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Geometric constraint problem
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A geometric constraint problem consists of

• a set of geometric elements, {A,B,C,D,LAB , LAC , LBC},

• a set of geometric constraints defined between them, and

• a set of parameters, {d1, d2, α, h}.
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Geometric constraint solving

A geometric constraint problem can be represented by a predicate ϕ in first
order logic.

ϕ(A,B,C,D,LAB , LAC , LBC)

≡ d(A,B) = d1 ∧ on(A,LAB) ∧ on(B,LAB) ∧ on(A,LAC) ∧

on(C,LAC) ∧ on(D,LAC) ∧ on(B,LBC) ∧ on(C,LBC) ∧

h(C,LAB) = h ∧ a(LAB , LBC) = α ∧ d(C,D) = d2

Geometric constraint solving consists in proving the truth of the existentially
quantified predicate ϕ that represents the geometric constraint problem.

∃A ∃B ∃C ∃D ∃LAB ∃LAC ∃LBC ϕ(A,B,C,D,LAB , LAC , LBC)
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Geometric Constraint Graph
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A geometric constraint problem can also be represented by means of a ge-

ometric constraint graph G = (V,E) where the nodes in V are geometric

elements with two degrees of freedom and the edges in E ⊆ V × V are ge-

ometric constraints such that each of them cancels one degree of freedom.
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Well-constrained graphs

Theorem 1 (Laman, 1970) Let G = (P,D) be a geometric constraint graph such that
the vertices in P are points in the two-dimensional Euclidean space and the edges in
D ⊆ P × P are distance constraints. G is generically well-constrained if and only if for all
G′ = (P ′,D′), induced subgraph of G by the set of vertices P ′ ⊆ P ,

1. |D′| ≤ 2 |P ′| − 3 , and

2. |D| = 2 |P | − 3.
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Structurally well-constrained graphs

A necessary condition for a geometric constraint problem to be solvable is
that the associated constraint graph must be structurally well-constrained.
Let G = (V,E) be a geometric constraint graph.

1. G is structurally over-constrained if there is an induced subgraph with
m ≤ |V | nodes and more than 2m − 3 edges.

2. G is structurally under-constrained if it is not structurally
over-constrained and |E| < 2 |V | − 3.

3. G is structurally well-constrained if it is not structurally
over-constrained and |E| = 2 |V | − 3.
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Constructive Geometric Constraint Solvers
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Architecture for Constructive

Geometric Constraint Solvers

Index assign.

Realization

Index selector

Constructor

Abstract problem

Analyzer

Abstract plan

Parameters ass.
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Architecture for Constructive
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Clusters

A cluster is a set of two dimensional geometric elements with known
positions with respect to a local coordinate system.
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Tree decomposition
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There are graphs that can be tree

decomposed
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There are graphs that can be tree

decomposed
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There are graphs that can be tree

decomposed
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There are graphs that can be tree

decomposed
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Set decompositions
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Let C be a set with, at least, three
different members, say a, b, c. Let
{C1, C2, C3} be three subsets of
C. We say that {C1, C2, C3} is a
set decomposition of C if

1. C1 ∪ C2 ∪ C3 = C,

2. C1 ∩ C2 = {a},

3. C2 ∩ C3 = {b} and

4. C1 ∩ C3 = {c}

Let G = (V,E) be a graph and let
{V1, V2, V3} be three subsets of V .
{V1, V2, V3} is a set decomposition
of G if it is a set decomposition
of V and for every edge e in E,
V (e) ⊆ Vi for some i, 1 ≤ i ≤ 3.
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Tree decomposition

Let G = (V,E) be a graph. A 3-ary tree T is a tree decomposition of G if

1. V is the root of T ,

2. Each internal node V ′ ⊂ V of T is the father of exactly three nodes,
say {V ′

1
, V ′

2
, V ′

3
}, which are a set decomposition of the subgraph

induced by V ′, and

3. Each leaf node contains exactly two vertices of V .

A graph G is tree decomposable if there is a tree decomposition of G.
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Reduction analysis
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There are graphs that can be reduced
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There are graphs that can be reduced
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Reduction analysis

Let G = (V,E) be a geometric constraint graph.

We define the initial set of clusters SG = {{u, v} | (u, v) ∈ E}.

Let S be a set of clusters in which there are three clusters C1, C2, C3 such
that {C1, C2, C3} is a set decomposition of C.

S −→r S
′ is a reduction rule where S

′ = (S − {C1, C2, C3}) ∪ C.

The geometric constraint problem represented by the geometric constraint
graph G is solvable by reduction analysis if SG reduces to the singleton
{V }.

If G is not structurally over-constrained, the abstract reduction system in-

duced by the reduction rule −→r is terminating and confluent which implies

the unique normal form property and canonicity.
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The domain of solvable graphs by

reduction analysis

Let G = (V,E) be a well-constrained geometric constraint graph.
The following assertions are equivalent:

1. G is tree decomposable.

2. G is solvable by reduction analysis.
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The domain of solvable graphs by

reduction analysis

{a, b, c, d, e, f}
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The domain of solvable graphs by

reduction analysis
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The domain of solvable graphs by

reduction analysis
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The domain of solvable graphs by

reduction analysis
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The domain of solvable graphs by

reduction analysis
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Decomposition analysis
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There are graphs that can be

decomposed
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Decomposition analysis

Let G = (V,E) be a geometric constraint graph.

