Depth-First Mini-Bucket Elimination

Emma Rollon and Javier Larrosa

Universitat Politecnica de Catalunya,
Jordi Girona 1-3, 08034 Barcelona, Spain
erollon@lsi.upc.edu, larrosa@lsi.upc.edu

Abstract. Many important combinatorial optimization problems can
be expressed as constraint satisfaction problems with soft constraints.
When problems are too difficult to be solved exactly, approximation
methods become the best option. Mini-bucket elimination (MBE) is a
well known approximation method for combinatorial optimization prob-
lems. It has a control parameter z that allow us to trade time and space
for accuracy. In practice it is the space and not the time that limits the
execution with high values of z. In this paper we introduce a set of im-
provements on the way MBE handles memory. The resulting algorithm
dfMBE may be orders of magnitude more efficient. As a consequence,
higher values of z can be used which, in turn, yields significantly bet-
ter bounds. We demonstrate our approach in scheduling, probabilistic
reasoning and resource allocation problems.

1 Introduction

Constraint satisfaction problems (CSPs) involve the assignment of a set of vari-
ables subject to a set of constraints. The addition of soft constraints [1] extend
the CSP framework to optimization tasks (we will assume optimization as mini-
mization). Many problems in a variety of domains such as probabilistic reasoning
[2], bioinformatics [3], scheduling [4], etc, can be naturally expressed as soft CSPs.
In recent years a big effort has been made in the development of algorithms to
solve this type of problems. In some cases, specialized algorithms can be designed
to solve more efficiently particular problems. Nevertheless in this paper we will
focus on general techniques.

There are two main approaches to solving soft CSPs: search and inference.
Search algorithms traverse the tree of possible assignments typically following the
deph-first branch-and-bound (BnB) principle [5,6]. Inference algorithms solve
the problem by a sequence of reductions following the dynamic programming
principle [7]. A well known inference algorithm is bucket elimination (BE) [8].
It falls into the category of the so-called decomposition methods [7]. In general,
solving a soft CSP is NP-hard. Therefore, all known algorithms require expo-
nential resources in the worst case, which means that many instances cannot be
solved with current technology. Given the practical importance of this type of
problems, when exact methods fail, algorithms that approximate the solution
become very desirable.

When an instance is too difficult to be solved exactly, both search and in-
ference, can be adapted to approximate its solution. BnB maintains during the
search an upper bound of the optimum. Thus, it can be seen as an any-time
algorithm providing increasingly better upper bounds. Alternatively, if BnB is
executed in an iterative deepening manner it provides an increasing sequence of
lower bounds. Both of these approaches are polynomial in space, and the time
can be adjusted to the user needs. The BE algorithm can also be approximated
which results in the mini-buckets elimination algorithm (MBE) [9]. In its more
general formulation, the outcome of MBE is a lower and an upper bound of the
optimum. It is arguably one of the best-known general approximation algorithms
for soft CSPs and it has shown to be effective in a variety of domains including
several probabilistic tasks in bayesian networks. It uses a control parameter z
that allow us to trade time and space for accuracy. The time and space com-
plexity of MBE is exponential in z and it is important to note that, with current
computers, it is the space, rather than the time, that prohibits the execution of
the algorithm beyond certain values of z.

In this paper, we show how to decrease the space demands of MBE. Our
approach is based on the concept of computation tree (CT). A CT provides a
graphical view of the MBE execution and can be computed as a pre-process. It is
somewhat similar to the tree-decomposition in decomposition methods [9], where
the first step is to build the tree-decomposition and the second step is to solve
the problem. Our first contribution is a set of local transformations to the CT
with which a more rational use of memory is achieved. They include:) branch
re-arrangement (nodes are moved upwards along a branch which means that the
elimination of a variable is anticipated) and, i7) vertical tree compaction (adjacent
nodes are joined which means that a sequence of operations is performed in a
single step).

The second contribution is the exploitation of memory deallocation of inter-
mediate functions when they become redundant. By construction of CT, MBE
can be seen as a top-down traversal of the CT. The order of the traversal is im-
posed by the order in which variables are eliminated. We make the observation
that any top-down traversal of the CT would produce the same outcome. Then,
we propose to traverse the CT in a depth-first manner in order to decrease the
number of intermediate functions that must be simultaneously stored. We show
that with a depth-first traversal of the CT, the order of children has an impact
in the space complexity which provides an additional source of improvement. We
also discuss the benefits of horizontal node compaction. It is important to note
that none of these transformations risk the accuracy of the algorithm.

