edges simplify even more the formula, for as they refer to a 

concrete edge, they consider only the probabilities at the same level. 

Despite being a more informed method, in the evaluation process (see sections 5.3 and 5.4) 

we have found that neighbouring’s performance does not improve local’s. After an accurate 

analysis of the behaviour of the neighbouring parsing process, several heuristics have been 

adopted regarding the neighbouring strategy. Some of them may involve backing-off to other 

method at a certain moment or using certain kind of smoothing in the neighbouring probabilities 

(see sections 5.5 to 5.7). However, first of all, it has been observed that, although neighbouring 

probabilities work quite well when applied to the step of bottom-up extension of the edges, 

when applied to top-down prediction they generate a significant edge overhead. To counteract 

this effect, some limitations have been imposed to the application of neighbouring probabilities 

during the prediction process. These heuristic limitations, which have been applied to any 

version (pure or hybrid, smoothed or not) of the neighbouring strategy, are the following ones:  

 

1. For the initial determination of the edges to be used for prediction: 

 

• For distances between adjacent islands between 0 <= d < 2, local probability acts as 

a filter, that is, only when local probability is greater than zero will the neighbouring 

probability be used to determine if and when the edge will be used for prediction. 

• For distances d >2, it has been observed that (mainly due to the data sparseness 

inherent to the neighbouring model, see section 5.3) the information provided by the 

neighbouring model seems not to be informative enough, so neighbouring 

probabilities are discarded, and local probabilities are directly used instead.  

 

2. Once determined the edges from which predictions will be launched (and in which 

order), the top-down process continues recursively launching new predictions from these 

active edges, searching for edges with which to combine (see section 3.2). These 

subsequent recursive predictions will also be guided only by local probabilities. In order 

to avoid the creation of an excessive number of edges, a threshold has been empirically 

set, so that only the edges whose local prediction probability is higher than this threshold 

will be used for prediction. 

 

In order to limit as much as possible the number of computations at run time, the probabilities 

mentioned above are pre-computed, using the frequencies of distributions of lengths learnt from 
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the training corpus. Probabilities consider distances from 0 to limit, as well as a single case for 

distances greater than limit. The computation is performed in two steps. Firstly, we construct 

matrixes M1 to M4, containing the following probabilities: 

 

1. M2 [|N+T| × |N+T| × (2+limit)]: conventional P1 (accumulated P1 is computed on the fly 

from its values). 

2. M1 [|N+T| × 2 × (2+limit)]: P1 for the particular case of the first/last island of the 

sentence (second dimension denotes both cases). 

3. M3 [|N+T| × |N+T| × 4]: conventional P2(we just consider distances 0..3). 

4. M4 [|N+T| × |N+T| × 4]: conventional P3(we just consider distances 0..3). 

 

Next, these matrixes are used to compute the matrixes that will provide the final probabilities 

(strictly speaking, likelihood scores, since as in the local model, no normalisation is performed): 

 

1. Result2 [|N+T| × |N+T| × (2+limit)]: table containing the probabilities of each pair of 

categories to be at a certain distance. Used for the conventional extension of islands.  

2. Result1 [|N+T| × 2 × (2+limit)]: simpler table, to account for the cases of extension to 

the left of the first island of the sentence (as well as to the right of the last one). The 

second dimension of the table indicates the direction of extension: value 1 corresponds 

to probabilities of extensions to the left of the first island of the sentence; value 2 

corresponds to probabilities of extensions to the right of the last island of the sentence. 

3. Result2L and Result2R [|N+T| × |N+T| × (2+limit)]: tables containing the probabilities of 

conventional extension/prediction of active edges, respectively to left and right. 

4. Result1L and Result1R [|N+T| × (2+limit)]: simpler tables for the particular case of 

probabilities of extension/prediction of active edges, respectively to the left when no 

more islands to the left are found, or to the right when there are no more islands to the 

right. 

 

Needless to say that these matrixes are represented using suitable data representation techniques 

in order to efficiently deal with their sparseness. 

 

3.5.3   A simple example 

 

Let us just trace the beginning of the analysis of a sentence in order to get a feeling for how 

stochastic parameters are used. We will use the grammar we have extracted from the Penn 

Treebank (described in detail in section 5.2.2 of chapter 5), which owns 941 productions, 
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|N|=28, and |T|=41. With such a grammar, we will try and parse the following simple sentence in 

English: 

 
    (1)              (2)             (3)         (4)            (5)              (6)          (7)           (8)             (9)              (10)            (11) 

 “The         train         (          to         the          city         )         left         late       yesterday      .    ”  

   DT         VBP     -LRB-    IN        DT          NN    -RRB-    NN          JJ             RB            . 

   NNP       VB                     TO       NNP       NNP                  RB          RB           NN 

                  NN                                                                          JJ  

                                                                                                 VBD 

                                                                                                 VBN 

 

PoS tags attached to each word are shown under each one. In order to select the initial islands, 

we will employ the criterion of choosing those non ambiguous words, that is, words into a 

square, 3,7, and 11 (in this example they happen to be just the punctuation signs). We will focus 

on the case of the brackets: while 9 productions of our grammar contain both symbols in their 

right-hand side, only 4 rules contain just one of them. This case is therefore simpler, as most of 

the alternatives present both islands at the same rule level (we will focus in turn on these ones). 

The mentioned productions are shown with their attached probabilities: 

 

r1: PRN →  -LRB-  NP  -RRB-   0.227448 

r2: PRN  →  -LRB-  S  -RRB-   0.024797 

r3: PRN  →  -LRB-  VP  -RRB-   0.0222318 

r4: PRN  →  -LRB-  PP  -RRB-   0.0269346 

r5: FRAG  →  -LRB-  "  NP  PRN  SBAR  .  0.0020202 

r6: FRAG  →  PP  RB  SBAR  .  –RRB-   0.0020202 

r7: PRN  →  -LRB-  SBAR  -RRB-  0.0132536 

r8: FRAG →  -LRB-  NP  :  NP  -RRB-   0.0020202  

r9: LST  →  LS  -RRB-     0.25862 

r10:  FRAG →  -LRB-  NP  :  S  .  ”  -RRB-   0.0020202  

r11:  PRN →  -LRB-  NP  ,  NP  -RRB-  0.0397600 

r12: FRAG →  -RRB-  WP  IN  VP  .  0.0020202  

r13: PRN →  -LRB-  QP  -RRB-   0.0837965 

 

320 rules contain the stop (“.”) at their right-hand side, although we will not consider them in 

order to keep the example simple. 
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Local version of the example 

 

We assume that matrixes Lreachability and Rreachability have been computed, both of 

dimension [|N| × |T|], that is, [28 × 41]. With these data, we would start by extending the islands 

in both directions, following the formulae for extension of islands described in section 3.5.1: 

 

1. Probability of extension of the island labelled –LRB- to the left (formula 19): 
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    (as the open bracket never happens to be right-corner of any nonterminal in our grammar) 

 

2. Probability of extension of the island –LRB- to the right (formula 20): 
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3. Probability of extension of the island labelled –RRB- to the left (formula 19): 
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4. Probability of extension of the island –RRB- to the right (formula 20): 
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All but the first pair of <island, direction-of-extension> would be introduced into the extension 

heap, according to their probabilities. Next, we would continue to withdraw the pairs from the 

heap in order to be processed, in this case starting by extending the pair with the highest 

probability, that is, island –RRB- to the left. We would have to combine this island with any 

compatible active edge to its left, but at this early stage of the analysis, no active edges exist yet. 

Therefore we will create 12 active edges, corresponding to the rules containing category –RRB- 

in their right-hand side (what we call the step of bottom-up extension). These active edges must 

in turn be introduced into the extension heap according to their extension probability in both 

directions.  

Out of the just mentioned actives edges, the highest-ranked one would be the one 

corresponding to the extension of the active edge [PRN → -LRB- PP .-RRB-., 6, 7], from rule r4 
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above, to the left, as we can see by applying formula 21 (defined above in section 3.5.1), taking 

into account that NN and NNP are the categories attached to the element w6 of the sentence (we 

also point out the relevant positions in matrix Rreachability): 

 
left

edgeP ( [PRN → -LRB- PP .-RRB-., 6, 7] | G, w) = right_corner* (PP, [NN, NNP])= 0.4475 

 

Rreachability[28 × 41]: 

                          

......
..................

......

       .....                             

0.120.32PP

NNPNN

a  

 

Being the most probable one, the latter edge is extracted from the extension heap in order to be 

extended. However, the active edge is expecting a constituent PP which does not exist yet, so 

no extension is performed. It is important to notice that, at this stage of the analysis, both the 

tuples <island, direction> and <active-edges, direction> are already coexisting in the extension 

heap.  

Although we assume that all the tuples corresponding to the active edges mentioned above 

have been inserted in the heap (though we are not listing them here in order to keep this trace 

short), the current highest-ranked tuple is the corresponding to the extension of the island 

labelled –LRB- to the right (number 2 above). As at the moment it is impossible to combine the 

island to the right, a new step of bottom-up extension is performed from this edge (10 active 

edges are created from the corresponding rules with the symbol in their right-hand side, for 

whom the probability extension to both sides is computed). Similarly, the highest-ranked edge 

would be the one corresponding to the extension of the active edge [PRN → .-LRB-. PP -RRB-, 

2, 3] (also from rule r4) to the right. We can see it by applying formula 22, considering that TO 

and IN are the categories attached to the element w3+1 of the sentence (again, we also include the 

relevant positions of the used matrix, Lreachability): 

 
right

edgeP ( [PRN → .-LRB-. PP -B-, 2, 3] | G, w) = left_corner* (PP, [TO, IN])= 1.0 
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Lreachability[28 × 41]: 
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The values of matrix Lreachability indicate that, in our grammar, any component labelled with 

category PP ends up deriving a string starting with terminal category IN. Once more, being the 

most probable, the latter edge is extracted from the extension heap in order to be extended. 

Again, the edge is expecting a constituent PP which does not exist yet and no extension can be 

performed. The same would happen with the rest of the edges in the heap, as in this particular 

case it happens that all the rules involved combine the terminal symbols labelling the initial 

islands with higher level (as to the parse tree) nonterminal symbols. Subsequent bottom-up 

extensions do nothing but add new edges which cannot be extended either. 

The extension heap therefore empty, the top-down prediction loop must be started from the 

existent active edges, again ranked by the probabilities obtained by formulae 21 and 22. The 

highest ranked tuple, the prediction <[PRN → .-LRB-. PP -RRB-, 2, 3], right>, would motivate 

that, for the only rule containing symbol PP in its left-hand side (PP → IN NP), a new active 

edge [PP → .. IN NP, 3, 3] is created. Next, the edge is tried to be combined to the direction of 

extension (the right), and this time the attempt if fruitful. A new active edge  [PP → .IN. NP, 3, 

4] is constructed. Since the chart has been modified, the requirement for returning to a new 

extension loop is met, and so on… (we consider we have shown the performance of the 

algorithm enough). At this moment, the sentence would be covered as follows:  

 
    (1)              (2)             (3)         (4)            (5)              (6)          (7)           (8)             (9)              (10)            (11) 

 “The         train         (          to         the          city         )         left         late       yesterday      .    ”  

   DT         VBP     -LRB-    IN        DT          NN    -RRB-    NN          JJ             RB            . 

   NNP       VB                     TO       NNP       NNP                  RB          RB           NN 

                  NN                                                                         JJ  

                                                                                                 VBD 

                                                                                                 VBN 

 

Without getting into much more detail, the next (more probable) step would imply the 

prediction of the nominal phrase (NP) starting at position 5. In two elementary prediction steps 
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(omitting the additional predictions occasioned by the ambiguity of the terminal categories for 

words (5) and (6)), the coverage of the sentence would look like: 

 
    (1)              (2)             (3)         (4)            (5)              (6)          (7)           (8)             (9)              (10)            (11) 

 “The         train         (          to         the          city         )         left         late       yesterday      .    ”  

   DT         VBP     -LRB-    IN        DT          NN    -RRB-    NN          JJ             RB            . 

   NNP       VB                     TO       NNP       NNP                  RB          RB           NN 

                  NN                                                                         JJ  

                                                                                                 VBD 

                                                                                                 VBN 

 

Having completed the nominal phrase (label NP, spanning positions 5 and 6), the PRN island, 

spanning positions 3 to 7, is also completed. The next step would involve the prediction of the 

nominal NP in the position of the main subject, that the existing PRN is modifying (by means of  

rule NP → NP PRN, we skip the other rules containing category PRN with which additional 

predictions are launched, but that do not finally belong to this first parse). It is important to 

remark that in this particular example, the fact that only 3 initial islands exist for an 11 word 

sentence (being one of them the final stop, for which no rules in the grammar exist which allow 

to extend it directly) entails the abundance of necessary predictions. After these two steps of 

prediction, the coverage of the sentence would now be: 

 
    (1)              (2)             (3)         (4)            (5)              (6)          (7)           (8)             (9)              (10)            (11) 

 “The        train        (          to         the          city         )         left         late       yesterday      .    ”  

   DT          NN      -LRB-    IN        DT          NN    -RRB-    NN          JJ             RB            . 

   NNP       VB                     TO       NNP       NNP                  RB          RB           NN 

                  VBP                                                                         JJ  

                                                                                                 VBD 

                                                                                                 VBN 

 

Finally, the verbal phrase (VP) which is left in order to find the first complete parse tree is found 

by extending to the right the island NP spanning positions 1 to 7, taking into account that there 

is an island labelled “.” at a distance 3 to the right. Figure 10 depicts the resulting parse tree. 
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Figure 10. Local parse tree for the sample sentence 

 

Neighbouring version of the example 

 

We assume that matrixes Result have been pre-computed, their dimensions being: 

 

1. Result2 [69 × 69 × 5] 

2. Result1 [69 × 2 × 5] 

3. Result2L and Result2R [69 × 69 × 5] 

4. Result1L and Result1R [69 × 5] 

 

In the neighbouring approach, we consider also the environment around each island (that is, the 

islands and gaps immediately adjacent to it). In order to compute the probabilities of extensions 

of the islands, we use the formulae defined in section 3.5.2: 

 

1. Probability of extension of island –LRB- to the left, taking into account that it is the first 

island of the sentence (distance 2 from the beginning of the sentence), applying formula 

33:  
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Result1(extension to the left, that is, we show only the 2-dimension matrix obtained when the 

second component equals 1): 
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...

...
      

...

...
                                    

 0.0040.00190.006LRB

33   2        1     0    

a−−

>

   

 

We can see the difference with respect to the same case in the local approach. Neighbouring 

parameters are more informed than those of the local model (which only considered 

grammatical static information), so they are able to capture the possibility that an open bracket 

can be extended to the left as soon as it is not the first element of the sentence, while the local 

version of the example assigned it null probability. 

 

2. Probability of extension of island –LRB- to the right, considering that there is an island 

with category –RRB- at a distance 3, according to formula 28:   
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As it has been said before, no attempt has been made to normalise P, so they cannot be 

considered true probabilities but likelihood indicators. 

 

3. Probability of extension of island –RRB- to the left, taking into account that there is 

island –LRB- at a distance 3, logically it would be the same as the previous point 

(applying formula 29). 

4. Probability of extension of island –RRB- to the right, considering it has island “.” to its 

right, at a distance 3, using formula 28: 
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Once more we can see that the neighbouring approach assigns higher likelihood to this case 

than the local version, which only considered the existence of one rare susceptible production in 

the grammar. Neighbouring parameters contemplate the possibility that a closing bracket can be 

extended to the right if a stop is found a certain number of positions to the right. 

Following the parsing algorithm described in section 3.2, we would introduce all the pairs 

<island, direction-of-extension> into the extension heap, as there are no null probabilities. 

According to the probabilities, we would choose to expand islands –LRB- and –RRB- 

respectively to right and left first (let’s take for instance –RRB-). We are at the same preliminary 

stage we described for the local approach: whatever the island to extend, there are no active 

edges with which to combine yet. Therefore, we expand bottom-up the selected island, 

considering all productions in the grammar containing –RRB- in their right-hand side. In order 

to compute the probability of extension of the created active edges, now we would consider the 

adjacent islands. Let’s take for example rule r4: PRN → -LRB- PP –RRB-. In order to compute 

the probability of extension of the active edge just created, taking into account that the closer 

island to the left keeps on being –LRB- (at a distance 3), formula 31 would be applied: 
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As an example we present also the probability of extension of the same edge to the right. We 

would consider that the closer island to the right is the stop (at a distance 3). As the extension of 

active edges contemplates only the probability of extension within the current rule, this would 

be a particular case of string γ being empty, and therefore the probability is null (according to 

formula 30): 
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We believe the basic idea underlying the extension has been shown. As the neighbouring model 

is far more complex, it would be too complicated to try and continue to follow the example up 

to the same stage as the local model.  
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Chapter 4 
 
Chunking + Island-Driven Parsing 
 
 
Most of the experiments performed with the different variants of our system are based on using 

unambiguous words as candidates to initial islands. As an alternative for identifying these initial 

islands (see section 3.4), we have tested different kinds of chunks, obtaining a system which 

uses our stochastic island-driven chart parser preceded by a chunking process for obtaining the 

original islands. This methodology has shown to improve the parsing performance (see [Ageno 

& Rodríguez, 2001a]). 

What we propose in this chapter is a way of splitting the parsing process into two steps, 

allowing the use of a full-coverage CFG. Firstly, a chunking step, in which a partial parsing of 

the input is performed. Secondly, the island-driven parsing step, where a probabilistic 

bidirectional parsing is performed starting from islands which are the previously detected 

chunks.  

The chunking process might be carried out either by a non grammar-based chunker or by 

using any shallow parser with a grammar of chunks. In the latter case, this grammar may either 

be an input or be automatically learnt. The only requirement is that both grammars (the chunk 

grammar and the complete one) are compatible. We use a rather loose form of compatibility, as 

it is difficult to compare the languages generated (or recognised) by the two grammars. This is 

because, for the full grammar, well formed sentences are sequences of terminal symbols derived 

from the axiom, whereas for the chunk grammar, well formed sentences consist of chunks (of 

different types), possibly isolated from each other, possibly overlapping and, in general, 

interleaved with non-chunk material. Thus, if we denote both grammars as: 

 

G1= <T1, N1, S1, P1>  the full grammar  

G2= <T2, N2, S2
*, P2

* >  the chunk grammar 
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where S2
* = {S2

1, S2
2, …, S2

 n} is a set of symbols from N2 (corresponding to the n different types 

of chunks), and P2
* = { P2

1, P2
2, P2

n} is the set of production sets (i.e., each type of chunks owns 

its corresponding set of productions), we say that both grammars are compatible iff: 

 

1. T2 ⊆  T1 

2. N2 ⊆  N1 

3. ∀  S2
i∈  S2

*, S2
i  is accessible from S1 

 

In our experiments, we have used a grammar of chunks automatically extracted from the initial 

grammar, and we use a version of our own parser to perform this first step. The overall process 

is depicted in figure 11 (a particularisation of figure 1 in section 3.1).  

