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Abstract

Information Extraction (IE) can be defined as the task of automatically extracting
preespecified kind of information from a text document. The extracted informa-
tion is encoded in the required format and then can be used, for example, for text
summarization or as accurate index to retrieve new documents.

The main issue when building IE systems is how to obtain the knowledge
needed to identify relevant information in a document. Today, IE systems are
commonly based on extraction rules or IE patterns to represent the kind of infor-
mation to be extracted. Most approaches to IE pattern acquisition require expert
human intervention in many steps of the acquisition process. This dissertation
presents a novel method for acquiring IE patterns,ESSENCE, that significantly
reduces the need for human intervention. The method is based onELA, a specif-
ically designed learning algorithm for acquiring IE patterns from unannotated
corpora.

The distinctive features ofESSENCEand ELA are that 1) they permit the
automatic acquisition of IE patterns from unrestricted and untagged text repre-
sentative of the domain, due to 2) their ability to identify regularities around
semantically relevant concept-words for the IE task by 3) using non-domain-
specific lexical knowledge tools such as WordNet and 4) restricting the human
intervention to defining the task, and validating and typifying the set of IE pat-
terns obtained.

SinceESSENCEdoes not require a corpus annotated with the type of infor-
mation to be extracted and it does make use of a general purpose ontology and
widely applied syntactic tools, it reduces the expert effort required to build an IE
system and therefore also reduces the effort of porting the method to any domain.

In order toESSENCEbe validated we conducted a set of experiments to test
the performance of the method. We usedESSENCEto generate IE patterns for
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a MUC-like task. Nevertheless, the evaluation procedure for MUC competitions
does not provide a sound evaluation of IE systems, especially of learning sys-
tems. For this reason, we conducted an exhaustive set of experiments to further
test the abilities ofESSENCE. The results of these experiments indicate that the
proposed method is able to learn effective IE patterns.
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Resum

L’Extracció d’Informacío (EI) és un terme que designa la tasca d’extraure de
forma autom̀atica un tipus preespecificat d’informació continguda en un docu-
ment de text. La informació extreta es tradueix al format requerit iés usada, per
exemple, per generar un resum o com aı́ndex per recuperar nous documents.

El problema principal que es planteja a l’hora de construir un sistema d’EI
és com obtenir el coneixement necessari per identificar la informació rellevant
en un document. La majoria de les aproximacions fetes fins ara fanús de re-
gles o patrons d’EI per representar el tipus d’informació que es vol extraure.
Moltes d’aquestes aproximacions requereixen la intervenció de l’expert hum̀a en
diverses etapes del procés d’adquisicío.

Aquesta tesi presenta un nou mètode per generar patrons d’EI, anomenat
ESSENCE, que redueix de forma significativa la feina que ha de fer l’expert
humà. Aquest m̀etode es basa enELA un algorisme d’aprenentatge dissenyat
espećıficament per adquirir patrons d’EI, que no faús de corpus anotats.

Els trets rellevants d’ESSENCE i ELA són: 1) permeten l’adquisició au-
tomàtica de patrons d’EI a partir de textos lliures representatius del domini,
gràcies a 2) la seva habilitat per identificar regularitats al voltant de conceptes
sem̀anticament rellevants per la tasca d’extracció, 3) usant eines de coneixement
lèxic que no śon espećıfiques del domini i 4) limitant la feina de l’expert a la
definició de la tasca i a la validació i tipificació del conjunt de patrons d’EI
obtinguts.

Atès queESSENCEno requereix un corpus amb anotacions que assenyalin el
tipus d’informacío a extraure i que usa una ontologia i eines sintàctiques d’abast
general, l’esforç de l’expert a l’hora de construir un sistema d’EI es redueix
notablement i, per tant, també es redueix l’esforç necessari per usar el mètode
sobre nous dominis.
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Per tal de validarESSENCE, hem realitzat una sèrie d’experiments que per-
meten obtenir una avaluació del m̀etode d’aprenentatge. Hem usatESSENCEper
generar patrons d’EI per a una tasca del MUC. No obstant, el mètode d’avaluació
per les competicions del MUC no permeten una avaluació prou s̀olida del sis-
temes d’EI, especialment pels sistemes que aprenen. Per aquest motiu, hem dis-
senyat un conjunt exhaustiu d’experiments per avaluar amb més profunditat les
capacitats d’ESSENCE. Els resultats obtinguts per aquests experiments mostren
que el m̀etode proposat́es capaç d’aprendre patrons d’EI eficaços.
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Chapter 1