The new algorithm that incorporates all these techniques is called depth-first
mini-bucket elimination dfMBE. Our experiments show in a number of domains
that dAfMBE may provide important space savings. The main consequence is that
in a given computer (namely, for a fixed amount of memory), dfMBE(z) can be
executed with a higher value of z than MBE(z) which, in turn, may yield better
lower bounds.

The structure of the paper is as follows: Section 2 provides preliminary def-
initions, Section 3 introduces CTs and two local transformations, Section 4 in-
troduces dfMBE and additional CT transformations, Section 5 reports our ex-
perimental results and, finally, Section 6 gives conclusions and discusses future
work.

2 Preliminaries

2.1 Soft CSPs

Let X = (x1,...,2,) be an ordered set of variables and D = (D4,...,D,) an
ordered set of domains. Domain D; is a finite set of potential values for x;. The
assignment (i.e, instantiation) of variable z; with a € D; is noted (z; « a). A
tuple is an ordered set of assignments to different variables (x;, < a;,,...,2;, «—
a;,). The set of variables (z;,,...,;,) assigned by a tuple ¢, noted var(t), is
called its scope. The size of var(t) is the arity of t. We focus on two basic
operations over tuples: The projection of t over A C war(t), noted t[A], is a
sub-tuple of ¢ containing only the instantiation of variables in A. Let ¢ and s
be two tuples having the same instantiations to the common variables. Their
join, noted t - s, is a new tuple which contains the assignments of both ¢ and s.
Projecting a tuple ¢ over the empty set ¢[f)] produces the empty tuple A\. We say
that a tuple t is a complete instantiation when var(t) = X. Sometimes, when we
want to emphasize that a tuple is a complete instantiation we will call it X.

A soft CSPis atriple (X, D, F), where X = {x1,...,2,} and D = {D1,...,D,}
are sets of variables and domains. F = {fi,..., f,} is a set of functions that form
an objective function. Function f; over S C X associates valuations to tuples
t such that var(t) = S. The set of variables S is the scope of f and is noted
var(f;). Abusing notation, when var(f;) C var(t), fi(t) will mean f;(t[var(f;)]).
Functions may be given explicitly as tables or implicitly as mathematical ex-
pressions or computer procedures. The space complexity of explicitly storing a
function f; is sp(f;) = IL;coarcr) |Djl.

Different soft CSP frameworks differ in: the set of possible valuations, the
way functions are combined in order to form the objective function, and the
task required of the objective function [1]. For simplicity, in the following we
will assume weighted CSPs. In the weighted CSP (WCSP) model, valuations are
natural numbers, the objective function is the sum of the functions,

r
F(X)=>fi(X)
i=1
and it has to be minimized.

2.2 Bucket and Mini-Bucket Elimination

Bucket elimination (BE)[8,10] is a well-known algorithm for soft CSPs. It uses
the following two operations on functions:

function BE(X, D, F)

1. for each i=n..1do

2 B :={f € F| x; € var(f)}
3 Gi = (ZfeBi REZE

4. F:=(FU{g}) — B;

5. endfor

6. t:= M\

7. for eachi=1..n do

8. vi= argminaEDi{(ZfeBi Nt (zi < a))}
9. t:=t-(z;—v);

10. endfor

11. return(g,t);

endfunction

Fig. 1. Bucket Elimination. Given a WCSP (X, D, F), the algorithm returns a constant
function g1 (i.e, var(g1) = () with the optimal cost, along with one optimal assignment
t.

— The sum of two functions f and g denoted (f + g) is a new function with
scope var(f)Uwvar(g) which returns for each tuple the sum of costs of f and
9,
(f +9)@) = f(t) +g(t)
— The elimination of variable z; from f, denoted f | x;, is a new function
with scope var(f) — {x;} which returns for each tuple ¢ the minimum cost
extension of ¢ to x;,

(f L 2i)(t) = min {f(t- (2; < a))}

where t- (x; < a) means the extension of ¢ so as to include the assignment of
a to ;. Observe that when f is a unary function (i.e., arity one), eliminating
the only variable in its scope produces a constant.

The result of summing functions or eliminating variables cannot, in general,
be expressed intensionally. Therefore, we store functions as tables.

