Universitat Politècnica de Catalunya Departament de Llenguatges i Sistemes Informàtics

PhD Thesis

Geometric Constraint Solving

 in 2DNovember, 1998

Antoni Soto i Riera
Advisor: Robert Joan i Arinyo

Contents

1. Motivation.
2. Geometric Constraint Problem (GCP).
3. Approaches to Geometric Constraint Solving.
4. Constructive technique.
5. Hybrid technique.
6. Conclusions and future work.

Motivation

Feature-based CAD systems $+$
Editable representation (Erep)

$$
\Rightarrow
$$

2-dimensional constraint-based editor

Geometric Constraint Problem

A geometric constraint problem (GCP) consists of

- A set of geometric elements $\left\{A, \cdots, L_{A B}, \cdots\right\}$.
- A set of values $\{d, \alpha, h\}$
- A set of dimensional variables $\{x, y\}$.
- A set of external variables $\{v\}$.
- A set of valuated and symbolic constraints.
- A set of equations.

Representation:
 Geometric Constraint Graph

The geometric constraints of a GCP can be represented by a constraint graph $G=(E, V)$.

The vertices in V are two-dimensional geometric elements with two degrees of freedom.

The edges in E are constraints that reduce by one the degrees of freedom.

Representation: First-order Logic

A geometric constraint problem can be represented by a formula in first-order logic.

$$
\begin{aligned}
& \varphi\left(A, B, C, D, L_{A B}, L_{A C}, L_{B C}, x, y, v\right) \\
& \equiv \mathrm{d}(A, B)=d \wedge \operatorname{on}\left(A, L_{A B}\right) \wedge \operatorname{on}\left(B, L_{A B}\right) \wedge \\
& \quad \operatorname{on}\left(A, L_{A C}\right) \wedge \operatorname{on}\left(C, L_{A C}\right) \wedge \operatorname{on}\left(D, L_{A C}\right) \wedge \\
& \quad \operatorname{on}\left(B, L_{B C}\right) \wedge \operatorname{on}\left(C, L_{B C}\right) \wedge \\
& \mathrm{h}\left(C, L_{A B}\right)=h \wedge \mathrm{a}\left(L_{A B}, L_{B C}\right)=\alpha \wedge \\
& \mathrm{d}(A, C)=x \wedge \mathrm{~d}(C, D)=y \wedge \\
& y=x \cdot v \wedge v=0.5
\end{aligned}
$$

Geometric Constraint Solving

Geometric constraint solving (GCS) consists in proving the truth of the formula

$$
\begin{array}{r}
\exists A \exists B \exists C \exists D \exists L_{A B} \exists L_{A C} \exists L_{B C} \exists x \exists y \exists v \\
\varphi\left(A, B, C, D, L_{A B}, L_{A C}, L_{B C}, x, y, v\right)
\end{array}
$$

by finding the position of the geometric elements and the values of tags and external variables that satisfy the constraints.

Over-constrained Geometric Constraint Problem

Theorem 1 (Laman, 1970)

Let $G=(P, D)$ a geometric constraint graph where the vertices in P are points in the two dimensional Euclidean space and the edges $D \subseteq P \times P$ are distance constraints. G is generically well constrained if and only if for all $G^{\prime}=\left(P^{\prime}, D^{\prime}\right)$, subgraph of G induced by $P^{\prime} \subseteq P$,

1. $\left|D^{\prime}\right| \leq 2\left|P^{\prime}\right|-3$, and
2. $|D|=2|P|-3$.

Structurally over-constrained Geometric Constraint Problem

Definition 1 A geometric constraint graph is structurally over-constrained if and only if exists an induced subgraph with n vertices and m edges such that $m>2 \cdot n-3$.

Definition 2 A geometric constraint graph is structurally well-constrained if and only if it is not structurally over-constrained and $|E|=2 \cdot|V|-3$.

Definition 3 A geometric constraint graph is structurally under-constrained if and only if it is not structurally over-constrained and $|E| \leq 2 \cdot|V|-3$.

Approaches to Geometric Constraint Solving

- Solving systems of equations
- Numerical Constraint Solvers
- Symbolic Constraint Solvers
- Propagation Methods
- Structural analysis
- Constructive Constraint Solvers
- Graph based
- Rule based
- Degrees of freedom analysis
- Geometric theorem proving

Constructive technique: Ruler-and-compass constructibility

A point P is constructible if there exists a finite sequence $P_{0}, P_{1}, \ldots, P_{n}=P$ of points in the plane with the following property. Let $S_{j}=\left\{P_{0}, P_{1}, \ldots, P_{j}\right\}$, for $1 \leq j \leq n$.

