
The ACE Recommender System

Ramon SANGÜESA, Alberto VÁZQUEZ-HUERGA and Javier VÁZQUEZ-SALCEDA
Software Departament,

Universitat Politècnica de Catalunya
Campus Nord, Mòdul C-6, Despatx 204

C/Jordi Girona Salgado, 1-3
08034 Barcelona

SPAIN
E-mail: [sanguesa | avazquez | jvazquez]@lsi.upc.es,

URL: http://www.lsi.upc.es/~sanguesa

Abstract: In this report we present the ACE Recommender System, a system built using the
Multi Agent technology. In a practical way we study the use of cognitive and collaborative
filtering to improve the accuracity of the recommendations. We also show the way the user
and the documents are modelled in the ACE system to combine this two aproaches. Finally
some results are presented and discussed.

Keywords : Software Agents, Multiagent Systems, Recommender Systems, Collaborative Filtering,
User Modeling.

1. Introduction

Web surfers waste a lot of time searching information by using present search engines.
Part of the problem of the enormous number of irrelevant results that these engines return to
their users is based in the idea that the same criteria for relevance is valid across different
ypes of users. Usually these engines resort to some type of content measure that relates the the
frequency of ocurrence of the words appearing in a query to the importance or relevance of
the document with respect to the query. This means that any two people using the same terms
in a query against the same engine in a sufficiently narrow time span will receive the same
collection of documents without taking into account the diverse importance that these terms
may have for the two users. In a a sense, relevance can be taking as an a weight that is relative
to each user instead of absolute and related to a document’s content and a set of terms in a
query. Having some means for assessing relevance or importance of pieces of information
with respect to a user o set of users would imply that searching information could become
more adaptive and personalized. However in order to reach that level of adpativeness, it is
necessary to have some representation of the importance that each user attaches to each term
of interest that may be used in searches or other operations related to information content.
One way to go towards such a goal is to devise some method for creating a user model where
such preferences are stored and updated in order to ensure continuous adaptivity.
Recommender Systems (Resnick,1994),(Kautz, 1998) are systems that try to implement such
a schema of action and adpativity. One special type of recommender systems are those related
to filtering and weighting of information according to user needs. We present in this report
some results in the construction of an agent-based Recommender System: ACE (Vázquez and
Vázquez 1999).

1.1 Origins of Recommender Systems

The idea of a Recommender System can be traced back to the concept of the Personal
Digital Assistant metaphor (Maes, 1994). The original idea was to have an agent who assisted
the user by acting on behalf of him for severral common tasks: e-mail filtering, usenet
posting, web browsing and information searching, for example. Soon several software agents
appeared (such as Syskill and Webert, see (Pazzani, 1996)) whose main task based was to
filter the amount of information that a web surfer before had to filter on his own previously
when using searching engines.

Initially systems consisted mainly on a single agent that carried on the main
recommeding task. However, as the complexity of the tasks to perform and as the number and
diversity of information sources increased, there was a natural tendency towards the creation
of multiagent systems for recommendation. In this type of system each agent has the role to
perform an especific type of task and communicate its results to other agents.

While a personalized searching agent tries to find documents similar in content to the
ones the user has consulted before, a Recommender System uses also other types of
information in order to fine tune the interestingness of sources of information.

 Apart from previous queries issued by the same user it can, for instance, also take
advantage the time devoted to reading each previous document, actions done with it (saving,
printing, bookmarking) (Lieberman 1995) (Delgado 1998), user’s feedback (Pazzani, 1996) as
well as the information of similar behaviour and interests of a group of users related to the
actual one issuing a query (Glance 2000). There are mainly two types of recommender
systems. One type is uses solely as its source of information the content of searched
documents and the observations the actions performed by a single user, the one the
Recommender System is acting as his Assistant. This type of filtering is known as Content
Filtering or Cognitive Filtering. The second type of recommenders pools behaviours and
interests of a community of users (Terveen,1997) including the recommendations on a set of
topics contributed by the same users that form the virtual community. It is based on the
contribution of information by users wheter in the forme of actual documents or references or
indirectly through votes, suggestions or their own recommendation about a certain topic.
Similarity between the voting patterns of different users form the basis for establishing
correspondence in the interests of different uses and so recommending similar documents to
users that seem to have the same interests, detected through the closeness of their respective
behaviours. This second type of filtering is called Social or Collaborative filtering.