BE (Figure 1) uses an arbitrary variable ordering o that we assume, without
loss of generality, lexicographical (i.e, 0 = (21,22,...,2,)). It works in two
phases. In the first phase (lines 1-5), the algorithm eliminates variables one by
one, from last to first, according to o. The elimination of variable x; is done as
follows: F is the set of current functions. The algorithm computes the so called
bucket of x;, noted B;, which contains all cost functions in F having x; in their
scope (line 2). Next, BE computes a new function g; by summing all functions
in B; and subsequently eliminating z; (line 3). Then, F is updated by removing
the functions in B; and adding g; (line 4). The new F does not contain z; (all
functions mentioning x; were removed) but preserves the value of the optimal
cost. The elimination of the last variable produces an empty-scope function (i.e.,

a constant) which is the optimal cost of the problem. The second phase (lines 6-
11) generates an optimal assignment of variables. It uses the set of buckets that
were computed in the first phase. Starting from an empty assignment ¢ (line
6), variables are assigned from first to last according to o. The optimal value
for z; is the best value regarding the extension of ¢ with respect to the sum of
functions in B; (lines 8,9). We use argmin to denote the argument producing the
minimum valuation. The time and space complexity of BE is exponential in a
structural parameter called induced width. In practice, it is the space and not
the time what makes the algorithm unfeasible in many instances.

Mini-bucket elimination (MBE) [9] is an approximation of BE that can be
used to bound the optimum when the problem is too difficult to be solved ex-
actly. Given a control parameter z, MBE partitions buckets into smaller subsets
called mini-buckets such that their arity is bounded by z-+ 1. Each mini-bucket is
processed independently. At the end of the first phase, MBE has a lower bound
of the problem optimum. In the second phase MBE computes a (non-necessarily
optimal) assignment ¢. The evaluation of ¢ on the objective function F'(t) con-
stitutes an upper bound of the problem optimum. The pseudo-code of MBE is
the result of replacing lines 3 and 4 in the algorithm of Figure 1 by,

3. {Pi,,...,Pi,} := Partition(B;);

3b. for each j = 1.k do gi; := X scp, [) | 23
J

4. F = (Fu{gin---agik})_lgl

The time and space complexity of MBE is exponential in z. Parameter z
allows to trade time and space for accuracy, because greater values of z increment
the number of functions that can be included in each mini-bucket. Therefore,
the bounds will be presumably tighter.

Consider as a example a WCSP instance with seven variables and the fol-
lowing set of cost functions,

F ={fi(ze, x5, 24), fo(zs, 25, 23), f3(x5, 23, 22), fa(Te, T4, x2), f5(27, 22, 21), fe(x7, 26, 21)}

One possible execution of MBE(3) along the lexicographical variable ordering
leads to the following trace,

Bucketz:|| fo(x7, 26, 1), f5(x7,22,27)
Bucketg: ar, (.Z'ﬁ,[rz,l'l) (fﬁ + f5) | x7,
fa(xe, x4, 22), folxe, s, 73), f1(xe, x5, x4)
Buckets:||gs, (75, 74, 73) = (f1 + f2) | 76, [3(25,73,72)
Buckety:||ge, (T4, T2, 1) = (fa + 97,) | s,
gs, (T4, 3,02) = (f3 +9g6,) | 25

Buckets:||ga, (z3,22,21) = (g6, + g5,) | 24

(

(

(

@

Buckets:||gs, (x2,21) = g, | T3
Buckety:||ge, (1) = g3, | 22
Result: ||g1,() = g2, | 21

Q

3 Improving MBE memory usage

The first phase of MBE (as well as BE) can be seen as an algebraic expression
that combines sums and variable eliminations. For instance, the execution of
MBE(3) in the previous example is equivalent to the computation of the following
expression,

(fs+(frt+fa)las) las+(fa+(fo+f5) Lar) L we) L wa | w3] 22 | 21

Note that each function appears only once in the formulae.

A computation tree (CT first introduced in [11]) provides a graphical view
of the algebraic expression. The leaves are the original functions (arguments
of the formulae) and internal nodes represent the computation of intermediate
functions. If the node has only one child, the only operation performed is the
elimination of one variables. Otherwise, all the children are summed and one
variable is eliminated. Figure 2. A depicts the CT of the previous example. Dot-
ted lines emphasize tree-leaves, which are associated to original functions. Even
when original function are given explicitely as tables, do not include their space
in the MBE cost. Adjacent to each internal node we indicate the variable that is
eliminated. Although CTs are somehow related to decomposition-trees, they dif-
fer in the way they represent original functions. Besides, since CT's originate from
MBE executions, they do not need to satisfy the running intersection property
[7].