Our proposal takes advantage of both a syntactically motivated way of detecting islands 

(instead of essentially lexical as in previous approaches) and a stochastic way of guiding the 

parsing process (that is, which islands should be extended and in which direction). Non-

ambiguous words have been considered our initial islands in the first proposal, saving at the 

same time the necessity of a tagger (see chapter 5). However, we intend to introduce a more 

informed method to choose these islands, such as using base noun phrases (hereinafter NPs) as 

candidates. Nevertheless, the complexity introduced by this additional step should be minimised 

so that it is worth the improvements obtained.  

 

 
Figure 11. A two-steps approach to parsing 

 

We have approached the methodology in two phases. Firstly, we have just considered base NPs,  

that is, according to the definition above, S2
* owns a unique element NP. However, base NPs 

(they are defined below) are just one kind of chunks. Other classes might be considered as well 
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([Abney, 1996]). Our results with base NPs have then been easily extended to other types of 

chunks in a second phase. 

Finding base NPs is a sensible first step for many Natural Language Processing applications. 

Although the task is relatively simple, its difficulty stems from the attempt to obtain a high level 

of accuracy. However, as we will show in section 5.9, this accuracy is not that critical anymore 

when base NPs are just going to be used as the input for our island-driven parser. In other 

words, our proposal does not rely on being able to detect all possible base NPs, and conversely, 

the base NPs detected will be acceptable only if they drive to an island-driven analysis. Thus, 

we have implemented an extremely straightforward algorithm to find base NPs which, despite 

its simplicity, accomplishes an outstanding improvement in the results regarding both efficiency 

and quality. Several variations of this algorithm have been tested. 

We take our base NPs´ definition from [Cardie & Pierce, 1998], that is, we define base NPs 

to be simple, nonrecursive noun phrases (i.e., not containing other noun phrase descendants). 

However, we will not apply their method for selection of the chunks. Our algorithm is 

composed by three steps: 

 

1. A base NP grammar, a subset of  our initial grammar containing only those rules whose 

left-hand side is a nonrecursive NP, is extracted.  

2. A partial parse to find all possible base NPs for each sentence in the input corpus is 

performed by a chunker. For the sake of comparison, PoS for words in the test set are 

also ambiguous, so eventually many of these base NPs may not be correct. 

3. An eventual process of selection of the obtained chunks, according to their types (see 

next paragraph), is carried out.  
 

Three types of base NPs have been distinguished (see figure 12), namely the maximal NPs (the 

longest ones out of those starting at a certain position of the sentence), the overlapping NPs 

(those overlapping with previous maximal NPs), and the internal NPs (the rest of the NPs 

extracted). Selection of chunks has been performed considering these three classes, so that we 

have evaluated, for both stochastic models, the following alternatives: 

 

1. Taking every base NP extracted, hereinafter local+chunks1 and neighbouring+chunks1 

respectively. 

2. Selecting only maximal and overlapping NPs, henceforth local+chunks2 and 

neighbouring+chunks2. 

3. Culling only those maximal NPs, hereinafter local+chunks3 and neighbouring+chunks3 

respectively. 
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Figure 12. Example of kinds of base NPs 

 

As mentioned above, in a second step other types of chunks have been introduced. We have 

considered the types described in [Buchholz et al., 1999], namely NP, VP, PP, ADVP, and 

ADJP. Thus, S2
* owns five elements. Independently of incorporating the possibility of different 

chunk labels, the three possible relationships among them defined above still remain: a nominal 

chunk starting at position 2 and ending at position 5 is considered to overlap with a verbal 

chunk starting at position 3 and ending at position 6, and an adjectival chunk starting at position 

4 and ending at position 6 would be internal to it, regardless of the different categories of the 

chunks. Therefore, we consider the three types of chunks described above, but in order to 

distinguish them from the first version with only base NPs, hereinafter we will denote these 

strategies local/neighbouring+chunks1/2/3-total. Local/neighbouring+chunks1 strategy, which 

initially selects all chunks in the sentence labelled as NPs, should not be therefore confused 

with this new set of strategies. 
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Chapter 5 
 
Evaluation 
 
 
This chapter covers the main experiments and results obtained by using our system in any of its 

variants. We hasten to emphasise that our experiments have been aimed at comparing firstly, in 

the same environment, the performance of our island-driven methodology with both the 

classical bottom-up and top-down methodologies28. Secondly (but not less important), the 

comparison, again into the same framework, of the performance of the local approach versus the 

neighbouring approach has also been tackled. 

By classical bottom-up (henceforth also BU) we mean a chart parser which starts from the 

input sentence and operates by combining the edges of the chart bottom-up and left-to-right.  

As to top-down (hereinafter TD as well), we mean the chart parser which starts from the 

representation of a sentence and recursively decomposes this representation into its 

subconstituents, until deriving specific word classes that can be checked against the actual input 

sentence. The top-down decomposition is also performed left-to-right (the leftmost symbol is 

the one to be either matched against the next word or rewritten according to the grammar).  

Both methodologies have been optimised in such a way that, before creating a new 

constituent, a check is made to see if a constituent with the same label and spanning the same   

positions (though eventually different to the one being constructed) is already on the chart. If so, 

it is used instead of constructing the constituent all over again. This is a significant remark 

taking into account the following characteristics of our evaluation: 

 

1. For both baseline methodologies, we consider that the parse returned by the method 

is the first analysis found, so that the process will stop as soon as this happens, 

possibly leaving items in the agenda. 

2. The evaluation is performed in terms of number of created edges. 

                                                           
28 Thanks to the anonymous reviewer who remarked the necessity of including not only bottom-up but 
also top-down parser as baselines.  
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3. The sentences to be analysed are not morphologically disambiguated, so even in the 

case of bottom-up parsing we will find the case of trying to construct the same 

constituent more than once. 

 

We have started by evaluating the performance of the system using toy grammars and corpora. 

The results attained by these preliminary experiments have been useful to get an insight into the 

performance of the system and adopt the main heuristics. All this work is summarised in section 

5.1. 

The next sections (up to the end of the chapter) describe the experiments performed over real 

corpora, using real grammars. Thus, section 5.2 is devoted to the description of the corpora and 

grammars employed. 

Sections 5.3 to 5.10 describe the series of experiments we have carried out in order to 

evaluate our methodology. Particularly, section 5.3 devotes to the average general results for 

both corpora (Spanish and English). When intending to analyse more thoroughly the results, the 

necessity of breaking into smaller pieces imposes. That’s why in section 5.4, detailed results are 

described by dividing the sentences in the test set according to several criteria, such as the 

length of the sentence, the density of islands, or the ambiguity rate.  

The fact that generally better results are attained by the local model (versus the neighbouring 

model) has obliged us to investigate on heuristics that allow us to improve the performance of 

the latter model. These heuristics are basically different forms of hybrid methodologies by 

combining neighbouring and local model. The first kinds of hybrids, described in section 5.5, 

consist in backing off from neighbouring to local at a certain point of the analysis process, 

according to certain criteria. The second kinds consist in using a series of thresholds for the 

different types of neighbouring probabilities used (see section 3.5.2), so that, whenever the 

neighbouring probability is lower than the concrete threshold,  local probabilities are used. This 

latter heuristic is described in section 5.6. Section 5.7 explains the last way in which we have 

tried to improve neighbouring results, by applying smoothing techniques in order to try and 

overcome the data sparseness from which the method suffers. 

Section 5.8 is devoted to the evaluation of the quality of the results of the different 

methodologies devised (apart from the performance of each one). This quality is measured using 

two methods, namely the average probability of the analyses obtained by each method, and the 

average accuracy of these analyses. The accuracy is computed by means of the PARSEVAL 

measures (two variants of both precision and recall, described in section 5.8, as well as the 

consistent brackets recall rate). 

Up to this moment, all evaluations have been performed using the non-ambiguous words as 

the island selection technique. Section 5.9 describes both the performance and accuracy 

obtained by the variation of the methodology described in chapter 4, that is, the one using 
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chunking as a method for the selection of the islands. Both methods for selection of islands 

(non-ambiguous words and chunks) have been compared, as well as the performance of the 

latter method versus both baselines, bottom-up and top-down.  

Finally, section 5.10 is devoted to the series of experiments developed in order to find out 

whether certain categories (or sets of categories) may be optimal as initial islands, defining then 

an additional method for island selection. The new methodology is also compared with both the 

two baselines and the chunks (previous section) approach. 

Table 1. The toy grammar 

Rule Probability 
S ⇒  EN   1.0 
EN ⇒  GN  EN-NOSUBJ 0.4 
EN ⇒  EN-NOSUBJ 0.3 
EN ⇒  EN-NOOD 0.3 
EN-NOSUBJ ⇒  VERB  GN  COMPS 0.4 
EN-NOSUBJ ⇒  VERB  GN 0.6 
EN-NOOD ⇒  GN  VERB  COMPS 0.4 
EN-NOOD ⇒  GN  VERB  0.6 
GN ⇒  GN1 0.9 
GN ⇒  GN1  REL 0.1 
GN1 ⇒  GN2 0.6 
GN1 ⇒  GN2  ADJS 0.2 
GN1 ⇒  GN2  GP 0.2 
GN2 ⇒  DET  nom 0.5 
GN2 ⇒  nom 0.2 
GN2 ⇒  pronom 0.3 
DET ⇒  art 0.6 
DET ⇒  pos 0.1 
DET ⇒  dem 0.1 
DET ⇒  quant 0.1 
DET ⇒  indef 0.1 
REL ⇒  que  EN-NOSUBJ 0.5 
REL ⇒  que  EN-NOOD 0.5 
ADJS ⇒  adj  ADJS 0.2 
ADJS ⇒  adj 0.8 
VERB ⇒  VERB1 0.8 
VERB ⇒  neg  VERB1 0.2 
VERB1 ⇒  tv 0.7 
VERB1 ⇒  PERIF 0.1 
VERB1 ⇒  vhaver  part 0.1 
VERB1 ⇒  aux  inf 0.1 
PERIF ⇒  aux  prep  inf 0.4 
PERIF ⇒  aux  ger 0.6 
COMPS ⇒  GP 0.7 
COMPS ⇒  GP  COMPS 0.3 
GP ⇒  prep  GN 1.0 
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5.1   Preliminary Experiments 

 

A first insight on the possibility of using island-driven chart parsing for syntactic corpus 

analysis was necessary, so the behaviour of our methodology has been initially evaluated on 

simple data. As to the data sources, we will skip the even more simple previous grammars 

explored (between 5 and 12 rules, tested on fictitious sentences), and focus on the results 

obtained for the toy context-free grammar showed in table 1, an extremely simple grammar for 

Spanish composed by 36 rules (with 15 nonterminal symbols and 17 terminal symbols29), to 

whom probabilities have been manually added. From this SCFG, the reachability tables needed 

in order to compute the local approach have been calculated (see section 3.5.1).  

The system has been tested on a small corpus of 100 sentences extracted from the [Cervell et 

al., 1995] Spanish corpus. The sentences have been culled in such a way that they are 

grammatical according to the grammar, its average length being 10 words. The initial purpose 

was to compare the performance of the baseline approaches with that of our island-driven 

methodology, as well as to evaluate the influence of the initial island selection on the 

performance of the latter. Hence, although we use the criterion described in the previous section 

for this selection (choose as islands those non-ambiguous words in a morphologically labelled 

but non tagged corpus), we will also test the possibility of both a non-exhaustive use of these 

islands and the use of no selection criterion at all. Therefore, the test corpus has been analysed 

using the following methodologies: 

 

• Bottom-Up strategy. 

• Top-Down strategy. 

• Island-Driven local approach, using as initial island just one element (the first one, 

which could be considered a first stage of the bidirectional method, still a little left-

to-right-oriented) from the set of non-ambiguous words. 

• Island-Driven local approach, conventionally applied, with the complete set of non-

ambiguous words as initial islands. 

• Island-Driven local approach, randomly selecting both the number of initial islands 

and the islands themselves out of all the words in the sentence (which implies that  

certain initial islands might be ambiguous). 

 

                                                           
29 We use the conventional terminology in which upper-case symbols represent nonterminals and lower-
case symbols, the terminals of the grammar. 
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The island-driven neighbouring model has not been tested in these preliminary experiments, as 

the training of the model would have required the existence of a large enough corpus of 

grammatical sentences which, obviously, is not available for such a simple grammar.  

Table 2. Comparative results between unidirectional and island-driven approaches 

 
Sentence length 

Island-Driven 
one island 

Island-Driven 
all islands 

Island-Driven 
random islands 

Bottom-Up Top-Down 

L < 8 words      
Inactive edges 25 20 48 64 27 
Active edges 81 71 139 120 136 
All Edges 106 91 187 184 163 

7 w < L < 13 w       
Inactive edges 122 80 123 182 86 
Active edges 179 164 269 276 243 
All Edges 301 244 492 458 329 

12 w < L < 20 w      
Inactive edges 185 112 146 236 102 
Active edges 310 240 258 333 375 
All Edges 495 352 404 569 477 

 

The average number of edges needed in order to find the first parse with each method are shown 

in table 2. The corpus has been divided into three subsets according to different sentence lengths 

(up to 7 words, between 8 and 12, and larger than 12 words), so as to observe also the influence 

of this factor in performance. Several immediate conclusions can be drawn from these data: 

 

• The better performance of the top-down methodology compared to bottom-up was 

predictable, taking into account that the ambiguity in order to test the islands 

performance has been introduced from the lexicon. Moreover, it has been observed 

that, the higher the ambiguity rate, the larger the difference between both 

unidirectional methodologies. 

• Whenever a sound criterion for island-selection is applied, island-driven approaches 

outperform unidirectional strategies. The only exception is the selection of just one 

island for sentences with more than 12 words, in which island-driven methodology 

presents slightly worse results than top-down approach. We conjecture that this 

happens because, for larger sentences, the selection of just one island implies a 

higher percentage of top-down prediction needed in order to cover the rest of the 

sentence, which in turn implies the corresponding edge overhead. Moreover, the 

difference between island-driven and unidirectional methodologies increases with 

the length of the sentences, which is a promising fact considering we are aiming at 

the analysis of real-size sentences. 

• The random selection approach performs quite poorly, even compared to the 

unidirectional strategies, the only exception being the case of sentences with more 
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than 12 words. The fact that this latter case obtains results 18% better than the same 

strategy with smaller sentences shows to what extent the results themselves are not 

indicative.  However, what we do can conclude from these data is the influence of 

the island-driven selection criterion in the parser performance. 

 

5.1.1   Island Distribution Measures 

 

So far, we have just tested the extreme options of island-selection (either one or all islands). A 

more thorough study of the intermediate cases for this corpus has shown that: 

 

1. The average number of edges decreases as the number of islands selected increases 

in 46% of the sentences. 

2. The average number of edges decreases as the number of islands selected decreases 

in 6% of the sentences. 

3. 22% of the sentences do not present a concrete trend. 

4. The rest (26%) of the sentences have only one island, so they are not representative. 

 

However, if we select the optimum combination for each number of islands selected, we find 

that: 

 

1. The optimum number of edges decreases as the number of islands selected increases 

in 15% of the sentences. 

2. The optimum number of edges decreases as the number of islands selected 

decreases in 11% of the sentences. 

3. 48% of the sentences do not present a concrete trend. 

4. The rest (26%) of the sentences have only one island, so they are not representative. 

5. Within the set with more than one island (74%), the optimum number of edges is 

found when selecting all islands in 18% of the sentences. 

6. Within the set with more than one island (74%), the optimum number of edges is 

found when selecting all but one, two or three islands (when possible) in 52% of the 

sentences. 

7. The rest of the sentences (30%) present the optimum number of edges when a lower 

number of islands is selected. 

 

From the previous results, it follows that a more accurate study of the intermediate cases is 

necessary, including an analysis of which particular islands from the set (if any) should be 

selected, according to criteria such as the position in the sentence, the sort or part of speech, etc., 
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so as to increase performance. With such a purpose, we have defined the following three 

measures, which intend to model the distribution of the islands in the sentence: 

 

1. Gap Coverage. If we define a semi-gap to be that gap at the very beginning or end 

of a sentence, and we define that a gap is covered when the islands surrounding it 

are selected (in case it is a semi-gap, only one island is needed to completely cover 

it, two islands are needed for the rest of the gaps in the middle of the sentence), the 

gap coverage can be in turn defined as the percentage of borders gap-island (or 

island-gap) covered. Two types of coverage are computed: 

 

(36)   
totalislandgap

covered islandgap#  C1
 # −

−=  

 

(37)   
selectedislands
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selectedislands
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Where the total number of gap-islands is 2∗  # gaps + # semi-gaps. 

In case all the words in the sentence are islands (there are no gaps to cover), 

coverage is defined to be 1. 

2. Island Dispersion. If we define a continent to be a set of adjacent islands, and a 

taken continent to be a continent in which at least one island is selected, two types 

of dispersion can be in turn defined as: 
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Dispersion measure takes into account whether a continent contains selected 

islands, independently of their number. 

3. Island Density. Density measure considers the percentage of islands selected in each 

continent. Two versions of this measure are defined: 
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(41)   
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A new series of experiments has been carried out that selects as initial islands (out of the set of 

non-ambiguous words), the first combination of islands which would maximise each of the 6 

measures defined above30. The same 100 sentence corpus has been analysed with the island-

driven local approach, obtaining the average results listed in table 3. All the island-driven 

approaches outperform the unidirectional ones, though the best results are obtained by the 

combinations of islands chosen by means of criteria C1 and DE1. However, the low 6% 

improvement obtained with respect to the option which selects all islands might not seem 

significant enough for the additional effort in the selection to be worth.  