Introduction

Information Extraction (IE) is a Natural Language Processing (NLP) task whose
goal is to extract a previously specified type of information from a textual do-
cument. This task becomes specially important in our times when information
on the Internet, the hugest source of information, is mostly available in the form
of natural language texts. Unfortunately, although it is possible to identify and
retrieve a large amount of documents relevant to a specific topic by using exist-
ing sophisticated search engines, it is no so easy to obtain what these documents
are “saying” about the topic proposed. The former task is known as Information
Retrieval (IR) while the second one is referred to as IE. An IE system should
identify and extract relevant fragments of text within the document, without do-
ing a deep comprehension of it. To decide whether or not a text fragment is
relevant, one has to specify in advance the target information.

To illustrate the task of IE, an example concerning airplane crashes or acci-
dents is shown in figure 1.1. The target information is the aircraft involved in
the accident or crash, the location and the date of the crash, the number of vic-
tims in the crash, etc. The other facts appearing in these texts must be ignored.
Results are usually presented to the user as a template filled with the extracted
information, as shown in figure 1.2. Figures 1.3 and 1.4 show, respectively, a
quite different example of document and filled output template for an IE task
concerning lodging rentals.

The structure of the text documents from which the information must be ex-
tracted may vary depending on the source they are generated. From free text,
such as newspaper or TV news, or even a research paper, where information
is presented following non established order, to highly structured texts such as
job advertisements publicly available on the Internet by following a predefined
guideline. The text shown in 1.1 is an example of free text and the one shown
in 1.3 is an example of structured text. The task of extracting information from

1
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<DOC>
<DOCID> nyt960207.0722 </DOCID>
<TEXT>
SEATTLE - It’s the phone call no one wants to get, but
everyone knows might come one day.
It came late Tuesday when Boeing got word that a chartered
757 aircraft crashed shortly after takeoff from the
Dominican Republic. All 189 passengers are feared dead.
The crash, only the second in the history of the Boeing
757, came less than two months after an American Airlines
757 slammed into a mountain as it approached Cali,
Colombia. Four people survived the Dec. 20 crash that
killed 160 people. The cause has not yet been determined.
After hearing the news of Alas Nacionales Flight 301
Tuesday night, members of Boeing’s Air Safety
Investigation Group monitored the situation throughout the
night and quickly assembled a team of safety experts to be
on standby in case they were needed at the crash scene.
One Boeing air safety investigator was expected to arrive
Thursday in Puerto Plata to assist a team from the
National Transportation Safety Board and the Dominican
Republic in trying to determine why the two-engine jet
crashed. More Boeing engineers will be called in if
needed.
...
</TEXT>
</DOC>

Figure 1.1: A sample document from the aircraft crash domain.

one kind of document style and from the other one requires different linguis-
tic resources and techniques. For structured text, information is located at the
precise places intended to hold a particular kind of information. To extract the
desired information from them it is enough to have rules close to regular ex-
pressions which are written by hand or automatically learned. For free text, the
information to be found can be located wherever within the document and there-
fore more complex rules are required to detect and extract the target information.
Commonly, complex rules for information extraction carry lexical, syntactic and
semantic features, and linguistic experts are involved in the process of obtaining
them.

Our method deals with the more complex document style, free text, because
we are interested in exploring the possibilities of the application of NL advanced
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Crash_Event1:
Crash_Site: Dominican Republic
Crash_Date: 06-02-1996
Aircraft: 757
Airline: Alas Nacionales
Manufacturer: Boeing
Departure: Dominican Republic
Destination: -

Crash_Event2:
Crash_Site: Cali (Colombia)
Crash_Date: 20-12-1995
Aircraft: 757
Airline: American Airlines
Manufacturer: Boeing
Departure: -
Destination: Cali (Colombia)

Figure 1.2: Filled event templates for the document in figure 1.1.

techniques (such as syntactic and semantic taggers or general-purpose ontologies
exploitation), to automatically extract information from text by using extraction
rules, then, without performing a full text understanding. This is contrasted with
extraction from structured text because it doesn’t require deep linguistic knowl-
edge and can be solved by using techniques for learning grammars.