In the following we distinguish the computation of the CT from the evaluation
of its associated expression. Given the scope of the original functions, a variable
ordering, a policy for mini-bucket partitioning and a value for z, it is possible to
compute the corresponding CT as a pre-process. Computing the CT is no more
than finding the set of computations that the algorithm will perform in order to
evaluate the formula.

One advantage of computing the CT in a pre-process is that it makes it easy
to obtain the exact memory demands of MBE by summing the space require-
ments of every internal node of the CT. For instance, the CT in Figure 2.A, will
need to store 5 functions of arity 3, 1 functions of arity 2, 1 function of arity 1
and 1 function of arity 0. Assuming domains of size 10, MBE will need to store
5x 102 +1x10%2+1 x 10! +1 x 10° = 5111 table entries.

CTs allow us to identify and remedy some space inefficiencies of MBE. In
the following we describe two local transformations of CTs that improve their
space requirements.

3.1 Branch Re-arrangement

Consider again the CT in Figure 2.A. Observe that if we follow any branch in
top-down order, variables are eliminated in decreasing order, because this is the
order used by MBE. As a consequence, the elimination of z; is left to the end.
However, this variable only appears in the two leftmost leaves. It is inefficient
to carry it over down to the CT root, since it could have been eliminated higher

up.

B7

@
>

3 (X5,x3,x2) X6

B5

(o)

B4

B3

B2

B1

BO

| 961(X5,x4,X3)

w052

96 5(x4,x2,

94,0 x4 x2

©) (©)

Fig. 2. Four different computation trees: A) original CT, B) after branch re-
arrangement, C) after vertical compaction, D) after horizontal compaction

Consider a node v of a CT with a single child. Let z; be the variable that is
eliminated at v. Let u be the first descendent of v with k& > 1 children. If only
one child w of u has x; in its scope, node v (namely, the elimination of z;) can
be moved in between w and u. We only perform the change if w is not a leaf.
Branch re-arrangement is the process of applying the previous rule in a bottom-
up order, moving nodes as close to the leaves as possible. The benefit of branch
re-arrangement is that x; disappears from the scope of intermediate functions
earlier in the tree. In the CT of Figure 2.A, the leftmost branch can be re-
arranged: variable z; can be eliminated right after z7. Moreover, the rightmost
branch can also be re-arranged: variable z3 can be eliminated right after xs.
Figure 2.B shows the resulting CT. The space requirements of the new CT are
decreased from 5111 to 3311. Observe that branch re-arrangement can never
increase the space requirements of a CT.

3.2 Vertical Compaction

Consider the CT in Figure 2.B. There are two single-child nodes. In single-child
nodes the only associated computation is a variable elimination. MBE considers
each variable elimination as an independent operation because they take place in
different buckets. However, a sequence of variable eliminations can be performed
simultaneously in a single step without changing the outcome or increasing the
time complexity. The advantage is that intermediate functions do not need to
be stored.

Vertical compaction is the process of merging internal linear paths into one
node representing the sequence of computations. An internal linear path is a path
between an internal node v and one of its ancestors w, (v, vy ..., v, w), such that
every node in the path except v has only one child. After the compaction every
internal node of the CT has k > 1 children. There is one exception: there may be
internal nodes with only child if the child is a leaf. Figure 2.C depicts the result
of applying vertical compaction to the CT of Figure 2. B. The space requirements
of the new CT are decreased from 3311 to 1301. It is clear that the compaction of
a CT may produce space saving and can never increase the space requirements
of a CT.

4 Depth-First MBE

A CT can be traversed in any top-down order. A node can be computed as
soon as all its children are available. Whatever traversal strategy is used it has
to keep all intermediate functions because they are used in the second phase
of the algorithm in order to compute the upper bound. However, the space
consumption of the traversal can be drastically reduced if we sacrifice the upper
bound and deallocate the memory used by intermediate functions when they
become redundant. A function becomes redundant as soon as its parent has
been computed. Note that an alternative solution that we do not explore in this
paper is to store redundant functions in the hard-disk. Thus, the upper bound
is not lost.

