Constructive Geometric Constraint Solving

Antoni Soto i Riera
Departament de Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya

Barcelona, September 2002

Preliminaries

Geometric constraint problem

A geometric constraint problem consists of

- a set of geometric elements, $\left\{A, B, C, D, L_{A B}, L_{A C}, L_{B C}\right\}$,
- a set of geometric constraints defined between them, and
- a set of parameters, $\left\{d_{1}, d_{2}, \alpha, h\right\}$.

Geometric constraint solving

A geometric constraint problem can be represented by a predicate φ in first order logic.

$$
\begin{aligned}
& \varphi\left(A, B, C, D, L_{A B}, L_{A C}, L_{B C}\right) \\
& \equiv \equiv \mathrm{d}(A, B)=d_{1} \wedge \operatorname{on}\left(A, L_{A B}\right) \wedge \operatorname{on}\left(B, L_{A B}\right) \wedge \operatorname{on}\left(A, L_{A C}\right) \wedge \\
& \quad \text { on }\left(C, L_{A C}\right) \wedge \operatorname{on}\left(D, L_{A C}\right) \wedge \operatorname{on}\left(B, L_{B C}\right) \wedge \operatorname{on}\left(C, L_{B C}\right) \wedge \\
& \\
& \mathrm{h}\left(C, L_{A B}\right)=h \wedge \mathrm{a}\left(L_{A B}, L_{B C}\right)=\alpha \wedge \mathrm{d}(C, D)=d_{2}
\end{aligned}
$$

Geometric constraint solving consists in proving the truth of the existentially quantified predicate φ that represents the geometric constraint problem.

$$
\exists A \exists B \exists C \exists D \exists L_{A B} \exists L_{A C} \exists L_{B C} \quad \varphi\left(A, B, C, D, L_{A B}, L_{A C}, L_{B C}\right)
$$

Geometric Constraint Graph

A geometric constraint problem can also be represented by means of a geometric constraint graph $G=(V, E)$ where the nodes in V are geometric elements with two degrees of freedom and the edges in $E \subseteq V \times V$ are geometric constraints such that each of them cancels one degree of freedom.

Well-constrained graphs

Theorem 1 (Laman, 1970) Let $G=(P, D)$ be a geometric constraint graph such that the vertices in P are points in the two-dimensional Euclidean space and the edges in $D \subseteq P \times P$ are distance constraints. G is generically well-constrained if and only if for all $G^{\prime}=\left(P^{\prime}, D^{\prime}\right)$, induced subgraph of G by the set of vertices $P^{\prime} \subseteq P$,

1. $\left|D^{\prime}\right| \leq 2\left|P^{\prime}\right|-3$, and
2. $|D|=2|P|-3$.

Structurally well-constrained graphs

A necessary condition for a geometric constraint problem to be solvable is that the associated constraint graph must be structurally well-constrained. Let $G=(V, E)$ be a geometric constraint graph.

1. G is structurally over-constrained if there is an induced subgraph with $m \leq|V|$ nodes and more than $2 m-3$ edges.
2. G is structurally under-constrained if it is not structurally over-constrained and $|E|<2|V|-3$.
3. G is structurally well-constrained if it is not structurally over-constrained and $|E|=2|V|-3$.

Constructive Geometric Constraint Solvers

Architecture for Constructive Geometric Constraint Solvers

Architecture for Constructive Geometric Constraint Solvers

Architecture for Constructive Geometric Constraint Solvers

Architecture for Constructive Geometric Constraint Solvers

Architecture for Constructive Geometric Constraint Solvers

Clusters

A cluster is a set of two dimensional geometric elements with known positions with respect to a local coordinate system.

Tree decomposition

There are graphs that can be tree

 decomposed

$\{a, b, c, d, e, f\}$

There are graphs that can be tree

 decomposed

There are graphs that can be tree

 decomposed

There are graphs that can be tree decomposed

Set decompositions

Let C be a set with, at least, three different members, say a, b, c. Let $\left\{C_{1}, C_{2}, C_{3}\right\}$ be three subsets of C. We say that $\left\{C_{1}, C_{2}, C_{3}\right\}$ is a set decomposition of C if

1. $C_{1} \cup C_{2} \cup C_{3}=C$,
2. $C_{1} \cap C_{2}=\{a\}$,
3. $C_{2} \cap C_{3}=\{b\}$ and
4. $C_{1} \cap C_{3}=\{c\}$

Let $G=(V, E)$ be a graph and let $\left\{V_{1}, V_{2}, V_{3}\right\}$ be three subsets of V. $\left\{V_{1}, V_{2}, V_{3}\right\}$ is a set decomposition of G if it is a set decomposition of V and for every edge e in E, $V(e) \subseteq V_{i}$ for some $i, 1 \leq i \leq 3$.