There are both advantages and disadvantages in each type of systems. Recommenders
based on Content Filtering require fewer actions on the part of the user: just browsing or
searching, for example. Users of these systems do not need to contribute feedback to any
recommendation issued by the system (as in Syskill and Webert, see (Pazzani,1996)) but they
have to rely on the automated indexing and categorization mechanisms used in calculating the
relevance or interestingness of information content. Automatic calculation of relevance may
be a crude approximation to the categorization and evaluation of information that a good
human expert could do when evaluating content. Systems based on Social Filtering overcome
this last disadvantage, this limitation in the precision of relevance assessment by relying on
human judgement. In effect, users in a community issue recommendations about documents
and other sources of information that are based on their expertise in the domain which, at least
in principle, is a much more elaborated way of information rating. This comes at a price, of

course. The quality of a system based on this collaborative approach hinges critically on the
quality (competence, expertise, or good judgement) of its users in recommending. Other
typical problems of this type of system include the need to have a critical mass of active and
qualified users/contributors; the cold-start effect (no user at the beginning, so no
recommendation base) and the decaying involvement of users when they do not receive any
further incentive for their contributions. Advantages and disadvantages of both approaches
have been analysed extensively in (Balabanovic,1997b)

Usually both approaches have been used separately. However, there have appeared some
systems that try to mix both approaches and getting better results (see (Balabanovic, 1997a),
(Balabanovic,1997b), (Delgado,1998), and (Miyahara,1998)). We describe in this report
ACE, a multiagent recommender system that also combines dinamically both approaches. In
Section 2 we give an overall description of the system’s domain of application, its goals and
functionalities; in Section 3 we describe the internal architecture of the system, describing in
some detail the implemented solutions; in Section 4 we describe in greater detail the
combined approach to document filtering; in Section 5 the problem of user modeling is
discussed and our solution described; Section 6 discusses a first test application of ACE and,
finally, Section 7 sums up and lists future lines of research, development and application.

2. Description of ACE

The Electronic Cultural Agency (Agencia Cultural Eletrónica, ACE) is a system
developed for the personalized recomendation for the readers of an electronic newspaper
about leisure activities offered in a metropolitan area, in this case Barcelona, Spain. ACE
gives personalized information to the newspaper’s registered readers according to their tastes
or interests. Although the system was built to give recommendations on the Barcelona leisure
offer, one of our major goals has been to design a recommender system general enough to be
able of recommending not only leisure but also other kind of items.

Figure 1: The ACE system, just after the incoming user has been authentified.

Our goal was to make the system capable of issuing recommendations with very little
information about the recommended items, as for example, is usually the case with the data
available on movie or theatre shows directories or online reviews: oftenly just a short textual
description. A pure Content Filtering approach based solely on content wouldn’t work
properly, as the information it had on the item to recommend was very poor. This was the
reason why a collaborative system seemed a good idea in the first place. A second one was
cited by the newspaper directors that see a collaborative system as a means to user community
building.

We comment briefly on the overall functionalities of the system from the user’s point of
view. The first time a user enters the system, he must register, choosing a username and a
password. The user can optionally give some information about his or her interests, choosing
the kind of leisure he likes from a list (cinema, theatre or other). The required information is
kept to a minimum so as not to bother the user with an annoyingly long questionnaire. This
information, however, helps in accelerating the process of automatic adaptation of the system
to the user’s interests. A user can decide to bypass this step. If the user does so, the system
will accept him as a new user but it will have to learn his or her interests from scratch with no
hint at all as to what are his interests. Subsequent accesses of a user to the system only require
the introduction of his or her username and password. The system then is able to recover
whatever information has been built into the corresponding user profile since the last
interaction.

Once ACE has identified the incoming user it shows the window displayed in Figure 1.
It’s a web page with two frames: the menu frame, on the left side, and the information area,
on the right side. The initial options available to the user are listed below:

a) See new recommendations: by means of this option the system shows to the user the items
recommended according to the knowledge it has on the user’s interests. All listed items
are sorted by the estimation of user interest calculated for each item. If the user chooses
one item, ACE displays a brief description of it. This textual description helps the user to
decide whether this item is interesting for him or not. The user has the option to vote for
or against the item, as shown in Figure 2.

b) See previous recommendations: It shows to the user the items he has previously voted for.
The user cannot vote an item twice.

c) See all the suggestions: This option shows all suggestions ACE has retrieved for a given
user. The user can see the item description by clicking the items of the list, and read the
textual description associated with each item. This textual information comes from a
repository of descriptions ofleisure activities, including movie and theatrical reviews that
are freely offered by the newspaper. If ACE discovers a possible interest of the user in that
item then a window prompts the user asking if he wants to vote for or against that item. If
some time passes with no action, ACE assumes that the user feels no special interest
against or in favour of the item.

d) See all users’ suggestions: the user can see all the suggestions submitted by other
registered users with similar interests. Again the user has the posibility to vote.

e) Write a suggestion: This option gives the user a way to submit a suggestion to the rest of
users. A suggestion is a free-text form where any opinion can be expressed. This is in
contrast with other systems, where a fixed form or a limited range of voting values is
offered. In this way ACE gives more freedom at the expense of more processing of each
suggestion.

f) See the help: Displays information related to system usage.

g) Exit: To log off the ACE system, returning to the main page of the electronic newspaper.