Table 3. Comparative results for the island selection criteria based on measures 

Island-Driven  
All 

islands 
C1 C2  DI1 DI2 DE1 DE2 

Bottom-
Up 

Top-
Down 

Edges 224 211 304 263 350 210 302 391 346 
 

An unexpected fact is the systematic worse behaviour of the criteria which scale the result by 

the number of islands selected (C2, DI2, and DE2). We have tried to improve the values 

obtained by these measures, looking for a more relevant improvement obtained by this criteria 

than the one achieved by C1 and DE1. A modification has been devised that would not give that 

much weight to this feature, multiplying the quantity by a factor α (α ≤ 1). Thus, instead of 

formulae 37, 39, and 41, we would define, respectively, formulae 42, 43, and 44: 

 

(42)   C2’ = C1 / α ∗   # islands-selected 

(43)   DI2’ = DI1 / α ∗   # islands-selected 

(44)   DE2’ = DE1 / α ∗    # islands-selected 

 

The obtained results are shown in the upper part of table 4, for values of factor α ranging from 

0.25 to 1 (in the latter case, the values will correspond to the previous version with no 

factorisation). It can be observed that the changes are minimum, and always increasing the 

average number of edges with the value of factor α. An additional factorisation has then been 

tested, modifying the previous formulae in such a way that, for α = 0, the values will correspond 
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to measures C1, DI1, and DE1, while for α = 1, the values will continue to be equivalent to C2, 

DI2, and DE2. The new formulae are the following ones: 

 

(45)   C2’’ = C1 / 1 + (α ∗   # islands-selected − 1) 

(46)   DI2’’ = DI1 / 1 + (α ∗   # islands-selected − 1) 

(47)   DE2’’ = DE1 / 1 + (α ∗   # islands-selected − 1) 

 

The corresponding results are listed on the lower part of table 4. It can be observed that the 

difference between the values obtained for the different α is more significant, but for all the 

three measures there is still a clear tendency of increase of the average number of edges as the α 

do, no sign of improvement with respect to the original measures.  

Table 4. Comparative results for the selection criteria based on factored measures 

Edges α = 0 α = 0.25 α = 0.50 α = 0.75 α = 1.0 
C2’ --- 304 304 304 304 
DI2’ --- 338 338 338 350 
DE2’ --- 301 301 301 302 
C2’’ 211 218 272 270 304 
DI2’’ 263 263 263 263 350 
DE2’’ 210 241 264 263 302 

 

An additional test was carried out in which all three measures were lineally combined as β∗ C1 + 

δ∗ DI1+ ε∗ DE1 (with 0≤ <β, δ, ε ≤ 1). The idea was to try and find the optimum combination 

<β, δ, ε> which minimised the average number of edges. It was observed that some measures 

had more influence than others (the concrete ranking was first DE1, second C1, and third rank 

for DI1, as could be expected from the results in table 3), so that, for instance, whenever DE1 

was not zero, the average number of edges returned by the resulting criterion was always the 

same as if the only measure considered was DE1. Therefore, not being able to improve previous 

results, the line was not further explored.  

 

5.1.2   Island Categories 

 

The previous section pointed out that another factor to consider when trying to increase 

performance through the initial island selection might be the particular category of the words 

(and their relationships to the grammar). In order to explore this line, we have defined the 

following two measures: 

 

                                                                                                                                                                          
30 In the case of measure C1, value 1. 
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1. NR(category) is the number of occurrences of category in the righthand sides of the 

rules of the grammar. 

2. INR(category) is the number of rules that a category may eventually fire (either 

directly of indirectly). 

 

Whenever we are dealing with a combination of more than one island, both NR and INR values 

are taken to be the addition of the individual values for each category. The sentences of a subset 

of our test corpus have been analysed, for each possible number of selected islands, using as 

initial islands those combinations producing the maximum and minimum values of NR and INR. 

There does not seem to be a systematic behaviour, but the trend indicates that the combinations 

with minimum NR values produce a lower number of edges than those with maximum NR 

values, and the difference is even higher if we compare, for the same number of islands 

selected, the combinations with minimum INR versus the ones with maximum INR. These 

results are expectable, since one might think that a lower degree of ambiguity in the grammar 

should produce less edges, as the search space is being pruned.  

Since the previous experiments have shown that the best results are often obtained by a 

selection of not all islands but (informally speaking) almost all of them, an additional 

experiment has been conducted in which a subset of the test corpus (those sentences with more 

than two original islands) is analysed by the island-driven parser, using the following 

combinations of initial islands: 

 

1. The combination selecting all islands (all nonambiguous words in the sentence). 

2. Those combinations taking all but one island. According to the island discarded, four 

variants are considered: 

� Discard the island with the highest NR. 

� Discard the island with the lowest NR. 

� Discard the island with the highest INR. 

� Discard the island with the lowest INR. 

3. Those combinations taking all but two islands. According to the two islands 

discarded, the same four variants of point 2 are considered. 

Table 5. Comparative results for the island selection based on measures NR and INR 

All but one island All but two islands  All 
islands max 

NR 
min 
NR 

max 
INR 

min 
INR 

max 
NR 

min 
NR 

max 
INR 

min 
INR 

Edges 271 299 309 300 306 341 342 308 333 
 

Table 5 shows the corresponding results (where “max NR” column indicates discarding the 

island with the highest NR, and so on). The trend described above is corroborated, since the 
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average number of edges is smaller if the discarded islands present higher NR or INR values. 

However, it can be observed that the optimum number of edges is the one obtained by the 

approach selecting all nonambiguous words as islands. Therefore, these measures by themselves 

do not seem to be valid as criteria to discard some of the original islands. However, a last 

experiment was carried out trying to combine the optimum results obtained by the maximum 

coverage approach defined in section 5.1.1 (see measure C1 in table 3) with the fact that 

minimum values of (specially) INR provide a good selection criterion whenever not all islands 

are chosen. Therefore, assuming that a complete coverage is desirable, but better if not at the 

prize of taking all islands, we will analyse the sentences in the complete corpus set with the 

combination of initial islands c satisfying the following requirements: 

 

1. Combination c (of n islands, value INR = v) gives a value of coverage C1 = 1. 

2. No combination c1 of n1 islands, n1 < n, gives a value of coverage C1 =1. 

3. No other combination of n islands gives a value INR < v. 

 

The resulting average number of edges is 241 (12.4% more than in the case where just the 

maximum C1 criterion was employed), which finally discards completely the selection based on 

the grammatical ambiguity of the categories. 

Certainly, many of the experiments performed have not lead to significant results. In fact, 

some of them have just been outlined or have not even been included in this thesis. Yet, what 

can be drawn from these preliminary experiments, both from the global figures as well as from 

the particular cases with have been examined, can be summarised as follows: 

 

1. The island-driven methodology is definitely worth it with respect to the 

unidirectional strategies. 

2. The significance of the criterion for the selection of the initial islands cannot be 

underestimated. 

3. The nonambiguous selection criteria fixed, it looks like it generally benefits not to 

select all nonambiguous islands, but those immediately surrounding gaps and non-

contiguous (dispersed islands). However, it is difficult to generalise this point to any 

grammar and corpus, and the improvement obtained (versus the case of selecting all 

islands) is not relevant enough. 

4. The influence of the concrete categories when selecting initial islands is uncertain. 

 

The corollary to these conclusions might be that it is complicated to assure to what extent these 

facts can be extrapolated to other grammars and corpora, in particular to real grammars and 

corpora. This is what we will be intending to do in the rest of the chapter.  
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5.2   Experiments on Real-Size Corpora: Setting 

 

If the temporal efficiency of the parser is attributable to its architecture, its effectiveness is 

largely a function of the grammar. The grammar is viewed, not as a linguistic description, but as 

a programming language for recognisers. This is an important remark for, as it will be shown 

below, the results are highly dependent on the quality of the grammar used. Our methodology 

does not supply a specific knowledge source (as in [Collins, 1997]), but it can be applied to any 

existent SCFG. As seen in section 5.1, we have tested it with several artificial grammars, 

obtaining some initial conclusions. However, we wished to compare our strategies using a 

grammar as close as possible to a real one. These experiments, which have been described in 

[Ageno & Rodríguez, 2000] and [Ageno & Rodríguez, 2001b], evaluate our methodology both 

on a Spanish corpus and grammar as well as on an English one. Subsections 5.2.1 and 5.2.2 

describe both corpora and grammars. 

The first criterion chosen for the selection of the islands has been to consider as initial 

islands those non-ambiguous words. As in the previous section, efficiency has been measured in 

terms of the number of inactive and active edges created during the parsing process, that is, the 

ones required to find the first parse. 

 

5.2.1   Lexesp Corpus 

 

On the one hand, we have used the Lexesp31 Spanish corpus, 5.5 Mw of written material 

including general news, sports news, literature, scientific articles, etc. (for a deeper description 

see for instance [Sebastián et al., 2000]). Lexesp corpus aims to be a balanced and general 

sample of modern Spanish language usage. As such, the length of the sentences is variable 

(though long sentences are usual), subordinate clauses appear very frequently and there are 

several types of text such as dialogues or narrations which present a broad variety of different 

(and eventually complex) sentence structures. Lexesp corpus is not syntactically annotated, but 

simply morphologically analysed (and not disambiguated32), and sentence boundaries are not 

indicated either. 

Lacking a complete grammar for Spanish, we have been obliged to use an extension of an 

available chunk grammar. In particular, the original chunk grammar was able to recognise: 

 

1. Nominal, adjectival, verbal, prepositional, and adverbial phrases. 
                                                           
31 Constructed during Lexesp II project (‘Base de Datos Informatizada de la Lengua Española’, Special 
Action APC96-0125), a multidisciplinary effort headed by the Psychology Department of the University 
of Barcelona, in collaboration with the Psychology Department of the University of Oviedo. 
32 In fact, though we have not used it, a small fragment (about 100Kw) of Lexesp corpus has been 
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2. Lexical and syntactic coordination (with some ambiguities). 

3. Subordination marks. 

4. Check of agreement within nominal phrases. 

 

This grammar was then extended by means of the addition of 18 sentence-level rules in order to 

be able to recognise complete sentences. The final grammar included 704 rules, 123 

nonterminal symbols and 310 terminal (Eagles compliant) ones ([Castellón et al., 1998]). The 

complete tag set is described in Appendix A, and the nonterminal categories are described level 

by level in Appendix B.  

As mentioned, our methodology belongs to the type of supervised methods (see section 

2.2.1), that is, we need a syntactically annotated corpus in order to learn the stochastic 

parameters of our two models. Hence, a sort of small treebank had to be created on the way. The 

first problem arising in such a complex corpus as Lexesp was the determination of the syntactic 

boundaries of the sentences. A highly simple sentence splitter, mainly based on the detection of 

certain punctuation signs, was used for this task. Secondly, the sentences had to be syntactically 

analysed, for which the bottom-up chart parser was used (see the end of section 3.2). It is 

important to emphasise that no subsequent manual correction at all has been performed after any 

of both processes. With an obtained training corpus of 10,000 sentences, the learning process 

consisted of the following two phases: 

 

1. The probabilities attached to the context-free grammar rules were firstly learnt by 

means of the training corpus. We use the Maximum Likelihood Estimation procedure 

already described in section 2.2.1.1 (formulae 1 and 2). 

2. The stochastic parameters for both models were learnt from both the training corpus 

and the previously obtained SCFG. As regards the local model, the data structures 

containing the elementary probabilities, the Lreachability and Rreachability tables 

can be obtained directly from the SCFG (see section 3.5.1). As to the neighbouring 

model, in a first step, we use an extension of the aforementioned Maximum 

Likelihood Estimation procedure in order to calculate, from the training corpus, the 

probabilities of length distributions in the right-hand sides of the SCFG productions 

(length in terms of number of terminal symbols). This step produces a SCFG 

extended with this additional information (say SCFG+d). The data structures 

containing the elementary neighbouring probabilities, matrixes M1 to M4 (see 

section 3.5.2) can then be computed from this SCFG+d. Finally, matrixes Result, 

                                                                                                                                                                          
manually PoS-tagged, and the rest has been automatically tagged using the RELAX PoS-tagger. 
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containing the definite neighbouring parameters, are computed from M1 to M4 (see 

also section 3.5.2). 

 

A corpus of 1,000 sentences was reserved for testing. The average length of the sentences in the 

test set was 13.15 words. This low average length is due to the fact that the sentences in the test 

set had to be covered by the grammar, and the low quality of the grammar implied that the 

coverage was very poor, and most of the longer sentences were not recognised. 

As mentioned above, the first criterion chosen for the selection of the islands has been to 

consider as initial islands those non-ambiguous words. Therefore, the analysis of these 

sentences must be performed without previous PoS-tagging.  

 

5.2.2   Penn Treebank Corpus 

  

On the other hand, we have used the Wall Street Journal portion of the English Penn Treebank 

II ([Marcus et al., 1994]), which comprises 1.25 Mw of 1989 Wall Street Journal material, and 

that hereinafter will be referred to as PTB-II. Being only journal articles (specifically belonging 

to the economics domain), the sentence structure is far more homogeneous. The corpus is 

annotated with a labelled bracket structure that allows for the extraction of predicate-argument 

structure. Nevertheless, all trees have been stripped off their semantic tags, co-reference 

information and quotation marks.  

As we also lacked a complete English grammar, we adopted the typical solution (when 

dealing with PTB-II) consisting in extracting the grammar underlying the bracketing. The 

obtained grammar had 26 nonterminal symbols and 45 terminal ones (the list of part-of-speech 

tags is described in Appendix A, while the nonterminal labels are summarised in Appendix B). 

However, its size (17,534 rules) was simply too big to contemplate for our parser. Therefore, 

and given that many of the rules occur so infrequently, we have applied a simple thresholding 

mechanism to prune rules from the grammar ([Gaizauskas, 1995]). This mechanism consists 

simply in removing all rules that account for fewer than n% of rule occurrences of rules in each 

category. In our case we have used n=22, obtaining a grammar with 941 rules and the same 

number of terminal and nonterminal symbols. This reduction of the grammar has shown to keep 

a coverage of 60% over the test corpus. This reduction of coverage does not affect our 

experiments, inasmuch as our goal is to compare our methodologies with our baselines in the 

same framework, that is, given a grammar, and not to test grammar accuracy. 

In order to estimate the parameters of both stochastic models (plus the probabilities attached 

to the grammar rules), a training corpus of 48,208 sentences directly extracted from the treebank 

has been used. The training methodology is exactly the same as the one already described for 

Lexesp in the previous section (points 1 and 2). While local parameters can be considered 
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accurately learnt, neighbouring parameters are far more complex, which implies the sparseness 

problems that will be described below. A corpus of 1,000 sentences extracted randomly from 

sections 13 and 23 (from those sentences covered by our grammar) was used for testing. 

Average length of the test set is 21.5 words. 

As regards the selection of the initial islands (non-ambiguous words in the first version of the 

evaluation process), it has been mentioned in the previous section that for corpus Lexesp we 

were already dealing with a categorised but non-tagged corpus. However, for the Penn Treebank 

(already morphologically disambiguated), we had to perform a previous process of ambiguation 

of the input sentences (that is, add to each word all its possible tags). The coverage of our 

reduced grammar subsequently increased, so that in a significant percentage of the cases we 

have been able to parse the sentences due to the process of ambiguation of its terminal 

categories. It is important to remark that, on the other hand, the possibility of incorrect decisions 

during the parsing process has also increased.   

 

5.3   Global Results 

 

Overall figures corresponding to both corpora (using both pure local and neighbouring 

approaches) are shown in table 6. In general, the use of SCFGs has proven to be relatively 

successful if an appropriate grammar for a given language is available, along with a large 

enough labelled corpus of written sentences so that production probabilities, as well as the rest 

of the stochastic parameters of the models, can be estimated with acceptable precision.  

As stated in [Allen, 1995], the following three features can be considered to make a good 

grammar for a language: 

 

• Generality, that is, the range of sentences the grammar is able to analyse correctly. 

• Selectivity, i.e., the range of non-sentences that the grammar identifies as 

problematic. 

• Understandability, that is, the simplicity of the grammar itself. 

 

In the case of the Spanish experiments, unfortunately we have had to deal with the following 

drawbacks: 

 

1. A grammar lacking generality: we had to deal with a low quality grammar, for the 

more complete grammar for Spanish we had available was simply a chunk grammar, 

coarsely extended so as to allow us to recognise complete sentences. Spanish being a 
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free word order language, the importance of having available accurate sentence level 

productions is higher than in English. 

2. An extremely large tag set (310 tags, see Appendix A), mainly because each main 

syntactic category has several variants codifying features such as gender, number, 

person, tense, etc. This fact leads to the existence of a high percentage of unary rules 

whose only function is to group together the tags corresponding to the same main 

syntactic function by means of a pre-terminal, in order to avoid a combinatorial 

explosion of rules. The understandability of the grammar is then highly reduced. 

3. The lack of a treebank for such a grammar (or any!). Therefore, in order to perform 

the learning process, we had to previously segment the training corpus into 

sentences, analyse it using the bottom-up parser, and then utilise such parses as the 

training set. This means that both the probabilities attached to the context-free 

grammar as well as the stochastic parameters attached to both models reflect the 

behaviour of the bottom-up parser instead of the one corresponding to the correct 

parses. Somehow we have been, as you would put it in Spanish, “throwing stones at 

our own roof”. 

 

In fact, the application of the final version of the grammar to the complete Lexesp corpus did 

not get to 10% of coverage. Moreover, this small percentage which was recognised 

corresponded to the simpler and shorter sentences. That is why the average sentence length of 

the training and test corpus is far smaller than in the case of the English experiments, despite the 

average length of Spanish sentences is longer than that of English sentences.  

Table 6. Comparative results for corpora PTB-II and Lexesp and the pure approaches 

 Local Neighbouring Bottom-Up Top-Down 
PTBII     

Inactive edges 2569 1488 2525 1627 
Active edges 13777 14402 54638 19301 
All Edges 16346 15890 57163 20928 

Lexesp     
Inactive edges 116 120 143 116 
Active edges 648 959 645 5669 
All Edges 764 1079 788 5785 

 

These facts have shown to be relevant for the global results: although top-down baseline is 

widely overcome by all the other methods, we find that the local method hardly gets to 

outperfom the baseline bottom-up (improvement of 3%). Moreover, the most striking thing is 

the larger difference between a more informed method such as neighbouring and the bottom-up 

baseline. A more detailed analysis suggests that, on the one hand, the neighbouring method, 

whose parameters are more complex, is more prejudiced by such a defective learning process, 
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and on the other hand, the shape of the grammar, with a high percentage (65 %!) of unary rules, 

particularly those of the form “preterminal → terminal” (82% of the unary ones), prevents from 

performing a suitable step of (particularly initial) extension of islands, which affects the rest of 

the parsing process. 