One way to introduce recent approaches to the IE task is by considering them
in the context of the DARPA’s Message Understanding Conferences (MUC).
These conferences have motivated the research in IE and have also provided
evaluation metrics in order to establish a quantitative evaluation for IE systems.
A more detailed description of the tasks addressed by the MUCs is given in sec-
tion 2.1.

Independently of the style of the document to be analyzed, a suitable system
for IE should be able to fulfill the following features:

1. It must identify the target concepts located within the textual document
being analyzed.
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Figure 1.3: A sample rental advertisement from a web page.

2. It must establish the relationships between these concepts. Essentially,
starting from the kind of facts to be extracted, the system must be able to
find out which concepts are involved in a particular fact and the roles they
play on it.

3. It must extract the target information and present it in the required format.

To build an IE system requires to design many and complex specific mod-
ules. The complete process of construction makes an extensive use of linguistic
knowledge as well as specific abilities implemented mainly by NLP tools. Some
of these tools are of general-purpose in the NL field such as sentence splitters,
syntactic analyzers or semantic taggers.

But an IE system also requires domain specific components to identify do-
main specific relationships among relevant concepts in the text. Usually, domain
specific components are customized for each domain involving several persons
spending a lot of time. Moreover, the work done must be repeated for each new
domain of extraction.

It seems clear that in order to build an IE system that could be easily adapted
across different domains, tools that could also be easily adapted are required.
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Figure 1.4: The filled output template corresponding to the document in fig-
ure 1.3.

In addition, if one wants that the building process has minimal human expert
requirements then it would be a good deal to develop more efficient tools able to
make the adaptation process as automatic as possible.

Recently, the successful application of corpus-based methods (also known
as empirical methods) in computational linguistics to automate the acquisition
of knowledge for NLP tasks (Cardie 1997) has boosted the research on learn-
ing methods for automatically build information extraction systems. Most of the
empirical methods proposed for IE are corpus-based learning methods and they
have been used for particular subtasks of IE, such as named entity identifica-
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ID:: 1

Pattern:: * ( Digit )’BR’ * ’$’ ( Number )

Output:: Rental {Bedrooms $1} {Price $2}

Figure 1.5:WHISK sample rule from rental advertisement domain. This rule
looks for number of bedrooms and associated price.

tion, coreference resolution or extraction pattern acquisition. Each one of these
methods is intended to improve the design of a particular component of the IE
system.

Our work is mainly concerned with the design of one component of an IE
system, concretely we focus on the acquisition of the less portable piece of the
system: the set of information extraction patterns or rules. A common way of
extracting the desired information is by usingIE patterns(also known in the
literature asextraction rulesor conceptual patterns). An IE pattern consists of
a set of constraints that a fragment of text must satisfy in order to extract rele-
vant information from it, together with an indication of what information of that
text should be extracted. For example, if we are looking for reports of aircraft
crash locations, we might use a pattern of the form<AIRCRAFT crashed inLO-
CATION>, where aircraft and location are semantic tags for noun groups. This
pattern is satisfied by sentences containing a noun group semantically tagged
asAIRCRAFT followed by the word “crashed”, the preposition “in” and a noun
group semantically tagged asLOCATION.

The kind and amount of information an IE pattern should hold mainly de-
pends on the task itself and on the kind of textual documents to be processed.
For structured or semi-structured texts, extraction patterns are close to regular
expressions. Figure 1.5 shows an example of an extraction rule produced by
WHISK (Soderland 1999) system applied to rental advertisements in HTML
texts. WHISK’s rules have two components: thepattern part, that identifies
the possible slot fillers, and theoutputpart, that specifies the exact pieces of the
phrase to be extracted. If the entire pattern matches, slots of the output template
are filled according to the output part of the rule. Parenthesis indicate a phrase
to be extracted. The phrase within the first set of parenthesis is bound to the
variable $1 in the output format, the second to the variable $2 and so on.

