Elements of Generative Manifold Learning for
semi-supervised tasks

Raul Cruz and Alfredo Vellido

Departament de Llenguatges i Sistemes Informatics,
Universitat Politécnica de Catalunya

Abstract

For many real-world application problems, the availability of data labels for
supervised learning is rather limited. It is often the case that a limited
number of labelled cases is accompanied by a larger number of unlabeled
ones. This is the setting for semi-supervised learning, in which unsupervised
approaches assist the supervised problem and viceversa. In this report, we
outline some basic theoretical foundations of semi-supervised learning using
models of the generative manifold-learning family.

1 Introduction

Labeling aspects of reality seems to be one of the most standard occupations
of the human brain and, therefore, of natural learning. When dividing the
existing reality into different categories, we are seamlessly performing a clas-
sification task that can be improved over time through learning. In the realm
of non-natural, or machine learning, the task of unravelling the relationship
between the observed data and their corresponding class labels can be seen
as the modelling of the mapping between a set of data inputs and a set of
data targets. This is understood as supervised learning.

Unfortunately, in many real applications class labels are either completely
or partially unavailable. The first case scenario is that of unsupervised learn-
ing, where the most common task to be performed is that of data clustering,
which aims to discover the “true” group structure of multivariate data [18].

The second case is less frequently considered but far more common than
what one might expect: quite often, only a reduced number of class labels
is readily available and even that can be difficult and/or expensive to ob-
tain. In such context, unsupervised models are an adequate tool for a first



exploratory approach. The available class labels can then be used to refine
the unsupervised procedure. This becomes a task on the interface between
supervised and unsupervised models: semi-supervised learning [10]. This
type of learning is commonly understood as a way to improve supervised
tasks (usually with few available labelled samples) with the use of unlabeled
samples ([31, 6, 19, 14, 27]). One can take a less typical approach: improving
and refining unsupervised learning by using class labeled data.

The baseline method we will resort to in order to illustrate this approach
is a generative constrained mixture model of the manifold learning fam-
ily: namely, Generative Topographic Mapping ([33]]). This model has been
quoted to be “a very powerful architecture in such situations, obtaining the
latent manifold as a smooth nonlinear mapping of a uniform distribution over
a low-dimensional space, represented by a regular grid” ([31]). This regular
grid low-dimensional representation allows GTM to be used for the intu-
itive visualization of both the multivariate data and the obtained clustering
results.

2 The Semi-Supervised Learning Problem in
Pattern Recognition

This section introduces some of the basic concepts underlying the field of
semi-supervised learning, within the general framework of Machine Learning.
It must be noted from the onset that this research area is still far from fully
established and standardized, and that quite different approaches to deal
with it can be found in the recent academic literature. In what follows, we
shall stick to the view provided by the Statistical Machine Learning field.

Modern Pattern Recognition has for long been well served by Machine
Learning techniques, many of them widely applied and accepted. There are
many ways to categorize these techniques; amongst them, we are interested
in that which divides them between supervised and unsupervised, according
to the availability of data labels to accompany the data observations. It is
common knowledge that, in supervised Machine Learning, the aim is to learn
a mapping from the observed input data to an output whose correct values,
or target labels, are provided by a supervisor. In unsupervised learning,
instead, there is no such supervisor, and only unlabeled observed input data
are available. The aim in this case is to find regularities that might exist in
the input data.

Semi-Supervised Learning (SSL) is an emergent discipline that incorpo-
rates prior knowledge into supervised or unsupervised methods (classification



and clustering, mainly). The need for SSL, understood as learning from a
combination of both labelled and unlabeled data, rises naturally in cases for
which there exists a large supply of unlabeled data but a limited one of la-
belled data (bearing in mind that in many practical domains it can be very
difficult and/or expensive to generate the labelled data). When SSL is used
for classification, the main goal is to improve the classification accuracy aided
by unlabeled data.

SSL for classification has become popular over the past few years. Some
of the proposed methods include: co-training [6] (in which there are two
kinds of information - about examples and the availability of both labelled
and unlabelled data); transductive Support Vector Machines [19] (in which
transduction follows Vapnik’s principle: when trying to solve some problem,
one should not solve a more difficult problem as an intermediate step); and
Expectation-Maximization (EM), within the Maximum Likelihood frame-
work, to incorporate unlabeled data into the training processes [14, 27].