As to the English experiments, the results are really good, both models outperforming by far 

both baselines. A problem with inducing grammars from the Penn Treebank is that, because the 

trees are very flat, there are lots of rare kinds of flat trees with many children (see the part of 

section 2.2.1.1 above devoted to tree-bank grammars and in particular to PTB’s scarce 

generalisation capacity). In our case, the flatness itself is a benefit for our methodology, as well 

as the bigger length of the right-hand sides of its rules (3.59 elements in average versus 1.62 for 

Lexesp), as it allows the expansion of several islands at the same level. However, the variety of 

trees provokes that the neighbouring method suffers from data sparseness.  

As mentioned in section 3.3 and justified in section 3.5.2, by strict application of 

neighbouring probabilities we do not get a full coverage, making necessary a back-off to other 

exhaustive method (that is, local, bottom-up, or top-down). Using the same test set, as expected 

neighbouring plus local as a back-off improves by far the results of neighbouring plus bottom-

up (for PTB corpus, the first alternative obtains an average number of edges of 15,890 versus an 

average of 25,460 edges obtained by the latter option). Therefore, henceforth (as well as in the 

table above) by neighbouring we will mean the neighbouring model plus a back-off to local 

method when no analysis is found. We have also applied the heuristics mentioned in section 

3.5.2 aimed at improving neighbouring performance. In particular, the aforementioned 

threshold for the neighbouring predictions has been empirically set to 0.1 (avoiding the creation 

of around a 7% of unnecessary edges). 

Finally, and although it is not our subject of interest here, we would like to remark about 

quite an astonishing found, which is the difference in the performance of top-down baseline 

with respect to bottom-up for both corpora and grammars. As stated in [Klein & Manning, 

2001], top-down filtering introduces a penalty regarding the number of edges, as rules whose 

left-corner cannot be built are anyway introduced in the chart. This fact was apparent when 

dealing with Spanish corpus Lexesp (and almost led us to discard testing the top-down baseline 

for the Penn Treebank corpus!), and the problem got worse because of the particular shape of 

the grammar (and consequently the parse trees) mentioned above: small production right-hand 

sides and parse trees with more levels, which would oblige the parser to operate for quite some 

time, rewriting rules from the grammar before the actual words in the sentence get to be 

considered. However, one significant advantage of top-down methods (see for example [Allen, 

1995]) is that they will never consider word categories in positions where they could not happen 

in a grammatical sentence. In the case of our modified (ambiguated) Penn Treebank corpus, 

where (as mentioned above) parse trees are flatter, this feature has been critical, considering we 
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are analysing highly ambiguous input sentences. When parsing such sentences, the bottom-up 

parser must take into account all senses of each word and construct structures that may not lead 

to a grammatical sentence. This justifies the far better results obtained by the top-down method 

compared to the bottom-up baseline (63% reduction in the average number of edges). 

Additionally, we have subsequently evaluated the modified versions of the local model 

which compute the scorings basing on the maximum of the probabilities of the derivations 

instead of on their summations. As mentioned at the end of section 3.5.1, this modification has 

been performed in two stages, producing the corresponding approaches which will be 

hereinafter denoted local-max1 and local-max2. The evaluation has been performed only for the 

Penn Treebank corpus, and the results are listed in table 7. It can be observed that the gradual 

scoring change produces gradual slight improvements in the average number of active edges, 

which make up for the even more slight gradual increases in the number of inactive edges. That 

is, the more we base our choice of scores on maximisation of derivation probabilities instead of 

on summation of derivation probabilities, the more the total average number of edges decrease, 

obtaining a final 2.7% improvement. This percentage is relevant enough to make us think about 

a new line of further future work.    

Table 7. Comparative results for corpora PTB-II and the local approaches 

 Local Local-max1 Local-max2 
PTBII    

Inactive edges 2569 2579 2581 
Active edges 13777 13403 13320 
All Edges 16346 15982 15901 

 

5.4   Detailed Results 

 

We have tried to test the behaviour of each method according to the kind of sentences being 

parsed. The idea is to be able to figure out in which cases a more informed model should be 

applied, using then a sort of hybrid method which chooses the approach on the way. Therefore, 

the test corpus has been divided into groups according to several criteria, and the average 

number of edges needed to parse the sentences of each group has been computed for our 

methods as well as for the baseline bottom-up. The tendencies for both corpora and languages 

have been similar, so we only include the detailed results for corpus PTB-II. The performance 

of our approaches is quantitatively more appealing than bottom-up’s for all cases, though 

differences vary and may indicate in turn different behaviours of the models. The examined 

criteria have been the following ones: 

 

1. Length of the sentence (L = #words), starting from group 0 (L<10) to group 9 (L>38). 
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2. Ambiguity rate, A = #tags / #words. Ambiguity groups range from 0 (A<2) to 9 (A>3.5). 

3. Density of islands, D = #islands / #words. Densities span from group 0 (D<.25) to group 

9 (D>.70). 

4. Maximum Island Distance, MID = length of the longest gap. We consider MID values 

from MID<2 (group 0) to MID>11 (group 9). 

5. Island Dispersion, DI = Σ length_of_gaps / #gaps. Dispersions span from group 0 

(DI<1.5) until group 9 (DI>7). 
 

Figures 13 to 18 depict the obtained results for PTB-II. For the sake of clarity, we present the 

results in linear and logarithmic scales, though only for the case of criterion 1 (figures 13 and 

14). 
 

0

14000

28000

42000

56000

70000

84000

98000

112000

126000

140000

154000

168000

182000

196000

210000

0 1 2 3 4 5 6 7 8 9

av
er

ag
e 

nu
m

be
r 

of
 e

dg
es

sentence length groups

Local
Bottom-Up

Neighb.1

 
Figure 13. Average #edges/sentence for each group of sentences of a certain length 
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Figure 14. Average #edges/sentence for each group of lengths, in logarithmic scale 
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Figure 15. Average #edges/sentence for each group of sentences of a certain ambiguity rate 
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Figure 16. Average #edges/sentence for each group of sentences of a certain island density 
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Figure 17. Average #edges/sentence for each group of sentences of a certain MID 
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Figure 18. Average #edges/sentence for each group of sentences of a certain island 

dispersion 
 

As regards sentence lengths, notice that both local and neighbouring always outperform bottom-

up, the performance gap increasing in absolute value with the sentence length. Local's 

performance keeps above neighbouring’s in all groups except for the longest sentences, which 

is encouraging if we mean to deal with real corpus. We have included also the same figure in 

logarithmic scale, so that it can be observed how the difference between the methods keeps 

constant, whatever the sentence length. As sentences get more ambiguous, bottom-up’s 

performance degrades notoriously, whereas our methods’ is smoother and more nearly 

monotonic. Regarding the island density, as the number of islands gets close to the total number 

of words, performance of baseline bottom-up is more comparable to local and neighbouring 

(albeit the latter is always better). MID’s graphic presents a suspicious similarity with length’s 

one (though the increment of number of edges is more gradual). By computing the crossover 

between both measures, we have seen that this may happen because the cases of larger gaps 

often overlap with the cases of the larger sentence lengths. Once more local and neighbouring 

dispersions are quite comparable, as well as smoother and more nearly monotonic than bottom-

up’s. 

 

5.5   Results on Hybrid Methods 

             

So far, in order to reach a complete coverage of the corpus for the neighbouring model, a back-

off is performed whenever a parse ends unsuccessfully. Using this strategy, neighbouring’s 

performance does not improve local’s. Hence, why not try the back-off before? We have 

developed two new heuristic strategies, the difference between them lying in the criteria 

employed to advance the change to the local approach. In the first one, we will back off when a 

percentage of the sentence has been covered by the islands that are being extended. In the 

second one, whenever a certain number of extension-prediction loops have been performed. The 

motivation in both cases is the impression that, as islands grow bigger (augmenting the density 
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of space covered by islands), local predictions seem to be more accurate, so that the more 

informed neighbouring predictions are no longer needed. Contrary to the extension 

probabilities, it looks like the neighbouring prediction probabilities force the parser to 

concentrate on edges which are plausible around the current portion of the sentence, generating 

multiple parses for the same substring (the effect is stressed by the fact that in top-down 

prediction the combinatorial explosion is higher). The fact that the figures of independent merit 

might work accurately as relative measures for ranking different parses of the same area of the 

sentence, but not as well as absolute measures for ranking parses of different areas of the string 

had also been observed by [Blaheta & Charniak, 1999] in their figures of merit. In our case, we 

notice that, whereas the neighbouring island extension probabilities work rather accurately 

globally, the neighbouring prediction ones present this flaw.  

Returning to the two new heuristic strategies, needless to say both the optimum percentage 

and number of cycles have been computed empirically according to a validation set. In this case, 

all the experiments have been tested only on the PTB-II, mainly due to the difference in the 

quality of the results obtained. In figure 19, we have presented the average number of edges for 

a number of cycles from 0 (purely local approach) to 30 (what we have regarded as an “infinite” 

number of cycles, that is, purely neighbouring approach). These averages are computed for a 

subset of 100 sentences randomly chosen from our 1,000 sentences’ test set. There are two clear 

minima for 1 and 4 cycles (henceforth respectively neighb-1cycle and neighb-4cycles), and it 

can be seen that performance degrades for both pure approaches. 
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Figure 19. Average #edges/sentence for each number of neighbouring cycles 

 

In figure 20, we have represented the average number of edges for a coverage percentage from 

0% (purely local approach) to 100% (purely neighbouring approach). There is a clear minimum 

for  40% of coverage (hereinafter neighb-40%), and again performance degrades for non-mixed 

methodologies. 

A more thorough study reveals that one main advantage of the neighbouring approach with 

respect to the local one is the extension at lexical level: as mentioned above, neighbouring 
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probabilities are more accurate at capturing the absolute ranking of islands to be extended, for 

the information they consider allows for an overall view that the local model lacks. That is why 

simply starting the parsing process by introducing terminal and pre-terminal edges into the 

extension heap according to neighbouring probabilities, and then backing off to the local model, 

represents an improvement in most cases (around 55% in average!). Neighbouring probabilities 

guide the analysis at a preliminary stage of the extension of the islands, backing off to the local 

model whenever the former approach would have to start a much more blind process of 

prediction. The ‘guiding’ potential of the neighbouring model during the extension is higher 

but, due to the sparseness of the training data, lots of potentially possible cases are assigned 

probability zero and must be left behind for prediction, which introduces far more overhead than 

the extension. 
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Figure 20. Average #edges/sentence for each percentage of coverage of the sentence 

 

Besides, whenever a back-off to the local model must be performed, all lexical edges (and not 

only the islands) have to be re-introduced in the extension heap in order to be sure of getting a 

full coverage. The fact that in some cases this mode of operation gets a better performance than 

a pure local or neighbouring approach might indicate that in these cases, the original islands 

have not been correctly chosen33, and points at a new direction of research in other methods of 

selection. 

The criteria described above have been applied to the complete test set for the three optima 

obtained. Results can be seen for the cycles approach and the five criteria in figures 21 to 25. 

Except for the single case of MID strictly smaller than 2, the two neighb-cycles approaches 

clearly outperform both purely local and neighbouring approaches. We have not considered it 

relevant to include the results obtained by the neighb-40% approach, since they are rather 

similar.  

 

                                                           
33 Let’s recall that the current island-selection criterion is simply to choose as islands all those words 
having only one PoS tag. 
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Figure 21. Average #edges/sentence for each group of length’s sentences and for each 

method 
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Figure 22. Average #edges/sentence for each 
group of ambiguity rate and for each method 
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Figure 23. Average #edges/sentence for each 
group of island density and for each method 
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Figure 24. Average #edges/sentence for each 
group of MID and for each method 
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Figure 25. Average #edges/sentence for each 
group of island dispersion and method 

 

It has also been tested whether the behaviour of the coverage approach remains constant when 

changing the prediction threshold (defined in section 3.5.2). Results can be seen in figure 26. 

The minimum corresponds to threshold = 0.9, and a coverage of 40%; it can be observed that 

the tendency is quite similar for all thresholds. 
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Figure 26. Average #edges/sentence for each percentage of coverage of the sentence 

 

Up to now, we have regarded coverage as the number of words of the sentence covered by an 

island, initial islands included. This implies obviously that results rely on the initial selection, 

and sentences in which more initial islands are chosen are somehow ‘favoured’. Therefore we 

have also tested what we have denominated gained coverage, namely the number of words 

covered by an island, excluding the original ones. In figure 27, the obtained results can be seen 

for the extreme prediction thresholds, 0.1 and 0.9. The minimum has shifted from 40% to 15%, 

which is logical taking into account that the average percentage of chosen islands for our test 

corpus is 32.7 %. It can also be observed that, on one hand, there is not such a clear optimum as 

in the conventional coverage, but an optimum area between coverages of 15% and 25% (even 

larger, 35%, for threshold 0.1), which indicates a bigger robustness of the approach. On the 

other hand, we can see that the curves are less symmetrical that those of figure 20, that is, the 

average number of edges sharply falls when adding the previous steps of neighbouring coverage 

to the pure local approach, while the improvement obtained from the pure neighbouring side of 

the graphic is much smoother. These results confirm the previously remarked importance of the 

neighbouring lexical extension process as well as the first steps of neighbouring extension. 

Once the process starts involving too many neighbouring prediction steps, performance 

degrades. 
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Figure 27. Average #edges/sentence for each percentage of gained coverage of the sentence 
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5.6   Results on Hybrid Methods using Thresholding 

 
It has been mentioned in section 5.3 that the neighbouring statistical parameters learnt by our 

training process might not be correct, due to the sparseness of the input data. A more accurate 

analysis of the number of occurrences in the training corpus of the rules that are used to 

calculate the probability distribution of the lengths of each rule reveals that in a lot of cases the 

number of occurrences is insufficient. A significant number of distributions are learnt by means 

of just one or two occurrences. We can definitely conclude that the neighbouring model needs a 

more relevant training set. Let’s therefore test another hybrid method in which we will consider 

that, from the moment decisions in the neighbouring approach are being made by means of such 

examples, the use of this model does not make sense anymore, and a back-off to local model is 

necessary. Additional justification for this approach can be found in section 5.7, where more 

smoothing experiments are described.  

Several experiments have been carried out in order to evaluate the most adequate threshold 

from which to consider that a probability is not informative enough (as it is learnt by means of a 

not sufficient number of occurrences), making necessary a back-off to the local model. For each 

matrix of pre-computed probabilities, the distribution of values has been studied, and according 

to it, a threshold has been defined. For a subset of sentences, a battery of experiments have been 

performed, each one gradually applying the threshold to the following probabilities: 

 

1. Extension probabilities (T1). 

2. Prediction probabilities (T2). 

3. Lexical extension probabilities, preterminal – terminal (T3). 

4. Particular prediction probabilities (Tp). 

 

Both T1 and T2 refer to the conventional probabilities. T3 refers to a certain type of extension 

probabilities, the probability that one terminal symbol is derived from a certain preterminal. As 

to Tp, it indicates a special treatment devoted to certain prediction probabilities, which we intend 

to explain next. When distances between adjacent islands34 are bigger than the parameter limit 

defined by the user (3 in our case, see section 3.5.2), the lack of occurrences in the training set is 

particularly critical. This leads to a typical situation, previously mentioned: lots of prediction 

edges entering the prediction heap with high probabilities, learnt by means of a ridiculous 

number of occurrences. Hence, prediction explodes locally, not allowing the use of other more 

suitable edges, situated in other areas of the sentence, which remain on the agenda with lower 

probability values. As a result, neighbouring probabilities are not informative anymore as a 

                                                           
34 Also common for the particular case of the first/last island of the sentence. 
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guide to the process. In order to counteract the effects of this situation, a particular type of 

threshold (Tp) has been introduced. In fact, this threshold is composed by two figures: the 

number of edges entering the prediction heap in a single step and the average prediction 

probability of these edges, so that, whenever both values exceed the corresponding values of Tp 

during the neighbouring parsing process, a back-off to local method is performed. 

Table 8. Different thresholds used in the experiments of figure 28 

 
Method 

T1 T2 T3 Tp 
Edges    Prob.

0 (Local) --- --- --- --- --- 
1 (Neighbouring) --- --- --- --- --- 
2 0.001 --- --- --- --- 
3 0.001 0.001 --- --- --- 
4 0.1 --- --- --- --- 
5 0.1 0.01 --- --- --- 
6 0.1 0.01 0.001 --- --- 
7 0.1 0.01 0.1 --- --- 
8 0.1 0.01 0.001 75 0.9 
9 0.1 0.01 0.001 50 0.9 
10 0.1 0.01 0.001 25 0.9 
11 0.1 0.01 0.001 15 0.9 
12 0.1 0.01 0.001 15 0.8 
13 0.1 0.01 0.1 15 0.8 
14 0.1 0.01 0.001 15 0.7 
15 0.1 0.01 0.1 15 0.7 
16 0.1 0.01 0.001 10 0.7 
17 0.1 0.01 0.1 10 0.7 

 

Figure 28 depicts the comparison of the average edge number for the different values of the 

thresholds. These values have been selected considering the average values of each type of 

probability. Method 0 corresponds to local35, 1 to conventional neighbouring (see section 5.3), 

and methods 2 to 17 to increasingly restrictive applications of thresholds (as shown in table 8). 
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Figure 28. Average #edges/sentence for the test subset and for each method studied 

                                                           
35 Bottom-up has been avoided in purpose, as its number of edges is significantly larger and it would have 
prevented the rest of the data from being seen in detail. 
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A particularly steep fall is found from method 8, which is when the application of threshold Tp 

starts, the following methods corresponding to different values of Tp. An improvement of 

around 50% with respect to local and neighbouring performance is accomplished. 