For free texts, extraction patterns usually carry both syntactic and semantic
knowledge to represent how the relevant information is expressed in text. Fig-
ure 1.6 shows another example of an extraction pattern (also called concept node)
in the domain of natural disasters, generated byAUTOSLOG (Riloff 1993). This
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Concept-Node Definition:

Concept = Damage
Trigger = "destroyed"
Position = direct-object
Constraints = ((physical-object))
Enabling Conditions = ((active-voice))

Figure 1.6: Concept node definition for extracting “damage” information.

rule is triggered by sentences containing the verb “destroyed” in the active voice
and look for the semantic classphysical-objectin the direct object.

Methods for acquiring IE patterns for a task must take into account the time
cost of manual intervention, usually done by an expert. Obviously, patterns ac-
quired for one domain can rarely be reused for a new domain. Therefore, these
methods should allow:

1. The acquisition of IE patterns for any domain insofar as this is possible, in
order to allow the system to be ported across domains, and

2. The expert intervention to be minimized.

Expert intervention can be required in different ways. For example, in sys-
tems that learn IE patterns from an annotated corpora, it is necessary to have an
expert of the domain and the task to suitably annotate the texts for the target in-
formation. In other approaches, the IE patterns are obtained by interaction with
the expert during the processing of a text. Chapter 2 will provide a more detailed
description related to the work to be done by the expert on the different reviewed
approaches.

The method we propose aims at notably reducing the expert intervention in
the process of generating IE patterns for a task or domain of extraction. This is
one of the main goals of this thesis that next section will present.

1.1 Goals of the Thesis

This work is concerned with building of IE systems for non-structured text. More
specifically, it focuses on the acquisition of extraction patterns for information
extraction.

IE pattern acquisition, as already mentioned, is one of the hardest tasks in
the process of building an IE system and often requires the human expert inter-
vention. Besides, several linguistic knowledge resources are needed during the
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acquisition process, and some of them also involve an expert to tune them for the
specific task or domain. The high cost of having available an expert and the large
time spent by the expert to perform these tasks make the building of IE systems
very expensive and becomes a bottleneck of the whole process.

In short, the goal of this thesis is to reduce as much as possible the inter-
vention of the expert to alleviate the task of acquiring extraction patterns for an
IE system. We do this by means of a new method,ESSENCE, that introduces
Machine Learning (ML) techniques which allow the expert to concentrate on
defining the task and validating results. On the other hand, the method makes
use of available linguistic knowledge resources which are general enough to re-
quire minimal tuning overhead.

In order to reach this generic goal, this thesis pursues the solving of a set of
issues that are described in the following sections.

Reducing Expert Intervention in Acquiring IE Patterns

Since the core of an IE system is its extraction pattern database, research in IE
has been mainly focused on the issue of acquiring an adequate set of extraction
patterns for a given IE task.

Approaches to the acquisition of extraction patterns differ in diverse proper-
ties. Among these properties there is the amount and kind of expert interven-
tion required. The knowledge engineering (handcrafting) approach is based on a
knowledge engineer who is in charge of writing the extraction patterns through
examination of a corpus and who does the tuning of the patterns after testing
them on the corpus. This approach is tedious and time consuming; moreover, it
becomes subjective because results depend on the human expert rather than on
actual texts.

In recent years, attempts have been made in some IE systems to use ML
techniques in order to semi-automate the pattern acquisition process. This allows
the expert to be alleviated of handcrafting IE patterns and therefore it reduces the
expert intervention. Nevertheless, the IE pattern acquisition process still remains
time consuming because most ML techniques applied are usually supervised,
that is, are based on learning from a set of examples that must be selected and
annotated by a domain expert. As examples we mean instances of the concept
being learned, whether in the form of manual annotations in the training text or
in the form of filled templates. To provide the system with a set of examples is
a time-consuming task that produces a bottleneck in the process of acquiring IE
patterns.

One of the issues this thesis addresses is the acquisition of a set of IE pat-
terns from unannotated text, therefore without user-labelled examples indicating
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where the information to be extracted can be found in texts. To achieve this goal
we propose a learning algorithm which relays on:

1. A simple set of trigger keywords (provided by the user and intended to
focus on candidate sentences for carrying relevant information),

2. A set of we call extracting synsets (semantic description of the target in-
formation), and

3. The hypothesis that the ways to express a particular event are limited in
number, are frequently used in texts of the domain, and present a similar
structure: information of the event is surrounding trigger keywords.