Figure 2: In the left frame, the list of recommended items for the user. In the right frame, the
description of one of them, and below the buttons to vote the item.

3. Internal architecture of ACE

Agent-based recommender systems tend to allocate a single agent to each user, and work
as his personal assistant. These agents usually are resident in the users’ computers which are
assumed to be continuously connected. In our case, users are supposed to access the system
only for short spans of time each day. So, it seemed more natural to try to locate as many as
possible of the underlying processes on the server. It’s important, then, to come up with an
architecture that limits the potential explosion in the number of agents present on the server.

The ACE architecture is composed of several Agencies: Interface Agency, Collector
Agency and Central Agency. All information, that is, all retrieved documents and all user
suggestions (we will call bothm of them documents from now on) is sent to the Central
Agency.

Figure 3 shows the internal architecture of the system:

Figure 3. The internal architecture of the ACE system.

3.1 Interacting with the user: the Interface Agency

The Interface Agency performs communication among users and the ACE system. Each
user has three personal agents (see Figure 3.1):

Informant Agent , searches the database for the recommendations suggested by the system
to that particular user. It presents an ordered list of recommendations combining the results of
content and social filtering.

 The Feedback Spy Agent, gets information by “looking over the shoulder” (Maes,1994)
all the actions the user does to create a more comprehensible profile for him or her.

 The information retrieved from a user can be of one of two types:
• Explicit information: The user “votes” the document to conrim or disconfirm that the

document is interesting for him.
• Implicit Information: The system knows if the user has sent a new document to the

system, it suggests that the document can be interesting for him. Another implicit
Information is “navigation”. The information the user looks and the time spent is used
as a heuristic to come closer to the real interest that the user would state if he had
issued an explicit vote. This implicit vote can be less accurate than the explicit vote
but is neverthelles useful because it doesn’t bother the user asking him to vote for
documents.

The Suggestion Spy Agent, has as input the suggestions made by the users of the virtual
community growing arround ACE and keeps in the database the obtained information.

All these agents are not active anytime but only when the user is on-line. Having all the
agents continuously active for all registered users leads to a huge number of agents: the
number of registered users of an electronic newspaper can grow higher than 10000 users, so

the number of agents could be more than 30000. Having only active interface agents for the
users that are on-line in a given moment reduces the number of active agents of the system,
as all the users do not tend to get connected to the system at the same time. Simultaneously
connected users could well be in the range of 10-900.

Figure 3.1. The components of the Interface Agency.

The actual architecture is an information push architecture: the information recommended
to the user is decided before the user asks for it, as opposed to information pull models where
user requests trigger the retrieving and filtering processes. So, each time a user enters ACE,
the information to be recommend is ready. There is no waiting for it.

All the information these agents need to know about the user or the documents is kept in
a database (in figure 3.1 and following it is depicted seaprately as Information about users
and Information about documents). This database works as a blackboard for all agents, and it
lets them share information about users and documents instead of having the information
duplicated inside each agent. This also contributes to make ACE a lightweight agency.

3.2 Retrieving useful information: the Collector Agency

The Collector Agency consists of a group of Collection Agents (see Figure 3.2)
specialized in the retrieval of different sources of information, such as web pages or public
databases. There are special agents such as the Suggestion Spy Agents, (that also belong to the
Interface Agency) and who have as input the suggestions made by the users of ACE, and
another agent, the Forum Spy Agent, which search the contributions of the registered users in
the electronic newspaper’s forums, in order to know better these users. All these documents
are sent to the Central Agency.

Figure 3.2. The components of the Collector Agency.

 Searcher Agents, are also important. This kind of agents have as a goal the retrieval of
necessary information (documents), without any intervention of a human.
 In our domain we only needed to search information about films. This information
consisted of a brief explanation about the film, title, tdirector’s name, date of the film, and
main actor’s name. This information is easy to find on the web. The problem is that HTML is
a presentation language and even if the content were written in XML we still would have to
face the problem that the content could be changed due to the lack of standards in Internet to
keep movies information. In our system each of searching agent had a fixed url’s to extract
information from and each one had the knowledge to parse the corresponding pages. If one
web changed the corresponding softbot should have to be modified.