In [31] this task is defined as follows: Given an unknown probabilistic
relationship P(x,t) between input points x and class labels t € T' = {1, ..., ¢},
the problem is to predict ¢ from z, i.e. to find a predictor t = #(z) such that
the generalization error of ¢,

is small, ideally close to the Bayes error, being the minimum of the general-

ization errors of all predictors. We are looking for algorithms to compute £
from

e alabeled sample D; = {(x;,t;)|i = 1,...,n}, where the (x;,t;) are drawn
independently from P(z,t),

e an unlabeled sample D, = {z;|i = n + 1,...,n + m}, where the x;
are drawn independently from the marginal input distribution P(x) =
> i, P(z,t). D, is sampled independently from D;.

e Prior knowledge (or assumptions) about the unknown relationship.

In unsupervised learning, one of the most widely used methods for data
analysis is clustering. Clustering tries to group a set of points into clusters
such that points in the same cluster are more similar to each other than to
points in different clusters, under a particular cluster distortion or distance
measure [18].

Semi-supervised clustering (SSC) uses class labels or pairwise constraints
(specifying wether two instances should be in same or different clusters) on
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some examples to aid unsupervised clustering. SSC is useful when knowledge
of the relevant categories of a problem is incomplete. When it happens, SSC
can group data using the categories in the initial labeled data as well as
extend and modify the existing set of categories as needed to reflect other
regularities in the data.

Two general approaches for SSC can be found in existing methods [1],
namely: constraint-based and distance-based methods. In the former, the
clustering algorithm itself is modified so that the available labels or con-
straints are used to bias the search for an appropiate clustering of the data.
In the latter approaches, an existing clustering algorithm that uses a distance
measure is employed; however, the distance measure is first trained to satisfy
the labels or constraints in the supervised data.

At the present time, there is a tendency to consider as “standard” SSL
methods [10] only those which use it for classification tasks (as it is defined in
[31]). However, SSC should be considered a more general SSL setting when
the number and nature of the classes are not known in advance but have to
be inferred from the data.

A problem related to SSL is transductive learning. Here a (labeled) train-
ing set and an (unlabeled) test set are provided. The idea of transduction is
to perform predictions only for the test data.

2.1 Semi-supervised learning categories

SSL methods work on the basis of some assumptions, which allow a general
classification of the different techniques [10]:

e The semi-supervised smoothness assumption: if two points zq, x5 in
a high density region are close, then so should be the corresponding
outputs y1, 2. This assumption implies that if two points are separated
by a low density region, then their outputs need not be close to each
other.

e The cluster assumption: if points are in the same cluster, they are
likely to be of the same class. This can be equivalently formulated as a
low density separation criterion: the decision boundary should lie in a
low-density region. Both formulations are conceptually equivalent but
can inspire different algorithms.

e The manifold assumption: the (high-dimensional) data lie (roughly) on
a low-dimensional manifold. This assumption allows to avoid the curse



of dimensionality in the sense that when data happen to lie on a low-
dimensional manifold, the learning algorithm can essentially operate in
a space of corresponding dimension.

e Vapnik’s principle: when trying to solve some problem, one should not
solve a more difficult problem as an intermediate step. Transduction
follows this principle, in this kind of problems as in supervised learning
we want to predict a set of labels y corresponding to some objects x.
Transduction consists of directly estimating the finite set of test labels
(a function f : X, — Y only defined on the test set) instead of inferring
a function f: X — Y on the entire space X as in inductive methods.

Following the assumptions mentioned above, the SSL methods can be
classified as [10]: generative models, low-density separation, graph-based
methods and change of representation.

Inference in generative models involves the estimation of the conditional
density P(z|y). In this way, any additional information on p(x) is useful. The
cluster assumption is implemented using these models since a given cluster is
assumed belong to only one class. Knowledge of the structure of the problem
or the data can naturally be incorporated to the model [26]. It is important
to note, though, that unlabeled data can decrease prediction accuracy, when
modeling assumptions are not correct [11].