Minimizing Handcrafted Linguistic Resources

To develop the different components of an IE system, several linguistic resources
and tools are needed. Among them we can find lexicons or ontologies, that is,
repositories of lexical knowledge.

Given that the IE task is domain specific by nature, many IE systems are pro-
vided with lexical resources that have been manually prepared for the intended
purpose. For example,CRYSTAL (Soderland et al. 1995a) andPALKA (Kim
and Moldovan 1995) systems require both a lexicon that maps each word to its
semantic class information and a domain specific semantic class hierarchy. To
handcraft this kind of knowledge is: a time-consuming process, also a subjec-
tive task and, in most cases, has to be done every time the system is moved to a
new domain. In order to ease the process of building IE system components it
would be desirable to minimize the manual customization of the needed lexical
resources.

One way to have lexical information is by using available resources of lex-
ical knowledge. Our method makes use of an available general purpose lex-
ical database: WordNet1 (Miller 1995). We make an extensive use of Word-
Net, especially for lexical processing and pattern generalization. WordNet has
been successfully used in other NLP tasks, such as word sense disambiguation
(see (Agirre and Rigau 1996), (McCarthy 1997) and (Mihalcea and Moldovan
1998)), information retrieval (see (Gonzalo et al. 1998)) and text categorization
(see (Scott and Matwin 1998)), but very few attempts have been made of using
it in IE systems (Chai 1998). Moreover, some reports, for instance (Grishman et
al. 1992), have criticized the use of WordNet in IE mainly due to: (1) word sense
ambiguity, (2) irregular granularity of description in different branches of the
concept hierarchy (and thus irregular depth of branches in the hierarchy), and (3)

1http://www.cogsci.princeton.edu/∼wn
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lack of covering of domain specific vocabulary. Our experiments using WordNet
prove that only very specific vocabulary, such as company names or names of
small villages, was not covered by WordNet. Most of the missing vocabulary
can be supplied to the system by means of gazetteers or domain specific word
lists.

The customization of lexical tools then is confined to define domain spe-
cific vocabulary not covered by general tools. It is worth mentioning that some
approaches have been proposed to automatically acquire domain specific knowl-
edge (Riloff and Jones 1999). The technique presented in this work can also be
used to generate domain specific lexicons and preliminary experiments carried
out on this task showed promising results. May be we could use this technique
to finally avoid the need for handcrafted linguistic resources.

Learning from a Small Set of Documents Without Annotations

As mentioned above, most ML techniques applied to extraction pattern acquisi-
tion are usually supervised, therefore, they rely either on a training corpus that
has been suitably annotated for the intended IE task or on an unannotated train-
ing corpus along with the correct answers to be produced. For example, MUC
systems were provided with a set of documents (free text) and the set of filled
output templates that should be produced for each document. But, in general,
there are no corpora annotated with domain specific labels. Thus, for each appli-
cation domain a new annotated corpus must be created.

This problem is alleviated by recent semi-supervised learning algorithms (see
section 2.3.2) because they do not need an annotated corpus, but then to learn IE
patterns achieving good recall scores, they require a training corpus containing
a large number of documents (of the order of thousands of texts). This require-
ment reduces to some extent the benefits of learning without annotated texts be-
cause it increases the computational resources needed to learn and, even worse,
it increases the effort of the expert in obtaining the training texts, and also in
monitorizing the learning process and validating results. In order to reduce the
work to be made by the expert we should reduce also the number of texts needed
for learning. Another goal of this thesis is to allow learning from unannotated

corpora but from a relative small set of documents (of the order of hundreds of
texts).
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Summary of goals

We can summarize in one sentence the main goals of this thesis as:

Goal: To reduce the human expert intervention in the process of acquir-
ing Information Extraction patterns by learning from anunannotated
domain corpuscomposed offew textsand byreducing as much as
possible the amount of linguistic resources to be handcrafted.