Tree decomposition

Let $G=(V, E)$ be a graph. A 3-ary tree T is a tree decomposition of G if

1. V is the root of T,
2. Each internal node $V^{\prime} \subset V$ of T is the father of exactly three nodes, say $\left\{V_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{\prime}\right\}$, which are a set decomposition of the subgraph induced by V^{\prime}, and
3. Each leaf node contains exactly two vertices of V.

A graph G is tree decomposable if there is a tree decomposition of G.

Reduction analysis

There are graphs that can be reduced

There are graphs that can be reduced

There are graphs that can be reduced

There are graphs that can be reduced

There are graphs that can be reduced

There are graphs that can be reduced

There are graphs that can be reduced

There are graphs that can be reduced

There are graphs that can be reduced

There are graphs that can be reduced

Reduction analysis

Let $G=(V, E)$ be a geometric constraint graph.
We define the initial set of clusters $\mathbf{S}_{G}=\{\{u, v\} \mid(u, v) \in E\}$.
Let \mathbf{S} be a set of clusters in which there are three clusters C_{1}, C_{2}, C_{3} such that $\left\{C_{1}, C_{2}, C_{3}\right\}$ is a set decomposition of C.
$\mathbf{S} \longrightarrow{ }_{r} \mathbf{S}^{\prime}$ is a reduction rule where $\mathbf{S}^{\prime}=\left(\mathbf{S}-\left\{C_{1}, C_{2}, C_{3}\right\}\right) \cup C$.
The geometric constraint problem represented by the geometric constraint graph G is solvable by reduction analysis if \mathbf{S}_{G} reduces to the singleton $\{V\}$.

If G is not structurally over-constrained, the abstract reduction system induced by the reduction rule \longrightarrow_{r} is terminating and confluent which implies the unique normal form property and canonicity.

The domain of solvable graphs by reduction analysis

Let $G=(V, E)$ be a well-constrained geometric constraint graph. The following assertions are equivalent:

1. G is tree decomposable.
2. G is solvable by reduction analysis.

The domain of solvable graphs by reduction analysis

The domain of solvable graphs by reduction analysis

The domain of solvable graphs by reduction analysis

The domain of solvable graphs by

 reduction analysis

The domain of solvable graphs by reduction analysis

$$
\{a, b, c, d, e, f\}
$$

Decomposition analysis

There are graphs that can be decomposed

Decomposition analysis

Let $G=(V, E)$ be a geometric constraint graph.
We define the initial set of clusters $\mathbf{O}_{G}=\{V\}$.
Let \mathbf{O} be a set of clusters in which there is a cluster C such that $\left\{C_{1}, C_{2}, C_{3}\right\}$ is a set decomposition of the subgraph of G induced by C.
$\mathbf{O} \longrightarrow o \mathbf{O}^{\prime}$ is a reduction rule where $\mathbf{O}^{\prime}=(\mathbf{O}-C) \cup\left\{C_{1}, C_{2}, C_{3}\right\}$.
The geometric constraint problem represented by the geometric constraint graph G is solvable by decomposition analysis if \mathbf{O}_{G} reduces to \mathbf{S}_{G}.

The reduction relation $\longrightarrow o$ induces an abstract reduction system.