Without memory deallocation the traversal order has no effect on the space
complexity, but this is no longer true when memory is deallocated. Traversing
the CT depth-first has the advantage of only demanding the space of the cur-
rent branch: computing a node only requires to have available its children, so
they have to be sequentially and recursively computed. We denote by dfMBE
the algorithm that traverses depth-first the CT and deallocates memory when
intermediate functions become redundant. The space complexity of dfMBE can
be formalized by means of a recurrence. Let v be a node, g, the associated func-
tion and (wy, ..., wy) its ordered set of children. R(v) is the space complexity of
computing the sub-tree rooted by a CT node v and is given by,

R(w) = BRELY splow,) + R)

where R(wg11) = sp(gy) by definition. Also, the space sp() of original func-
tions is 0 because we do not count it as used by the algorithm. The space
complexity of dfMBE is obtained by evaluating R(v) at the root of the CT. In
words, the recursion indicates that the space required to compute node v is the
maximum among the space required to compute its children. However, when
computing a given child, the space occupied by all its previous siblings must be
added because they need to be available for the final computation of v.

Consider the CT of Figure 2.C. We showed in the previous Section that, with
no memory deallocation, the space cost of internal nodes was 1301. If the CT is
traversed depth-first, the cost (disregarding original functions) is,

maX{R(QGQ)a Sp(962) + R(g31)7 Sp(962) + 'Sp(g?)l) + sp(g41)} =

max{200, 100 + 1100, 100 + 100 + 1} = 1200

Observe that the order of children affects the space complexity of dfMBE.
For instance, if we reverse the two children of the root in Figure 2.C, the space
complexity of dfMBE is decreased to,

maX{R(931)’ Sp<g31) + R(g(b)’ Sp<g31) + Sp(gﬁ2) + Sp(g41)} =

max{1100, 100 + 200, 100 + 100 + 1} = 1100

In our implementation of dfMBE we make an additional optimization of the CT
by processing nodes from leaves to the root. At each node, we swap the order of
two of its children if it brings a space improvement.

Consider now the two children of the root-node in the CT of Figure 2.C.
The scope of the associated functions ge, and g, is the same. Since they will be
summed up, one table can be shared to stored both of them as follows: the table
entries are initialized to 0, the two functions are computed sequentially, and
each function value is added to the table current value. Figure 2.D illustrates
this idea. The cost of dAfMBE with this new CT is,

maX{R(962)7 Sp(gﬁz) + Sp(g41)} =
max{max{100, 100 + 100, 100 + 1000, 100 + 1000}, 100 + 1} = 1100

which brings no gain over the CT in Figure 2.C. However, in some cases it may
bring significant benefits. Note that R(gs,) = max{R(g1,), sp(g1,)+sp(96,), sp(g6,)+
R(gs,), sp(gs,) + sp(ge,) }- In our implementation, we check siblings pair-wise. If
sharing their storing table produces space savings we take such an action.

5 Experimental Results

We have tested our approach in three different domains. We compare the memory
requirements for MBE, MBE’ (i.e, mini-buckets under the computation tree
resulting from branch re-arrangement and vertical compaction), and dfMBE in
a given computer (in other words, with a fixed amount of memory). For each

10

domain we execute MBE(z1), MBE’(22) and dfMBE(z3), where z1, 22 and z3
are the highest feasible values of the control parameter for each algorithm, given
the available memory.

In all our experiments, the original CT was obtained assuming a MBE ex-
ecution in which the order of variable elimination was established with the
min-degree heuristic. For the elimination of each variable, mini-buckets are con-
structed one by one with the following process: Select one original function (or
a non-original function if there are no original functions left). Choose among
the remaining functions the one that adds the least number of variables to the
mini-bucket until no more functions can be included in that mini-bucket.

In our benchmarks domain sizes range from 2 to 44, and some instances have
variables with different domain size. Consequently, the arity of a function is not
a proper way to indicate its spacial cost, which means that the control parameter
z of MBE may be misleading (it forbids a function of arity z 4+ 1 with binary
domains and allows a function of arity z with domains of size 4 that is much
more costly to store). We overcome this problem by modifying the meaning of
z: In the original formulation of MBE, the arity of intermediate functions is
bounded by z, but in our implementation the size of intermediate functions is
bounded by 2.

5.1 Scheduling

For our first experiment, we consider the scheduling of an earth observation
satellite. Given a set of candidate photographs, the problem is to select the best
subset that the satellite will actually take. The selected subset of photographs
must satisfy a large number of imperative constraints and at the same time max-
imize the importance of selected photographs. We experimented with instances
from the Spot5 satellite [4] that can be trivially translated into the WCSP frame-
work. These instances have unary, binary and ternary constraints, and domains
of size 2 and 4. Some instances include in their original formulation an additional
capacity constraint imposed by the on-board storage limit. In our experiments
we discarded such constraint.