This dissertation presents a new method, calledESSENCE, which is able to
learn IE patterns without a set of annotated examples.ESSENCErequires a cor-
pus of the domain, a semantic description of the target information, and a set of
trigger words for this target information (calledcontext keywordsin our method)
that are proposed by a domain expert. From this knowledge, the method auto-
matically obtains specific patterns which are then generalized to more general
patterns that could be applied to new texts. The output is a set of patterns that
cover sentences containing possible relevant information to be extracted. Finally,
the expert should check the set of patterns and select those useful for extracting
the target information. The expert’s effort is reduced from reading and tagging
documents in the training corpus to accepting/rejecting relatively few patterns.

The primary focus of this thesis is on the automatic acquisition of IE patterns.
We do not deal with the other issues involved in a complete IE system, such as
coreference resolution or template merging.

1.2 Roadmap

The remainder of the dissertation is organized as follows. Chapter 2 presents
background knowledge on information extraction and reviews some approaches
for automatically generating IE patterns using ML techniques. Since the main
goal of the thesis is to learn IE patterns from free texts without user-labeled ex-
amples, the reviewed approaches are divided into supervised learning approaches
and semi-supervised learning approaches to IE pattern acquisition from free
texts.

The ESSENCEmethod is presented in chapter 3. The motivations and main
distinctive features of the new method are summarized in the beginning of the
chapter. This is followed by sections that describe in detail each component step
of the method.

Chapter 4 describes theESSENCELearning Algorithm (ELA) which is the
core of theESSENCEmethod. After a brief discussion of unsupervised learning
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methods, the generalization procedure used in the algorithm is presented and
justified. The last section of the chapter describes the details of the learning
algorithm proposed.

Chapter 5 shows a case application of theESSENCEmethod to a MUC-style
task. The chapter includes a detailed description of the steps followed by the
expert to apply the method. Then, it reports results of testingESSENCEon a
MUC extraction task.

In order to complete the evaluation of the proposed method, chapter 6 reports
the results of an exhaustive set of experiments conducted to test the performance
of ESSENCEwith different number of training texts and different values for the
parameters of the learning method.

Finally, chapter 7 gives a discussion of some features ofESSENCEand sug-
gests some ways to further improve it. This chapter concludes with a brief sum-
mary of the thesis and reviews its main contributions.



Chapter 2

Background

An IE system performs two primary tasks. First, the system locates the relevant
information in the text of a document by means of a text analysis. Essentially, the
system identifies the entities of interest and the relations between such entities
(as events and their participant entities) that meet the specifications for the IE
task. Second, the system extracts the target information and presents it in the
required format.

The task of locating the relevant information in a text is usually carried out
through a set of sequential phases. First step performs a lexical analysis of the
input text that includes processes such as morphological analysis and part-of-
speech tagging. This step is completed by a named entity recognizer which is
in charge of identifying and categorizing particular expressions of entities, such
as proper names, dates or quantities. After lexical analysis, a parsing process is
done. Some systems do a full parsing to obtain a complete syntactic structure
of each sentence; other systems use a partial parser to identify major syntactic
components of each sentence, such as noun groups, verb groups and preposi-
tional groups. During semantic tagging, not performed by all IE systems, the
system attaches semantic labels to the headword of each syntactic component.
Following all these processes, the system identifies relevant entities and specific
relationships between them in the text as target information. This is usually done
by applying to the text a set of patterns which represent how relevant information
is typically found in texts of the domain.

In the second task, the system processes the entities and relations identified as
target information to generate the output as required. Prior to output generation,
the system resolves coreferences, combines disperse information relative to an
event into a single event structure and, if it is necessary, makes inferences to
derive information not explicitly available in the text.

The general structure of an IE system is depicted in figure 2.1. However,

13
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Figure 2.1: General architecture of an IE system.
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depending on the requirements of a particular extraction task, it might be neces-
sary to add some additional processes and/or knowledge resources to the general
architecture. For example, dealing with a specific domain such as Hospital Dis-
charge domain requires to analyze unstructured texts (usually containing abbre-
viations and incomplete sentences) and requires also knowledge about semantic
information relative to specific medical concepts.