The algorithms which try to implement the low-density separation as-
sumption push the decision boundary away from the unlabeled points. To
achieve this goal the most common method is Transductive Support Vec-
tor Machine (TSVM)[19]. The TSVM method maximizes the margin for
unlabeled as well as for labeled points. Some alternatives to TSVM have
been formulated in a probabilistic and in an information theoretic frame-
work [24, 15].

In graph-based methods, the data are represented by the nodes of a graph,
the edges of which are labeled with the pairwise distances of the incident
nodes (and a missing edge corresponds to infinite distance). The way the
distance between two points is computed can be seen as an approximation
of the geodesic distance of the two points with respect to the manifold of
data points [3]. Thus, the manifold assumption is the appropriate base to
build graph methods. Usually some graph methods are transductive because
of the prediction consists of labels for the unlabeled nodes, although recent
work has extended graph-based methods to produce inductive solutions [32].

Directed graphs used for information propagation have also been researched
in this field [9].



Change of representation includes algorithms that are not intrinsically
semi-supervised, but instead perform two-step learning:

1. Perform an unsupervised step on all data, labeled and unlabeled, but
ignoring the available labels.

2. Ignore the unlabeled data and perform plain supervised learning using
the new distance, representation, or kernel built in step 1.

The semi-supervised smoothness assumption is implemented here since
the representation is changed in such a way that small distances in high-
density regions are conserved. Some graph-based methods are related to
these algorithms since the construction of the graph from the data can be
seen as an unsupervised change of representation [36, 30].

2.2 Semi-supervised Generative Models
2.2.1 Generative Models

The main thrust of this report concerns generative baseline methods, which
we now describe within the SSL framework.

The basic problem consists on modelling a probability density function
p(x), given a finite number of data points z™, n = 1,..., N drawn from that
density function. From the alternative approaches widely known to face

this problem stand out the parametric, non-parametric and semi-parametric
methods [4].

In parametric methods, a specific functional form for the density model
is assumed. The drawback of such an approach is that the particular form
of parametric function chosen might be incapable of providing a good repre-
sentation of the true density (model).

Instead, in non-parametric methods no particular functional form is assumed,
and the form of the density is determined entirely by the data. The problem
in these methods is that the number of parameters in the model grows with
the size of the data set.

The best of both worlds is merged in the semi-parametric approach. Here,
a very general class of functional forms is allowed, in which the number of
adaptive parameters can be increased in a systematic way to build ever more
flexible models, but where the total number of parameters in the model can
be varied independently from the size of the data set.

The last approach is the one we are interested in. In particular, we focus
on mixture of distributions models. In these models, the density function is



formed from a linear combination of basis functions, where the number M of
basis functions is treated as a parameter of the model and is typically much
less than the number N of data points. Thus, the model for the density can
be written as a linear combination of component densities p(z|j) in the form

M

p(x) =Y plalf)P(). (2)

Jj=1

This representation is called a mizture distribution ([35], [25]) and the
coefficients P(j) are called the mizing parameters. The next constraints
should be satisfied by P(j) (which is the prior probability of the data point
having been generated from component j of the mixture)

> PG -1 ©

0<P(j) <1 (4)

In the same way, the component density functions p(x|j) are normalized
so that

/f@uwaL (5)

To generate a data point from the probability distribution (2), one of the
components j is first selected at random with probability P(j), and then a
data point is generated from the corresponding component density p(x|7).

The way p(z|j) is computed depends on the type of distributions chosen
for the individual component densities. For example, if Gaussian distribu-
tions are selected, then we say we are working with a Gaussian mixture model
and p(x|j) is computed as (assuming the Gaussians each have a covariance
matrix > ;= 0']2-1, where I is the identity matrix):

N 2 = g
p(zlj) = WGXP{—T?} (6)
A Maximum Likelihood approach is often used to determine the parame-
ters of a (Gaussian or other) mixture model from a set of data. An elegant,
practical and iterative procedure for estimating the mixture parameters is
the Expectation-Maximization or EM algorithm ([13]).

These kind of generative models are the background for posterior sections
in which we will consider generative methods.



2.2.2 Semi-supervision in Generative Models

In this section we describe the way in which a generative model can be seen
as a semi-supervised method.

