
SVMTool

Technical Manual v1.4

Jesús Giménez
Llúıs Màrquez

TALP Research Center, LSI Department

Universitat Politécnica de Catalunya

Jordi Girona Salgado 1–3, E-08034, Barcelona

{jgimenez,lluism}@lsi.upc.edu

Latest revision: March 2012

1

Contents

1 Installation 5

2 Introduction 6
2.1 Properties of the SVMTool . 7

3 Approach Description 9
3.1 Related Work . 9
3.2 The Theory of Support Vector Machines 10
3.3 Problem Setting . 12

3.3.1 Binarizing the Classification Problem 12
3.3.2 Feature Codification 13

4 The SVMTool 15
4.1 SVMTlearn . 15

4.1.1 Training Data Format 15
4.1.2 Options . 16
4.1.3 Configuration File . 18
4.1.4 C Parameter Tuning 23
4.1.5 Test . 24
4.1.6 Models . 24

4.2 SVMTagger . 26
4.2.1 Options . 28
4.2.2 Strategies . 32

4.3 SVMTeval . 32
4.3.1 Reports . 33

4.4 SVMTool API . 37

5 Evaluation 38
5.1 Accuracy . 38
5.2 Efficiency . 38
5.3 Results for English . 38

5.3.1 WSJ . 38
5.4 Results for Spanish . 40

5.4.1 LEXESP . 40
5.4.2 3LB . 40

5.5 Results for Catalan . 41
5.5.1 3LB . 41

2

6 Tutorial 42
6.1 Running the SVMTool . 42
6.2 Training the SVMTool . 42

6.2.1 Learning Time . 42
6.2.2 Tagging Time . 44

6.3 Tuning the SVMTool . 45

3

Abstract

This report presents the svmtool1, a simple, flexible, and effective
generator of sequential taggers based on Support Vector Machines.
We have appied the SVMTool to the problem of part-of-speech tag-
ging. By means of a rigorous experimental evaluation, we conclude
that the proposed SVM-based tagger is robust and flexible for fea-
ture modelling (including lexicalization), trains efficiently with almost
no parameters to tune, and is able to tag thousands of words per
second, which makes it really practical for real NLP applications. Re-
garding accuracy, the SVM-based tagger significantly outperforms the
TnT tagger exactly under the same conditions, and achieves a very
competitive accuracy of 97.2% for English on the Wall Street Jour-
nal corpus, which is comparable to the best taggers reported up to
date. It has been also successfully applied to Spanish and Catalan
exhibiting a similar performance, and to other tagging problems such
as chunking. Perl and C++ versions are available2

1This work has been partially funded by the European Community’s Seventh Frame-
work Programme (FP7/2007-2013) under grant agreement number 247762 (FAUST
project, FP7-ICT-2009-4-247762) and by the Spanish Government project OpenMT-2,
TIN2009-14675-C03. The original versions of the tool were partially supported by the
Spanish Ministry of Science and Technology (HERMES TIC2000-0335-C03-02, ALIADO
TIC2002- 04447-C02) and by the European Comission (LC-STAR IST-2001-32216).

2The svmtool is released under LGPL license and may be freely downloaded at
http://www.lsi.upc.es/~nlp/SVMTool/.

4

1 Installation

To configure this module, cd to the directory that contains the README
file and type the following:

perl Makefile.PL

Alternatively, if you plan to install SVMTool somewhere other than
your system’s perl library directory, you can type something like this:

perl Makefile.PL PREFIX=/home/me/perl

Then to build you run make.

make

If you have write access to the installation directories, you may
then install by typing:

make install

Remember to properly set ’path’ and PERL5LIB variables:

set path = ($path /home/me/SVMTool-1.3/bin)

setenv PERL5LIB /home/me/SVMTool-1.3/lib:$PERL5LIB

5

2 Introduction

Prior to elaborate further complex data analyses, most NLP appli-
cations demand at initial stages shallow linguistic information (e.g.,
part–of–speech tagging, base phrase chunking, named entity recogni-
tion). This information may be predicted fully automatically (at the
cost of some errors) by means of sequential tagging over unannotated
raw text.

Generally, tagging is required to be as accurate as possible, and
as efficient as possible. But, certainly, there is a trade-off between
this two desirable properties. Obtaining a higher accuracy requires
processing more and more information, digging deeper and deeper
into it. However, sometimes, depending on the kind of application, a
loss in efficiency may be acceptable in order to obtain more precise
results. Or the other way around, a slight loss in accuracy may be
tolerated in favour of tagging speed.

Moreover, some languages have a richer morphology than others,
requiring the tagger to have into acount a bigger set of feature pat-
terns. Also the tagset size and ambiguity rate may vary from language
to language and from problem to problem. Besides, if few data are
available for training, the proportion of unknown words may be huge.
Sometimes, morphological analyzers could be utilized to reduce the
degree of ambiguity when facing unknown words. Thus, a sequential
tagger should be flexible with respect to the amount of information
utilized and context shape.

Another very interesting property for sequential taggers is their
portability. Multilingual information is a key ingredient in NLP tasks
such as Machine Translation, Information Retrieval, Information Ex-
traction, Question Answering and Word Sense Disambiguation, just
to name a few. Therefore, having a tagger that works equally well for
several languages is crucial for the system robustness.

Besides, quite often for some languages, but also in general, lexical
resources are hard to obtain. Therefore, ideally a tagger should be
capable for learning with fewer (or even none) annotated data.

The svmtool is intended to comply with all the requirements of
modern NLP technology, by combining simplicity, flexibility, robust-
ness, portability and efficiency with state–of–the–art accuracy. This is
achieved by working in the Support Vector Machines (SVM) learning
framework, and by offering NLP researchers a highly customizable
sequential tagger generator. We have appied the SVMTool to the
problem of part-of-speech (PoS) tagging.

6

2.1 Properties of the SVMTool

The properties the svmtool is intended to exhibit are:

Simplicty The svmtool is easy to configure and to train. The learn-
ing is controlled by means of a very simple configuration file.
There are very few parameters to tune. And the tagger itself is
very easy to use, accepting standard input and output pipelin-
ing. Embedded usage is also supplied by means of the svmtool
API.

Flexibility The size and shape of the feature context can be ad-
justed. Also, rich features can be defined, including word and
PoS (tag) n-grams as well as ambiguity classes and “may be’s”,
apart from lexicalized features for unknown words and sentence
general information. Moreover, starting from version 1.3 addi-
tional information may be provided from multiple columns other
than 0 (word) and 1 (tag) in the form of n-grams (See Subsec-
tion 4.1). The behaviour at tagging time is also very flexible,
allowing different strategies (See Subsection 4.2).

Robustness The overfitting problem is well addressed by tuning the
C parameter in the soft margin version of the SVM learning
algorithm. Also, a sentence-level analysis may be performed in
order to maximize the sentence score. And, for unknown words
not to punish so severely on the system effectiveness, several
strategies have been implemented and tested.

Portability The svmtool is language independent. It has been suc-
cessfully applied to English and Spanish without a priori knowl-
edge other than a supervised corpus. Moreover, thinking of lan-
guages for which labeled data is a scarce resource, the svmtool
also may learn from unsupervised3 data based on the role of
non-ambiguous words [Mih03] with the only additional help of a
morpho-syntactic dictionary.

Accuracy Compared to state–of–the–art PoS taggers reported up to
date, it exhibits a very competitive accuracy (97.2% for English
on the WSJ corpus). Clearly, rich sets of features allow to model
very precisely most of the information involved. Also the learn-
ing paradigm, SVM, is very suitable for working accurately and
efficiently with high dimensionality feature spaces.

Efficiency Performance at tagging time depends on the feature set
size and the tagging scheme selected. For the default (one-pass
left-to-right greedy) tagging scheme, the current Perl prototype

3This feature remains still disabled in this version (SVMTool v1.3)

7

exhibits a tagging speed of 1,500 words/second whereas the C++
version achieves a tagging speed of over 10,000 words/second4.
This has been achieved by working in the primal formulation
of SVM. The use of linear kernels causes the tagger to perform
more efficiently both at tagging and learning time, but forces the
user to define a richer feature space. However, the learning time
remains linear with respect to the number of training examples.

See Section 3 for further details on the application of the SVMTool
to PoS Tagging.

4Tagging speed has been measured on a Pentium–IV, 2GHz, 1 GB RAM

8

3 Approach Description

The following sections describe our SVM–based approach to PoS–
tagging. Subsection 3.1 relates our approach to previous work on the
same task. In Subsection 3.2 the SVM learning paradigm is briefly
presented. Subsection 3.3 describes how the problem of PoS–tagging
can be seen as a multiclass classification problem for which an SVM
learning framework can be set.

3.1 Related Work

In the recent literature, we can find several approaches to PoS tag-
ging based on statistical and machine learning techniques, including
among many others: Hidden Markov Models [WSP+93, Bra00], Maxi-
mum Entropy taggers [Rat96], Transformation–based learning [Bri95],
Memory–based learning [DZBG96], Decision Trees [MR97], AdaBoost
[ASS99], and Support Vector Machines [NKM01]. Most of the pre-
vious taggers have been evaluated on the English WSJ corpus, using
the Penn Treebank set of PoS categories and a lexicon constructed
directly from the annotated corpus. Although the evaluations were
performed with slight variations, there was a wide consensous in the
late 90’s that the state–of-the–art accuracy for English PoS tagging
was between 96.4% and 96.7%.

In the recent years, the most succesful and popular taggers in the
NLP community have been the HMM–based TnT tagger [Bra00], the
Transformation–based learning (TBL) tagger [Bri95], and several vari-
ants of the Maximum Entropy (ME) approach [Rat96]. In our opinion,
TnT is an example of a really practical tagger for NLP applications. It
is available to anybody, simple and easy to use, considerably accurate,
and extremely efficient, allowing a training from 1 millon word corpora
in just a few seconds and tagging thousands of words per second. In
the case of TBL and ME approaches, the great success has been due
to the flexibility they offer in modelling contextual information, being
ME slightly more accurate than TBL.