Once the different values and combinations of thresholds tested, the optima have been 

applied to the whole test set. The obtained results are depicted in figure 29. This time, method 0 

corresponds to bottom-up. As to the rest of the methods, the correspondence is the following 

one: 

 

1. Conventional local. 

2. Conventional neighbouring. 

3. Method 6 above. 

4. Method 7 above. 

5. Method 16 above. 

6. Method 17 above. 
 

Positions 3 and 4 in figure 29 correspond to the applications of the first three simple thresholds 

(the only difference being respectively the value of threshold number 3, the one related to the 

neighbouring lexical probabilities). Therefore, we can see the wide difference between them and 

positions 5 and 6, which correspond respectively to applications of these latter thresholds plus 

the optimal value for threshold Tp (10 edges entering the heap with an average probability 

greater than 0.7), henceforth denoted respectively neighb-thresh1 and neighb-thresh2. The 

average number of edges needed to perform the parsing process significantly decreases with 

respect to the rest of the methods (around 45% for local and neighbouring, not to mention 

bottom-up!). 
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Figure 29. Average #edges/sentence for the test set and for each method studied 
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5.7   Smoothing by Frequencies 

 

Derived from the key idea described in the previous section, we have devised another type of 

smoothing, this time directly dealing with the frequencies of the occurrences in the training 

corpus. Several levels of smoothing have been applied to these frequencies, from which the 

statistical parameters have been therefore computed.  

In order to decide the concrete levels of smoothing to be tested, the frequencies of 

occurrences have been preliminary analysed, zooming into the problematic areas. It has been 

mentioned (at the end of section 3.5.2) that, in order to compute the stochastic parameters of the 

neighbouring model, four initial matrixes (M1 to M4) are firstly computed, containing the basic 

probabilities P1, P2, and P3 (also described in section 3.5.2). A modification can be made to the 

algorithm, so that besides computing the probabilities, the frequencies of occurrences of each 

case of derivation (given the pair of nonterminal or terminal symbols and the distance between 

them) are also computed, giving as a result four equivalent matrixes of frequencies.  

Histograms of frequencies have been calculated for each matrix, using initially homogeneous 

frequencies fringes, which have been zoomed in at certain areas. The smoothing technique will 

consist in defining a frequency threshold, so that those probabilities in matrixes M1 to M4 

corresponding to frequencies under the threshold will be set to 0. From these derived basic 

matrixes, the Result matrixes providing the final scorings (see section 3.5.2) will be computed, 

and used to evaluate the parser with the neighbouring model on the same test set as the previous 

sections.  

Table 9. Comparative results for the different smoothing levels 

 Inactive Edges Active Edges Total Edges 
Neighbouring 1488 14402 15890 
Neighb-smooth1 1468 12573 14041 
Neighb-smooth2 1466 12361 13827 
Neighb-smooth3 1430 11874 13304 
Neighb-smooth4 1432 11469 12901 
Neighb-smooth4a 1424 11855 13279 
Neighb-smooth4b 1446 12057 13503 
Neighb-smooth4c 1436 11500 12936 
Neighb-smooth4c0 1438 11774 13212 
Neighb-smooth4c1 1438 11825 13263 
Neighb-smooth4c2 1431 11749 13180 
Neighb-smooth4c3 1430 11876 13306 
Neighb-smooth4ac 1425 11455 12880 
Neighb-smooth4c012 1436 11501 12937 

 

Table 9 presents the obtained results. Three increasingly restrictive levels of smoothing have 

been defined (hereinafter smooth1, smooth2, smooth3), experiments showing that each level 

outperforms the previous one. For the following level (smooth4), performance starts to slightly 
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degrade (as to the number of active edges). In order to try and guess to which of matrixes’ new 

smoothing is due this degradation, the latter smoothing level has been then applied individually 

to each of the matrixes, keeping smooth3 as the level for the rest (smooth4a, smooth4b, and 

smooth4c respectively for matrixes M2, M3, and M436). Matrix M3 seems to perform definitely 

better with smoothing level smooth3. However, this is not so straightforward as to matrix M4, 

which motivates that an additional refinement is evaluated, by independently applying the latter 

level of smoothing to each of the 4 2-dimension matrixes of which 3-dimension matrix M4 is 

composed (as explained in section 3.5.2, the third dimension refers to the distance between 

constituents, and distances considered range from 0 to 337): these smoothings are denoted 

smooth4c0 to smooth4c3. Furthermore, the combination of the optimal results is also evaluated 

(smooth4ac, that is, applying the new level of smoothing only to matrixes M2 and M4, and 

smooth4c012, i.e., applying smooth4 only to submatrixes M4[0], M4[1], and M4[2]). Smooth4ac 

is the best performing smoothing level overall but, although it outperforms both pure local and 

neighbouring approaches, it is overcome by far by the rest of the hybrid approaches (see table 

11 below). 

The following natural step has been to apply the neighbouring hybrid methodologies 

(described in sections 5.5 and 5.6) starting from the optimal smoothed matrixes (smooth4ac). 

Table 10 lists the results obtained, where each hybrid approach is denoted by the same name, 

only with an added infix smooth4ac. Although all the hybrid and thresholded approaches 

outperform the pure smoothed neighbouring results by more than a 30%, we can surprisingly 

see that two of the hybrid approaches (neighb-4cycles and neighb-40%) get worse results when 

smoothed. We can hypothesise that a reason might be that the optimal smoothing for the pure 

neighbouring methodology is not the optimal smoothing for these hybrid approaches, because it 

makes null too many probabilities, which somehow cuts off and manages to improve 

performance when dealing with a completely neighbouring parsing process, but that are relevant 

to the first neighbouring steps executed by the neighb-4cycles and neighb-40%. This reinforces 

our hypothesis that it is not that the neighbouring parameters are not at all correct, but that the 

islands chosen, the shape of the grammar and other circumstances make that, when dealing with 

a pure neighbouring process, top-down prediction explodes in such a way that performance is 

improved by radically cutting off the process. However, when we are dealing with a hybrid 

approach which restricts the neighbouring phase, the importance of the neighbouring 

probabilities for the preliminary steps is apparent. It would still be necessary to compute the 

optimal smoothings directly on the hybrid/thresholded results. 

                                                           
36 No further smoothing is applied to matrix M1, as it is considered that the rest of the frequencies are 
significant enough not to be eliminated from the probability computation. 
37 Where 3 is the parameter limit, indicating distances equal or greater than 3. 
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Table 10. Comparative results for hybrid methods using smoothed neighbouring stochastic 
matrixes 

 Inactive Edges Active Edges Total Edges 
Neighb-smooth4ac 1425 11455 12880 
Neighb-smooth4ac-1cycle 1180 7008 8188 
Neighb-smooth4ac-4cycles 1193 7447 8640 
Neighb-smooth4ac-40% 1203 7674 8877 
Neighb-smooth4ac-thresh1 1199 7157 8356 
Neighb-smooth4ac-thresh2 1172 7044 8216 

 

On the other hand, the thresholded approaches (neighb-smooth4ac-thresh1 and neighb-

smooth4ac-thresh2) improve their results when previously smoothing the probabilities, that is, 

the benefits of cutting off the neighbouring process for small values of the neighbouring 

parameters increase when these small values are besides discarded from the original 

frequencies, which is sound, since we are somehow adopting the same approach but from 

different perspectives.  

Finally, the optimal result (not only out of the smoothed versions but also the optimal result 

overall so far) is obtained by a hybrid smoothed approach (neighb-smooth4ac-1cycle, the hybrid 

method which backed off from neighbouring to local after just one neighbouring cycle, but 

using smoothed parameter matrixes). It seems that the significant frequencies removed which 

made both smoothed neighb-smooth4ac-4cycles and neighb-smooth4ac-40% get worse do not 

belong to the lexical frequencies, the only neighbouring step performed by this approach. 

Although a thorough study that confirms the hypothesis has not been carried out yet, it seems 

obvious that the distances between lexical categories must generally be more frequent, and 

probably mostly not discarded by the smoothing process, while when generalising these results 

for the nonterminal categories according to the grammar, the casuistry increases and derives 

lower frequencies, which are indeed discarded when they should not to. 

Table 11. Comparative results between pure and hybrid/smoothed methods for corpus PTB  

 Inactive Edges Active Edges Total Edges 
Bottom-Up 2525 54638 57163 
Top-Down 1627 19301 20928 
Local 2569 13777 16346 
Neighbouring 1488 14402 15890 
Neighb-1cycle 1162 7193 8355 
Neighb-4cycles 1164 7355 8519 
Neighb-40% 1179 7381 8560 
Neighb-thresh1 1193 7550 8743 
Neighb-thresh2 1173 7383 8556 
Neighb-smooth4ac-1cycle 1180 7008 8188 
Neighb-smooth4ac-thresh1 1199 7157 8356 
Neighb-smooth4ac-thresh2 1172 7044 8216 

 

As a summary of sections 5.5, 5.6, and 5.7, we present table 11, showing the optimal results 

accomplished by the hybrid/thresholded/smoothed approaches, in comparison with the pure 
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methods. All these hybrid methods provide significant improvement with respect to the single 

methods, performing in turn quite comparably. These results suggest that any additional 

improvement would come through somehow smoothing the stochastic parameters obtained by 

the neighbouring methodology. 

 

5.8   Assessing the Quality of Obtained Parses 

 
So far, the evaluation of the parse tree returned by each method has been performed on the basis 

of the number of edges created in order to complete the analysis. Nothing has been done as 

regards the quality of the result. In this line, two kinds of measures will be considered: the 

likelihood of the obtained parse tree and the accuracy metrics. These measures have also been 

calculated only for corpus PTB-II. 

It is important to emphasise once more  that our aim is not to evaluate the quality of the parse 

obtained by each method (whatever the methodology, we get a single parse tree, the first one 

obtained) as an absolute value, but the relative value, as a comparison between the quality 

measures obtained by the different methodologies into the same framework (see the 

introduction of this chapter). 

 

5.8.1   Likelihood of the Resulting Parse Tree 

 

Any parse tree obtained from a parser guided by a grammar is obviously correct (i.e., 

grammatical). In the absence of lexical information, the choice between several grammatical 

parse trees for a sentence must be performed on the basis of their likelihood (or probability)38. 

The probability of a parse tree is usually regarded as the product of the rule probabilities (see 

section 2.2.2). As we are working following a logarithmic scale, that is, we use the logarithm of 

the probability, we will compute the sum of the logarithms of the rules appearing in the parse 

tree instead.  

Firstly, we intended to evaluate, for each sentence in our test corpus, both the maximum and 

minimum probabilities out of all the possible parse trees, so that the probabilities of the parse 

trees for each method could be, somehow, “ranked”. This was our first problem, as for a big 

percentage of the sentences, not even the overall number of possible analysis could be computed 

(see [Carroll, 1993] for a reasoning on how complex this computation can get to be). Let’s take 

into account that, being this one a tough task with the original sentences, it even gets worse 

when ambiguating them. The problem had to be overcome by computing a sort of Viterbi-like 

algorithm that provided us with the best and worst probabilities for a given sentence.  
                                                           
38 Although, as discussed in sections 2.2.2 and 2.2.3, this measure is far from being a good quality 
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The second problem appeared when proved that, for most of the Penn Treebank parse trees 

of the sentences in the test set, at least one rule existed which did not belong to our reduced 

grammar (see justification in section 5.2.2). As it was unfeasible to allow the presence of rules 

whose probability had not been estimated, these sentences had to be ignored. The test set then 

reduced to 96 sentences. 

Average probabilities were computed for the sentences in this test subset and for each basic 

method, as well as for the optimal hybrid approaches, concretely the following: 

 

1. Penn Treebank parse tree. 

2. First analysis returned by the baseline bottom-up method. 

3. First analysis returned by the baseline top-down method. 

4. Local analysis. 

5. First version of the modification of the local analysis which partially replaces 

summations of derivation probabilities with maximisation of derivation probabilities, 

local-max1. 

6. Second version of local analysis which completely replaces derivation probability 

summations with maximisation of them, local-max2. 

7. Neighbouring analysis (with back-off to local only in case it cannot be completed). 

8.  Neighbouring analysis (with back-off to local after islands cover 40% of the sentence), 

neighb-40%. 

9. Neighbouring analysis (with back-off to local after 1 cycle of neighbouring operation), 

neighb-1cycle. 

10. Neighbouring analysis (with back-off to local after 4 cycles of neighbouring operation), 

neighb-4cycles. 

11. Neighbouring analysis (with back-off to local according to the first optimal threshold), 

neighb-thresh1. 

12. Neighbouring analysis (with back-off to local according to the second optimal 

threshold), neighb-thresh2. 

13. Neighbouring analysis (with the stochastic parameters smoothed by means of the 

optimal smoothing-by-frequencies obtained and with back-off to local after 1 cycle of 

neighbouring operation), neighb-smooth4ac-1cycle. 

14. Neighbouring analysis (with the stochastic parameters smoothed by means of the 

optimal smoothing-by-frequencies and with back-off to local according to the first 

optimal threshold), neighb- smooth4ac-thresh1. 

                                                                                                                                                                          
indicator. 
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15. Neighbouring analysis (with the stochastic parameters smoothed by means of the 

optimal smoothing-by-frequencies and with back-off to local according to the second 

optimal threshold), neighb- smooth4ac-thresh2. 

 

Due to the way in which the parse probability is computed, shorter derivations, since they 

involve fewer rules, tend to obtain higher probabilities, almost regardless of the training data. 

Most systems redress this bias, for instance by normalising the derivation probability (see e.g. 

[Caraballo & Charniak, 1998]). In our case, besides computing the conventional averages, we 

have also computed sort of a normalisation, by taking into account the number of nonterminals 

in the tree, say n (computing the n-root of the original probability obtained). Average results for 

both types of probabilities can be seen in table 12. 

 Table 12. Average probabilities for each method 

 Probability Normalised Probability 
PTB 0.932 0.933 
Bottom-Up 0.636 0.466 
Top-Down 0.590 0.500 
Local 0.774 0.618 
Local-max1 0.755 0.585 
Local-max2 0.721 0.325 
Neighbouring 0.389 0.350 
Neighb-40% 0.641 0.298 
Neighb-1cycle 0.675 0.330 
Neighb-4cycles 0.590 0.437 
Neighb-thresh1 0.609 0.512 
Neighb-thresh2 0.600 0.405 
Neighb-smooth4ac-1cycle 0.671 0.377 
Neighb-smooth4ac-thresh1 0.615 0.457 
Neighb-smooth4ac-thresh2 0.609 0.450 

 

The obtained results quite differ for both types of probabilities. The maximum average 

probability corresponds, as expected, to the Penn Treebank parse trees. It must be reminded that 

rule probabilities were estimated according to the sentences in the PTB. The following methods 

are the local and the local-max1 approaches, being the fourth rank occupied by the local-max2 

methodology for the conventional probabilities, versus neighb-thresh1 approach for the 

normalised probabilities (in this latter case, local-max2 approach descends to the penultimate 

position). Bottom-up behaves similarly for both measures (it is ranked eighth for conventional 

probabilities and sixth for normalised probabilities). However, top-down parses, which were 

ranked in the penultimate place for average conventional probabilities, accomplish a fifth place 

for normalised probabilities (presumably because top-down parses systematically contain more 

rules). 
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5.8.2   Other Evaluation Metrics 
 

As an additional evaluation of our models, we have tried to compute the similarity of the PTB 

parse tree with the parse trees returned by our methods, both the homogeneous as well as the 

hybrid ones. We use the traditional PARSEVAL measures [Black et al., 1991]: recall (an 

attempt to measure coverage) and precision (a standard measure of accuracy). The specific 

metrics computed are the ones described in [Goodman, 1996] plus two precision rates, namely 

the following ones:  
 

1. Labelled Recall Rate (LR): number of constituents in the evaluated parse tree that 

coincide completely (both label and spanning) with one in the PTB parse, divided by the 

total number of constituents in the PTB parse tree. 

2. Bracketed Recall Rate (BR): number of constituents in the evaluated parse tree that span 

the same as anyone in the PTB parse, divided by the total number of constituents in the 

PTB parse tree. 

3. Consistent Brackets Recall Rate (CBR): number of constituents of the evaluated parse 

tree not crossing with anyone in the PTB parse divided by the total number of 

constituents of the evaluated parse tree. 

4. Labelled Precision Rate (LP): number of constituents in the evaluated parse tree that 

coincide completely (both label and spanning) with one in the PTB parse, divided by the 

total number of constituents in the evaluated parse tree. 

5. Bracketed Precision Rate (BP): number of constituents in the evaluated parse tree whose 

spanning coincides with anyone in the PTB parse, divided by the total number of 

constituents of the evaluated parse tree. 

 

In other words, recall indicates the portion of the Treebank constituents that are hypothesised, 

whereas precision is the portion of hypothesised constituents that are correct. Therefore, metrics 

1 and 4 compute recall and precision by considering both the spanning and the label of each 

parse constituent, and metrics 2 and 5 are less strict, and look only for match of constituents, 

ignoring the nonterminal label. Metric 3 is even less strict and considers only the constituents 

whose intervals cross, that is, that could never be in the same parse tree. 

Table 13 shows the obtained results for the 1,000 sentences of the test set. Both the bottom-

up and the top-down parse trees are also compared to PTB ones in order to evaluate whether our 

methodology represents an advance with respect to simpler non-stochastic approaches. It is 

important to remark that “Viterbi” parse trees (the ones which maximise the probability) and 

what we have denoted “worse” parse trees (the ones minimising the probability) are going to be 

our upper and lower bounds, since the specific features of our framework (partial grammar, non-
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tagged sentences) do not allow to compare our results with other systems. As to the hybrid 

methods, the ones giving optimal results (regarding the number of generated edges) have been 

compared. This includes neighb-40%, neighb-1cycle, and neighb-4cycles, as well as the 

neighbouring model modified by applying different thresholds to the expansion/prediction 

probabilities (neighb-thresh1 and neighb-thresh2), and the neighbouring model in which the 

stochastic parameters have been computed by previously smoothing by frequencies (using the 

most optimum smooth level obtained). The subsequent modifications to the local approach 

(local-max1 and local-max2) have also been evaluated. 