3.3 Managing documents and recommendations: the Central Agency

Finally, the Central Agency receives information from the Interface and Collector
agencies and filters and delivers the documents to the users. The process begins when any
agent in the Collector Agency sends some information to the Document Modelling Agent.

The Document Modelling Agent builds a document model from the content of the
corresponding document each time a new document enters the system (as we said, it is a
textual description of an item). Then teh agent stores it into the database and sends a message
to the Dealer Agent in order to notify the arrival of a new item for recommendation. The way
a document is modelled is explained in section 4.

The Dealer Agent is in charge of filtering information It also decides which items could
be interesting for each user and then “delivers” the items to the user. But at any time there are
no active agents representing all users, so the action of “delivery” is not really sending a
message to an interface’s agent but storing a record into the database, from where the
Informant Agent will extract it later as the information to create a recommendation for the
appropriate user. When the Dealer Agent receives an item written by a registered user (a
suggestion sent to the ACE system, or a contribution in the newspaper’s forums), a message
to the User Modelling Agent is sent in order to learn more information about that user. The
User Modelling Agent modifies the model of that user by using the model of the document
built by the Document Modelling Agent. Here is where the combination of content and
collaboration takes place. This process is further explained in section 5.

Figure 3.3. The components of the Central Agency

The Dealer Agent also receives from the Feedback Spy Agents votes made by the users.
Each vote of user U to item I is useful:
a) to learn more about user U : The Dealer Agent sends a note to the User Modelling Agent,

which will make use of this information to update the model of user U stored in the
database.

b) to modify the “dealing” of item I to other users, taking into acount the new voting.

The ACE architecture has two more agents:

The Garbage Agent , which gets rid of aged documents in the database,. The Garbage
Agent removes all the old documents previous to the expiry date. It’s easy to put more
restrictions on this agent in order to keep database size within reasonable bounds.

The Social Agent, which clusters users, groups them by their similar interests which are
extracted from the documents they suggested as well as from their voting behaviour. This
agent continuously and independently from the rest of agents tries to find similitarities (and
differences) from all registered users in the system. This point is further explained in section
5.2.

4. Document Filtering

The ACE system doesn’t work with the entire text of an item’s description, but with a
document model. In our system, the document model is based on the well-known vector-space
model (a list of pairs {word, weight}) as it has been shown to work properly in systems that
combine cognitive and collaborative filtering (see (Balabanovic 1997a, 1997b) and
(Miyahara,1998)). This measure is composed by the top words of an item’s description. This
are, the words that “define” this document.

The process followed in order to obtain the top words of a description is divided in 4
steps, wich are done concurrently:
a) Getting the most frequent words: a pair list {word, frequency].
b) Removing unuseful words: there is a list of stop words (in Spanish, less than 220 words),

i.e., words that give very little or no topic-related information, such as articles, adverbs,
conjunctions, prepositions or pronouns.

c) Joining different forms of a word into a same word, reducing them to their “stems”.
d) Weighting each word with the frequency of the word in the document. Words in a

document are not weighted by a TF-IDF (Term Frequency – Inverse Document
Frequency), as the IDF is computed in our system for each individual user.

The Document Filtering process is done entirely by the Dealer Agent, but is based in
information computed by other agents:
- the document model, built by the Document Modelling Agent.
- the user model of his interests, created by the User Modelling Agent
- the clusters of users, computed by the Social Agent.

4.1. Stemming for general contexts

As it has been mentioned before, one of our goals was to design and build as general
recommender system a possible, as independent of any domain as possible. This goal
difficults the stemming process. Usually, a thesaurus of topic-related terms is needed to
reduce each word to its stem. But attaining a domain-independent system makes necessary a
thesaurus that covers the whole language domain (for instance, a Thesaurus covering all
English words). In order to have a multilingual system means that it is necessary to have
several Thesaurus covering each particular language (English, Spanish, French, German...).

There are two approaches to overcom this requirement:
- Making the system capable of building its own thesaurus, from the documents it receives.
- Using no thesaurus in the stemming process.

The ACE system uses the second approach; the first one is been currently under study by
our group.

We have developed a new algorithm for stemming, the fusing words algorithm, that
needs no thesaurus to work. It takes advantage of a property present in most languages: the
stem is usually a word’s prefix.