We can find a description of how a generative method can be used for
semi-supervised learning tasks in [31], specially for classification ones. Within
this context the class distributions P(x|y)! can be modeled using model
families {P(x|y,#)}, and the class priors P(y) by m, = P(y|m), 7 = (m,),.
An architecture of this type is referred to as a joint density model, since the
full joint density P(x,y) is modeled by m,P(x|y, ). For any fixed 6, #, an
estimate of P(y|x) can be computed by Bayes’ formula:

t, P(x[y, 0)
Zyzl ﬁ-y’P(X|y/7 0)

P(ylx.0,7) = (7)

A model for the marginal P(z) is

M

P(z|6,m) =Y m,P(x]y.6). (8)

y=1

If labeled and unlabeled data are available, a natural criterion emerges
as the joint log likelihood of both D; and D,,?,

n-+m M

ZlogwyiP(xﬂyiﬁ) + Z logZﬂyP(Xi|y,9), 9)
i=1

i=n-+1 y=1

It is straightforward to consider this as an issue of Maximum Likelihood
in the presence of missing data (treating y as a latent variable), which can
in principle be tackled by the EM algorithm, or alternative methods such as
direct gradient descent.

Limitations of generative techniques in SSL

In summary, generative techniques use a model family { P(x, y|0, 7)} in order
to model the joint data distribution P(z,y). These techniques use a mixture
density estimation method for P(z) on X; U X,, treating y as a latent class
variable, then using the labeled sample D; in order to associate latent classes

Ly plays the role of j as in section 2.2.1
2D, and D, follow the corresponding definitions on section 2



with actual ones. A problem with this approach is that the labeling provided
by the unsupervised method may be inconsistent with D;, in which case the
clustering should be modified to achieve such consistency. Another problem
when following the aforementioned strategy is that, for classification prob-
lems, generative methods might not always provide good solutions. That is,
the maximization of the joint likelihood of a finite sample (for example) does
not necessarily lead to a small classification error, because depending on the
model it might be possible to make the likelihood increase more by improving
the fit of P(z) instead of that of P(y|z). Some recent work describing these
limitations can be found in [7], [23], [20], and [28].

3 Theoretical foundations of Generative Ma-
nifold Learning

3.1 Introduction

The manifold learning problem can be expressed as the recovery of meaning-
ful low-dimensional structures hidden in high-dimensional data. An example
might be a set of pixel images of an individual’s face observed under differ-
ent pose and lighting conditions; the manifold learning task would consist on
the identification of the underlying variables (angle of elevation, direction of
light, etc.) given only the high-dimensional observed pixel image data [34].

Recent years have witnessed the rapid development of nonlinear manifold
methods. Four main approaches can be distinguished:

The first one, based on projection methods, aims to find principal surfaces
covering data-populated areas, such as principal curves [16] [21].

The second entails local and global embedding algorithms. Amongst the
former, Locally Linear Embedding (LLE) [29] and Laplacian Eigenmaps [2],
which focus on the local data neighbouring structure. Amongst the later,
ISOMAP [34].

The third resorts to mutual information, which is a measurement of the
differences of probability distribution between the observed and embedded
spaces. Examples of these are Stochastic Nearest Neighbor [17] and Manifold
Charting [8].

The fourth concerns generative models (GTM: [5]), and hypothesizes that
observed data are generated from a low-dimensional latent space.

Manifold learning models can also be considered according to the machine
learning task they are fit for: supervised or unsupervised.



In recent times, semi-supervised learning methods have made use of man-
ifolds for classification tasks. Here the fact that the data lie on a submanifold
embedded in a high-dimensional space as commented in section 2.1, is as-
sumed. In addition, learning algorithms developed under this assumption
avoid the ubiquitous curse of dimensionality problem because they essen-
tially operate in a space of corresponding (low) dimension.

In [10], it is shown how several graph-based methods can be built under
the manifold assumption. The main idea stemming for these methods is that
the data are represented by the nodes of a graph (forming a manifold of data
points) and the edges are labeled with the pairwise distances of the incident
nodes. For example, in [3] the approach is that classification functions are
naturally defined only on the submanifold in question rather than the total
ambient space. The problem with this approach is that a relatively small
amount of noise or a few outliers can change the results dramatically. There
are other approaches that take the problem in different directions (see [10]).