Far from being considered a closed problem, several researchers
tried to improve results on the PoS tagging task during last years.
Some of them by allowing richer and more complex HMM models
[TH99, LTR00], others [TM00] by enriching the feature set in a ME
tagger, and others [NKM01] by using more effective learning tech-
niques: SVM, and a Voted–Perceptron–based training of a ME model
[Col02]. In these more complex taggers the state–of–the–art accuracy
was raised up to 96.9%–97.1% on the same WSJ corpus. In a com-
plementary direction, other researchers suggested the combination of

9

several pre-existing taggers under several alternative voting schemes
[BW98, HZD98, MRCM99]. Although the accuracy of these taggers
is even better (around 97.2%) the ensembles of PoS taggers are unde-
niably more complex and less efficient.

In this work we suggest to go back to the TnT philosophy (i.e.,
simplicity and efficiency with state–of–the–art accuracy) but within
the SVM learning framework. We claim that the SVM–based tagger
introduced in this work fulfills the requirements for being a practical
tagger and offers a very good balance of the following properties. (1)
Simplicity: the tagger is easy to use and has few parameters to tune;
(2) Flexibility and robustness: rich context features can be efficiently
handled without overfitting problems, allowing lexicalization; (3) High
accuracy: the SVM–based tagger performs significantly better than
TnT and achieves an accuracy competitive to the best current taggers;
(4) Efficiency: training on the WSJ is performed in around one CPU
hour and the tagging speed allows a massive processing of texts.

It is worth noting that the Support Vector Machines (SVM) para-
digm has been already applied to tagging in a previous paper [NKM01],
with the focus on the guessing of unknown word categories. The fi-
nal tagger constructed in that paper gave a clear evidence that the
SVM approach is specially appropriate for the second and third of
the previous points, the main drawback being a low efficiency (in that
paper a running speed of around 20 words per second is reported). In
the present work we overcome this limitation by working with linear
kernels in the primal setting of the SVM framework taking advantage
of the extremely sparsity of example vectors. The resulting tagger
is almost as accurate as that of [NKM01] but 60 times faster in a
preliminar prototype implemented in Perl and 600 faster in the C++
version.

3.2 The Theory of Support Vector Machines

SVM is a machine learning algorithm for binary classification, which
has been successfully applied to a number of practical problems, in-
cluding NLP. Consider [CST00] for a good survey on SVMs.

Let {(x1, y1), . . . , (xN , yN)} be the set of N training examples,
where each instance xi is a vector in R

N and yi ∈ {−1,+1} is the
class label. In their basic form, a SVM learns a linear hyperplane
that separates the set of positive examples from the set of negative
examples with maximal margin (the margin is defined as the distance
of the hyperplane to the nearest of the positive and negative exam-
ples). This learning bias has proved to have good properties in terms
of generalization bounds for the induced classifiers.

10

The linear separator is defined by two elements: a weight vector w

(with one component for each feature), and a bias b which stands for
the distance of the hyperplane to the origin. The classification rule of
a SVM is:

sgn(f(x,w, b)) (1)

f(x,w, b) = 〈w · x〉 + b (2)

being x the example to be classified. In the linearly separable case,
learning the maximal margin hyperplane (w, b) can be stated as a con-
vex quadratic optimization problem with a unique solution: minimize
||w||, subject to the constraints (one for each training example):

yi(〈w · xi) + b) ≥ 1 (3)

See an example of a 2-dimensional SVM in Figure 1 (leftmost rep-
resentation).

ε

γ

{ z : <w,z> + b = 0 }

Figure 1: SVM example: hard margin (left) vs. soft margin (right) maxi-
mization in R

2.

The SVM model has an equivalent dual formulation, characterized
by a weight vector α and a bias b. In this case, α contains one weight
for each training vector, indicating the importance of this vector in
the solution. Vectors with non null weights are called support vectors.
The dual classification rule is:

11

f(x,α, b) =
N∑

i=1

yiαi〈xi · x〉 + b (4)

The α vector can be calculated also as a quadratic optimization
problem. Given the optimal α

∗ vector of the dual quadratic optimiza-
tion problem, the weight vector w∗ that realizes the maximal margin
hyperplane is calculated as:

w∗ =

N∑

i=1

yiα
∗
i xi (5)

The b∗ has also a simple expression in terms of w∗ and the training
examples {(xi, yi)}

N
i=1. See [CST00] for details.

The advantage of the dual formulation is that permits an efficient
learning of non–linear SVM separators, by introducing kernel func-
tions. Technically, a kernel function calculates a dot product between
two vectors that have been (non linearly) mapped into a high dimen-
sional feature space. Since there is no need to perform this mapping
explicitly, the training is still feasible although the dimension of the
real feature space can be very high or even infinite.

In the presence of outliers and wrongly classified training exam-
ples it may be useful to allow some training errors in order to avoid
overfitting. This is achieved by a variant of the optimization problem,
referred to as soft margin, in which the contribution to the objective
function of margin maximization and training errors can be balanced
through the use of a parameter called C. See Figure 1 (rightmost
representation).

3.3 Problem Setting

We describe the collection of training examples and feature codifica-
tion.

3.3.1 Binarizing the Classification Problem

Tagging a word in context is a multi-class classification problem. Since
SVMs are binary classifiers, a binarization of the problem must be
performed before applying them. We have applied a simple one-per-
class binarization, i.e., a SVM is trained for every PoS tag in order
to distinguish between examples of this class and all the rest. When
tagging a word, the most confident tag according to the predictions of
all binary SVMs is selected.

12

However, not all training examples have been considered for all
classes. Instead, a dictionary is extracted from the training corpus
with all possible tags for each word, and when considering the oc-
currence of a training word w tagged as ti, this example is used as
a positive example for class ti and a negative example for all other
tj classes appearing as possible tags for w in the dictionary. In this
way, we avoid the generation of excessive (and irrelevant) negative
examples, and we make the training step faster5.

3.3.2 Feature Codification

Each example (event) has been represented using the local context
of the word for which the system will determine a tag (output de-
cision). This local context and local information like capitalization
and affixex of the current token will help the system make a decision
even if the token hasn’t been encountered during training. We have
considered a centered window of seven tokens, in which some basic
and n–gram patterns are evaluated to form binary features such as:
“previous word is the”, “two preceeding tags are DT NN”, etc. Table
1 contains the list of all patterns considered.

As it can be seen, the tagger is lexicalized and all word forms
appearing in window are taken into account. Since a very simple left–
to–right tagging scheme will be used, the tags of the following words
are not known at running time. Following the approach of [DZBG96]
we use the more general ambiguity–class tag for the right context
words, which is a label composed by the concatenation of all possible
tags for the word (e.g., IN-RB, JJ-NN, etc.). Each of the individual
tags of an ambiguity class is also taken as a binary feature of the form
“following word may be a VBZ”. Therefore, with ambiguity classes
and “maybe’s”, we avoid the two pass solution proposed in [NKM01],
in which an initial first pass tagging is performed in order to have right
contexts disambiguated for the second pass. Also in [NKM01], it is
suggested that explicit n–gram features are not necessary in the SVM
approach, because polynomial kernels acoount for the combination of
features. However, since we are interested in working with a linear
kernel, we have included them in the feature set.

Additional features, inspired in previous work [Bri95, MRCM99,
NKM01], have been used to deal with the problem of unknown words.
Features appearing a number of times under a certain count cut-off
might be ignored for the sake of robustness6 (See Subsection 4.1).

5See [ASS99] for a discussion on the efficiency problems when learning from large PoS
training sets.

6In our experiments we found out that discarding all features appearing only once

13

Table 1 shows a rich feature set used in our experiments.

word features w−3, w−2, w−1, w0, w+1, w+2, w+3

PoS features p−3, p−2, p−1, p0, p+1, p+2, p+3

ambiguity classes a0, a1, a2, a3

may be’s m0, m1, m2, m3

word bigrams (w−2, w−1), (w−1, w+1), (w−1, w0)
(w0, w+1), (w+1, w+2)

PoS bigrams (p−2, p−1), (p−1, a+1), (a+1, a+2)
word trigrams (w−2, w−1, w0), (w−2, w−1, w+1),

(w−1, w0, w+1), (w−1, w+1, w+2),
(w0, w+1, w+2)

PoS trigrams (p−2, p−1, a+0), (p−2, p−1, a+1),
(p−1, a0, a+1), (p−1, a+1, a+2)

sentence info punctuation (’.’, ’?’, ’ !’)
prefixes s1, s1s2, s1s2s3, s1s2s3s4

suffixes sn, sn-1sn, sn-2sn-1sn, sn-3sn-2sn-1sn

binary initial Upper Case, all Upper Case,
word no initial Capital Letter(s), all Lower Case,
features contains a (period / number / hyphen ...)
word length integer

Table 1: Rich feature pattern set used in experiments.

See [GM03, GM04b, GM04a] for further details on experiments.

reported significant gains.

14

4 The SVMTool

The svmtool software package consists of three main components,
namely the model learner (svmtlearn), the tagger (svmtagger) and
the evaluator (svmteval), which are described below.

Previous to the tagging, SVM models (weight vectors and biases)
are learned from a training corpus using the svmtlearn component.
Different models are learned for the different strategies. Then, at
tagging time, using the svmtagger component, one may choose the
tagging strategy that is most suitable for the purpose of the tagging.
Finally, given a correctly annotated corpus, and the corresponding
svmtool predicted annotation, the svmteval component displays tag-
ging results.

4.1 SVMTlearn

Given a training set of examples (either annotated or unannotated),
it is responsible for the training of a set of SVM classifiers. So as to
do that, it makes use of SVM–light7, an implementation of Vapnik’s
SVMs in C, developed by Thorsten Joachims [Joa99].

The SVMlight software implementation of Vapnik’s Support Vec-
tor Machine [Vapnik, 1995] by Thorsten Joachims has been used to
train the models. For further information on it see:

• T. Joachims, Making large-Scale SVM Learning Practical. Ad-
vances in Kernel Methods - Support Vector Learning, B. Schlkopf
and C. Burges and A. Smola (ed.), MIT-Press, 1999.