Our algorithm is quite simple: given an alphabetically ordered list of words l and a new
word to be add, w:

- Search the position where the word w should be inserted in l.
- Look into the next words of the list if there are any words w’ which can fuse to w.
- Look into the previous words of the list if there is a word w’’ the new word w can fuse to.

A word w can fuse to a word w’, if w’ is prefix of w, and if the difference in length of
both words lies under a certain threshold. The second condition ensures that not much
semantic information is lost about the word w when it is fused to w’. During the testing of the
ACE system, the threshold implied that the length of word w’ had to be, at least, 65% of the
length of word w to let w be fused into w’.

With the fusing words algorithm different forms of the same words are merged into only
one term, letting other words enter the document model. But there are two major problems
with this algorithm: 1) different order of incoming words leads to different results in fusion,
and 2) the algorithm cannot fuse words that have a common ancestor, but have differences in
their stems (for example, “forget” and “forgotten”). Part of our future work will focus on
improving this algoritm and making some benchmarks, comparing it to proper stemming.

4.2. The filtering process

As we have mentioned we have decided to make ACE a hybrid system so that the
filtering process puts together the content-based filtering and the social (or collaborative)
filtering. We can see that this helps in attaining the following goals:

• Quality of the recommendations is reasonabily good even if there aren’t any users or they
don’t participate too much. This is due to the content-based filtering part of the system

• The quality of the recommendations increases with respect systems that implement only
content-based filtering, thanks to ACE social filtering component. ACE uses the
judgement of users to issue recommendations. Humans are good at semantic analysis.

The filtering process is done by the Dealer Agent, but is based on information
calculated by other agents.

• The document model, created by the Document Modelling Agent
• The user content model, created by the User Modelling Agent
• The user social model, created by the Social Agent

The Dealer Agent can receive a message (that contains an user identifier and a document
identifier). The sender can be the Feedback Spy Agent, or the Document Modelling Agent.

The Dealer Agent makes a distinction between two kinds of messages:

• Messages originated in the Document Modelling Agent, the document has to be distributed
and sent as a recommendation for those users potentially interested

• Messages originated in the Feedback Spy Agent, that alert about the fact that a user has
voted a document.

When the Agent receives the first message, it retrieves the document model of the document
to recommend, and the user model of all the potencial users to be recommended. Then the
system calculates the interest rating of the new document for every user.

The situation is totally different when the Agent receives the second message. After an alert to
the User Modelling Agent, it retrieves the user model of the user who issued the vote and all
the models from the Database. Then the system calculates the rating interest of the documents
in the system for the user. This recalculation of the recommendations is done for two reasons.
Firstly because the user model may have changed after the last vote and the second because is
a way to make the users participate in the community. If they don’t vote, then the system can
not recommend well for them.

4.3. Merging Content and Social Interest

The estimation of the interest of an user u for a document d,),(dup t , is given by:

Where),(dupc is the estimation of the interest of user u for the content of document d
(that we will call it the “content interest”),),(dups is the estimation of the interest of user u
for the document d given the votes made by other users for d (we will call this the estimation
of the social interest), and k is a factor for weighting the influence of each estimation in the
result of the formula. In this formula the content interest and the social interest are merged in
order to issue a recomendation.

4.3.1. Content Interest

The estimation of the content interest for user u and document d is computed by
comparing the Document Model and the User Model, both of which are lists of pairs {word,
weight}. There are some transformations needed in order to perform this comparison, though.
First of all, both word lists are reduced to the words present simultaneously in both models.
Next, words are put in the same order in both lists, so that the word in position i of the
Document Model is the same as the word in position i of the User Model. Then, there is an
another important transformation: while the User Model weights its words according to TF-
IDF, that is, the product of the word frequency (TF) in all the documents that user u has voted,
and the inverse document frequency (IDF) of this word computed for each user, the Document
Model weights its words only by the TF, as IDF is kept apart for each user and stored in
ACE’s database. In this way, finally the TF-IDF of the words in the document model can then
be computed. Then the words are eliminated from the lists, so the user and the document are
represented just by a weight vector. The last transformation is a normalization of both vectors.

Given the two transformed lists (the User Model vector, u’ and the Document Model
vector, d’), the comparison is made using the cosine-similarity measure, defined by the
following formula:

Values close to 1.0 implie that both vectors are very similar. That is, the content of the
document is probably of interest to the user. Values closed to –1.0 show that both vectors are

),()1(),(),(dupkdupkdup sct ⋅−+⋅=

∑
=

==
n

i
iic dudusimdup

1

)''()','(),(

very different, the content of the document probably is related to something that the user has
no interest in.