Table 13. Evaluation metrics 

 LR BR CBR LP BP 
Viterbi 0.577 0.633 0.746 0.541 0.592 
Bottom-Up 0.412 0.514 0.705 0.299 0.369 
Top-Down 0.378 0.488 0.673 0.261 0.332 
Local 0.423 0.497 0.640 0.344 0.403 
Local-max1 0.416 0.489 0.631 0.337 0.394 
Local-max2 0.419 0.494 0.633 0.341 0.400 
Neighbouring 0.373 0.460 0.675 0.230 0.282 
Neighb-40% 0.412 0.483 0.641 0.318 0.370 
Neighb-1cycle 0.416 0.488 0.644 0.318 0.372 
Neighb-4cycles 0.394 0.469 0.634 0.294 0.348 
Neighb-thresh1 0.401 0.477 0.639 0.304 0.360 
Neighb-thresh2 0.405 0.483 0.641 0.306 0.364 
Neighb-smooth4ac-1cycle 0.406 0.479 0.639 0.312 0.367 
Neighb-smooth4ac-thresh1 0.394 0.469 0.632 0.301 0.356 
Neighb-smooth4ac-thresh2 0.396 0.468 0.630 0.301 0.355 
“Worse” 0.347 0.445 0.696 0.175 0.223 

 
Clearly the best results correspond to the ‘Viterbi’ parses, as well as the ‘worse’ parses obtain 

the worst qualifications for all measures except one. Top-down parses, which obtained better 

efficiency results (regarding average number of edges) than bottom-up, are comfortably 

outperformed by bottom-up parses in all the accuracy measures. 

With respect to the comparison between our methods and basic bottom-up and top-down, the 

three local approaches present considerably better results, followed by neighb-1cycle and 

neighb-40%. It can be observed that, although the pure local methodology obtains better results 

than the local maximisation approaches for all the measures, the accuracy of the latter improves 

with the degree of application of the maximisation, so that the local-max2 figures are almost 

comparable to the pure local ones (with an average decrease of only 0.86%). This fact contrasts 

with the fact that both probability measures decreased with the degree of maximisation (as it can 

bee seen in table 12). 

Hybrid and thresholded neighbouring approaches (smoothed or not) always outperform pure 

neighbouring results. However, the smoothed versions always present worse results than their 

non-smoothed equivalents. Specially striking are the CBR figures: better results are obtained by 
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methods that do not stand out for the other measures, as even the ‘worse’ parse trees.  

Seemingly the reason is that these parses are mainly composed by unary and binary rules 

(average length of 1.6 for the rules used by “worse” versus 2.0 for those in local), which makes 

more difficult a crossing bracket to happen. 

Although only the hybrid methods giving better average number of edges have been included 

in table 13, we have also studied the effects of the different back-off strategies on the accuracy. 

In general, it can be observed that, with the exception of the CBR metric, accuracy starts 

improving for the first stages of the hybrid approaches (until number of cycles equals 3, until 

coverage equals 35%), and then gradually degrades as back-off to local is postponed. 

     

 5.9   Chunking + Island-Driven Results 

 

So far, non-ambiguous words have been considered our initial islands, saving at the same time 

the necessity of a tagger. However, we wish to evaluate how badly the criterion chosen for the 

selection of islands can influence the final results of the parser. In particular, we have explained 

in chapter 4 how we intend to introduce a more informed method to choose the islands, such as 

using chunks as candidates.  

 

5.9.1   Setting of the Experiments 

 

The system has been tested on the PTB-II corpus. The base NP derived grammar (as described 

in chapter 4), which is composed by 33 rules, is listed in table 14. A more thorough study has 

shown that, in our ambiguated test corpus, in average 74% of each sentence is "covered" by a 

nominal chunk. The average number of chunks per position where a chunk starts is 1.75. As to 

the three types of chunks defined, we have found that in average per sentence, about 24% are 

maximal NPs, 12% are overlapping NPs and 63% are internal NPs. The most frequent rules are 

the ones generating directly NN and NNP, but we have observed that several "long" rules (right-

hand side with 3 elements, when the longest is 4) appear in the first positions of the frequency 

rank.  

As to the extension to other types of chunks, the PP chunk has been discarded, for the only 

rule deriving it  (PP => preposition NP), does not apply to our definition of chunk (see chapter 

4). The derived grammar then presents the following composition: 

 

- VP:       5 rules. 

- ADVP: 2 rules. 

- ADJP:  13 rules. 
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Table 14. The derived base NP grammar 

Rules 
NP ⇒  NN  NNS 
NP ⇒  DT  NNS 
NP ⇒  DT  NNP 
NP ⇒  JJ  NNS 
NP ⇒  DT  JJ  NN  NN 
NP ⇒  NNP  NNP  POS 
NP ⇒  PRP$  NNS 
NP ⇒  DT  NNP  NN 
NP ⇒  NNP  NNP  NNP 
NP ⇒  DT  NN  POS 
NP ⇒  NN 
NP ⇒  EX 
NP ⇒  DT 
NP ⇒  CD 
NP ⇒  CD  NNS 
NP ⇒  DT  JJ  NNS 
NP ⇒  NN  NN 
NP ⇒  DT  NN  NN 
NP ⇒  PRP$  NN 
NP ⇒  CD  NN 
NP ⇒  NNP  POS 
NP ⇒  DT  NNP  NNP 
NP ⇒  NNP  NNP 
NP ⇒  JJ  NN 
NP ⇒  DT  JJ  NN 
NP ⇒  JJ  NN  NNS 
NP ⇒  JJ  JJ  NNS 
NP ⇒  DT  NN 
NP ⇒  PRP 
NP ⇒  $  CD 
NP ⇒  NNP  CD 
NP ⇒  NNS 
NP ⇒  NNP 

 

Initially, we have applied a combined derived grammar, containing the 53 rules corresponding 

to all the types of chunks considered. Table 15 lists those rules of this complete chunk grammar 

corresponding to the added VP, ADVP and ADJP (the base NP rules are already listed in table 

14). The results of the experiments (described in the next section) which used this grammar to 

perform the chunking step, though outperforming the nonambiguous approach, do not improve 

the results obtained for only base-NPs (also described in the next section) neither as to 

performance nor as to accuracy. Therefore we have discarded more investigation (testing 

individually each new type of chunks, etc.). 
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Table 15. The rest of the combined derived grammar 

Rules 
ADJP ⇒  VBN 
ADJP ⇒  RB  JJ 
ADJP ⇒  RBS  JJ 
ADJP ⇒  RB 
ADJP ⇒  JJ 
ADJP ⇒  RBR  JJ 
ADJP ⇒  RB  VBN 
ADJP ⇒  JJR 
ADJP ⇒  $  CD 
ADJP ⇒  JJ  CC  JJ 
ADJP ⇒  RB  JJR 
ADJP ⇒  CD  NN 
ADJP ⇒  JJ  JJ 
ADVP ⇒  RB  RB 
ADVP ⇒  RB 
VP ⇒  VB 
VP ⇒  VBZ 
VP ⇒  VBP 
VP ⇒  VBN 
VP ⇒  VBD 

 

5.9.2   Results 

 

We start by describing in detail the results obtained for the case of base NPs as chunks. We dare 

compare our chunking approach with plain methods such as bottom-up and top-down, which do 

not take advantage of this pre-process. This is because an experiment on the performance of 

bottom-up using as an input the test sentences previously chunked (treating these chunks as 

terminal categories) resulted in a 56% coverage, due to the poor accuracy of the base NPs 

extracted. Anyway, we compared the average results for this subset of 560 sentences, being 

12,517 edges for the "BU+chunks" method in front of the 5,833 edges of local+chunks2. We 

conclude that, if we want to keep simple and completely automatic this pre-process, it definitely 

makes no sense to apply it to such unidirectional strategies. 

Overall figures for base NPs are shown in table 16. This table includes the results for all 

three sorts of defined base NPs (see chapter 4). Both local and neighbouring strategies 

dramatically outperform the baselines (specially bottom-up). Again, the results show that 

certainly the neighbouring model suffers from data sparseness. This drawback has been partially 

overcome by using both hybrid techniques and smoothing, as seen in sections 5.5 to 5.7 (though 

the combination of these techniques with this method of island selection has not been tested).  

Focusing on the differences due to the two methods of island selection, we find that the base 

NPs approach outperforms the nonambiguous one (hereinafter, local-noamb and neighbouring-
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noamb). Moreover, we observe a more significant improvement when being more selective with 

the base NPs (56% for local+chunks2). Surprisingly we find that the longest-match strategy 

(local+chunks3), the one most often used in application systems, performs slightly worse than 

local+chunks2. The fact that our stochastic model permits to select the most appropriate base 

NPs to be dealt with may explain that it is worth it to try and compensate the lack of accuracy of 

the base NPs selection process by adding more alternative base NPs to the initial set. 

Table 16. Comparative results for corpus PTB-II 

PTB-II Inactive edges Active edges Total edges 
Bottom-Up 2525 54638 57163 
Top-Down 1627 19301 20928 
Local-noamb 2569 13777 16346 
Local+chunks1 1180 9631 10811 
Local+chunks2 634 6524 7158 
Local+chunks3 674 6593 7267 
Neighb-noamb 1488 14402 15890 
Neighb+chunks1 1457 12610 14067 
Neighb+chunks2 982 8849 9831 
Neighb+chunks3 1045 9434 10479 

 

We have also included an experiment in which we start from the same test set, but (correctly) 

tagged instead of ambiguous (this is somehow unrealistic, since for novel text no perfect part-

of-speech tags would be available). There is a subsequent loss of coverage due to the fact that 

we were able to find an analysis for some sentences due to other PoS categories, which is not 

significant, our purpose being to compare the different methodologies for the same set. It does 

not make sense to include the nonambiguous approaches, as all the words in each sentence 

would have been initial islands. Table 17 lists the obtained results. We can observe that both the 

local and neighbouring approaches outperform both bottom-up and top-down baselines by far, 

being the improvement even larger (89% versus previous 87% with respect to the optimum 

local+chunks2 methodology for bottom-up, and 70% versus previous 65% for top-down). Local 

approaches keep on achieving better results than neighbouring for all variants except 

local+chunks1, but now all types of neighbouring outperform this one. The ranking among the 

three types of neighb+chunks is still the same, but the differences between them reduce 

significantly (from 30% to 7%), suggesting that the neighbouring method is less sensitive to the 

fact that some chunks might not be correct and may have to be dissolved. As to the local 

approach, we find that for a tagged corpus the system behaves conventionally, performing better 

for the longest-match strategy. 

As explained in the previous section, we have also tested the use of other types of chunks, 

altogether in a combined derived grammar. We have applied the same three strategies to the 

selection of chunks, taking into account the length and situation of each chunk and disregarding 

its type. As mentioned, each method is named as its equivalent for base-NPs, adding a suffix “-
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total”. The obtained figures can be seen in table 18. We have included again both our bottom-up 

and top-down baselines and the nonambiguous results. 

Table 17. Comparative results for tagged corpus PTB-II 

PTB-II Inactive edges Active edges Total edges 
Bottom-Up 699 16439 17138 
Top-Down 313 5406 5719 
Local+chunks1 382 2878 3260 
Local+chunks2 183 1771 1954 
Local+chunks3 181 1542 1723 
Neighb+chunks1 513 3922 4435 
Neighb+chunks2 306 2339 2645 
Neighb+chunks3 312 2392 2704 

 

It can be observed in table 18 that both the baselines (bottom-up and top-down) and the 

nonambiguous approaches are outperformed by the chunks-total approaches, and also that the 

methodology using all chunks performs better for both stochastic models with respect to using 

all base-NPs. However, the optimal behaviour still corresponds to the base-NPs strategy. 

Possibly the reason lies is the fact that the chunks might not be definite members of the parse 

tree, but may be “disintegrated” whenever we are not able to get a complete analysis containing 

them. It might happen that the other kinds of chunks are more sensitive to this methodology, 

and have to be broken more often than the base NPs. The computation of the average number of 

chunks that must be broken in our test set for both cases confirms our hypothesis: 68% and 65% 

of the initial base-NPs are dissolved respectively in the local+chunks1 and neighb+chunks1 

strategies, whereas 79% and 76% of the chunks are broken respectively in the local+chunks1-

total and neighb+chunks1-total approaches. In both cases, these percentages are rather high (it 

must me remarked once more that we are dealing with a highly ambiguous corpus), though it 

can be observed that the neighbouring methodology always dissolves less chunks, whatever the 

type of these ones.  

Table 18. Comparative results for corpus PTB-II and all types of chunks 

PTB-II Inactive edges Active edges Total edges 
Bottom-Up 2525 54638 57163 
Top-Down 1627 18301 19928 
Local-noamb 2569 13777 16346 
Local+chunks1-total 1243 7350 8593 
Local+chunks2-total 733 7495 8228 
Local+chunks3-total 773 7589 8362 
Neighb-noamb 1488 14402 15890 
Neighb+chunks1-total 1453 11663 13116 
Neighb+chunks2-total 1298 11393 12691 
Neighb+chunks3-total 1321 11516 12837 
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5.9.3   Quality Measures 

 

Once more, we perform an additional evaluation of the parse trees returned by each method by 

comparing both the likelihood of the parse trees and the similarity measures defined in section 

5.8. Let us again remark that our aim is to compare our approaches against each other as well as 

against our baselines (bottom-up and top-down methods) in the same environment 

                                 Table 19. Average probabilities for each method 

 Probability 
PTB 0.932 
Bottom-Up 0.636 
Top-Down 0.590 
Local-noamb 0.774 
Local+chunks1 0.658 
Local+chunks2 0.832 
Local+chunks3 0.822 
Local+chunks1-total 0.591 
Local+chunks2-total 0.823 
Local+chunks3-total 0.806 
Neighb-noamb 0.389 
Neighb+chunks1 0.513 
Neighb+chunks2 0.655 
Neighb+chunks3 0.625 
Neighb+chunks1-total 0.461 
Neighb+chunks2-total 0.581 
Neighb+chunks3-total 0.573 

 

Likelihood of the Resulting Parse 

 

Average probabilities for each basic method39 are compared to the chunks results in table 19. 

Again, the maximum average probability corresponds to the PTB parses. The following method 

is the local approach. Although the introduction of base NPs implies a reduction for chunks1, 

again chunks2 and chunks3 represent a significant improvement. As to the neighbouring model, 

the change from the nonambiguous approach to the base NPs systematically improves the 

probability, being specially striking the case of neighb+chunks2, which improves it by more 

than 40%. Thus, by choosing the appropriate chunk method, neighbouring approach also 

outperforms both the bottom-up and top-down methodologies. The chunks-total strategy 

methods perform systematically slightly worse than their equivalent base-NPs. This means that 

bottom-up probability is higher than all chunks-total approaches except the local+chunks2-total 

and local+chunks-total3 ones, and that, though top-down probabilities are overcome by all 

local-total approaches, they are higher than the ones obtained by all the neighbouring-total 

                                                           
39 Again results correspond to the subset of sentences for which all the rules employed in the PTB parse-
trees belonged also to our reduced grammar. 
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methods. These results confirm our decision that considers optimal the use of only base NP 

chunks. 

 

Other evaluation metrics 

 

Additionally, we have tried to compute the similarity of the PTB parse tree with the parse trees 

returned by our composed methods by using the metrics described in section 5.8.2. Table 20 

shows the obtained results for the 1,000 sentences in the test set. We show again both bottom-up 

and top-down results in order to evaluate whether our composed methodology represents an 

advance with respect to the simpler methodologies. “Viterbi” and “worse” parses, our upper and 

lower bounds, are also included once more. 

Table 20. Evaluation metrics for untagged corpus 

 LR BR CBR LP BP 
Viterbi 0.577 0.633 0.746 0.541 0.592 
Bottom-Up 0.412 0.514 0.705 0.299 0.369 
Top-Down 0.378 0.488 0.673 0.261 0.332 
Local-noamb 0.423 0.497 0.640 0.344 0.403 
Local+chunks1 0.402 0.478 0.643 0.298 0.352 
Local+chunks2 0.433 0.506 0.634 0.398 0.462 
Local+chunks3 0.427 0.500 0.636 0.384 0.449 
Local+chunks1-total 0.355 0.431 0.624 0.256 0.309 
Local+chunks2-total 0.422 0.499 0.632 0.382 0.451 
Local+chunks3-total 0.400 0.476 0.619 0.356 0.422 
Neighb-noamb 0.373 0.460 0.675 0.230 0.282 
Neighb+chunks1 0.402 0.487 0.666 0.275 0.332 
Neighb+chunks2 0.401 0.481 0.646 0.309 0.368 
Neighb+chunks3 0.395 0.479 0.649 0.301 0.362 
Neighb+chunks1-total 0.357 0.442 0.647 0.237 0.292 
Neighb+chunks2-total 0.364 0.445 0.648 0.260 0.315 
Neighb+chunks3-total 0.362 0.444 0.643 0.259 0.316 
“Worse” 0.347 0.445 0.696 0.175 0.223 

 

As expected, the best results correspond to the “Viterbi” parse trees, and the “worse” ones 

obtain the worst ranks for all but one measure. Local model, which outperformed both top-down 

(in four out of the five measures) and bottom-up (in three out of the five measures) using the 

nonambiguous approach, improves results even more when using chunks3 and (specially) 

chunks2. Neighbouring model, which did not get to improve both bottom-up and top-down 

methodologies using the nonambiguous approach, gets quite comparable (with respect to 

bottom-up) and higher (with respect to top-down) values with the chunks2 approach. As to the 

chunks-total strategies, again they achieve slightly lower results than their equivalent for base-

NPs, confirming our preference for the latter approach. Somewhat surprisingly we find once 

more that, for the CBR measure, better results are obtained by methods that are not well-ranked 

for the other measures. The main reason seems to be once more that these parse trees are 
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basically composed by unary and binary rules (average length of 1.6 for the rules used by 

“worse” against 2.1 for the rules used by local-chunks2). Then, it is more unlikely that a 

crossing bracket occurs. 

It is important to compare the different methods between the upper and lower bounds, as all 

the results are rather low due to the fact that sentences were not tagged. A new set of 

experiments was conducted in order to evaluate the effects of tagging the corpus in the accuracy 

of the results. The test set was previously disambiguated and then parsed by means of all the 

chunks approaches plus the BU and TD methods (see table 21). Obviously it made no sense to 

test the nonambiguous approaches, as all words in each sentence would have been islands. We 

emphasise once more that starting from a correctly disambiguated corpus is unrealistic, for any 

tagged corpus would imply the existence of a certain error rate. To what extent would this error 

affect the accuracy of the parses, the same way that our starting from disambiguated corpus has 

been affected, remains unexplored. 