4.1.1 Training Data Format

Training data must be in column format, i.e. a token per line corpus
in a sentence by sentence fashion. The column separator is the blank
space. The token is expected to be the first column of the line. The
tag to predict takes the second column in the output. The rest of the
line may contain additional information. See an example:

Pierre NNP B-PERSON

Vinken NNP I-PERSON

, , O

61 CD B-NUM

years NNS 0

7The svm
light software is freely available (for scientific use) at the following URL:

http://svmlight.joachims.org. It is necessary to download it prior to start using
the svmtlearn component. svm

light is not LGPL licensed.

15

old JJ 0

, , 0

will MD 0

join VB 0

the DT 0

board NN 0

as IN 0

a DT 0

nonexecutive JJ 0

director NN 0

Nov. NNP B-DATE

29 CD I-DATE

. . O

[...]

No special ‘<EOS>’ mark is employed for sentence separation. Sen-
tence punctuation is used instead, i.e. [.!?] symbols are taken as
unambiguous sentence separators8.

4.1.2 Options

svmtlearn behaviour is easily adjusted through a configuration file.

Usage : SVMTlearn [options] <config-file>

options:

- V verbose 0: none verbose

1: low verbose [default]

2: medium verbose

3: high verbose

Example : SVMTlearn -V 2 config.svmt

These are the currently available config-file options:

• Sliding window: The size of the sliding window for feature ex-
traction can be adjusted. Also, the core position in which the
word to disambiguate is to be located may be selected. By de-
fault, window size is 5 and the core position is 2, starting at
0.

• Feature set: Three different kinds of feature types can be col-
lected from the sliding window:

– word features: Word form n-grams. Usually unigrams, bi-
grams and trigrams suffice. Also, the sentence last word,

8‘<EOS>’ tag is available at tagging time only (‘<s>’. Future versions may contain a
sentence separator mark at learning time as well.

16

which corresponds to a punctuation mark (’.’, ’?’, ’ !’), is
important.

– PoS features: Annotated parts–of–speech and ambiguity
classes n-grams, and “may be’s”. As for words, considering
unigrams, bigrams and trigrams is enough. The ambiguity
class for a certain word determines which PoS are possible.
A “may be” states, for a certain word, that certain PoS may
be possible, i.e. it belongs to the word ambiguity class.

– lexicalized features: including prefixes and suffixes, capital-
ization, hyphenization, and similar information related to a
word form.

Default feature sets for every model are defined.

• Feature filtering: The feature space can be kept in a convenient
size. Smaller models allow for a higher efficiency. By default, no
more than 100,000 dimensions are used. Also, features appearing
less than n times can be discarded, which indeed causes the
system both to fight against overfitting and to exhibit a higher
accuracy. By default, features appearing just once are ignored.

• SVM model compression: Weight vector components lower than
a given threshold, in the resulting SVM models can be filtered
out, thus enhancing efficiency by decreasing the model size but
still preserving accuracy level. That is an interesting behaviour
of SVM models being currently under study. In fact, discarding
up to 70% of the weight components accuracy remains stable,
and it is not until 95% of the components are discarded that ac-
curacy falls below the current state–of–the–art (97.0% - 97.2%).

• C parameter tuning: In order to deal with noise and outliers in
training data, the soft margin version of the SVM learning al-
gorithm allows the misclassification of certain training examples
when maximizing the margin. This balance can be automatically
adjusted by optimizing the value of the C parameter of SVMs.
A local maximum is found exploring accuracy on a validation set
for different C values at shorter intervals.

• Dictionary repairing: The lexicon extracted from the training
corpus can be automatically repaired either based on frequency
heuristics or on a list of corrections supplied by the user. This
makes the tagger robust to corpus errors. Also a heuristic thresh-
old may be specified in order to consider as tagging errors those
(wordxtagy) pairs occurring less than a certain proportion of
times with respect to the number of occurrences of wordx. For
instance, a threshold of 0.001 would consider (run DT) as an

17

error if the word run had been seen at least 1000 times and only
once tagged as a ’DT’. This kind of heuristic dictionary reparing
doesn’t harm the tagger performance, on the contrary, it may
enormously help.

Repairing list must comply with the svmtool dictionary format,
i.e. <word> <N occurrences> <N possible tags> 1{<tag(i)>
<N occurrences(i)}N. See an example:

...

a 23673 4 DT 23647 FW 8 LS 2 SYM 11

an 3819 1 DT 3819

and 19762 1 CC 19762

are 4507 1 VBP 4507

can 1133 2 MD 1128 NN 5

did 743 1 VBD 743

do 1156 2 VB 402 VBP 754

does 601 1 VBZ 601

for 9890 2 IN 9884 RP 6

he 3181 1 PRP 3181

if 994 1 IN 994

in 18857 3 IN 18573 RB 65 RP 219

is 8499 1 VBZ 8499

it 5768 1 PRP 5768

...

• Ambiguous classes: The list of PoS presenting ambiguity is, by
default, automatically extracted from the corpus but, if available,
this knowledge can be made explicit. This acts in favor of the
system robustness.

• Open classes: The list of PoS tags an unknown word may be
labeled as is also, by default, automatically determined. As for
ambiguous classes, if available, it is well appreciated for the same
reason.

• Backup lexicon: A morphological lexicon containing words that
are not present in the training corpus may be provided. It can
be also provided at tagging time. This file must comply with the
svmtool dictionary format, described above.

4.1.3 Configuration File

Several arguments are mandatory (See Table 2). The rest are optional
(See Table 4). Lists of features are defined in the SVMTool feature
language (svmtfl). See Table 5. Lines beginning with ’#’ are ignored.

The list of action items for the learner must be declared (see Table
3):

18

NAME name of the model to create (a log of the experiment
is generated onto the file “NAME.EXP”)

TRAINSET location of the training set
SVMDIR location of the Joachims svm

lightsoftware

Table 2: SVMTlearn config-file mandatory arguments.

Syntax: do <MODEL> <DIRECTION> [<CK>] [<CU>] [<T>]

where MODEL = [M0|M1|M2|M3|M4]

DIRECTION = [LR|RL|LRL]

CK = [CK:<<range1>:<range2>:<#iterations>:

<#segments_per_iteration>:

<log>|<nolog>> | <CK-value>]

CU = [CU:<<range1>:<range2>:<#iterations>:

<#segments_per_iteration>:

<log>|<nolog>> | <CU-value>]

T = [T[:<Nfolders>]]

MODEL model type
DIRECTION model direction
CK known word C parameter tuning options (optional)
CU unknown word C parameter tuning options (optional)
T test options (optional)

Table 3: SVMTlearn config-file action arguments.

Here is an example of a valid config-file:

#SVMTool configuration file for English on the whole WSJ corpus

#prefix of the model files which will be created

NAME = WSJTP

#location of the training set

TRAINSET = /home/me/SVMT/corpora/WSJTP/WSJTP.TRAIN

#location of the Joachims svmlight software

SVMDIR = /home/me/SVMT/soft/

#action items

19

SET location of the whole set
VALSET location of the validation set
TESTSET location of the test set
TRAINP proportion of sentences belonging to the provided

whole SET which will be used for training
VALP proportion of sentences belonging to the provided

whole SET which will be used for validation
TESTP proportion of sentences belonging to the provided

whole SET which will be used for test
REMOVE FILES remove intermediate files?
REMAKE FOLDERS remake cross-validation folders?
Kfilter Weight Filtering for known word models
Ufilter Weight Filtering for unknown word models
R dictionary repairing list

(heuristically repaired by default)
D dictionary repairing heuristic threshold

(0.001 by default)
BLEX backup lexicon
LEX lexicon for unsupervised learning (Model 3)
W window definition (size, core position)
F feature filtering (count cut off, max mapping size)
CK C parameter for known words -all models-

(0 by default)
CU C parameter for unknown words -all models-

(0 by default)
X percentage of unknown words expected

(3 by default)
AP list of parts-of-speech presenting ambiguity

(automatically created by default)
UP list of open-classes

(automatically created by default)
A0k..A4k known word feature definition for models 0..4
A0u..A4u unknown word feature definition for models 0..4

Table 4: SVMTlearn config-file optional arguments.

20

COLUMN n-grams C(colid; n1, ...ni...nm)
WORD n-grams w(n1, ...ni...nm) (equivalent to C(0; n1, ...ni...nm))
TAG n-grams p(n1, ...ni...nm) (equivalent to C(1; n1, ...ni...nm))
AMBIGUITY CLASSES k(n)
MAYBE’s m(n)

where ni is the relative position with respect to
the element to disambiguate

CHARACTER A(i) ca(i)
where i is the relative position of the character
with respect to the beginning of the word

CHARACTER Z(i) cz(i)
where i is the relative position of the character
with respect to the end of the word

PREFIXES a(i) = s1s2...si

SUFFIXES z(i) = sn-i...sn-1sn

sa does the word start with lower case?
SA does the word start with upper case?
CA does the word contain any capital letter?
CAA does the word contain several capital letters?
aa are all letters in the word in lower case?
AA are all letters in the word in upper case?
SN does the word start with number?
CP does the word contain a period?
CN does the word contain a number?
CC does the word contain a comma?
MW does the word contain a hyphen?
L word length
sentence info punctuation (’.’, ’?’, ’ !’)

Table 5: SVMTool feature language.