4.3.2. Social Interest

The estimation of the social interest for user u and document d is given by:

 Where iv is the mean vote of user i, jiv , is the vote of user i to document j, and w(u,i) is a
similarity factor between user u and user i. The Dealer Agent finds all the information needed
in this formula stored in the database, and is computed by the User Modelling Agent and the
Social Agent as is explained in the following section. In this formula the interest of the
document is calculated using the latest votes other users have contributed to the document.
The affinity or correlation between users is necessary to estimate the confidence in the
recommendation.

5. Learning a User Model

 We have seen the way a document is modelled to built a synthetic but useful summary
but if we want to be able to suggest interesting information to each particular user of the ACE
System we must keep also a user model. The information used to obtain a user model are the
votes a user has made for documents presented previously or the suggestions written by that
user (that are considered as another document voted as an interesting one by the user). Votes
are useful to get user feedback and obtain an adaptative model.

There are two ways to get the user vote for each document.

a) Explicit voting: the documents presented for the user can be rated. The user has two
options: he can decide to make a positive vote or, otherwise he can make a negative vote.
The user can decide also not to vote.

b) Implicit voting: In that case the System doesn´t wait for the user to issue a vote. ACE
implements two techniques for implicit voting:
1. when a person spends too much time reading a document in the general list of

documents, the system averages the time wasted with the text length. If the value is
higher than a threshold, a window is shown to the user, asking whether the document
is interesting for him or not. The system learns to modify the value of the threshold. If
the user usually rates positively the documents presented with implicit votes, it means
that this technique works and for this reason the threshold can be lower. On the other
hand, if the user doesn’t vote or votes negatively the documents suggested by the
System, the threshold can be higher.

2. Users can write documents (suggestions) about a topic for the rest of users. These
documents are used as an implicit positive vote for the user.

Using implicit an explicit votes the system builds for each user a list of the documents he
voted for and against. This information is used to build the User Model. The user model

))(,(),(
1

, i

n

i
dius vviuwkvdup −+= ∑

=

representation is a widely used one in information retrieval, the space vector model. However
we have to remark that ACE does not use the classical implementation of the space vector
model. Our vector is split into two subvectors, one which keeps content-based information
and the other one social-based information. The system uses two different techniques to learn
each type of sub-vector.

5.1. Learning the content-based part of the user model

The aim of this process is to learn a basic user model using the textual content of the
documents that the user has rated previously. The resulting vector is the best group of words
than define the user’s interests. A window of five documents is taken into account to build the
user model. Each document is converted into a vector model representation. Each vector uses
a set of words and their frequency for these last five model documents. The classical TF-IDF
algorithm is used. Words occurring in one vector but not used in any other document model
are included in the five documents with zero frecuency. We build five new vector models
with common words, to limit the length of the vectors to 100. To choose these 100 words an
Information Gain (Quinlan,1986) measure was used, which is computed with the following
formula:

where

W is the actual word and S is the set of documents. P(W=present) is the probability that
W was present in a page. Sw=present is the set of pages where word W occurs one or more
times. Sc are all pages of class c. There are two possible classes: the class of documents voted
positively and the class of documents voted negatively.

For each word we keep the tf (term-frequency): the number of times the word appears in
the documents, and the idf (inverse-document-frequency): the number of documents where
the same word occurred. The TF-IDF algoritm is applied then to those five vector models
corresponding to the window of five documents. As a result we get a TF-IDF weighted vector.
We didn´t want to lose the old user model but just to update with the five documents in the
window. So, for this reason, we apply an algorithm to replace words in the old user model
with words included in the new TF-IDF vector being built. The algorithm used is the
following for each word included in the new vector TF-IDF:

IF the new word was included in the old model THEN the new tf, idf and information
gain are averaged with the new values obtained.
IF the new word was not included in the old model but there is space enough to include
that word THEN the new word is included with the tf ,idf and its information gain.

IF the new word was not included in the old model and there is not space enough THEN
we replace the new word with another word that has a tf-idf*Information Gain lower than
that word

[])()sen()()sen()(),(sensen tprewtprew SItpreWPSItpreWPSISWE ¬== ¬=+=−=

))((log)()(2
},{

c
c

c SpSpSI ∑
−+∈

−=

5.2. Learning the social part of the user model

This procedure is used to take into account information coming from the activities of the
virtual community of users that have, probably, common interests. The knowledge that these
users have is used to make recommendations for other users which seem to have common
interests.