For each $2 \leq j \leq n$ is either

1. the intersection of two distinct straight lines, each joining two points of S_{j-1}, or
2. a point of intersection of a straight line joining two points of S_{j-1} and a circle with centre a point of S_{j-1} and radius the distance between two points of S_{j-1}, or
3. a point of intersection of two distinct circles, each with centre a point of S_{j-1} and radius the distance between two points of S_{j-1}.

Constructive technique: Constraints sets

- A CA set is a pair of oriented segments which are mutually constrained in angle.

- A CD set is a set of points with mutually constrained distances.

- A CH set is a point and a segment constrained by the perpendicular distance from the point to the segment.

Constructive technique: Geometric Iocus

CR

RP
RT

Constructive technique: Set of rules

,
CR-CR

CR-CC
CR-RA

CR-RP
CR-RT

Constructive technique: Analysis and Construction phases

$\varphi\left(p_{1}, p_{2}, p_{3}\right) \equiv \quad$ Geometric Constraint Problem

$$
\mathrm{d}\left(p_{1}, p_{2}\right)=d_{1} \wedge
$$

$$
\mathrm{d}\left(p_{2}, p_{3}\right)=d_{2} \wedge
$$

$$
\mathrm{d}\left(p_{3}, p_{1}\right)=d_{3}
$$

analysis

$\psi\left(p_{1}, p_{2}, p_{3}\right) \equiv$
Constructive Formula $p_{1}=(0,0) \wedge$
$p_{2}=\left(d_{1}, 0\right) \wedge$
$p_{3}=\operatorname{inter}\left(\operatorname{circle}\left(p_{1}, d_{3}\right), \operatorname{circle}\left(p_{2}, d_{2}\right)\right)$

$$
\begin{aligned}
& v \equiv \\
& d_{1}=200 \wedge \\
& d_{2}=180 \wedge \\
& d_{3}=220
\end{aligned}
$$

$\psi_{v}\left(p_{1}, p_{2}, p_{3}\right) \equiv \quad$ Valuated Formula
$p_{1}=(0,0) \wedge$
$p_{2}=(200,0) \wedge$
$p_{3}=(140,169.706)$

Constructive technique: Structure of the Analysis phase

$$
\mathrm{d}\left(p_{3}, p_{1}\right)=d_{3}
$$

$E_{0} \equiv$

Constructive technique: Correctness (1)

- Let R be a set of tuples (D, X) where
- D is a set of CD sets, and
- X is a set of CA sets and $\mathbf{C H}$ sets.
- Let $\longrightarrow \rho=\longrightarrow \mathrm{DDD} \cup \longrightarrow \mathrm{DDX} \cup \longrightarrow \mathrm{DXX}$ be a reduction relation.
- We define the abstract reduction system $\mathcal{R}=\langle R, \longrightarrow \rho\rangle$.
- We proof termination and confluence that implies canonicity and unique normal form property.

Constructive technique: Correctness (2)

$\stackrel{\rightharpoonup}{\vee}$

Constructive technique: Reduction rules (1)

$$
\begin{aligned}
(D, X) \longrightarrow \text { DDD } & \left(\left(D-\left\{d_{1}, d_{2}, d_{3}\right\}\right) \cup\left\{d_{1} \cup d_{2} \cup d_{3}\right\}, X\right) \\
& \text { if }\left\{\begin{array}{l}
\left\{d_{1}, d_{2}, d_{3}\right\} \subseteq D \wedge \\
d_{1} \cap d_{2}=\{p 1\} \wedge \\
d_{2} \cap d_{3}=\{p 2\} \wedge \\
d_{1} \cap d_{3}=\{p 3\} \wedge \\
p_{1} \neq p_{2} \neq p_{3}
\end{array}\right.
\end{aligned}
$$

Constructive technique:

 Reduction rules (2)$$
\begin{aligned}
&(D, X) \longrightarrow \operatorname{DDX}\left(\left(D-\left\{d_{1}, d_{2}\right\}\right) \cup\left\{d_{1} \cup d_{2} \cup \operatorname{punts}\left(x_{1}\right)\right\}, X-\left\{x_{1}\right\}\right) \\
& \qquad \text { if }\left\{\begin{array}{l}
\left\{d_{1}, d_{2}\right\} \subseteq D \wedge \\
d_{1} \cap d_{2}=\left\{p_{1}\right\} \wedge \\
p \in d_{2} \wedge \\
x_{1} \in X \wedge \\
\operatorname{punts}\left(x_{1}\right)-d_{1}=\{p\} \wedge \\
p \neq p_{1}
\end{array}\right.
\end{aligned}
$$

Constructive technique: Reduction rules (3)

$(D, X) \longrightarrow \operatorname{DXX}\left(\left(D-\left\{d_{1}\right\}\right) \cup\left\{d_{1} \cup\right.\right.$ punts $\left(x_{1}\right) \cup$ punts $\left.\left.\left(x_{2}\right)\right\}, X-\left\{x_{1}, x_{2}\right\}\right)$

$$
\text { if }\left\{\begin{array}{l}
d_{1} \in D \wedge \\
\left\{x_{1}, x_{2}\right\} \subseteq X \wedge \\
\text { punts }\left(x_{1}\right)-d_{1}=\{p\} \wedge \\
\operatorname{punts}\left(x_{2}\right)-d_{1}=\{p\}
\end{array}\right.
$$

Hybrid technique: Introduction

Goal Solve symbolic constraints keeping the two phases of the constructive technique for valuated constraints.

Idea Federate a constructive solver and an equational solver.

Required A technique of analysis of systems of equations.

Hybrid technique: Analysis of systems of equations

1. Represent the structure of the systems of equations by a bipartite graph (bigraph).

2. Compute the Dulmage-Mendelsohn decomposition of the bigraph. V_{0} is the over-determined part, V_{∞} is the underdetermined part. V_{1}, \cdots, V_{n} are the consistent part.

Hybrid technique: Motivation (1)

A geometric constraint problem that can not be solved without considering geometric variables.

$$
\begin{aligned}
& \varphi(a, b, c, d, g, l, m, n, r) \\
& \equiv \mathrm{d}(a, b)=d_{1} \wedge \mathrm{~d}(b, c)=d_{2} \wedge \\
& \text { on }(a, l) \wedge \operatorname{on}(b, l) \wedge \operatorname{on}(b, n) \wedge \\
& \text { on }(c, n) \wedge \text { on }(c, m) \wedge \text { on }(d, m) \wedge \\
& \mathrm{a}(l, n)=\alpha_{1} \wedge \mathrm{a}(l, m)=\alpha_{2} \wedge \\
& \mathrm{~d}(g, c)=r \wedge \mathrm{~h}(g, l)=r \wedge \\
& \mathrm{~h}(g, m)=r \wedge \mathrm{~d}(g, d)=r
\end{aligned}
$$

Hybrid technique: Motivation (2)

Final state of the geometric analyzer.

Final state of the equational analyzer.

Hybrid technique: Technique (1)

1. Represent geometric variables in the bigraph (B).

2. Compute $R\left(B, C_{1}\right)$, the restriction of bigraph B by CD set C_{1}. The equations are analyzed with respect to a coordinate system (CD set).

V_{1}
V_{∞}

Hybrid technique: Technique (2)

3. For each solved dimensional variable, add a new constraint set to the state of the geometric analyzer.
4. For each pair of solved geometric variables $\left(v_{x}, v_{y}\right)$, add the geometric element v to the projection CD set C_{1}.
5. Remove solved variables and equations from the bigraph B.

Hybrid technique:
 Correctness (1)

- Let S be a set of tuples (D, X, B) where
- D is a set of CD sets,
- X is a set of CA sets and CH sets, and
- B is a bigraf representing symbolic geometric constraints and equations.
- Let $\longrightarrow \rho^{\prime}$ be the constructive reduction relation.
- Let \longrightarrow_{κ} be the equational analysis reduction relation.
- We define the abstract reduction system $\mathcal{S}=\left\langle S, \longrightarrow_{\rho^{\prime}} \cup \longrightarrow{ }_{\kappa}\right\rangle$.
- We proof termination and confluence that implies canonicity and unique normal form property.

Conclusions

- A correct ruler-and-compass constructive method.
- A clean phase structure.
- A correct hybrid method combining a constructive method and an equation analysis method.
- A prototype implementation.

Future work

- Study the domain of constructive methods.
- Extending the domain of our constructive method.
- Selection of the solution.
- Determine the range of values of a constraint.

