SVMTool: A general POS tagger generator based on Support Vector Machines

4th INTERNATIONAL CONFERENCE
ON LANGUAGE RESOURCES AND EVALUATION

Jesús Giménez and Lluís Màrquez

May 26, 2004

TALP Research Center, Universitat Politècnica de Catalunya

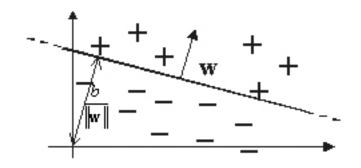
Outline

- Introduction
 - Part-of-speech Tagging
 - Idea and Motivation
 - Learning Framework
- SVMT tool
- Evaluation
- Conclusions

Introduction

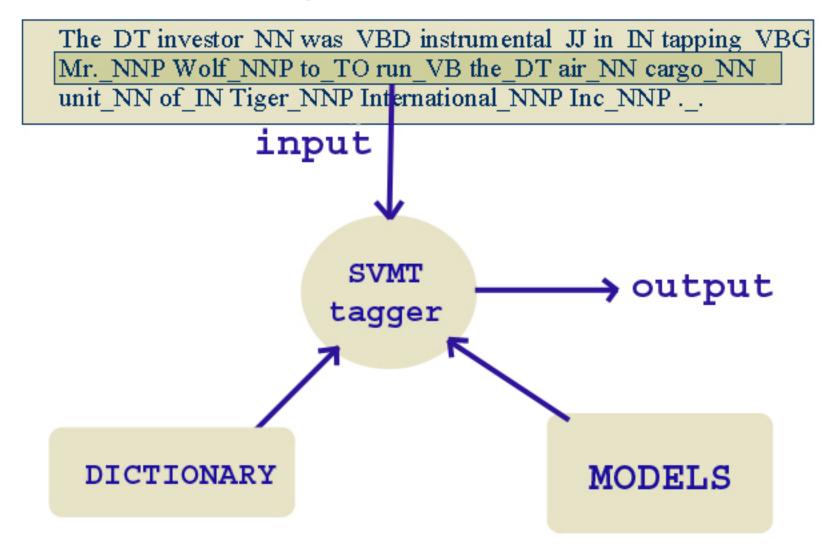
Part-of-Speech Tagging

The_DT SVMTool_NNP is_VBZ now_RB being_VBG presented_VBN to_TO NLP_NNP researchers_NNS in_IN Lisbon_NNP ._.


- Brill [Brill, 1995]
- TnT [Brants, 2000]

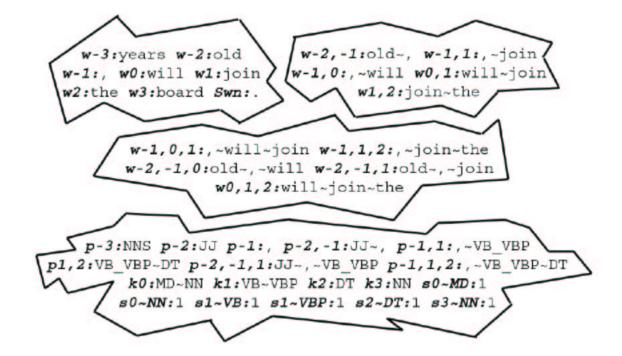
Idea and Motivation

- Accuracy [in the state-of-the-art]
- Efficiency [both learning and tagging]
- Flexibility [highly customizable]
- Portability [language independent]
- Robustness [against overfitting and on-line mistakes]
- Simplicity [easy to use]


Learning FrameWork

Support Vector Machines

$$h(\mathbf{x}) = \text{sign } (\langle \mathbf{w} \cdot \mathbf{x} \rangle + b) = \begin{cases} +1 & if \langle \mathbf{w} \cdot \mathbf{x} \rangle + b > 0 \\ -1 & otherwise \end{cases}$$


SVMT tool

Feature Patterns

word unigrams	$w_{-3}, w_{-2}, w_{-1}, w_0, w_{+1}, w_{+2}, w_{+3}$
word bigrams	$(oldsymbol{w}_{-2},oldsymbol{w}_{-1}), (oldsymbol{w}_{-1},oldsymbol{w}_{+1}), (oldsymbol{w}_{-1},oldsymbol{w}_{0}), (oldsymbol{w}_{0},oldsymbol{w}_{+1}), (oldsymbol{w}_{+1},oldsymbol{w}_{+2})$
word trigrams	$(oldsymbol{w}_{-3}, oldsymbol{w}_{-2}, oldsymbol{w}_{-1}), (oldsymbol{w}_{-2}, oldsymbol{w}_{-1}, oldsymbol{w}_{0}), (oldsymbol{w}_{-2}, oldsymbol{w}_{-1}, oldsymbol{w}_{+1}),$
	$(oldsymbol{w}_{-1},oldsymbol{w}_{0},oldsymbol{w}_{+1}), (oldsymbol{w}_{-1},oldsymbol{w}_{+1},oldsymbol{w}_{+1},oldsymbol{w}_{+1},oldsymbol{w}_{+1},oldsymbol{w}_{+2})$
POS unigrams	p_{-3}, p_{-2}, p_{-1}
POS bigrams	$(p_{-2},p_{-1}),(p_{-1},a_{+1}),(a_{+1},a_{+2})$
POS trigrams	$(p_{-3},p_{-2},p_{-1}),(p_{-2},p_{-1},a_{+1}),(p_{-1},a_{+1},a_{+2})$
ambiguity classes	$oxed{a_0,a_1,a_2,a_3}$
maybe's	$oxed{m_0,m_1,m_2,m_3}$
prefixes	s_1 , s_1s_2 , $s_1s_2s_3$, $s_1s_2s_3s_4$
suffixes	s_n , $s_{n-1}s_n$, $s_{n-2}s_{n-1}s_n$ $s_{n-3}s_{n-2}s_{n-1}s_n$
binary word-form	intial_Upper_Case, all_Upper_Case, no-initial_Capital_Letter(s),
features	all_Lower_Case, contains_(period/number/hyphen)
word length	integer
Sentence info	last_word ('.', '?', '!')

```
Pierre NNP Vinken NNP , , 61 CD years NNS old JJ , , will ?? join VB the DT board NN as IN a DT nonexecutive JJ director NN Nov. NNP 29 CD . .
```