The social user model is learnt again by using the space vector model. Each vector
component is a user who has similar interests and a value of similarity. To discover similar
interests between users we used the votes each user has made, similar users will be voted in
the same way as in the case of documents.

To find the similarity between any two users, a set of documents that have been voted by
the two users is built. Then the following formula is applied (Breese,1998):

This formula measures the vector similarity between two users: a is the actual user and i
is one of the rest of users, and Va,j is the vote a has made to the document j. This formula
computes the cosine of the angle formed by the two vectors. The squared terms in the
denominator are used to normalize votes. If the value obtained is higher than a fixed
threshold, user i is included in the social part of the vector model for user a, and user a is
included in the social vector of the user i.

6. Experimental results

A first implementation of ACE has been tested on the movie reviews and
recommendations domain on a small comunity of users. In this first test phase the goal was to
check the learning algorithms used to build the user model. Some conditions were set for this
experiment:

- Films were showed to the user in a random way. Therefore the films were voted in the
same way.

- The users didn´t see the system estimation for each film.

These two conditions guaranteed that the Recomender System had no influence on the
users’ purposes and their interests. This type of experimental setting is explained in more
detail for a similar system in (Balabanovic,1997a).

The method used to test the recomender system accuracy was to organize a controlled
group of users that interacted with the system for a given time s. In order to have reliable
estimations of the system’s performance, these users had to make a high number of votes in
order to overcome the cold-start and non-cooperative community effects typical to the
collaborative part of any mixed recommendation system. While the users voted, the system
split the group of votes into two sets:

∑
∑∑

∈∈

=
j

Ik
ki

ji

Ik
ka

ja

ia

v

v

v

v
iaw

2
,

,

2
,

,),(

- The Vote Set Ia was used to build the content and social model of the user a, this set was
used to create the examples for training ACE.

- The Vote Set Pa were the votes ACE had to predict for each user a. This became the test
set.

Then, votes in the training set Ia were used to predict the votes for the user in Pa

By using the models built in this first phase, ACE showed films to each user giving an
estimation of the interest of that film for that user. This is a probability of interest of a given
user for a given film. So we adopted the following formula to test if the system was
performing well (see (Breese, 1998) for further justification of this formula):

Paj is the probabilty estimated by the system for an user a and a film j, and Vaj is the vote
the user a issued for film j. This operation is computed for all the films the user voted for, and
is weighted by ma, the total number of films the user voted. The result measures the error in
the System estimation. This formula is applied to all the users in the database and averaged
over all of them.

Tests have been done with a set of 25 users, in a trial test that lasted one week. They
voted on 40 items randomly chosen from a set of 214 items in the database.

Figure 4: Evolution of the predictive capability in the ACE system.

The graphic shows in the horizontal axis all votes the users issued. The vertical axis
shows the absolute deviation computed for each user averaged and normalized for all the
users. The graphic gives an indication of the system fit to user’s interests. It can be seen that
performance improves with the number of votes, which is the expected performance for this
type of system. Average absolute deviation has a value of 0.27.1

1 each user has voted 40 items but the graphic only displays 35 votes due to the last 5 items are used as a test set
for the vote 35.

∑
∈

−=
aPj

jaja
a

a vp
m

S ,,

1

7. Conclusions and future work

We think that experimental results show that ACE learns a user model which is useful to
make accurate predictions. Probably, a wider virtual community could have allowed the
system to home in faster on a lower error prediction rate. The way the users are clustered
arround similar interests is made not only by using just documents that have been of interest
to them as other system combining cognitive and collaborative filtering do (Grasso, 1999),
(Munro,1999) but also by taking into account explicit recommendations contributed by the
users. This is a novel approach to the best of our knowledge although some point of contact
may exist with the approach proposed by (Olsson,1998) and (Grasso,1999). It has been shown
that the system really improves over time by resorting to that type of combination. In fact, it
can be shown that it gives better predictions than by using only content-based or social-based
recommendation.

One aspect of the architecture we want to remark is its lightness, in the sense previously
discussed of imposing little burden to the server and clients by having always the minimum
number of active agents at any given time.

Another aspect worth mentioning is that ACE is devised so as to be as independent of the
domain as possible. No special natural language technique reflecting any linguistic knowledge
of the domain has been used as is done in other systems. In our view, this approach also
reduces the complexity of the calculations for finding similarities in content. Probably using
linguistic knowledge about each type of domain (leisure, cinema, directories, etc.) would
result in a more precise content retrieval behaviour but at the expense of (a) introducing a lot
more of knowledge and processing (b) making the system less domain independent or, at
least, language independent. Apparently in its present version there is a limitation in that last
aspect in the sense that information about such things as stop words or the method for fusing
words is devised for the Spanish language. However, the overall modularization of the system
ensures that this aspect can be easily replaced by information for other languages.