21

do M0 LR

Unspecified parameters take default values. See below an enriched
version of the previous config-file:

#SVMTool configuration file for English on the whole WSJ corpus

#prefix of the model files which will be created

NAME = WSJTP

#location of the training set

TRAINSET = /home/me/SVMT/corpora/WSJTP/WSJTP.TRAIN

#location of the Joachims svmlight software

SVMDIR = /home/me/SVMT/soft/

#dictionary repairing list

R = /home/me/SVMT/corpora/WSJT/WSJ.200

#window definition (size, core_position)

W = 5 2

#feature filtering (count_cut_off, max_mapping_size)

F = 5 200000

#% of unknown words expected (3 by default)

X = 10

#remove intermediate files

REMOVE_FILES = 1

#list of classes (automatically determined by default)

#list of parts-of-speech presenting ambiguity

AP = ’’ CC CD DT EX FW IN JJ JJR JJS LS MD NN NNS NNP NNPS PDT

POS PRP PRP$ RB RBR RBS RP SYM UH VB VBD VBG VBN VBP VBZ

WDT WP WRB

#list of open-classes

UP = FW JJ JJR JJS NN NNS NNP NNPS RB RBR RBS VB VBD VBG VBN

VBP VBZ

#action items

do M0 LR

#feature definition for model 0

#ambiguous-right [default]

22

A0k = w(-2) w(-1) w(0) w(1) w(2) w(-2,-1) w(-1,0) w(0,1)

w(-1,1) w(1,2) w(-2,-1,0) w(-2,-1,1) w(-1,0,1)

w(-1,1,2) w(0,1,2) p(-2) p(-1) p(-2,-1) p(-1,1) p(1,2)

p(-2,-1,1) p(-1,1,2) a(0) a(1) a(2) m(0) m(1) m(2)

A0u = w(-2) w(-1) w(0) w(1) w(2) w(-2,-1) w(-1,0) w(0,1)

w(-1,1) w(1,2) w(-2,-1,0) w(-2,-1,1) w(-1,0,1)

w(-1,1,2) w(0,1,2) p(-2) p(-1) p(-2,-1) p(-1,1) p(1,2)

p(-2,-1,1) p(-1,1,2) a(0) a(1) a(2) m(0) m(1) m(2)

a(2) a(3) a(4) z(2) z(3) z(4) ca(1) cz(1)

L SA AA SN CA CAA CP CC CN MW

In this case model NAME is ‘WSJTP’, so model files will begin
with this prefix. Only the training set is specified. A list of dictionary
repairings is provided. A window of 5 elements, being the core in the
third position, is defined for feature extraction. The expected pro-
portion of unknown words is 10%. Intermediate files will be removed.
The list of parts-of-speech presenting ambiguity is supplied. Also, a
list of open-classes is provided.

This config-file is designed to learn Model 0 on the Wall Street
Journal English Corpus. That would allow for the use of tagging
strategies 0 and 5, only left-to-right though. See how, instead of using
default feature sets, two feature sets are defined for Model 0 (for the
two distinct problems of known word and unknown word tag guessing).

4.1.4 C Parameter Tuning

C parameter tuning is optional. Either you specify no C parameter
(C = 0 by default), or you can specify a fixed value (e.g., CK:0.1
CU:0.01), or you can perform an automatic tuning by greedy explo-
ration. If you decide to do so then you must provide a validation set
and specify the interval to be explored and how to do it (i.e. num-
ber of iterations and number of segments per iteration). Moreover,
the first iteration can take place in a logarithmic fashion or not. For
instance, CK:0.01:10:3:10:log would try these values for C: 0.01, 0.1,
1, 10 at the first iteration. For the next iteration, the algorithm ex-
plores on both sides of the point where the maximal accuracy was
obtained, half to the next and previous points. For instance, suppose
the maximal accuracy was obtained for C = 1, then it would explore
the range form 0.1 / 2 = 0.05 to 0.1 / 2 = 0.5. The segmentation ratio
would be 0.045 so the algorithm would go for values 0.05, 0.095, 0.14,
0.185, 0.23, 0.275, 0.32, 0.365, 0.41, 0.455, and 0.5. And so on for the
following iteration. See further detail in Subsection 6.3.

23

4.1.5 Test

After training a model it can be evaluated against a test set. To indi-
cate so the T option must be activated in the corresponding do-action,
e.g., “do M0 LR CK:0.01:10:3:10:log CU:0.07 T”. By default it ex-
pects a test set definition in the config file. But training/test can also
be performed through a cross-validation. The number of folders must
be provided, e.g., “do M0 LR CK:0.01:10:3:10:log CU:0.07 T:10”. 10
is a good number.

Furthermore, if training/test goes in cross-validation then the C
Parameter tuning goes too, even if a validation set has been provided.

4.1.6 Models

Five different kinds of models have been implemented by now. Mod-
els 0, 1, and 2 differ only in the features they consider. Model 3 and
Model 4 are just like Model 0 with respect to feature extraction but
examples are selected in a different manner. Model 3 is for unsu-
pervised learning so, given an unlabeled corpus and a dictionary, at
learning time it can only count on knowing the ambiguity class, and
the PoS information only for unambiguous words. Model 4 achieves
robustness by simulating unknown words in the learning context at
training time.

Model 0 This is the default model. The unseen context remains
ambiguous. It was thought having in mind the one-pass on-line
tagging scheme, i.e. the tagger goes either left-to-right or right-
to-left making decisions. So, past decisions feed future ones in
the form of PoS features. At tagging time only the parts-of-
speech of already disambiguated tokens are considered. For the
unseen context, ambiguity classes are considered instead. See
features in Table 6.

Model 1 This model considers the unseen context already disam-
biguated in a previous step. So it is thought for working at a
second pass, revisiting and correcting already tagged text. See
features in Table 7.

Model 2 This model does not consider pos features at all for the
unseen context. It is designed to work at a first pass, requiring
Model 1 to review the tagging results at a second pass. See
features in Table 8.

Model 3 The approach is similar to that of [Mih03]. The training
is based on the role of unambiguous words. Linear classifiers
are trained with examples of unambiguous words extracted from
an unannotated corpus. So, fewer PoS information is available.

24

ambiguity classes a0, a1, a2

may be’s m0, m1, m2

PoS features p−2, p−1

PoS bigrams (p−2, p−1), (p−1, a+1), (a+1, a+2)
PoS trigrams (p−2, p−1, a+0), (p−2, p−1, a+1),

(p−1, a0, a+1), (p−1, a+1, a+2)
single characters ca(1), cz(1)
prefixes a(2), a(3), a(4)
suffixes z(2), z(3), z(4)
lexicalized features SA, CAA, AA, SN, CP, CN, CC, MW, L
sentence info punctuation (’.’, ’?’, ’ !’)

Table 6: Model 0. Example of suitable PoS features.

ambiguity classes a0, a1, a2

may be’s m0, m1, m2

PoS features p−2, p−1, p+1, p+2

PoS bigrams (p−2, p−1), (p−1, p+1), (p+1, p+2)
PoS trigrams (p−2, p−1, a0), (p−2, p−1, p+1),

(p−1, a0, p+1), (p−1, p+1, p+2)
single characters ca(1), cz(1)
prefixes a(2), a(3), a(4)
suffixes z(2), z(3), z(4)
lexicalized features SA, CAA, AA, SN, CP, CN, CC, MW, L
sentence info punctuation (’.’, ’?’, ’ !’)

Table 7: Model 1. Example of suitable PoS features.

ambiguity classes a0

may be’s m0

PoS features p−2, p−1

PoS bigrams (p−2, p−1)
PoS trigrams (p−2, p−1, a0)
single characters ca(1), cz(1)
prefixes a(2), a(3), a(4)
suffixes z(2), z(3), z(4)
lexicalized features SA, CAA, AA, SN, CP, CN, CC, MW, L
sentence info punctuation (’.’, ’?’, ’ !’)

Table 8: Model 2. Example of suitable PoS features.

25

The only additional information required is a morpho-syntactic
dictionary.

Model 4 The errors caused by unknown words at tagging time pun-
ish severly the system. So as to alleviate this problem, during
the learning some words are artificially marked as unknown in
order to learn a more realistic model. The process is very simple.
The corpus is divided in a number of folders. Before starting to
extract samples from each of the folders, a dictionary is gener-
ated out from the rest of folders. So, the words appearing in a
folder but not in the rest are unknown words to the learner.

4.2 SVMTagger

Given a text corpus (one token per line) and the path to a previ-
ously learned SVM model (including the automatically generated dic-
tionary), it performs the PoS tagging of a sequence of words. The
tagging goes on-line based on a sliding window which gives a view
of the feature context to be considered at every decision (see Figure
2). Calculated part–of–speech tags feed directly forward next tagging
decisions as context features.

The SVMtagger component works on standard input/output. It
processes a token per line corpus in a sentence by sentence fashion.
The token is expected to be the first column of the line. The predicted
tag will take the second column in the output. The rest of the line
remains unchanged. Lines beginning with ’## ’ are ignored by the
tagger. See an example of input to the svmtagger:

this is just an example

We

could

be

heroes

you can place a comment anywhere

,

just ## hey! only the first field is processed

for

one

day

.

This could be the expected output:

this is just an example

We PRP

26

Figure 2: svmtagger. Feature extraction

27

could MD

be VB

heroes NNS

you can place a comment anywhere

, ,

just RB ## hey! only the first field is processed

for IN

one CD

day NN

. .

4.2.1 Options

svmtagger is very flexible, and adapts very well to the needs of the
user. Thus you may find the several options currently available:

• Tagging scheme: Two different tagging schemes may be used.

– Greedy: Each tagging decision is made based on a reduced
context. Later on, decisions are not further reconsidered,
except in the case of tagging at two steps or tagging in two
directions.

– Sentence-level: By means of dynamic programming tech-
niques (Viterbi algorithm), the global sentence sum of SVM
tagging scores is the function to maximize. See equation 6.
Given a sentence S = w1..wn as a word sequence and the
set T (S) = {ti : 1 ≤ i ≤ |S|) ∧ ti ∈ ambiguity class(wi)} of
all possible sequences of PoS tags associated to S.

t(S) = argmaxs∈T (S)

|s|∑

i=1

scores(i) (6)

A softmax function is used by default so as to transform this
sum of scores into a product of probabilities.
Because sentence-level tagging is expensive, two pruning
methods are provided. First, the maximum number of beams
may be defined. Alternatively, a threshold may be speci-
fied so that solutions scoring under a certain value (with
respect to the best solution at that point) are discarded.
Both pruning techiques have proved effective and efficient
in our experiments.

• Tagging direction: The tagging direction can be either “left-to-
right”, “right-to-left”, or a combination of both. The tagging
direction varies results yielding a significant improvement when

28

both are combined. For every token, every direction assigns a
tag with a certain score. The highest-scoring tag is selected.
This makes the tagger very robust. In the case of sentence-
level tagging there’s an additional way to combine left-to-right
and right-to-left. “GLRL” direction makes a global decision, i.e.
considering the sentence as a whole. For every sentence, every
direction assigns a sequence of tags with an associated score that
corresponds to the sum of scores (or the product of probabilities
when using a softmax function, the default option). The highest-
scoring sequence of tags is selected.