Outline

- Introduction
- SVMT tool
 - SVMT-learner [Training of SVM classifiers]
 - SVMT-tagger [POS-tagging of a given input]
 - SVMT-evaluator [Study of tagging results]
 - SVMT API [Embedded usage of SVMT-tagger]
- Evaluation
- Conclusions

SVMT-learner

Options

- slinding window: length [def: 5] core position [def: 2]
- feature set [configurable]
- feature filtering [default: (2 / 100,000)]
- C parameter tuning (greedy) [default: disabled]
- SVM model compression [default: disabled]
- ambiguous/open-class POS lists may be provided if available. [automatically created by default]

SVMT-learner

- dictionary repairing
 - heuristic [by default]
 - using a list of corrections provided
 - < the 50975 6 CD 1 DT 50959 JJ 7 NN 1 NNP 6 VBP 1 >
 - < the 50975 1 DT 50959 >

SVMT-tagger

Options

- tagging scheme
 - * greedy [default]
 - * sentence-level
- tagging direction
 - * left-to-right [default]
 - * right-to-left
 - * both left-to-right and right-to-left
- number of tagging passes (1 or 2) [default: 1]
- backup lexicon

SVMT-evaluator

 $gold\ output\ +\ SVMT\ output\ =\ report$

- brief report
- known vs. unknown tokens
- level of ambiguity
- class of ambiguity
- part-of-speech study

SVMT API

Outline

- Introduction
- SVMT tool
- Evaluation
 - English on WSJ
 - Spanish on LEXESP
- Conclusions

Evaluation

learning time	1-20 cpu hour		
tagging speed	1500 words/second		

2Ghz Pentium-IV processor; 1Gb RAM
 Perl v5.005_03 (Benchmark package for timing)

Evaluation for English

- Wall Street Journal [Penn Treebank III]
- 1,17 million words
 [Training (912k), Validation (132k) and Test (130k)]
- Penn Treebank tagset -> 48 tags
 35 parts-of-speech present ambiguity
 17 are open-classes

	TnT	Collins 02	SVMT	Toutanova et al.
Accuracy	96.46%	97.11%	97.16%	97.24%

Evaluation for Spanish

- LEXESP
- 106k words [Training (86k) and Test (20k)]
- Parole tagset -> 183 tags -> 61 tags (reduced tagset)
 43 parts-of-speech present ambiguity
 12 are open-classes

	TnT	SVMT
Accuracy	96.50%	96.89%

Outline

- Introduction
- SVMT tool
- Evaluation
- Conclusions

Conclusions

- highly accurate: 97.0 97.2% [English on WSJ]
- efficient: linear SVMs, primal formulation
- robust: soft margin SVMs, two-passes, LR + RL
- very flexible: rich feature set, tagging strategies
- portable: applied to English, Spanish and Catalan
- simple: ease to configure, tune and use

Ongoing Steps

- C++ version coming soon
- Study of more flexible and robust tagging schemes
- Better guessing of unknown words
- Unsupervised learning

Thanks

you may download SVMTool v 1.2 at

http://www.lsi.upc.es/~nlp/SVMTool

References

- 1. T. Brants. "TnT A Statistical Part-of-Speech Tagger". In Proceedings of the Sixth ANLP, 2000.
- 2. T. Nakagawa and T. Kudoh and Y. Matsumoto. "Unknown Word Guessing and Part-of-Speech Tagging Using Support Vector Machines". In Proceedings of the Sixth Natural Language Processing Pacific Rim Symposium, 2001.
- 3. M. Collins. "Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Perceptron Algorithms", In Proceedings of the 7th EMNLP Conference, 2002.
- 4. K. Toutanova and D. Klein and C. D. Manning. "Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency Network". In Proceedings of HLT-NAACL'03.
- 5. J. Giménez and L. Màrquez. "Fast and Accurate Part-of-Speech Tagging: The SVM Approach Revisited". In Proceedings of RANLP '03.
- 6. N. Cristianini and J. Shawe-Taylor. "An Introduction to Support Vector Machines", Cambridge University Press, 2000.
- 7. T. Joachims. "Making large-Scale SVM Learning Practical". Advances in Kernel Methods Support Vector Learning, B. Schölkopf and C. Burges and A. Smola (ed.), MIT-Press, 1999.