Table 21. Evaluation metrics for tagged corpus 

 LR BR CBR LP BP 
BU 0.674 0.707 0.814 0.496 0.519 
TD 0.680 0.711 0.805 0.510 0.533 
Local+chunks1 0.683 0.705 0.798 0.530 0.547 
Local+chunks2 0.750 0.770 0.827 0.668 0.686 
Local+chunks3 0.746 0.767 0.826 0.661 0.679 
Neighb+chunks1 0.660 0.685 0.789 0.482 0.500 
Neighb+chunks2 0.717 0.743 0.810 0.583 0.603 
Neighb+chunks3 0.720 0.744 0.810 0.586 0.605 

 

It can be observed that local approaches systematically obtain better measures than BU, as well 

as all the neighbouring approaches but the first one. As to TD method, it can be observed that 

the addition of the disambiguation preprocess makes its accuracy increase, getting to outperform 

BU (which had obtained better results when dealing with a non tagged test set). Top-Down 

method then gets to overcome the poorer performance approaches local+chunks1 and 

neighbouring+chunks1, though the other two local and neighbouring approaches comfortably 

overcome their values. Increases of around 30% in recall and 25% in precision are 

accomplished by adding the previous tagging process. 

It seems clear that it is impossible to get certain accuracy figures if our grammar is not 

complete and does not contain all the rules that the (so considered) correct parses contain. 

Therefore, trying to be even more realistic, we have selected the subset of test sentences for 

which the PTB parses contain only rules belonging to our reduced grammar. Then, the accuracy 

metrics have been calculated for this subset and the different methods. The obtained values are 

listed in table 22. Logically, the metrics increase even more for every method. However, while 

both the labelled and bracketed recall increase generally by around 15-18%, both the labelled 
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and bracketed precision increase by around 23- 26% (with no apparent differences among the 

increases in the different methods). Within this framework, figures are quite comparable to 

others published elsewhere.  

Table 22. Evaluation metrics for tagged corpus and subset of sentences 

 LR BR CBR LP BP 
Bottom-Up 0.824 0.837 0.897 0.676 0.687 
Top-Down 0.816 0.839 0.883 0.681 0.700 
Local+chunks1 0.829 0.846 0.892 0.714 0.726 
Local+chunks2 0.906 0.914 0.934 0.888 0.896 
Local+chunks3 0.904 0.913 0.934 0.887 0.894 
Neighb+chunks1 0.797 0.810 0.870 0.644 0.655 
Neighb+chunks2 0.858 0.873 0.905 0.777 0.789 
Neighb+chunks3 0.860 0.875 0.906 0.778 0.790 

 

5.10   Initial Islands by Category 

 

As described in section 3.4, whatever the method in which the initial islands are selected, 

several refinements might be applied, such as considering criteria based on both the degree of 

ambiguity of the lexical categories of each word, as well as the degree of ambiguity of the 

categories according to the grammar. As a preliminary step, we have carried out a series of 

experiments introducing the terminal category as a criterion for selection of the islands. The 

goal of these experiments is determining whether certain categories or sets of categories are 

better initial islands that others. 

As opposed to the previous experiments, in this case we have used a (correctly) 

morphologically disambiguated corpus from the beginning as a test set. Also derived from the 

experience of the previous experiments (see the last part of section 5.9.3), we have extracted a 

different test set, in which all the sentences are such that their Penn Treebank parse tree is 

composed merely by rules belonging to our reduced grammar (see section 5.2.2 for a 

remainder). This set is also composed by 1,000 sentences, and its average sentence length is 

15.52 words. 

The idea is to test which categories/sets of categories are optimal, for each methodology. The 

behaviour of both pure methods (local and neighbouring) will be tested. We will apply a greedy 

strategy for the experiments, starting by testing the behaviour of each single category as initial 

island, analysing the obtained results, and choosing the optimal ones to be combined (in pairs) 

and tested. For each combination of n islands, the same strategy is applied in order to get the 

concrete combinations of n+1 islands to be tested, from n = 1 to n = 9. With 45 terminal 

categories, we obtain quite a high number of combinations. Therefore, we will perform the 

evaluation on a subset of the test set composed by 100 sentences, and only the optimal 

combinations will be used to analyse the complete test set. In order to avoid the results to be 
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overfitted according to the subset, we have carried out sort of a cross-validation, testing the 

chosen combinations of n categories as initial islands on two subsets of 100 sentences, and 

using the results on both subsets to determine the combinations of n+1 categories to be tested. 

Finally, the optimal combinations have been evaluated on the complete test set (1,000 

sentences). These combinations have been selected not only according to the performance 

criterion (average number of edges needed to find the first parse), but also according to the 

accuracy (measured in terms of the five figures described in section 5.8.2), as we have tried to 

find a trade-off between both criteria. 

Table 23 shows the results obtained by the optimal combinations, sorted according to the 

average number of (inactive + active) edges. The terminology employed appends the name of 

the model used plus the set of terminal categories used as initial islands, separated by the 

symbol ‘+’ (see Appendix A for a list and description of the terminal categories in PTB-II). For 

the sake of comparison, the results obtained for the new test corpus by both the baseline bottom-

up and the three varieties of the two models starting from base NPs (see section 5.9) have been 

included. Besides the three columns corresponding to the number of edges, two additional 

informative columns have been included, namely the number of sentences for which no initial 

islands could be chosen40 (because no category from the considered set in that case was present 

in the sentence), and the average island density (number of original islands divided by the 

number of words in the sentence). It can be observed that the chunking approach (except in the 

case of selecting all base-NPs) performs better that any combination of categories for both 

models. As to the number of edges, the optimal neighbouring combinations generally obtain 

better results than the local ones. However, it has been impossible to find common optima for 

both models. The reason stems directly from the nature of both models: as mentioned at the 

beginning of this section, local model optima are closely linked to the grammar and the 

ambiguity of the terminal categories in their rules, while the neighbouring model optima are 

dynamically dependent on the categories of the adjacent islands (the neighbours). As usual, the 

bottom-up approach is outperformed by far by all the combinations (72% better for the worst 

case!). 

Table 23. Comparative results for the optimal combinations of categories 

PTB-II Not 
applied 

Island 
density 

Inactive 
edges 

Active 
edges 

Total 
edges 

Local+chunks2 --- --- 104 841 945 
Local+chunks3 --- --- 105 848 954 
Neighb+chunks2 --- --- 179 1394 1573 
Neighb+chunks3 --- --- 179 1394 1573 
Neighb+PRP$+TO+VBG 613 0,072 285 1743 2029 
Neighb+TO+VBG 664 0,069 287 1759 2046 

                                                           
40 In this case, the first element of the sentence is selected as the only island. 
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Neighb+PRP$+TO 678 0,068 287 1761 2049 
Neighb+TO+VBG+WP 651 0,07 287 1765 2052 
Neighb+PRP$+TO+WP 662 0,069 288 1766 2054 
Neighb+TO+VBG+POS+PRP$ 548 0,075 290 1777 2068 
Neighb+PRP$+TO+POS 604 0,071 289 1779 2069 
Neighb+PRP$+TO+MD 522 0,073 291 1783 2075 
Neighb+TO+VBG+POS 595 0,072 292 1792 2084 
Neighb+TO+VBG+POS+WP 582 0,074 291 1794 2086 
Local+chunks1 --- --- 243 1847 2090 
Neighb+TO+POS 658 0,068 291 1801 2092 
Neighb+PRP$+VB 483 0,076 296 1798 2094 
Neighb+PRP$+VB+VBG 429 0,081 296 1805 2101 
Neighb+PRP$+VB+WP 470 0,077 296 1805 2101 
Neighb+PRP$+VB+WP+VBG 418 0,082 297 1815 2112 
Neighb+WP+VB 514 0,074 297 1826 2124 
Neighb+WP+VB+VBG 455 0,079 298 1828 2126 
Neighb+PRP$+VB+POS 428 0,08 299 1848 2148 
Neighb+PRP$+VB+WP+POS 415 0,082 299 1853 2153 
Local+JJ+PRP+POS+CD 173 0,116 183 2221 2404 
Local+JJ+PRP+POS+MD 188 0,114 190 2356 2546 
Local+JJ+PRP+POS+CC 168 0,116 188 2360 2549 
Local+JJ+POS+CD 238 0,102 190 2375 2566 
Local+CC+.+PRP+POS+CD+MD+RB+JJ 1 0,223 186 2392 2579 
Local+CC+.+MD+POS+VBG+CD+RB+JJ+PRP 1 0,231 186 2394 2580 
Local+JJ+POS+CD+MD 171 0,113 193 2388 2581 
Local+CD+POS+JJ+VBG 209 0,109 191 2391 2582 
Local+CC+.+PRP+POS+CD+RB+JJ 1 0,208 184 2404 2588 
Local+CC+.+PRP+POS+VBG+CD+JJ+RB 1 0,216 184 2405 2590 
Local+CD+POS+JJ+CC 160 0,116 191 2402 2593 
Local+CC+.+PRP+POS+CD+MD+JJ 1 0,204 184 2455 2640 
Local+CC+.+PRP+POS+VBG+CD+JJ+MD 1 0,212 185 2456 2641 
Local+CC+.+PRP+POS+CD+JJ 1 0,189 183 2466 2649 
Local+CC+.+PRP+POS+VBG+CD+JJ 1 0,197 183 2468 2651 
Local+JJ+PRP+POS+CD+. 1 0,17 184 2480 2665 
Local+CC+.+PRP+POS+JJ 1 0,17 189 2615 2804 
Local+CC+.+PRP+POS+VBG+JJ 1 0,178 189 2616 2805 
Neighb+.+RB 1 0,084 298 2649 2947 
Neighb+chunks1 --- --- 341 2616 2957 
Neighb+WP+.+RB 1 0,086 298 2664 2962 
Neighb+PRP$+.+RB 1 0,09 298 2665 2964 
Neighb+.+POS+RB 1 0,092 297 2694 2992 
Neighb+PRP$+.+POS+RB 1 0,098 298 2709 3007 
Neighb+WP+.+POS+RB 1 0,094 298 2708 3007 
Local+CC+.+PRP+POS+CD+MD+RB 1 0,163 207 2892 3100 
Local+CC+.+PRP+POS+CD+MD 1 0,143 207 2988 3195 
Local+CC+.+PRP+POS+CD 1 0,128 206 3035 3241 
Local+CC+.+PRP+POS+VBG+CD 1 0,136 206 3034 3241 
Local+CC+.+MD+POS+CD+RB 1 0,145 215 3079 3294 
Local+CC+.+MD+POS+CD 1 0,125 215 3192 3407 
Local+CC+.+PRP+POS+VBG 1 0,117 211 3203 3415 
Bottom-Up --- --- 490 11729 12219 
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Table 24 shows the accuracy metrics for the same optimal combinations of table 23. Besides the 

columns corresponding to the five metrics, an additional column Accuracy which sums them all 

has been included, as well as an Accuracy Rate which is simply calculated by normalising using 

the maximum and minimum values (for this latter calculus, the values for bottom-up method are 

not considered, that’s why its accuracy rate is negative). The different methods have been sorted 

according to the Accuracy. Although the figures are generally higher than in the previous 

sections (due to the two factors explained before, the disambiguation of the corpus and the fact 

that all the corresponding PTB parses contain only rules from our reduced grammar), once more 

the local approach obtains better results than the neighbouring approach. For both 

methodologies, again the chunking approach (except when choosing all the base-NPs) performs 

better than any of the combinations of categories as initial islands. Once more, the bottom-up 

baseline obtains worse results than any of our approaches. 

Table 24. Evaluation metrics for the optimal combinations of categories 

PTB-II LR BR CBR LP BP Accur. Accur. 
Rate 

Local+chunks2 0,835 0,844 0,870 0,825 0,834 4,208 1,000 
Local+chunks3 0,835 0,844 0,870 0,825 0,833 4,207 0,999 
Local+CC+.+PRP+POS+CD 0,830 0,852 0,883 0,794 0,815 4,174 0,957 
Local+CC+.+PRP+POS+CD+MD 0,830 0,851 0,882 0,793 0,814 4,170 0,952 
Local+CC+.+PRP+POS+VBG+CD 0,829 0,850 0,882 0,794 0,814 4,169 0,950 
Local+CC+.+PRP+POS+CD+MD+JJ 0,830 0,847 0,876 0,797 0,814 4,164 0,944 
Local+JJ+PRP+POS+CD+. 0,831 0,848 0,876 0,797 0,812 4,164 0,944 
Local+CC+.+PRP+POS+VBG 0,829 0,850 0,882 0,792 0,811 4,164 0,944 
Local+CC+.+MD+POS+CD 0,829 0,851 0,884 0,789 0,810 4,163 0,943 
Local+CC+.+PRP+POS+VBG+CD+JJ+MD 0,829 0,846 0,875 0,797 0,814 4,161 0,940 
Local+CC+.+PRP+POS+CD+JJ 0,829 0,846 0,875 0,796 0,812 4,158 0,936 
Local+CC+.+PRP+POS+VBG+CD+JJ 0,828 0,845 0,874 0,796 0,812 4,155 0,932 
Local+CC+.+PRP+POS+JJ 0,828 0,845 0,875 0,791 0,808 4,147 0,922 
Local+CC+.+PRP+POS+VBG+JJ 0,828 0,845 0,874 0,791 0,807 4,145 0,920 
Local+CC+.+PRP+POS+CD+MD+RB 0,827 0,847 0,879 0,785 0,805 4,143 0,917 
Local+CC+.+MD+POS+CD+RB 0,827 0,848 0,882 0,783 0,803 4,143 0,917 
Local+CC+.+PRP+POS+CD+MD+RB+JJ 0,826 0,843 0,872 0,788 0,805 4,134 0,906 
Local+CC+.+MD+POS+VBG+CD+RB+JJ+PRP 0,825 0,842 0,872 0,788 0,805 4,132 0,903 
Local+CC+.+PRP+POS+CD+RB+JJ 0,826 0,843 0,872 0,787 0,804 4,132 0,903 
Local+JJ+POS+CD+MD 0,827 0,844 0,877 0,782 0,798 4,128 0,898 
Local+CC+.+PRP+POS+VBG+CD+JJ+RB 0,825 0,842 0,871 0,787 0,803 4,128 0,898 
Local+CD+POS+JJ+VBG 0,827 0,843 0,876 0,782 0,796 4,124 0,893 
Local+JJ+POS+CD 0,827 0,843 0,876 0,780 0,794 4,120 0,888 
Local+CD+POS+JJ+CC 0,826 0,842 0,875 0,780 0,795 4,118 0,885 
Local+JJ+PRP+POS+CD 0,823 0,838 0,869 0,782 0,796 4,108 0,873 
Local+JJ+PRP+POS+MD 0,819 0,836 0,868 0,774 0,790 4,087 0,846 
Local+JJ+PRP+POS+CC 0,816 0,832 0,865 0,772 0,787 4,072 0,827 
Neighb+chunks3 0,783 0,798 0,838 0,714 0,727 3,860 0,557 
Neighb+chunks2 0,783 0,797 0,838 0,714 0,727 3,859 0,555 
Neighb+PRP$+.+POS+RB 0,773 0,795 0,860 0,628 0,645 3,701 0,354 
Neighb+WP+.+POS+RB 0,772 0,793 0,858 0,627 0,644 3,694 0,345 
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Neighb+PRP$+.+RB 0,772 0,794 0,859 0,623 0,641 3,689 0,339 
Neighb+.+POS+RB 0,771 0,792 0,857 0,626 0,643 3,689 0,339 
Neighb+WP+.+RB 0,770 0,792 0,857 0,622 0,639 3,680 0,327 
Neighb+.+RB 0,769 0,791 0,856 0,621 0,639 3,676 0,322 
Neighb+PRP$+VB+VBG 0,749 0,765 0,827 0,633 0,646 3,620 0,251 
Neighb+PRP$+TO+VBG 0,750 0,765 0,829 0,630 0,644 3,618 0,248 
Neighb+TO+VBG+POS+PRP$ 0,749 0,764 0,828 0,630 0,643 3,614 0,243 
Neighb+PRP$+VB 0,748 0,764 0,826 0,629 0,642 3,609 0,237 
Neighb+PRP$+VB+WP+VBG 0,747 0,763 0,825 0,630 0,644 3,609 0,237 
Neighb+PRP$+TO+POS 0,749 0,764 0,829 0,627 0,639 3,608 0,236 
Neighb+TO+VBG+WP 0,749 0,765 0,828 0,626 0,639 3,607 0,234 
Neighb+PRP$+TO 0,748 0,764 0,829 0,625 0,639 3,605 0,232 
Neighb+TO+VBG 0,748 0,764 0,828 0,626 0,639 3,605 0,232 
Neighb+PRP$+TO+WP 0,748 0,764 0,829 0,625 0,638 3,604 0,231 
Neighb+TO+VBG+POS+WP 0,748 0,764 0,827 0,626 0,638 3,603 0,229 
Local+chunks1 0,746 0,758 0,822 0,633 0,643 3,602 0,228 
Neighb+TO+VBG+POS 0,748 0,763 0,827 0,626 0,638 3,602 0,228 
Neighb+PRP$+VB+POS 0,747 0,762 0,825 0,627 0,640 3,601 0,227 
Neighb+PRP$+VB+WP 0,746 0,762 0,825 0,627 0,640 3,600 0,225 
Neighb+PRP$+TO+MD 0,746 0,762 0,828 0,624 0,636 3,596 0,220 
Neighb+PRP$+VB+WP+POS 0,745 0,761 0,825 0,625 0,638 3,594 0,218 
Neighb+WP+VB+VBG 0,745 0,761 0,823 0,625 0,639 3,593 0,217 
Neighb+TO+POS 0,747 0,763 0,827 0,621 0,634 3,592 0,215 
Neighb+WP+VB 0,744 0,760 0,824 0,622 0,636 3,586 0,208 
Neighb+chunks1 0,722 0,736 0,815 0,570 0,580 3,423 0,000 
Bottom-Up 0,702 0,721 0,816 0,565 0,580 3,384 -0,050 
 

At least for our corpus and test set, no particular category or group of categories seems to 

generally behave as a good initial island. Whatever the combination of categories, both the 

performance and accuracy are overcome by the approach that selects certain base-NPs as initial 

islands, for both stochastic models. That’s the reason why we have not continued to explore this 

line. 
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Chapter 6 
 
Conclusions 
 
 
A complete methodology for bidirectional island-driven parsing of natural language has been 

developed. The approach aims at defining scoring functions (FOMs) to drive the bidirectional 

chart parsing algorithm, basing on context-free grammars extended with attached probabilities 

(SCFGs). This methodology includes three main sections, which are detailed next. 