• One pass / Two passes: Another way of achieving robustness
is by tagging in two passes. At the first pass only PoS features
related to already disambiguated words are considered. At a
second pass disambiguated PoS features are available for every
word in the feature context, so when revisiting a word tagging
errors may be alleviated.

• SVM Model Compression: Just as for the learning, weight vector
components lower than a certain threshold, can be ignored.

• All scores: Because sometimes not only the tag is relevant, but
also its score and scores of all competing tags, as a measure of
confidence, this information is available.

• Backup lexicon: Again, a morphological lexicon containing new
words that were not available in the training corpus may be
provided.

• Lemmae lexicon: Given a lemmae lexicon containing <word form,

tag, lemma> entries, output may be lemmatized. See an exam-
ple of such a lexicon:

...

playing JJ playing

playing NN playing

playing VBG play

...

• <EOS> tag: The ‘<s>’ tag may be employed for sentence separa-
tion. Otherwise, sentence punctuation is used instead, i.e. [.!?]
symbols are taken as unambiguous sentence separators.

• Guessing module: If we have noisy input text, we can assume
that many unknown words come from user mistakes or mis-
spellings. In those cases, we should be able to guess the set
of possible POS tags for those unknown words, by hypothesizing

29

the correct words in the current dictionary that are more sim-
ilar to each of the erroneous input words and transferring cor-
rect words’ information into the unknown word entry (by simply
merging all the possible POS tags). To do that, the SVMTagger
calls a script which implements a Levenstein distance algorithm
to enrich the dictionary of the model to be used for tagging.
This script (dist edit dicc.py) can be used independently from
the SVMTagger. Apart from speeding up execution, with the
separate execution of the guessing module, the user can create
multiple variants of the word lists to be included in the model
dictionary file (e.g., by varying parameter values) and play with
them to estimate the best parameterization for the robust tagger.
The following is an example command to execute the guessing
module.

python dist_edit_dicc.py input_file DICT_file [-d 3] > output_file

Following the previous practice, the user can generate several
alternative dictionaries for the same model depending on which
input he/she used. The user can also indicate a threshold on
the maximum distance allowed among words using the -d op-
tion. Otherwise, the POS attached to the unknown words will
be those of the best candidates, that is, the words in the dictio-
nary with the lowest distance to the input words.

In order to call the script inside the SVMTagger, the user should
indicate the options to run the script as follows:

SVMTagger.pl -V 2 -d "input_file dictfile -d 1" WSJTP

Furthermore, if the user wants to keep the dictionary created by
the script, then he/she can use the saving option as follows:

SVMTagger.pl -V 2 -d "input_file dictfile -ds 1" WSJTP

In that way, the program will keep the new extended dictionary
in a file called dictfile File.

Usage : SVMTagger [options] <model>

options:

- T <strategy>

30

0: one-pass (default - requires model 0)

1: two-passes [revisiting results and relabeling

- requires model 2 and model 1]

2: one-pass [robust against unknown words

- requires model 0 and model 2]

3: one-pass [unsupervised learning models

- requires model 3]

4: one-pass [very robust against unknown words

- requires model 4]

5: one-pass [sentence-level likelihood

- requires model 0]

6: one-pass [robust sentence-level likelihood

- requires model 4]

- S <direction>

LR: left-to-right (default)

RL: right-to-left

LRL: both left-to-right and right-to-left

GLRL: both left-to-right and right-to-left

(global assignment, only applicable under a

sentence level tagging strategy)

- K <n> weight filtering threshold for known words (default is 0)

- U <n> weight filtering threshold for unknown words (default is 0)

- Z <n> number of beams in beam search, only applicable under

sentence-level strategies (default is disabled)

- R <n> dynamic beam search ratio, only applicable under

sentence-level strategies (default is disabled)

- F <n> softmax function to transform SVM scores into

probabilities (default is 1)

0: do_nothing

1: ln(e^score(i) / [sum:1<=j<=N:[e^score(j)]])

- A predicitons for all possible parts-of-speech are returned

- B <backup_lexicon>

- L <lemmae_lexicon>

- EOS enable usage of end_of_sentence ’<s>’ string

(disabled by default, [!.?] used instead)

- V <verbose> -> 0: none verbose

1: low verbose

2: medium verbose

3: high verbose

4: very high verbose

- D <distance script options> -> options for the distance module (without saving the new

- DS <distance script options> -> options for the distance module (saving the new dictionary)

model: model location (path/name)

(name as declared in the config-file NAME)

Example : SVMTagger -V 2 -S LRL -T 0 WSJTP < wsj.test > wsj.test.out

31

4.2.2 Strategies

Seven different tagging strategies have been implemented so far:

Strategy 0 It is the default one. It makes use of Model 0 in a greedy
on-line fashion, one-pass.

Strategy 1 As a first attempt to achieve robustness in front of error
propagation, it works in two passes, in an on-line greedy way. It
uses Model 2 in the first pass, and Model 1 in the second. In
other words, in the first pass the unseen morphosyntactic context
remains ambiguous while in the second pass the tag predicted in
the first pass is available also for unseen tokens and used as a
feature.

Strategy 2 This strategy tries to achieve robustness by using two
models at tagging time, namely Model 0 and Model 2. When
all the words in the unseen context are known it uses Model 0.
Otherwise it makes use of Model 2.

Strategy 3 It uses Model 3, again in a greedy and on-line manner.
This unsupervised learning strategy is still under experimenta-
tion. It’s not yet ready for release.

Strategy 4 It simply uses Model 4 as is, in an on-line greedy fashion.

Strategy 5 Still working on a more robust scheme, this strategy per-
forms a sentence-level tagging by means of dynamic program-
ming techniques (Viterbi algorithm). It uses Model 0.

Strategy 6 Same as strategy 5, this strategy performs a sentence-
level tagging, this time applying Model 4.

4.3 SVMTeval

Given a svmtool predicted tagging output and the corresponding
gold-standard, svmteval evaluates the performance in terms of ac-
curacy. It is a very useful component for the tuning of the system
parameters, such as the C parameter, the feature patterns and filter-
ing, the model compression et cetera.

Moreover, based on a given morphological dictionary (e.g., the au-
tomatically generated at training time) results may be presented also
for different sets of words (known words vs unknown words, ambiguous
words vs unambiguous words). A different view of these same results
can be seen from the class of ambiguity perspective, too, i.e., words
sharing the same kind of ambiguity may be considered together. Also
words sharing the same degree of disambiguation complexity, deter-
mined by the size of their ambiguity classes, can be grouped.

32

Usage : SVMTeval [mode] <model> <gold> <pred>

- mode: 0 - complete report (everything)

1 - overall accuracy only [default]

2 - accuracy of known vs unknown words

3 - accuracy per level of ambiguity

4 - accuracy per kind of ambiguity

5 - accuracy per class

- model: model name

- gold: correct tagging file

- pred: predicted tagging file

Example : SVMTeval WSJTP WSJTP.IN WSJTP.OUT

4.3.1 Reports

brief report By default, a brief report mainly returning the overall
accuracy is ellaborated. It also provides information about the
number of tokens processed, and how much were known/unknown
and ambiguous/unambiguous according to the model dictionary.
Results are always compared to the most-frequent-tag (MFT)
baseline.

* ========================= SVMTeval report ==================

* model = [W52/WSJTP.TRAIN.W5]

* testset = [/home/me/WSJTP/WSJTP.TEST]

* ==

* ================= TAGGING SUMMARY ==========================

#WORDS = 129654

#KNOWN = 126005 / 129654 --> (97.1856 %)

#UNKNOWN = 3649 / 129654 --> (2.8144 %)

#AMBIGUOUS = 45779 / 129654 --> (35.3086 %)

MFT baseline = 118376 / 129654 --> (91.3015 %)

* ================= OVERALL ACCURACY =========================

HITS TRIALS ACCURACY MFT-baseline

* --

125966 / 129654 = 97.1555 % 91.3015 %

* ==

known vs unknown tokens Accuracy for four different sets of words
is returned. The first set is that of all known tokens, tokens
which were seen during the training. The second and third sets
contain respectively all ambiguous and all unambiguous tokens
among these known tokens. Finally, there is the set of unknown
tokens, which were not seen during the training.

33

* ========================= SVMTeval report ==================

* model = [W52/WSJTP.TRAIN.W5]

* testset = [/home/me/WSJTP/WSJTP.TEST]

* ==

* ================= TAGGING SUMMARY ==========================

#WORDS = 129654

#KNOWN = 126005 / 129654 --> (97.1856 %)

#UNKNOWN = 3649 / 129654 --> (2.8144 %)

#AMBIGUOUS = 45779 / 129654 --> (35.3086 %)

MFT baseline = 118376 / 129654 --> (91.3015 %)

* ================= KNOWN vs UNKNOWN WORDS ===================

HITS TRIALS ACCURACY

* --

* ======= known ==

125966 / 129654 = 97.393 %

-------- known unambiguous words -----------------------------

125966 / 129654 = 99.3817 %

-------- known ambiguous words -------------------------------

125966 / 129654 = 93.9077 %

* ======= unknown ==

125966 / 129654 = 88.9559 %

* ==

* ================= OVERALL ACCURACY =========================

HITS TRIALS ACCURACY MFT-baseline

* --

125966 / 129654 = 97.1555 % 91.3015 %

* ==

level of ambiguity This view of the results groups together all words
having the same degree of PoS–ambiguity.