Further refinements that we are starting to address include the following ones:

- Test the Forum Spy Agent in a real setting.
- Study changing from binary voting (“I like”/”I don’t like the item”) to several degrees of

voting, giving users the chance to express better their interests. We are trying to get a finer
voting scale without introducing too much decision burden to the user (See
(Balabanovic,1997b)(Balabanovic,1998) for an interesting discussion on that point).

- Make the system capable of evaluating itself, in order to know at each moment which of
the two filtering approaches (the content-based or the social-based) is better, and
weighting them automatically.

References

(Balabanovic,1998) Balabanovic, M. An Interface for Learning Multi-topic User Profiles from
Implicit Feedback. Proceedings of the first WorkShop on Recommender
Systems, 1998, Technical Report WS-98-08, AAI-Press, pags. 6-10.

(Balabanovic,1997a) Balabanovic, M. An adaptative web page recomendation service.
Proceedings of the 1st International Conference on Autonomous Agents,
Marina del Rey, California (February 1997), pags. 378-385.

(Balabanovic,1997b) Marco Balabanovic, Yoav Shoham. Fab: Content-Based, Collaborative
Recommendation. Communications of the ACM, vol. 40, nº 3 (March
1997), pags. 66-72.

(Breese,1998) Breese, J. S.; Heckermann, D.; Kadie, C. Empirical Analysis of
Predictive Algorithms for Collaborative Filtering. Proceedings of the 14th

conference on Uncertainty in Artificial Intelligence, Madison, Winsconsin
(July, 1998). Morgan Kaufmann Publisher.

(Delgado,1998) Delgado,J; Ishii, N.; and Ura, T. Intelligent Collaborative Information
Retrieval. 6th Iberoamerican Conference on Artificial Intelligence
(IBERAMIA 98), Lisbon, Postugal (October 1998).

(Glance, 2000) Natalie S. Glance Community Search Agent AAAI-2000 Workshop on AI
for Web Search

(Grasso, 1999) Grasso, A. Mixing Cognitive and Collaborative Filtering. Proceedings of
the I3net Community of the Future Conference. Sienna, Italy, October
1999.

(Lieberman,1995) H. Lieberman. Letizia; an agent that assists web browsing. Proceedings
of IJCAI-95. AAAI Press.

(Maes,1994) Pattie Maes. Agents that reduce work and information overload.
Communications of the ACM vol. 37, n. 7, pags. 31-40.

(Miyahara,1998) K. Miyahara, T. Okamoto. Collaborative Information Filtering in
cooperative communities. Journal of computer Assisted Learning 14
(1998), pags. 100-109.

(Mundher, 1998) Mundher,M; and Sen, S. Use of voting schemes to tradeoff user
preferences. Proceedings of the first Workshop on Recommender
Systems, 1998, Technical Report WS-98-08, AAAI-Press, pags. 75-76.

(Munro,1999) Munro, A. J.; Hook, K. And Benyo, D. (eds) (1999) Social Navigation of
Information Space. CSCW Series. Springer-Verlag, London.

(Olsson,1998) Olsson, T. Decentralised Filtering based on Trust. Proceedings of the
first Workshop on Recommender Systems, 1998, Tehnical Report WS-
98-08, AAAI-Press, pags 84-86.

(Pazzani,1996) Pazzani, M; Muramatsu, M and Billsus, D. Syskill & Webert: identifiying
interes web sites. Proceedings of the Thirteenth National Conference on
Artificial Intelligence. Portland Oregon (1996).

(Quinlan,1986) Quinlan, J. R. Induction of decision trees. Machine Learning, 1 (1986),
81-106

(Resnick,1994) Resnick, P.; Iancouvou,N; Sushack, M.; Begrstrom, P. And Riedl,J.
Grouplens: An open architecture for collaborative filtering of NetNews.
Proceeedings of the CSCW 1994 Conference.

(Rucker,1997) Rucker, J; Polanco, M.J. Siteseer: Personalized Navigation for the Web.
Communications of the ACM, vol. 40, n. 3 (March 1997), pags. 73-75.

(Terveen,1997) Terveen, L; Hill, W.; Amento, B; McDonald, D. and Creeter,J. Phoaks: a
System for Sharing Recommendations. Communications of the ACM,
vol. 40, n. 3 (March 1997), pags. 59-62.