The domain of solvable graphs by decomposition analysis

Let $G=(V, E)$ be a well-constrained geometric constraint graph. The following assertions are equivalent:

1. G is tree decomposable.
2. G is solvable by decomposition analysis.

The domain of solvable graphs by decomposition analysis

The domain of solvable graphs by

 decomposition analysis

The domain of solvable graphs by

 decomposition analysis

The domain of solvable graphs by decomposition analysis

$\{b, c\} \quad\{c, e\}\{a, d, e\}\{d, e\} \quad\{a, b\} \quad\{b, f\} \quad\{a, f\}$

The domain of solvable graphs by decomposition analysis

$$
\{b, c\}\{c, e\} \quad\{a, d\}\{a, e\}\{d, e\} \quad\{d, e\}\{a, b\}\{b, f\}\{a, f\}
$$

Reformulating Owen's algorithm

Owen's algorithm relies on computing triconnected components ...

- ... but after each split some well chosen edges should be removed to continue the process.
- It is difficult to understand which edges should be removed and the reason why they should be removed.

Which edges and why should they be

 removed?

- The triconnected components algorithm subdivides the graph and adds virtual edges to preserve connectivity properties.
- To further subdivide, Owen's algorithm removes virtual edges "at any articulation pair with no single edge and exactly one more complex subgraph".

The property to be preserved in decomposition algorithms is the deficit

- What is essential to preserve in the graph subdivision process is rigidity properties, not connectivity properties.

Deficit $=1$

- Deficit function of a graph $G=(V, E)$ is defined as
$\operatorname{Deficit}(G)=(2|V|-3)-|E|$
- At every graph split, deficit value should be maintained. Thus new edges must be added to fulfill this requirement.

Two results show how deficit can be

maintained

Let G be a well-constrained constraint graph and G^{\prime} and $G^{\prime \prime}$ separating graphs of G. Then

- $\operatorname{Deficit}(G)=\operatorname{Deficit}\left(G^{\prime}\right)+\operatorname{Deficit}\left(G^{\prime \prime}\right)-1$
- If $\operatorname{Deficit}\left(G^{\prime}\right)>\operatorname{Deficit}\left(G^{\prime \prime}\right), G^{\prime}$ is under-constrained and $G^{\prime \prime}$ is well-constrained.

Therefore
To maintain well-constraintness one virtual edge must be added to the separating graph G^{\prime}.
The virtual edge subsumes the rigidity properties due to the separating graph $G^{\prime \prime}$

Example of deficit compensation

Deficit $=0$

Compensation

Deficit $=1$

Deficit $=0$

Example of deficit compensation

Deficit $=0$

Compensation

Deficit $=1$

Deficit $=0$

A new formulation of Owen's decomposition algorithm

- A clear and simple application of divide-and-conquer.
- Uses separating pairs to subdivide the graph.
- Applies deficit compensation to maintain rigidity structure.

```
func Analysis(G)
    if Triconnected(G) then
        S := BinaryTree(G, nullTree, nullTree)
    else
        G1,G2 := SeparatingGraphs(G)
        if Deficit( }\mp@subsup{G}{1}{})>\operatorname{Deficit(}(\mp@subsup{G}{2}{})\mathrm{ then
        G1 := AddVirtualEdge(G}
    else
        G}:=\mathrm{ AddVirtualEdge( }\mp@subsup{G}{2}{}
    fi
    S := BinaryTree(G, Analysis( }\mp@subsup{G}{1}{})
                                    Analysis(G2))
    fi
    return S
end
```


The result of the new formulation is an

s-tree

- The new algorithm yields a binary form of the Owen's tree. We name it a s-tree.

The domain of Owen's method

Let $G=(V, E)$ be a well-constrained geometric constraint graph. The following assertions are equivalent:

1. G is tree decomposable.
2. G is s-tree decomposable.

The domain of Owen's method

The domain of Owen's method

The domain of Owen's method

Domain equivalence of constructive methods

Constructive methods have the same

Let $G=(V, E)$ be a well-constrained geometric constraint graph. The following assertions are equivalent:

1. G is tree decomposable.
2. G is s-tree decomposable.
3. G is solvable by reduction analysis.
4. G is solvable by decomposition analysis.

The class of graphs fullfiling the above properties is named the constructively solvable graphs class.

Summary

- We have introduced the tree decomposition of a graph.
- Tree decomposable graphs characterize the domain of reduction analysis, decomposition analysis and Owen's method.
- The domains of constructive methods are the same.
- We have clarified and reformulated Owen's algorithm.
- The reformulated algorithm applies a divide-and-conquer schema and it is conceptually simpler.
- The output of this algorithm is an s-tree.