* ========================= SVMTeval report ==================

* model = [W52/WSJTP.TRAIN.W5]

* testset = [/home/me/WSJTP/WSJTP.TEST]

* ==

* ================= TAGGING SUMMARY ==========================

#WORDS = 129654

#KNOWN = 126005 / 129654 --> (97.1856 %)

#UNKNOWN = 3649 / 129654 --> (2.8144 %)

#AMBIGUOUS = 45779 / 129654 --> (35.3086 %)

MFT baseline = 118376 / 129654 --> (91.3015 %)

* ================= ACCURACY PER LEVEL OF AMBIGUITY ==========

#CLASSES = 7

* ==

LEVEL HITS TRIALS ACCURACY MFT-ACCURACY

* --

1 79738 / 80234 = 99.3818 % 99.3831 %

2 24332 / 25625 = 94.9541 % 86.7746 %

3 12892 / 13974 = 92.257 % 82.4388 %

34

4 5142 / 5398 = 95.2575 % 82.4935 %

5 414 / 544 = 76.1029 % 56.4338 %

6 202 / 230 = 87.8261 % 52.6087 %

17 3246 / 3649 = 88.9559 % 0 %

* ================= OVERALL ACCURACY =========================

HITS TRIALS ACCURACY MFT-baseline

* --

125966 / 129654 = 97.1555 % 91.3015 %

* ==

kind of ambiguity This view is much finer. Every class of ambigu-
ity is studied separately.

* ========================= SVMTeval report ==================

* model = [W52/WSJTP.TRAIN.W5]

* testset = [/home/me/WSJTP/WSJTP.TEST]

* ==

* ================= TAGGING SUMMARY ==========================

#WORDS = 129654

#KNOWN = 126005 / 129654 --> (97.1856 %)

#UNKNOWN = 3649 / 129654 --> (2.8144 %)

#AMBIGUOUS = 45779 / 129654 --> (35.3086 %)

MFT baseline = 118376 / 129654 --> (91.3015 %)

* ================= ACCURACY PER CLASS OF AMBIGUITY ==========

#CLASSES = 256

* ==

CLASS

HITS TRIALS ACCURACY MFT-baseline

* --

[...]

DT_IN_RB_WDT

1000 / 1061 = 94.2507 % 59.4722 %

FW_JJ_JJR_JJS_NN_NNS_NNP_NNPS_RB_RBR_RBS_VB_VBD_VBG_VBN_VBP_VBZ

3246 / 3649 = 88.9559 % 0 %

JJ_NNP

1157 / 1204 = 96.0963 % 88.6213 %

JJ_NN_VB_VBP

562 / 592 = 94.9324 % 74.1554 %

JJ_VBD_VBN

1256 / 1439 = 87.2828 % 66.3655 %

NNS_VBZ

2084 / 2124 = 98.1168 % 90.0659 %

NN_VB

2133 / 2163 = 98.613 % 94.2672 %

NN_VBG

835 / 925 = 90.2703 % 78.4865 %

NN_VB_VBP

3691 / 3772 = 97.8526 % 81.9194 %

POS_VBZ

35

1331 / 1365 = 97.5092 % 86.8864 %

VBD_VBN

3187 / 3356 = 94.9642 % 80.8701 %

VB_VBP

1876 / 1918 = 97.8102 % 75.3389 %

[...]

* ================= OVERALL ACCURACY =========================

HITS TRIALS ACCURACY MFT-baseline

* --

125966 / 129654 = 97.1555 % 91.3015 %

* ==

class Every class is studied individually.

* ========================= SVMTeval report ==================

* model = [W52/WSJTP.TRAIN.W5]

* testset = [/home/me/WSJTP/WSJTP.TEST]

* ==

* ================= TAGGING SUMMARY ==========================

#WORDS = 129654

#KNOWN = 126005 / 129654 --> (97.1856 %)

#UNKNOWN = 3649 / 129654 --> (2.8144 %)

#AMBIGUOUS = 45779 / 129654 --> (35.3086 %)

MFT baseline = 118376 / 129654 --> (91.3015 %)

* ================= ACCURACY PER LEVEL OF AMBIGUITY ==========

POS HITS TRIALS ACCURACY MFT-ACCURACY

* --

15 / 15 = 100 % 100 %

$ 943 / 943 = 100 % 100 %

’’ 1044 / 1045 = 99.9043 % 99.0431 %

(186 / 186 = 100 % 100 %

) 187 / 187 = 100 % 100 %

, 6876 / 6876 = 100 % 100 %

. 5381 / 5381 = 100 % 100 %

: 752 / 752 = 100 % 100 %

CC 3237 / 3250 = 99.6 % 99.5692 %

CD 4789 / 4823 = 99.295 % 90.6075 %

DT 11117 / 11183 = 99.4098 % 98.453 %

EX 126 / 126 = 100 % 100 %

FW 7 / 30 = 23.3333 % 20 %

IN 13322 / 13492 = 98.74 % 98.3398 %

JJ 7617 / 8215 = 92.7206 % 85.2708 %

JJR 388 / 423 = 91.7258 % 95.9811 %

JJS 262 / 267 = 98.1273 % 95.5056 %

LS 10 / 15 = 66.6667 % 0 %

MD 1264 / 1267 = 99.7632 % 99.8421 %

NN 17257 / 17834 = 96.7646 % 91.9143 %

NNP 12717 / 13177 = 96.5091 % 85.0118 %

NNPS 98 / 170 = 57.6471 % 49.4118 %

36

NNS 7948 / 8061 = 98.5982 % 93.971 %

PDT 27 / 44 = 61.3636 % 0 %

POS 1266 / 1276 = 99.2163 % 100 %

PRP 2194 / 2205 = 99.5011 % 99.093 %

PRP$ 1067 / 1068 = 99.9064 % 100 %

RB 4017 / 4405 = 91.1918 % 83.0874 %

RBR 189 / 271 = 69.7417 % 21.7712 %

RBS 61 / 69 = 88.4058 % 2.8986 %

RP 312 / 397 = 78.5894 % 65.995 %

SYM 10 / 11 = 90.9091 % 72.7273 %

TO 2913 / 2913 = 100 % 100 %

UH 7 / 17 = 41.1765 % 58.8235 %

VB 3394 / 3573 = 94.9902 % 69.6054 %

VBD 4361 / 4561 = 95.615 % 84.6525 %

VBG 1816 / 1933 = 93.9472 % 85.1526 %

VBN 2476 / 2707 = 91.4666 % 72.0355 %

VBP 1476 / 1565 = 94.3131 % 71.9489 %

VBZ 2571 / 2639 = 97.4233 % 86.5479 %

WDT 571 / 584 = 97.774 % 52.911 %

WP 282 / 283 = 99.6466 % 99.6466 %

WP$ 37 / 37 = 100 % 100 %

WRB 302 / 304 = 99.3421 % 99.3421 %

‘‘ 1074 / 1074 = 100 % 100 %

* ================= OVERALL ACCURACY =========================

HITS TRIALS ACCURACY MFT-baseline

* --

125966 / 129654 = 97.1555 % 91.3015 %

* ==

4.4 SVMTool API

Embedded usage of the svmtool is also possible. It is based on the
svmtool API which offers all the capabilities of the svmtool in an
ellegant manner. The user must follow four simple steps:

1. Loading of svmtool models according to the settings selected.

2. Preparation of input tokens for svmtool processing.

3. PoS–tagging of input tokens.

4. Collection of tagging results. Not only the winner PoS is avail-
able but the losers as well, and the SVM score for all of them.
This information could be really helpful in the case of hard de-
cisions, when two or more PoS were nearly tied.

See an example of use in Table 9.

37

5 Evaluation

In this section we consider the results of applying svmtool to PoS
Tagging for different languages and different corpora. In Subsection4.3
we discussed how the user can evaluate the performance of a model
they have created using the svmteval utility. svmteval provides token
accuracy from different viewpoints.

5.1 Accuracy

The svmtool has been already successfully applied to English and
Spanish PoS Tagging, exhibiting state–of–the–art performance (97.16%
and 96.89%, respectively). In both cases results clearly outperform
the HMM–based tnt part–of–speech tagger [Bra00], compared ex-
actly under the same conditions. In our opinion, TnT is an example
of a really practical tagger for NLP applications.

5.2 Efficiency

At tagging time, a speed of 1,500 words per second is achieved by
the Perl prototype on a Pentium–IV, 2GHz, 1 GB RAM. C++ tagger
achieves a speed of 10,000 words per second under the same condi-
tions. Regarding learning time, it strongly depends on the training
set size, tagset, feature set, learning options, et cetera. The upper
bound for the experiments reported below are about 24 CPU hours
machine (Wall Street Journal corpus, 912K words for training, full set
of attributes and fine adjusting of the C parameter). See [GM03] for
further details. Below you may find a summary of the results obtained
by the svmtool.

5.3 Results for English

5.3.1 WSJ

Experiments for English used the Wall Street Journal corpus (1,173
Kwords). Sections 0-18 were used for training (912 Kwords), 19-21 for
validation (131 Kwords), and 22-24 for test (129 Kwords), respectively.
2.81% of the words in the test set are unknown to the training set.
Best other results so far reported on this same test set are [Col02]
(97.11%) and [TKM03] (97.24%). See results in Table 10.

38

my @tokens = (’The SVMTool was presented to NLP researchers
at LREC-2004 in Lisbon.’);

my $svmt = SVMTAGGER::SVMT load(...);
my $input = SVMTAGGER::SVMT prepare input(@tokens);
my $output = SVMTAGGER::SVMT tag($input, $svmt...);
for my $elem (@{$output}) {

print $elem->get word.” “.$elem->get pos;
}

Table 9: svmtool API. Example of use.

known amb. unk. all.

tnt 96.76% 92.16% 85.86% 96.46%
svmtool 97.39% 93.91% 89.01% 97.16%

Table 10: Accuracy results of the svmtool (on a one-pass, left-to-right and right-

to-left combined, greedy tagging scheme) compared to tnt for English on the WSJ

corpus test set. ‘known’ and ‘unk.’ refer to the subsets of known and unknown

words, respectively, ’amb’ to the set of ambiguous known words and ‘all’ to the

overall accuracy.

39

5.4 Results for Spanish

5.4.1 LEXESP

Experiments used the LEXESP corpus (106 Kwords). It was randomly
divided into training set (86 Kwords) and test set (20 Kwords). 12.21%
of the words in the test set are unknown to the training set. See results
in Table 11.

known amb. unk. all.

tnt 97.73% 93.70% 87.66% 96.50%
svmtool 98.08% 95.04% 88.28% 96.89%

Table 11: Accuracy results of the svmtool (on a one-pass, left-to-right and right-

to-left combined, greedy tagging scheme) compared to tnt for Spanish on the

LEXESP corpus, ‘known’ and ‘unk.’ refer to the subsets of known and unknown

words, respectively, ’amb’ to the set of ambiguous known words and ‘all’ to the

overall accuracy.