Figure 3 reports the results that we have obtained assuming a computer with
a memory limit of 1.5 Gigabytes. The first column identifies the instance. The
second column indicates the induced width with the min-degree ordering. The
third, fourth and fifth columns report the memory requirements in Megabytes
with the three algorithms for different values of z. If the number is given in italics
it means that it surpasses the space limit of the computer and the algorithm
could not be executed (the memory requirement was obtained from the analysis
of the CT). The sixth and seventh column indicate the value of z and the lower
bound that is obtained. For each instance, we report results for three increasing
values of z: the limit for MBE, MBE’ and dfMBE. It can be observed that MBE’
requires from 2 to 10 times less memory than MBE, which allows the execution
with values of z up to 4 units higher. However, the most impressive results are
obtained with dfMBE, which may require 275 times less space than MBE (e.g.
instance 1405). As a consequence dfMBE can be executed with values of z up

11

Memory Requirement (Mb) Lower
Instance | w* [CTyuBE | CTypr'| CTyrmee | z | Bound
17161 10373 1052 27| 158274
1504 43 1945 911 65 23| 148259
1240 577 34 22| 142257
227707 50435 1310 27| 180356
1506 51 5503 1099 24 21| 180316
1185 214 4 18| 166305
137825 11250 524 26| 210085
1401 156 11430 874 40 221203083
1286 131 6 19| 196080
237480 28144 1048 27| 223189
1403 156 13416 1277 36 221 193185
1153 125 5 18| 189180
325213 54378 1179 27| 219302
1405 156 7226 1317 24 21| 214283
1548 289 3 18| 203268
113739 14764 1048 27| 141105
28 139 8874 1424 65 23| 141105
694 109 5 19| 148105
22558 6052 1572 28| 125050
42 51 2112 1123 147 24| 135050
1090 590 65 23| 133050
82823 38425 917 27 206
5 83 1861 843 16 21 192
536 253 4 18 186
17908 7966 1048 27| 5197
408 60 2609 1355 163 24| 6195
1408 752 5 23| 5197
58396 24513 1179 27| 14258
412 61 2771 882 40 22| 17224
1420 434 16 21| 14220
172071 24566 1048 27| 19295
414 144 8605 1205 49 22| 18301
1154 166 4 19| 18292
158338 8644 1067 27| 18231
505 39 2834 1534 139 24| 19217
1488 800 65 23| 19206
76346 16932 1310 27| 15286
507 91 6222 1571 81 23| 15280
1217 250 10 20| 12255
130553 26671 1114 27| 18286
509 151 6812 1008 40 22| 17285
946 162 4 19| 17267

Fig. 3. Spotb results. Memory bound of 1.5 Gb.

to 9 units higher (e.g. instance 1506), which in turn yields lower bounds up to
20% higher (e.g. instance 507). The mean space gain from MBE to dfMBE is
113.34, the mean increment of z is 7 and the mean increment of the lower bound
is 8.74%.

5.2 Probabilistic Reasoning

Bayesian Networks provides a formalism for reasoning about partial beliefs under
conditions of uncertainty [2]. They are defined by a directed acyclic graph over
nodes representing variables of interest. The arcs indicate the existence of direct
causal influences between linked variables quantified by conditional probability
tables (CPTs) that are attached to each cluster of parents-child nodes in the

12

network. There are several possible tasks over a belief network. We tested the
performance of our scheme for solving the most probable explanation (MPE)
task: given evidence 1 «— v1,...,2, < v, (i.e., some variable assignments), its
MPE is the maximization of the objective function,

P(x) = [[£(X)

subject to tuples that respect the evidence. It is easy to see that MPE can be
expressed as a WCSP by replacing probability tables by their logarithm. We use
two types of belief networks: Random and Noisy-OR Networks [12].

Uniform random bayesian networks and noisy-OR networks are generated
using parameters (N, K, C, P), where N is the number of variables, K is their
domain size, C' is the number of conditional probability tables, and P is the
number of parents in each conditional probability table. Instances are generated
by selecting C variables at random. For each selected variable x;, P parents are
randomly selected from the set of variables with index less than ¢ (if ¢« < P only
i — 1 parents are selected).

For random bayesian networks, each probability table is randomly generated
using a uniform distribution. For noisy-OR networks, each probability table rep-
resents a noisy OR-function. For each CPT, we randomly assign to each par-
ent variable y; a value P; € [0..Pypise].- The CPT is then defined as, P(z =
Oly1,---,yp) = Hyj:l Pj and P(z = 1|y1,...,yp) =1 — P(z =O0ly1,...,yp).