Firstly, the definition of the stochastic model needed in order to deal with bidirectionality in 

island-driven parsing. Two stochastic models have been devised. Both models are supervised, 

starting from a SCFG, and then adding the corresponding stochastic parameters of each model. 

These models provide for the probability of extension of each island and active edge in the chart 

structure. In order to do it, they use information based on either the stochastic grammar (local 

model) or both the grammar and the immediately adjacent islands (neighbouring model). Even 

if these models are still far from being the optimal scoring functions to guide the search in the 

island-driven parsing process, we find they constitute a valuable contribution to the solution of 

the problem.   

Secondly, the design and implementation of a bidirectional chart parser. A chart parser has 

been built that uses such models in order to guide its search for a best first parse. Such models 

can be used either independently or in combination. In fact, the structure of the parser has been 

designed in such a way that it allows the implementation of both the two unidirectional non-

stochastic approaches considered (bottom-up and top-down) as well as the variety of different 

bidirectional strategies regarded. The latter include head-driven methodology, island-driven 

pure methodologies (using only either local or neighbouring models), and hybrid methodologies 

which combine either both models or an stochastic model with a unidirectional approach. The 

election of the specific hybrid combinations evaluated has been heuristic, since it stems mainly 

from the necessity of optimising the performance of the neighbouring model. It includes the 

back-off from neighbouring to local, thresholding of the neighbouring parameters, and 

smoothing of the neighbouring probabilities. 
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Thirdly, the study of the possibilities as to the selection of the initial islands from which 

analysis will proceed. Several alternatives have been considered, though only three of them 

have been completely evaluated into our framework. Two of them can be considered the main 

methodologies for the selection of these islands devised, namely selecting as islands the non-

ambiguous words in a morphologically analysed but non-tagged sentence, and selecting as 

islands the chunks in a previously chunked sentence. A third simpler methodology has been 

explored which consists in selecting the islands according to their category. 

The work in this thesis can be considered as eminently heuristic. As it can be deduced from 

the previous paragraphs, the island-driven methodology presents so many parameters or degrees 

of freedom, that only through testing and evaluation can one try and find the best alternatives as 

to the three lines described above. Therefore, extensive experimentation has been carried out, 

and we have been specially concerned with the design of an adaptive environment in which 

these parameters can be easily changed. 

First, preliminary experiments have been performed, using Spanish toy grammars being 

tested on small corpora, in order to initially evaluate whether the methodology was worth at all. 

Parsing performance has been measured in terms of the average number of edges created to 

complete one analysis of each sentence. The performance of our proposal has been compared to 

that of the unidirectional approaches which will be used as baselines, the top-down and the 

bottom-up strategies. From these experiments we have been able to conclude that, as our island-

driven approach always outperforms the baselines, the continuation of the work was justified. It 

has also been observed that the larger the sentences, the larger the improvement of our 

bidirectional methodology. However, we have not been able to clearly determine any general 

criteria for selection of the initial islands, or rather, for the selection of initial islands out of the 

fixed set of islands (nonambiguous words) in the case of these preliminary experiments. 

Therefore, we have decided to see whether both our results extrapolate to real-sized cases and 

we can find additional criteria by investigating further these cases. 

Thus, extensive experiments with broad coverage grammars and real corpora of Spanish and 

English have been carried out. Parsing performance has been analysed according to several 

metrics of the input sentence (sentence length, ambiguity rate, MID41, island dispersion, and 

island density). Whatever the island selection methodology out of the three ones described 

above, our approaches dramatically outperform both baselines, top-down and (specially) 

bottom-up strategies.  

For the first island-selection strategy (simply selecting those nonambiguous words), training 

and testing over the PTB-II English corpus, local approach improves bottom-up results by more 

than 71% and top-down results by 18%, while neighbouring approach gets to improve bottom-

                                                           
41 Maximum Island Distance, see section 5.4. 
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up results by 72% and top-down’s by over 20%. As to the experiments over Spanish corpus 

Lexesp, the deficient quality of the grammar used (merely a extension of a pre-existent chunk 

grammar) and the fact that the set of parses used as a training set were not manually tested, but 

performed directly by the bottom-up parser, entailed that the more informed neighbouring 

methodology did not manage to accurately learn its stochastic parameters, so only the local 

model improved the bottom-up baseline. Surprisingly, for the Spanish experiments, top-down 

results are far worse than bottom-up’s, and obviously, than both of our stochastic approaches. 

These latter experiments for Spanish (as compared to the ones for English) have allowed to 

evaluate the relevance of the quality of the input knowledge sources for the performance.  

As mentioned, several hybrid methods, which combine local and neighbouring approaches, 

have also been defined and evaluated. Their performance always improves the single ones’. In 

fact, all the hybrid methods outperform the optimal pure approach, neighbouring, by between 

46% and 48%. The optimal method is one of the back-off approaches combined with smoothing 

of the neighbouring probabilities, neighb-smooth4ac-1cycle (defined in section 5.7). After all 

these experiments we can conclude that, using the first island selection criterion, and regarding 

performance, neighbouring approach is the optimal, as long as its main drawback, data 

sparseness, is overcome by smoothing somehow (using any of the methods defined in sections 

5.5 to 5.7) the learnt stochastic parameters. 

Besides evaluating performance, other measures have been considered, including the 

likelihood of the different parse trees and its similarity to the PTB ones (what we have generally 

denoted as accuracy). Local method, followed by two of the back-off approaches, neighb-1cycle 

and neighb-40% (defined in section 5.5), present the best results. 

The second island-selection strategy, consisting in preceding the stochastic island-driven 

parser by a chunking process for identifying the initial islands, has been proved useful for 

improving parsing performance without loss of coverage. It uses a SCFG from which a 

grammar of chunks can be automatically extracted. The chunking process can be carried out 

quite straightforwardly in a very efficient way. The island-driven chart parsing process is then 

performed basing on either of the stochastic models previously described.  

The system has been tested on PTB-II corpus with remarkable results. For instance, the local 

method using the firstly mentioned island-selection mechanism (local-noamb) reduces the 

bottom-up average number of (active + inactive) edges by a factor of 4, whereas the chunking 

criterion reduces it by 8. We conclude that, although both methods clearly outperform both 

baselines (bottom-up and top-down), the use of a more informed strategy, the base NPs 

proposal, provides a more significant improvement, specially when only maximal and 

overlapping NPs (see definitions in chapter 4) are selected. As to the accuracy measures 

considered (the likelihood of the different parse trees and its similarity to the PTB ones), mostly 

our parses outperform both bottom-up and top-down results, obtaining quite comparable figures 
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in all cases. The change of island-selection strategy also improves these evaluation metrics. We 

have investigated the extension of the use of chunks others than base NPs. The results obtained 

suggest that the effort of the latter additional chunking may not be worth it. 

A third island selection strategy, consisting in selecting the islands according to their 

category, has been explored. Using the test corpus, the idea has been to try and find the optimal 

category or set of categories obtaining the best trade-off between performance and accuracy. 

Unfortunately, although the best combinations still outperform the baseline strategies, they are 

in turn outperformed by the previously mentioned chunking approach. Moreover, we have not 

been able to find out any tendencies or common features in the optimal sets of categories which 

works for both the local and neighbouring models. 

Summing up, we have demonstrated that, whatever the island selection strategy, our island-

driven methodology improves the efficiency (measured in terms of the number of chart edges) 

of the usual unidirectional techniques, and that the percentage of improvement increases with 

the length of the sentence. Such a contribution is highly relevant, considering that stochastic 

context-free parsing with large (real-sized) grammars is a problem that might not be tractable 

for long (real-sized) sentences. Moreover, these natural language sentences might be corrupted, 

which would render the application of unidirectional strategies impossible or, at least, much 

harder. 

 

6.1   Further Work 

 
Considering the results and conclusions summarised in the previous introduction of this chapter, 

several lines of further work to be done can be outlined. Some of them would involve further 

significant research, whilst others refer to details or additional experimentation which might be 

carried out in the existing framework. They can be distilled into the following six points: 
 

• Chapter 3 introduced an alternative42 to our scoring function for the local model, in 

which maximum of the probabilities of derivations was used instead of our addition 

of the probabilities. The preliminary results obtained (showed in chapter 5) are 

promising, since the average number of edges decreases a 3% with respect to our 

conventional local approach and, although the average probability of the parses is 

significantly lower, the accuracy measures are lower but quite comparable. 

Therefore, we consider that the application of this modification to the neighbouring 

(and its different variants) might be the natural following line.  

                                                           
42 Suggested a posteriori by an annonymous reviewer, to whom we are extremely grateful. 
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• Performance improvement over baseline methodologies seems unquestionable. 

However, accuracy remains to be increased, specially for the neighbouring model. 

In fact, as mentioned in section 3.5, our hybrid approaches share the motivation 

with the ideas of ‘work’ and ‘competitorship’ of [Blaheta & Charniak, 1999], thus 

pointing out a possible extension for improving both performance and accuracy. 

• [Blaheta & Charniak, 1999] also provide interesting ideas to deal with data-

sparseness which may be applied to our neighbouring model. 

• Since section 1.1 it has been justified why our method is non-lexicalised, all the 

more as we have found the data-sparseness problems in the neighbouring approach. 

However, taking into account current project 3LB43, in which a treebank for Spanish 

is being constructed, a lexicalised version of our system might be considered. 

Obviously such an extension would require the thorough study and use of the 

corresponding back-off and data-sparseness techniques which are being employed 

by the lexicalised systems currently found in the literature. 

• It has been commented many times along this thesis how heavily the performance 

obtained relies on the initial island selection methodology. Specifically, we have 

proved the importance of using more informed methods. Alternative methods for 

this selection, both the ones described in section 3.4 but not evaluated, as well as 

any others that may arise, might be devised and evaluated. This evaluation might 

include the combination of the promising hybrid/smoothing techniques designed for 

the neighbouring model with these new selection methods. The test of this 

combination should start from the chunk approach described in chapter 4, for to 

what extent the success of the hybrid/smoothing techniques is dependent on the 

specific island selection method is a point still to be evaluated. 

• Island-driven parsing’s most natural application is robust parsing, considering 

specially the cases of a possibly corrupted input (mainly dealing with speech 

processing, but also whenever we might find non-grammatical sentences). 

However, we have not evaluated the behaviour of our methodology in such cases, 

nor have we compared it with more conventional strategies. This is another 

promising line of research, since we would be applying the methodology in its a 

priori more favourable environment. 

                                                           
43 FIT-15050-2002-244, http://www.dlsi.ua.es/projectes/3lb/index_en.html 
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Appendix A 
 
Tag Sets 
 
Lexesp Corpus Tag Set 

 

The tag set used to annotate the Lexesp corpus consists of a set of Eagles compliant labels that 

were specially developed for Spanish and Catalan. These labels are composed by 1 to 10 

symbols, so that the first symbol codifies the main syntactic category, the second one codifies 

the sub-category (if any), and the rest of the symbols of each label (if any) codify other features 

such as gender, number, person, tense, etc. 

Being the full tag set too large (310 tags), we have found more indicative to include a list of 

the syntactic categories and sub-categories, in the following table: 

 
 

Main Category Sub-category Number of 
additional 
features 

Usage 

A Q 5 Adjective, qualifier 
C C 2 Conjunction, coordinate 
C S 2 Conjunction, subordinate 
D D 5 Determiner, demonstrative 
D P 5 Determiner, possessive 
D T 5 Determiner, interrogative 
D E 5 Determiner, exclamative 
D I 5 Determiner, indefinite 
F aa 0 Left exclamative, ¡ 
F ca 0 Right exclamative, ! 
F ai 0 Left interrogative, ¿ 
F ci 0 Right interrogative, ? 
F c 0 Comma, , 
F ap 0 Left bracket, ( 
F cp 0 Right bracket, ) 
F co 0 Double quote, " 
F dp 0 Colon, : 
F g 0 Dash, - 
F p 0 Stop, . 
F pc 0 Semicolon, ; 
I - 0 Interjection 

M C 4 Numeral, cardinal 
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M O 4 Numeral, ordinal 
N C 5 Noun, common 
N P 5 Noun, proper 
P P 6 Pronoun, personal 
P D 6 Pronoun, demonstrative 
P X 6 Pronoun, possessive 
P I 6 Pronoun, indefinite 
P T 6 Pronoun, interrogative 
P R 6 Pronoun, relative 
R G 3 Adverb, general 
S PS 2 Preposition 
S PC 2 Contraction 
T D 3 Article, definite 
T I 3 Article, indefinite 
T P 3 Article, personal 
V MI 4 Verb, main, indicative 
V MS 4 Verb, main, subjunctive 
V MM 4 Verb, main, imperative 
V MC 4 Verb, main, conditional 
V MN 4 Verb, main, infinitive 
V MG 4 Verb, main, gerund 
V MP 4 Verb, main, participle 
V AI 4 Verb, auxiliary, indicative 
V AS 4 Verb, auxiliary, subjunctive 
V AM 4 Verb, auxiliary, imperative 
V AC 4 Verb, auxiliary, conditional 
V AN 4 Verb, auxiliary, infinitive 
V AG 4 Verb, auxiliary, gerund 
V AP 4 Verb, auxiliary, participle 
W - 0 Date 
X - 0 Residual 
Y - 0 Abbreviation 
Z - 0 Number 

 
 

Penn Treebank II Corpus Tag Set 

 

The tag set used to annotate the Penn Treebank is composed by 45 tags, which are listed in the 

following table: 

 

Category Usage 
CC Coordinating conjunction 
CD Cardinal number 
DT Determiner 
EX Existential there 
FW Foreign word 
IN Preposition or subordinating conjunction 
JJ Adjective 

JJR Comparative adjective 
JJS Superlative adjective 
LS List item marker 
MD Modal 
NN Noun, singular or mass 

NNS Noun, plural 
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NNP Proper noun, singular 
NNPS Proper noun, plural 
PDT Predeterminer 
POS Possessive ending 
PRP Personal pronoun 

PRP$ Possessive pronoun 
RB Adverb 

RBR Comparative adverb 
RBS Superlative adverb 
RP Particle 

SYM Symbol 
TO Infinitive marker to 
UH Interjection 
VB Verb, base form 

VBD Verb, past tense 
VBG Verb, gerund or present participle 
VBN Verb, past participle 
VBP Verb, non-3rd person singular, present 
VBZ Verb, 3rd person singular, present 
WDT Wh-determiner 
WP Wh-pronoun 

WP$ Possessive wh-pronoun 
WRB Wh-adverb 

# Pound sign 
$ Dollar sign 
. Stop 
, Comma 
: Colon, semi-colon 

-LRB- Left bracket, ( 
-RRB- Right bracket, ) 

“ Left double quote 
” Right double quote 
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Appendix B 
 
Syntactic Structure 
 
Lexesp Corpus Syntactic Structure 
 

The nonterminal symbols set used for annotating Lexesp corpus is composed by 123 categories. 

As commented in sections 5.2.1 and 5.3, a high percentage of these symbols are preterminal 

categories which mainly group together the large number of existent terminal labels. We have 

omitted these 50 elements in the following table, as well as the 43 additional ones which appear 

mainly in the left-hand side of unary or binary rules with just preterminals in their right-hand 

side. Also related to our comments in sections 5.2.1 and 5.3, it can be observed in the table the 

simplicity of the structure of the sentence-level categories. Since the grammar observes subject-

verb agreement, the existence of the three persons and both numbers for each main phrase is 

necessary. 

 

Level Category Usage 
FRASE Sentence 
PROP Proposition 

Clause 

PROP1 Proposition 
SADV Adverbial phrase 

SV Verb phrase + other phrases 
GRUP-VERBAL Verb phrase 
GRUP-VERB1S Verb phrase, 1st person, singular 
GRUP-VERB1P Verb phrase, 1st person, plural 
GRUP-VERB2S Verb phrase, 2nd person, singular 
GRUP-VERB2P Verb phrase, 2nd person, plural 
GRUP-VERB3S Verb phrase, 3rd person, singular 
GRUP-VERB3P Verb phrase, 3rd person, plural 

GRUP-INF Infinitive phrase 
SN Noun phrase ([Det] + GRUP-NOM∗ ) 

GRUP-NOM1S Noun phrase, 1st person, singular 
GRUP-NOM1P Noun phrase, 1st person, plural 
GRUP-NOM2S Noun phrase, 2nd person, singular 
GRUP-NOM2P Noun phrase, 2nd person, plural 
GRUP-NOM3S Noun phrase, 3rd person, singular 
GRUP-NOM3P Noun phrase, 3rd person, plural 

GRUP-COOR-N1P Conjunction phrase, 1st person 

Phrase 

GRUP-COOR-N2P Conjunction phrase, 2nd person 
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GRUP-COOR-N3P Conjunction phrase, 3rd person 
GRUP-SP Prepositional phrase 

S-ADJ Adjective phrase 
GRUP-ADJS Adjective phrase, singular 
GRUP-ADJP Adjective phrase, plural 

GRUP-COOR-AS Adjective coordinate, singular 
GRUP-COOR-AP Adjective coordinate, plural 

GRUP-COMPLEX-SPECS Determiner phrase, singular 

 

GRUP-COMPLEX-SPECP Determiner phrase, plural 
 
 

Penn Treebank II Corpus Syntactic Structure 

 

The following table contains the list of 26 nonterminal labels with which the Penn Treebank II 

is annotated. Only the labels are listed, not the grammatical functions nor the semantic roles. 

Additional information can be found in [Marcus et al., 1994]. 

  

Level Category Usage 
S Simple declarative sentence 

SINV Subject-auxiliary inversion 
SBAR Relative or subordinate clause 

SBARQ Wh-question 

Clause 

SQ SBARQ = wh-element + SQ 
RRC Reduced relative clause 

FRAG Clause fragment 
VP Verb phrase 
NP Noun phrase  

ADJP Adjective phrase 
PP Prepositional phrase 

ADVP Adverbial phrase 
WHNP Wh-noun phrase 

WHADVP Wh-adverbial phrase 
WHADJP Wh-adjectival phrase 

WHPP Wh-prepositional phrase 
QP Quantifier phrase 

PRT Particle 
UCP Unlike coordinated phrase 
PRN Parenthetical 
NX Head of a complex noun phrase 

NAC Not a constituent (certain prenominal 
modifiers in a noun phrase) 

INTJ Interjection 
CONJP Conjunction phrase 

X Unknown, uncertain 

Phrase 

LST List marker 
 