The first part of this chapter gives an introduction to the notion of IE as pro-
moted by the Message Understanding Conferences (MUCs) and to the perfor-
mance evaluation of IE systems. The MUC programme finished in 1998 but the
IE technology is an on-going research field supported by new programmes such
as the Linguistic Research and Engineering program1 of the European Union
or the TIDES(Translingual Information Detection, Extraction and Summariza-
tion) program2 with the support of the DARPA agency. We will shortly review
some recent and actual IE projects within these programmes. The last part of
this chapter is centered on the issue this thesis addresses, that is, on the acquisi-
tion of extraction patterns. It reviews related approaches in automatic IE pattern
acquisition.

2.1 The Message Understanding Conferences

The series of Message Understanding Conferences (MUCs3) started in 1987 and
a total of seven MUCs have been taken place to 1998. They have been organized
by the Naval Research and Development Group (NRAD) with the support of the
Defense Advanced Research Projects Agency (DARPA4). The MUCs form the
IE component of the TIPSTER5 Text Program (Grishman 1996). The TIPSTER
initiative has also focused on document detection (text retrieval and message
routing) promoted by the TREC (Text REtrieval Conference) competitions, and
on text summarization.

The main objective of the MUC conferences has been to promote research in
IE and to provide IE systems with a quantitative evaluation method. A MUC can
be seen as a competition where participant groups develop a system to process
a set of texts and extract from them the type of information required. In a first
stage, each participating group develops a system able to extract from a set of
sample texts the particular information specified for the task. In a second stage,
each system (the same as the first stage) is applied to a new set of texts and is

1http://www.ejeisa.com/nectar/t-book/html/lre.htm
2http://www.darpa.mil/iao/TIDES.htm
3http://www.itl.nist.gov/iaui/894.02/relatedprojects/muc
4http://www.darpa.mil
5http://www.ldc.upenn.edu/Catalog/Tipster.html



16 CHAPTER 2. BACKGROUND

evaluated by comparing the outputs of the system with the correct answers (an-
swer keys) produced by hand. Each conference focuses on a particulardomain
andscenario. The domain stands for a class of texts, for example, patient’s med-
ical reports. The scenario stands for the set of facts to be extracted, for example,
symptoms and diagnoses. The target information consists of a previously speci-
fied set of entities and their attributes, together with their relationships and events
relating to them. This information is usually represented in the form oftemplates
whose slots must be filled.

Following we present a brief description of the MUC evaluations in chrono-
logical order. MUC-6 and MUC-7 are explained to a large extent in order to
introduce some concepts that will be referred to throughout this document.

MUC-1 and MUC-2 were held in 1987 and 1989, respectively, and both
shared the domain of tactical naval operations reports on ship sightings and en-
gagements. In the second one, a particular task was specified and there were a
template and rules for filling the slots. There was too a set of answer keys and
evaluation criteria.

In MUC-3 (MUC 1991) and MUC-4 (MUC 1992), the domain was news wire
stories about terrorist attacks in Central and South American countries. For the
MUC-4, the organization made some changes to the evaluation method. To guar-
antee system independence from the training data, participating systems were
given a set of training texts with the associated templates and were evaluated by
running the system on a different test set with new associated templates.

For MUC-5 (MUC 1993) two domains were tested, international joint ven-
tures and microelectronics products announcements, in two languages, English
and Japanese. The complexity of the tasks grew up and new evaluation metrics
were used.

The domain of the scenario for MUC-6 (MUC 1995) was management suc-
cession events in financial news stories. There were a menu of four tasks from
which each participant could choose their preferences. The four tasks were:
Named Entity (NE) recognition, Coreference (CO) resolution, Template Element
(TE) filling and Scenario Template (ST) filling. These tasks were proposed in or-
der to address the main goals of the MUC-6 and future conferences:

• To identify domain-independent components from the whole set of com-
ponents being developed for building IE systems. Domain-independent
components would be of practical use and could be developed automat-
ically. To meet this goal, the organization developed the Named Entity
task, which involved identify and categorize particular expressions of enti-
ties (organizations, persons, locations), times (dates, times), and quantities
(monetary values, percentages) by inserting SGML tags into the text.
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• To focus on portability in the IE task, that is, on the ability to rapidly tune a
system to extract information about a different class of events. To increase
portability, the organization proposed to standardize low-level objects (ob-
jects that could represent participants in an event such as people, products,
etc.). These objects can be seen as basic classes that could be involved
in different types of events. They were named Template Elements. The
detection of specific relations holding between template elements relevant
to the target information is the task of Scenario Template filling.