Table 4 present results of random and noisy-OR networks assuming a com-
puter with a memory limit of 512 Megabytes. In each table we fix parameters N,
K and P and change the value of C' in order to control the network’s sparseness.
For each parameter setting we generate and solve a sample of 20 instances. We
always assumed empty evidence and report mean values.

It can be observed that dAfMBE requires from 15 to 29 times less memory
than MBE, which allows the execution with values of z up to 3 units higher.
The mean space gain from MBE to dfMBE is 18.56, the mean increment of z is
3.51 and the mean increment of the lower bound is 5.75%. For uniform random
networks we also report the mean number of instances executed with CTy/ g
and CTyvpEe in which the lower bound increases with respect its execution
with CTypr and CTypE, respectively (i.e., %better column).

With random networks we also executed the efficient WCSP branch-and-
bound solver TOOLBAR ! initializing its upper bound with the lower bound
given by dfMBE and observed that it did not terminate with a time limit of
one hour. Considering that AfMBE with the highest 2z value takes less than 300
seconds in this domain, we conclude that dfMBE is a better approach than
iterative deepening branch and bound.

We observed that noisy-OR networks could be easily solved to optimality
with TOOLBAR. Therefore, we also report for each parameter setting and each
value of z, how many instances are solved to optimality with MBE, MBE’ and
dfMBE.

! http://mulcyber.toulouse.inra.fr/projects/toolbar/

Uniform Random Bayesian Networks

Memory Requirement (Mb) Lower
N,C, P w* CTuBE CTAIBE’ CTdf]\/IBE 4 Bound | % better
3635 598 239 26.36| 18.61 40
128, 85, 4 |31.71 2579 315 171 25.75| 18.35 90
370 84 45 22.95| 17.56 -
4144 999 205 26.21| 20.68 50
128, 95, 4 (43.96| 1941 317 146 24.9| 20.34 90
335 94 43 22.5| 19.51 -
4537 825 264 26.2 | 23.58 60
128, 105, 4(38.71| 2192 391 185 25.3| 23.27 95
358 89 48 22.7| 22.16
4114 807 261 25.85(26.22 60
128, 115, 4|48.32 1823 345 172 24.7| 25.61 100
355 99 43 22.5 | 24.69 -
Noisy-OR Proise = 0.40
Memory Requirement (Mb)
N, C, P w* CTA{BE TJ\JBE’ CTdfMBE ¥4 % solved
4777 662 164 26.35 73
128, 85, 4 [35.39| 2805 256 153 25.6 68
331 68 29 22.65 47
4331 681 222 26.25 84
128, 95, 4 |38.61| 2545 308 169 25.35 84
340 74 34 22.55 58
3125 683 260 25.55 50
128, 105, 4|43.06 1646 285 136 24.6 50
364 91 45 22.45 15
7446 918 199 [25.95] 65
128, 115, 4|46.51 1530 352 149 24.75 50
340 102 46 22.55 25
Noisy-OR Ppoise = 0.50
4780 631 242 26.45 75
128, 85, 4 |40.74| 3154 330 177 25.7 75
384 71 33 22.8 60
3663 356 243 25.89 55
128, 95, 4 |38.12(2170 309 158 25.15 55
368 76 49 22.63 25
5080 952 245 26.4 65
128, 105, 4|43.04| 2006 329 109 24.8 65
371 79 33 22.6 45
3506 964 227 26.05 60
128, 115, 4|46.25 1552 342 176 24.7 45
384 94 43 22.5 35

Fig. 4. MPE on bayesian networks. 20 samples. Memory bound of 512 Mb.

5.3 Resource allocation

13

For our third experiment, we consider the frequency assignment problem where
the task is to assign non-interfering frequencies to a set of communication links.
We experimented with some instances of the so-called radio link frequency as-
signment problem [13] that can be expressed as WCSP. The optimization task
is to provide the assignment with minimum global interference. In its usual for-
mulation, these instances have binary cost functions and domains of size up to

44. We experimented with CELARG6, CELARY and graph instances. For lack of

space, Table 5 only reports graph instances where we obtained the best results. It
can be observed that dfMBE is also very effective in this domain. It can require
on average by 430.25 times less memory than MBE, which allows the execution
with values of z up to 5.25 units larger.