Using additional morpho-syntactic information provided by a mor-
phological analyzer [XCPP04] in the form of a backup lexicon both
tools improve very considerably their performance. Sure it is due to
the fact that now there are no unknown words. But notice these words
have not been seen among the training data. See results in Table 12.

amb. all.

tnt 94.05% 98.41%
svmtool 95.43% 98.86%

Table 12: Accuracy results of the svmtool (on a one-pass right-to-left greedy

tagging scheme) compared to tnt for Spanish on the LEXESP corpus with the

aid of a backup morphological lexicon, ’amb’ refers to the set of ambiguous known

words and and ‘all’ to the overall accuracy.

5.4.2 3LB

Experiments used the 3LB9 corpus (75 Kwords). It was randomly
divided into training set (59 Kwords) and test set (16 Kwords). 13.65%

9The 3LB project is funded by the Spanish Ministry of Science and Technology (FIT-
15050-2002-244), visit the project website at http://www.dlsi.ua.es/projectes/3lb/

40

of the words in the test set are unknown to the training set. See results
in Table 13.

known amb. unk. all.

tnt 97.73% 93.70% 87.66% 96.50%
svmtool 98.08% 95.04% 88.28% 96.89%

Table 13: Accuracy results of the svmtool (on a one-pass, left-to-right and right-

to-left combined, greedy tagging scheme) compared to tnt for Spanish on the

LEXESP corpus, ‘known’ and ‘unk.’ refer to the subsets of known and unknown

words, respectively, ’amb’ to the set of ambiguous known words and ‘all’ to the

overall accuracy.

5.5 Results for Catalan

5.5.1 3LB

Experiments used the 3LB corpus (104 Kwords). It was randomly
divided into training set (85 Kwords) and test set (19 Kwords). 8.1989
% of the words in the test set are unknown to the training set. See
results in Table 14.

known amb. unk. all.

tnt 98.10% 96.12% 90.10% 97.44%
svmtool 98.33% 96.23% 91.49% 97.77%

Table 14: Accuracy results of the svmtool (on a one-pass, left-to-right and right-

to-left combined, greedy tagging scheme) compared to tnt for Catalan on the

3LB corpus, ‘known’ and ‘unk.’ refer to the subsets of known and unknown words,

respectively, ’amb’ to the set of ambiguous known words and ‘all’ to the overall

accuracy.

41

6 Tutorial

This tutorial is intended to guide you through the process of con-
figurating and tuning the svmtool to suit the requirements of your
system. In Subsection 6.1 a simple case of use involving no learn-
ing is presented. Moreover, because languages may differ in such a
number of aspects regarding morphology and syntax, it may be very
useful and sometimes crucial to devote some initial time to configure
the svmtool. Subsection 6.2 discusses the most relevant aspects to
take into account when training the svmtoolḞinally, Subsection 6.3
provides some useful advices regarding the adjustment of the svmtool
parameters.

6.1 Running the SVMTool

Suppose you have an NLP system that requires some PoS tagging at
a first stage as a pre-processing step. Let’s say your system works for
English. Now suppose, too, you heard late news about the svmtool
telling there’s a new C++ version that’s much faster than the Perl
prototype. So you decided you wanted to give it a try and see if you
can make your system better with a more accurate tagger. In that case
all you have to do is to download the SVMTool++ and the models
for English (Wall Street Journal) from the SVMTool website10. Fast,
you’re done. You can start using the svmtagger component. See
Table 15.

6.2 Training the SVMTool

Now either suppose that you’re dealing with a problem other than PoS
tagging for English, Spanish or Catalan 11. Therefore you’re going to
work first with the svmtlearn component.

6.2.1 Learning Time

At this point, several decisions must be made:

data sets In principle, only the training set is required. However,
if you have enough data it is a good practice to split it into
three working sets (i.e. training, validation and test). That will
allow you to train, tune and evaluate your system before you
start using it. If you don’t have much data there’s no need to

10http://www.lsi.upc.es/~nlp/SVMTool/
11Models for English (based on the Wall Street Journal Corpus), Spanish and Catalan

(based on the 3LB Corpus) are available at the svmtool website.

42

echo ’I am very happy with the SVMTool .’ | tr -s ’ ’ ’\012’ |
SVMTagger -V 1 -T 0 -S LR /SVMT/EXP/ENG/WSJTP

SVMTool v1.3. Copyright (C) 2004-2006 Jesus Gimenez and Lluis Marquez.
MODEL = /home/me/SVMT/EXP/ENG/S/912k/WSJTP.912k
T = 0 :: S = LR :: K = 0 :: U = 0
TAGGING < DIRECTION = left-to-right >
I PRP
am VBP
very RB
happy JJ
with IN
the DT
SVMTool NNP
. .
.1 sentences [DONE]
BENCHMARK TIME: 0 wallclock secs (0.02 usr + 0.00 sys = 0.02 CPU)
START-UP: 6.79 secs
TAGGING: 0.02 secs
F.EXTRACTION: 0.01 secs
SVM: 0 secs
PROCESS: 0.01 secs
OVERALL TIME = START-UP + TAGGING = 6.79 + 0.02 = 6.81 secs

Table 15: Running the svmtagger.

43

worry, you can still train, tune and test your system through
cross-validation.

tagging strategy It is also important to think of which tagging
strategies you’re going to use. This may depend for instance
on efficiency requirements. If the tagging must be as fast as pos-
sible then you should forget about strategies 1, 5, and 6, because
strategy 1 goes in two passes and strategies 5 and 6 perform a
sentence-level tagging. Strategy 3 is only for unsupervised learn-
ing (no hand-annotated data is available). Now, to choose among
strategies 0, 2 and 4 the best solution is try them all. However,
if you have an idea of the proportion of unknown words you’re
going to find at tagging time, strategies 2 and 4 are more robust
than strategy 0 in the case of unknown words. Finally, if you
don’t have any speed requirement nor information about future
data, in our experiments tagging strategies 4 and 6 systemati-
cally obtained best results. In all cases, combining left–to–right
and right–to–left tagging improved results. As a remark, the
choice for the tagging strategy determines which models must
be learned.

feature set First, you must decide how much context you’re going to
take into account, i.e. the sliding window size. The more context
you take the more information the more accurate, the more costly
and slow though. Empirically, we’ve shown that a window size of
5 elements suffices to achieve state–of–the–art results. Second,
you must define the feature set, i.e. which features the system
is going to consider. The feature set may consist of any word
(column 0) and parts–of–speech n-grams (column 1) as well as
ambiguity classes and maybe’s. Furthermore, lexicalized features
may be included (e.g. prefixes, suffixes, capitalization, etc.).
Additional information may be provided in further columns, as
well.

C parameter This parameter belongs to the soft margin version of
the algorithm for training SVMS. It balances the trade-off be-
tween the number of misclassified samples and the margin size.
A good tuning of this parameter highly increases the sequential
tagger performance, so our recommendation is obvious, always
adjust the C parameter. See Subsection 6.3 for details.

6.2.2 Tagging Time

Default tagging is fine, although the tuning of some parameters may
be helpful:

44

tagging direction Because languages are different, also the differ-
ence in performance between left–to–right and right–to–left di-
rections may be significantly different. In our experiments, a
combination of both was always better than any of them in iso-
lation, but, of course, this combination causes the tagger to be
twice slower.

weight filtering Very interestingly, we shown that discarding up to
90% of the weights wasn’t harmful at all. In fact, discarding
about 40-60% of the weight actually results improved, not very
significantly though. Also, because tagging speed depends lin-
early on the sample size (i.e. number of features per sample) the
model compression doesn’t allow for a higher efficiency.

beam search pruning This applies only for strategies 5 and 6. Be-
cause sentence-level tagging intends to maximize the sum of
scores (or a product of proabilities through the use of a softmax
function, default option) opposite to a greedy on-line tagging,
the search space is bigger and so is the computational cost.

backup lexicon Additional morphological information may be pro-
vided. This way you can specify better information for words
that had been seen at training time, and, specially, information
for words that hadn’t been seen before. That causes the system
to be more robust in front of unknown words.

Table 16 shows a valid configuration file, for training Model 0 on
the Wall Street Journal (left-to-right and right-to-left):

Again, efficiency requirements may force you to choose a left-to-
right/right-to-left tagging direction instead of a combination of both.
A similar reasoning may apply to beam search pruning. In any case,
to select among different alternatives our recommendation is that you
apply common sense and try them all before discarding any.

6.3 Tuning the SVMTool

It is assumed that you either have a training-validation-test partition
of your data, or that you’re going to run a cross-validation.

Because you don’t have still a precise idea about which tagging
strategy / direction will work best, the most sensible choice is to train
all models and try all strategies and directions. In general, there are
four important adjustments you should have into account:

Feature Engineering Selecting the appropriate feature set to represent the knowledge
you want to capture is crucial. If you have some knowledge of the
target language and the problem, this may help you to select a

45

TRAINSET = /home/me/WSJ/WSJTP.TRAIN
SVMDIR = /home/me/soft/svmlight/
NAME = WSJTP.912k
R = /home/me/WSJ/WSJ.repair.DICT
W = 5 2
F = 2 100000
X = 3
Dratio = 0.001
REMOVE FILES = 1

do M0 LRL

M0 ambiguous-right [default]

known word feature set definition
A0k = w(-2) w(-1) w(0) w(1) w(2) w(-2,-1) w(-1,0) w(0,1) w(-1,1) w(1,2)
w(-2,-1,0) w(-2,-1,1) w(-1,0,1) w(-1,1,2) w(0,1,2) p(-2) p(-1) p(-2,-1)
p(-1,1) p(1,2) p(-2,-1,1) p(-1,1,2) k(0) k(1) k(2) m(0) m(1) m(2)

unknown word feature set definition
A0u = w(-2) w(-1) w(0) w(1) w(2) w(-2,-1) w(-1,0) w(0,1) w(-1,1) w(1,2)
w(-2,-1,0) w(-2,-1,1) w(-1,0,1) w(-1,1,2) w(0,1,2) p(-2) p(-1) p(-2,-1)
p(-1,1) p(1,2) p(-2,-1,1) p(-1,1,2) k(0) k(1) k(2) m(0) m(1) m(2) a(2)
a(3) a(4) z(2) z(3) z(4) ca(1) cz(1) L SA AA SN CA CAA CP CC CN MW

Table 16: SVMTlearn configuration file.