We define the initial set of clusters OG = {V }.

Let O be a set of clusters in which there is a cluster C such that
{C1, C2, C3} is a set decomposition of the subgraph of G induced by C.

O −→o O
′ is a reduction rule where O

′ = (O − C) ∪ {C1, C2, C3}.

The geometric constraint problem represented by the geometric constraint
graph G is solvable by decomposition analysis if OG reduces to SG.

The reduction relation −→o induces an abstract reduction system.
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The domain of solvable graphs by

decomposition analysis

Let G = (V,E) be a well-constrained geometric constraint graph.
The following assertions are equivalent:

1. G is tree decomposable.

2. G is solvable by decomposition analysis.
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The domain of solvable graphs by

decomposition analysis

{a, c, d, e}

{a, d, e}{c, e}

{a, e}

{b, c} {a, b, f}

{b, f}{a, b} {a, f}{d, e}

{a, d} {d, e}

{a, b, c, d, e, f}
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The domain of solvable graphs by
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The domain of solvable graphs by

decomposition analysis
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The domain of solvable graphs by

decomposition analysis
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The domain of solvable graphs by

decomposition analysis
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Reformulating Owen’s algorithm
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Owen’s algorithm relies on computing

triconnected components . . .

SPLIT

REDUCE REDUCE

SPLIT
SPLIT

• . . . but after each split some
well chosen edges should be
removed to continue the
process.

• It is difficult to understand
which edges should be re-
moved and the reason why
they should be removed.
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Which edges and why should they be

removed?

• The triconnected
components algorithm
subdivides the graph and
adds virtual edges to
preserve connectivity
properties.

• To further subdivide, Owen’s
algorithm removes virtual
edges “at any articulation
pair with no single edge and
exactly one more complex
subgraph”.
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The property to be preserved in

decomposition algorithms is the deficit

• What is essential to preserve in the graph subdivision process is
rigidity properties, not connectivity properties.

Deficit = 1 Deficit = 0

Deficit = 0
• Deficit function of a graph

G = (V,E) is defined as

Deficit(G) = (2|V | − 3) − |E|

• At every graph split, deficit
value should be maintained.
Thus new edges must be
added to fulfill this require-
ment.
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Two results show how deficit can be

maintained

Let G be a well-constrained constraint graph and G′ and G′′ separating
graphs of G. Then

• Deficit(G) = Deficit(G′) + Deficit(G′′) − 1

• If Deficit(G′) > Deficit(G′′), G′ is under-constrained and G′′ is
well-constrained.

Therefore

To maintain well-constraintness one virtual edge must be added
to the separating graph G′.

The virtual edge subsumes the rigidity properties due to the sep-
arating graph G′′
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Example of deficit compensation

Deficit = 0

Compensation

Deficit = 1Deficit = 0 Deficit = 0
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Example of deficit compensation

Deficit = 0

Compensation

Deficit = 1Deficit = 0 Deficit = 0
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A new formulation of Owen’s

decomposition algorithm

• A clear and simple application of
divide-and-conquer.

• Uses separating pairs to subdivide
the graph.

• Applies deficit compensation to
maintain rigidity structure.

func Analysis(G)
if Triconnected(G) then

S := BinaryTree(G, nullTree, nullTree)
else

G1,G2 := SeparatingGraphs(G)
if Deficit(G1) > Deficit(G2) then

G1 := AddVirtualEdge(G1)
else

G2 := AddVirtualEdge(G2)
fi
S := BinaryTree(G, Analysis(G1),

Analysis(G2))
fi
return S

end
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The result of the new formulation is an

s-tree

• The new algorithm yields a binary form of the Owen’s tree. We name it
a s-tree.

SPLIT

REDUCE REDUCE

SPLIT
SPLIT
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The domain of Owen’s method

Let G = (V,E) be a well-constrained geometric constraint graph.
The following assertions are equivalent:

1. G is tree decomposable.

2. G is s-tree decomposable.
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The domain of Owen’s method
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The domain of Owen’s method
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The domain of Owen’s method
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Domain equivalence of constructive methods
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Constructive methods have the same

domain

Let G = (V,E) be a well-constrained geometric constraint graph.
The following assertions are equivalent:

1. G is tree decomposable.

2. G is s-tree decomposable.

3. G is solvable by reduction analysis.

4. G is solvable by decomposition analysis.

The class of graphs fullfiling the above properties is named the construc-

tively solvable graphs class.
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Summary

• We have introduced the tree decomposition of a graph.

• Tree decomposable graphs characterize the domain of reduction
analysis, decomposition analysis and Owen’s method.

• The domains of constructive methods are the same.

• We have clarified and reformulated Owen’s algorithm.

• The reformulated algorithm applies a divide-and-conquer schema and
it is conceptually simpler.

• The output of this algorithm is an s-tree.
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