Not all generative models for manifold learning concern supervised learn-
ing (e.g. [5], [34], [12]). The unsupervised problem is stated as follows.

Let Y be a d-dimensional domain contained in the Euclidean space R,
and let f : Y — RY be a smooth embedding, for some N > d. Data points
{y;} C Y are generated by some random process, and are mapped by f to
give the data observed, {x; = f(y;)} C RY. Y is referred as the latent space
and {y;} as the latent data.

The task is to reconstruct f and {y;} from the observed data {x;} alone.
In the next section we describe the Generative Topographic Mapping, men-
tioned in previous sections, as a model of this kind.

3.2 Generative Topographic Mapping

In this section we describe the Generative Topographic Mapping (GTM:
(33, 5]) model.

The GTM is a generative non-linear latent variable model that, in its
original definition, was intended for modelling continuous, intrinsically low-
dimensional data distributions, embedded in high-dimensional spaces. It
also provides a principled alternative to the self-organizing map (SOM:[22])
algorithm, resolving many of its associated theoretical problems. Like SOM,
GTM is used for unsupervised clustering and visualization.

3.2.1 The standard GTM model

The GTM is a non-linear latent variable model of the manifold learning family
defined as a mapping from a low dimensional latent space onto the multi-
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variate space where observed data reside. The mapping is carried through
by a number of basis functions generating a constrained mixture density
distribution. It is defined as a generalized linear regression model:

y = o(u)W (10)

where ¢ are M basis functions ¢(u) = (¢1(u), ..., ¢m(u)). For continuous
data of dimension D, spherically symmetric Gaussians

Sm(u) = exp {—1/20%[lu — pim|*} (11)

are an obvious choice of basis function, with centres p,, and common width
o; W is a matrix of adaptive weights w,,4 that defines the mapping, and u is
a point in latent space. To avoid computational intractability a regular grid
of K points u; can be sampled from the latent space. Each of them, which
can be considered as the representative of a data cluster, has a fixed prior
probability p(ug) = 1/K and is mapped, using Eq. 10, into a low dimensional
manifold non-linearly embedded in the data space. This latent space grid is
similar in design and purpose to that of the visualization space of the SOM.
A probability distribution for the multivariate data X = {x,}_, can then
be defined, leading to the following expression for the log-likelihood:

K

AN )
L(W, 3X) = Zl{ Z(%) eXp{—ﬁ/Qllyk—anl}} (12)

where y, usually known as reference or prototype vectors, are obtained for
each u;, using Eq. 10; and ( is the inverse of the noise variance, which
accounts for the fact that data points might not strictly lie on the low di-
mensional embedded manifold generated by the GTM. The EM algorithm
is an straightforward alternative to obtain the Maximum Likelihood (ML)
estimates of the adaptive parameters of the model, namely W and (.

3.2.2 Visualization using GTM

The interpretation of clustering results usually requires a drastic reduction
of the dimensionality of the data. Latent variable models can provide such
interpretation through visualization, as they describe the multivariate data
in intrinsically low-dimensional spaces. The GTM was originally defined as
an alternative to the SOM, defined within a probabilistic framework. As a
result, the data visualization capabilities of the latter are fully preserved and
even augmented by the former. The main advantage of GTM and any of its
extensions over general finite mixture models consists precisely on the fact
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that both data and results can be intuitively visualized on a low dimensional
representation space.

Each of the cluster representatives u, in the latent visualization space is
mapped, following Eq. 10, into a point y, belonging to a manifold embedded
in data space. Given that the posterior probability of every GTM cluster
representative for being the generator of each data point x, can be calcu-
lated, using Bayes’ theorem, in the expectation step of the EM algorithm
(as the expected value taken by an auxiliary term zy, expressing our initial
ignorance of which cluster k is responsible for generating each data point n),
both data points and cluster prototypes can be visualized as a function of
the latent point locations. The assignment of a probability of cluster mem-
bership to each data point n is a neat improvement on the SOM sharp map
unit membership attribution for each data point, and leads to 2-dimensional
representations of each multivariate data point in the form of the mean of
the posterior distribution, or estimated responsibility 2,

K
wpet =Y W, (13)
k=1

or in the form of attributions to the latent space locations bearing maximum
responsibility:

maxres Z
uy P = arg Max . (14)
k
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