46

good feature set for every model. If you don’t have any intuition
our recommendation is that you use the default configuration,
i.e. don’t specify any feature set. Let SVMs do the work for
you.

Mapping Filtering Discarding features appearing only once is always a good choice.
Also, keeping the mapping under a convenient size can be very
useful. Empirically we found that mappings under a size of
100,000 features succeeded obtaining the best results.

Dictionary Repairing If you can work on a list of repairings for, let’s say, the top-
100 most frequent words, that would be excellent. However,
in our experiments results with a heuristic ratio around 0.001
were equivalent to results obtained using a manually built list of
repairings.

C Parameter The tuning of this parameter improves dramatically the perfor-
mance of your system.

The C parameter is by large the most important. Properly tuning
it will help us fighting against overfitting by controlling the proportion
of misclassified samples allowed. The tuning process is totally greedy.
That is, several values of the C parameter are tried and the one yield-
ing the highest accuracy is selected. There will be a C value for known
words, and another for unknown words. This may be automatically
controlled by means of the configuration file.

If you have enough data you can split it into training, validation
(development), and test. In this case the training data will be used to
train the models with different values of the C parameter. For every
C value models will be tested against the validation file. In the config
file in Table 17 there are 4 action items (lines beginning with ’do ’:

• The command ’do M0 LRL CK:0.01:1:3:10:log CU:0.01:1:3:10:log’
performs a tuning of the model 0, both directions LR and RL.
The C value for known words (CK) is explored in the range [0.01,
1] in three iterations, exploring 10 values per iteration. The first
iteration is logarithmical (it explores only values 0.01, 0.1 and
1). Similarly for the case of unknown words (CU), although the
exploration range is different [0.001, 0.1].

• The command ’do M1 RL CK:0.01:1:3:10:nolog CU:0.01:1:3:10:log
T’ trains model 1, RL, and differs in two other aspects. First,
now the first iteration for known words is not logarithmical. Sec-
ond, models be tested against the test set after tuning.

• The command ’do M2 LRL CK:0.1 CU:0.08’ does not perform
any tuning in the training of model 2, LRL. It directly tries C
values 0.1 and 0.08 for known and unknown words, respectively.

47

TRAINSET = /home/me/WSJ/WSJTP.TRAIN
VALSET = /home/me/WSJ/WSJTP.VAL
TESTSET = /home/me/WSJ/WSJTP.TEST
SVMDIR = /home/me/soft/svmlight/
NAME = WSJTP.912k
R = /home/me/WSJ/WSJ.repair.DICT
W = 5 2
F = 2 100000
X = 3
Dratio = 0.001
REMOVE FILES = 1

do M0 LRL
do M0 LRL CK:0.01:1:3:10:log CU:0.001:0.1:3:10:log
do M1 RL CK:0.01:1:3:10:nolog CU:0.01:1:3:10:log T
do M2 LRL CK:0.1 CU:0.08
do M4 LR CK:0.1 CU:0.01 T

Table 17: SVMTlearn configuration file.

Similarly the command ’do M4 LR CK:0.1 CU:0.01 T’ trains
model 4, LR. Additionally, it tests models against the test set.

If you do not have enough data, still tuning may be performed in
a cross-validation fashion. See Table 18.

• The command ’do M0 LRL CK:0.01:1:3:10:log CU:0.01:1:3:10:log
T:10’ performs a cross-validation style tuning by splitting the
training file in 10 folders, using each time 9 different folders to
train and the remaining one to test.

As a final remark, the process of tuning a system is very important
but it can be extremely time consuming if you’re seeking for a master-
piece perfection. Our advice, devoting a week or two to the tuning of
the svmtool is surely necessary and rewarding. Spending more than
that time may be possibly exciting but probably wasteful.

Ongoing Work

New strategies to further increase the system effectiveness while guar-
anteeing robustness and efficiency, are being studied. Unsupervised
models are also currently under study.

48

TRAINSET = /home/me/WSJ/WSJTP.TRAIN
SVMDIR = /home/me/soft/svmlight/
NAME = WSJTP.912k
R = /home/me/WSJ/WSJ.repair.DICT
W = 5 2
F = 2 100000
X = 3
Dratio = 0.001
REMOVE FILES = 1

do M0 LRL
do M0 LRL CK:0.01:1:3:10:log CU:0.01:1:3:10:log
do M0 LRL CK:0.01:1:3:10:log CU:0.01:1:3:10:log T:10

Table 18: SVMTlearn configuration file.

Another focus of attention is the development of models and strate-
gies to deal with noisy unstructured text. For the moment, we have
adapted the tagger to the datasets of the FAUST project12, which con-
sist of real Internet translation requests, automatic translation candi-
dates and correction feedback provided by the users.

Feedback

Discussion on features and bugs of this software as well as information
about oncoming updates takes place on the SVMTool group, to which
you can subscribe at http://groups-beta.google.com/group/SVMTool
and post messages at SVMTool@googlegroups.com.

12http://www.faust-fp7.eu

49

References

[ASS99] S. Abney, R. E. Schapire, and Y. Singer. Boosting ap-
plied to tagging and pp–attachment. In Proceedings of
EMNLP/VLC’99, 1999.

[Bra00] T. Brants. TnT - A Statistical Part-of-Speech Tagger. In
Proceedings of the Sixth ANLP, 2000.

[Bri95] E. Brill. Transformation–based Error–driven Learning
and Natural Language Processing: A Case Study in Part–
of–speech Tagging. Computational Linguistics, 21(4),
1995.

[BW98] E. Brill and J. Wu. Classifier Combination for Improved
Lexical Disambiguation. In Proceedings of COLING-
ACL’98, 1998.

[Col02] M. Collins. Discriminative Training Methods for Hidden
Markov Models: Theory and Experiments with Percep-
tron Algorithms. In Proceedings of the 7th EMNLP Con-
ference, 2002.

[CST00] N. Cristianini and J. Shawe-Taylor. An Introduction to
Support Vector Machines. Cambridge University Press,
2000.

[DZBG96] W. Daelemans, J. Zavrel, P. Berck, and S. Gillis. MBT:
A Memory–Based Part–of–speech Tagger Generator. In
Proceedings of the 4th Workshop on Very Large Corpora,
1996.

[GM03] J. Gimnez and L. Mrquez. Fast and Accurate Part-of-
Speech Tagging: The SVM Approach Revisited. In Pro-
ceedings of the Fourth RANLP, 2003.

[GM04a] Jesus Giménez and Lluis Màrquez. Recent Advances in
Natural Language Processing III: Selected Papers from
RANLP 2003, volume 260 of Current Issues in Linguistic
Theory (CILT), chapter Fast and accurate part–of–speech
tagging: The SVM approach revisited, pages 153–162.
John Benjamins, Amsterdam/Philadelphia, 2004.

[GM04b] Jess Gimnez and Llus Mrquez. Svmtool: A general pos
tagger generator based on support vector machines. In
Proceedings of the 4th LREC Conference, 2004.

[HZD98] H. van Halteren, J. Zavrel, and W. Daelemans. Improving
Data Driven Wordclass Tagging by System Combination.
In Proceedings of COLING-ACL’98, 1998.

50

[Joa99] T. Joachims. Making large-Scale SVM Learning Practical.
MIT-Press, 1999.

[LTR00] S. Lee, J. Tsujii, and H. Rim. Part-of-Speech Tagging
Based on Hidden Markov Model Assuming Joint Inde-
pendence. In Proceedings of the 38th Annual Meeting of
the ACL, 2000.

[Mih03] Rada Mihalcea. The Role of Non-Ambiguous Words in
Natural Language Disambiguation. In Proceedings of the
Fourth RANLP, 2003.

[MR97] L. Màrquez and H. Rodŕıguez. Automatically Acquiring
a Language Model for POS Tagging Using Decision Trees.
In Proceedings of the Second RANLP Conference, 1997.

[MRCM99] L. Màrquez, H. Rodŕıguez, J. Carmona, and J. Montolio.
Improving POS Tagging Using Machine-Learning Tech-
niques. In Proceedings of EMNLP/VLC’99, 1999.

[NKM01] T. Nakagawa, T. Kudoh, and Y. Matsumoto. Unknown
word guessing and part-of-speech tagging using support
vector machines. In Proceedings of the Sixth Natural Lan-
guage Processing Pacific Rim Symposium, 2001.

[Rat96] A. Ratnaparkhi. A Maximum Entropy Part–of–speech
Tagger. In Proceedings of the 1st EMNLP Conference,
1996.

[TH99] S. M. Thede and M. P. Harper. A Second-Order Hidden
Markov Model for Part-of-Speech Tagging. In Proceedings
of the 37th Annual Meeting of the ACL, 1999.

[TKM03] K. Toutanova, D. Klein, and C. D. Manning. Feature-rich
part-of-speech tagging with a cyclic dependency network.
In Proceedings of HLT-NAACL’03, 2003.

[TM00] K. Toutanova and C. D. Manning. Enriching the Knowl-
edge Sources Used in a Maximum Entropy Part-of-Speech
Tagger. In Proceedings of EMNLP/VLC’00, 2000.

[WSP+93] R. Weischedel, R. Schwartz, J. Palmucci, M. Meteer,
and L. Ramshaw. Coping with Ambiguity and Unknown
Words through Probabilistic Models. Computational Lin-
guistics, 19(2), 1993.

[XCPP04] X.Carreras, I. Chao, L. Padr, and M. Padr. Freeling: An
open-source suite of language analyzers. In Proceedings of
the 4th LREC Conference, 2004.

51