14

Memory Requirement (Mb)
Instance w" [CTuee [CType' | CTayuse | =
15955 1992 49 28
graph05 135 | 12880 1102 86 27
1483 201 25 24
30364 2544 300 28
graph06 296 17291 1320 300 27
1354 117 10 23
14797 1866 527 28
graph07 146 8187 266 49 27
1511 180 45 24
30331 2044 113 28
graphllreduc| 275 | 15630 1183 113 27
1267 154 22 23
55260 3079 22 28
graphll 495 5935 338 30 25
547 83 11 21
23532 3570 692 28
graphl2 234 35899 493 134 26
1379 230 21 24
67123 6447 723 28
graphl3reduc| 619 9964 1070 121 25
1572 141 13 22
89091 6828 1067 28
graphl3 706 7354 515 24 25
806 161 11 21

Fig. 5. RLFAP. Memory bound of 1.5 Gb.

6 Conclusions and Future Work

Mini-bucket elimination (MBE) is a well-known approximation algorithm for
combinatorial optimization problems. Its output is an upper and lower bound
of the problem optimum. It has a control parameter with which the user can
trade computing resources (namely, cpu time and memory) for approximation
accuracy. With current computers it is usually the space rather than the cpu
time what imposes a technological limit to the control parameter.

In this paper we have introduced a set of improvements to the spatial cost of
MBE. Our approach is based on the concept of computation trees (CT), which
provide a pictorical view of the MBE execution. We show that CTs uncover some
space inefficiencies of MBE. Such inefficiencies can be overcome by local trans-
formations of the CT that preserve the outcome of the algorithm and its time
complexity. In particular, we introduce the concepts of branch re-arrangement
and vertical compaction of CTs.

Besides, we show that if we sacrifice the upper bound we can deallocate inter-
mediate computations that are very space consuming. In this context, we intro-
duce depth-first MBE (dfMBE), that traverses the CT in a depth-first manner.
The space demands of dfMBE can also be reduced by additional CT transfor-
mations such as children re-ordering and children merging.

We demonstrate the relevance of dfMBE in scheduling, probabilistic reason-
ing and resource allocation where we show that dfMBE can divide the space
demand of MBE by a factor of 18.56 to 430.25 depending on the domain. Such
space decrement allows the execution of dfMBE with higher values of the control
parameter, which in turn, may yield better bounds.

15

In our future work we want to investigate more compact encodings for cost

tables. A simple approach is to establish a default cost and store (e.g. in a hash
table) only those tuples with non-default cost. A more sophisticated approach
is to explore encodings based on Binary Decision Diagrams (BDDs), a graph
based representation for boolean function manipulation. In this paper we have
assumed a given mini-bucket partition policy. In our experiments, we observed
that the chosen policy may have a big influence in both the topology of the CT
and the quality of the reported bounds. We want to improve our understanding
of such phenomenon and establish robust and effective policies.

References

10.
11.

12.

13.

. Bistarelli, S., Fargier, H., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G.:

Semiring-based CSPs and valued CSPs: Frameworks, properties and comparison.
Constraints 4 (1999) 199 240

Pearl, J.: Probabilistic Inference in Intelligent Systems. Networks of Plausible
Inference. Morgan Kaufmann, San Mateo, CA (1988)

Gilbert, D., Backofen, R., Yap, R., eds.: Constraints: an International Journal
(Special Issue on Bioinformatics). Volume 6(2-3). Kluwer (2001)

Bensana, E.; Lemaitre, M., Verfaillie, G.: Earth observation satellite management.
Constraints 4(3) (1999) 293-299

Lawler, E.L., Wood, D.E.: Branch-and-bound methods: A survey. Operations
Research 14(4) (1966) 699 719

Larrosa, J., Schiex, T.: Solving weighted csp by maintaining arc-consistency. Ar-
tificial Intelligence 159 (2004) 1-26

Gottlob, G., Leone, N.; Scarcello, F.: A comparison of structural csp decomposition
methods. Artificial Intelligence 124 (2000) 243-282

Dechter, R.: Bucket elimination: A unifying framework for reasoning. Artificial
Intelligence 113 (1999) 41-85

. Dechter, R., Rish, I.: Mini-buckets: A general scheme for bounded inference. Jour-

nal of the ACM 50 (2003) 107-153

Bertele, U., Brioschi, F.: Nonserial Dynamic Programming. Academic Press (1972)
Larrosa, J.: On the time complexity of bucket elimination algorithms. Technical
report, University of California at Irvine (2001)

Kask, K., Dechter, R.: A general scheme for automatic generation of search heuris-
tics from specification dependencies. Artificial Intelligence 129 (2001) 91-131
Cabon, B., de Givry, S., Lobjois, L., Schiex, T., Warners, J.: Radio link frequency
assignment. Constraints 4 (1999) 79-89