• To encourage work on deeper understanding. This was an attempt to move
the trend of shallow understanding techniques performed by participating
systems towards deeper understanding mechanisms. The three tasks to
meet this goal were: Coreference (the task of inserting SGML tags into
the text to link strings that represent coreferring noun phrases), Word sense
disambiguation and Predicate-argument structure. At the end, the last two
tasks were not considered.

MUC-7 (MUC 1998) was the last in the series of MUC evaluations. The
main motivations of MUC-6 remained but more emphasis was placed on the
minimal use of non-NLP requirements and on portability. There was a clear
division between domain-independent information extraction tasks and domain-
dependent information extraction tasks. On one hand, the extraction of named
entities (NE and CO) and their attributes (TE) as well as facts about those entities
(TR6) are considered as domain-independent tasks because they can be extracted
from texts without knowing what role those elements are playing on. On the
other hand, the extraction of information about events which involve the extrac-
tion of only particular entities that participate in the events (ST), is considered
as a domain-dependent task because the extraction can be only performed from
relevant texts and obeying the specific guidelines given for the task definition.

In MUC-7, named entities were defined as proper names (person, organiza-
tion and location names) and quantities of interest (dates, times, percentages,
and monetary amounts). Entities were marked within the text stream by using
SGML annotations7. The task of coreference only dealt with the identity type8.
For Template Elements four attributes or slots were required: name (which in-
cluded all aliases), type (one of person, organization, artifact or location), de-
scriptor (all substantial descriptors used in the text, such as “capt.” or “the ABC

6Template Relation (TR) are general relational objects which involve TE objects, for example,
organizations and their locations or persons and the organizations they are employed.

7The Named Entity task was carried out in English, Chinese and Japanese.
8Task definition for coreference covered only “identity” relations for noun phrases; it did not

include coreference among clauses nor other kinds of coreference relations, such as part/whole.
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Corp. unit”) and category (which depends on the element involved, for example,
persons can be civilian, military or other; artifacts were limited to vehicles that
can be for travelling on the ground, through water or by air; etc.). Template Rela-
tions were limited to relationships with organizations: employeeof, productof
and locationof. At the end, each Scenario Template captured information about
a particular event in which objects (relational and low-level objects) participated.

The domain for training (dry-run evaluation) was airline crashes and the do-
main for testing (formal-run evaluation) was launch events. We used the dry-run
texts to perform our experiments and we used the available answer keys to make
the evaluation. In this thesis, we focus on the acquisition of patterns that extract
information for the domain-dependent task (Scenario Template). The ST task
definition makes reference to the Template Element and Template Relation ob-
jects obtained through the domain-independent tasks (NE, CO, TE and TR). In
our work, we do not explicitly perform these tasks. We prove that to find out the
required information about a particular event there is no need of having to find
all entities in the text but just those entities that participate in the particular event.

2.1.1 Evaluating MUC-like IE Systems

The MUC evaluation is performed by means of a scoring software that compares
the output of a system (responses) with the output of human linguists (answer
keys).

The input of the system being evaluated is a set of documents containing text
from news stories or some other natural language source. The system analyzes
the text and produces a set of objects. The structure of the objects depends on
the task.

The scorer receives the responses file and the keys file, and it aligns objects
in one file with objects in the other file. In general9, the scores are calculated by
counting how many fills agree for each aligned object.

The metrics used for evaluating MUC systems have been evolved since the
first evaluation. These metrics are similar to those used for IR: Recall (R) and
Precision (P). For IE, recall is redefined as the fraction of required information
that has been correctly extracted and precision is redefined as the fraction of the
extracted information that has been correctly extracted. These metrics have been
redefined for the IE task to allow for some new situations that don’t happen in
IR such as overgeneration (Lehnert and Sundheim 1991).

Recall and precision evaluate system performance at the level of slots, be-
cause they measure slots filled in the templates that the system is able to find

9Scores for coreference are based on the agreement of equivalence classes.
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in text. Since MUC-3, another metric was also defined at the level of texts, the
text-filtering metric, to measure the ability of a system at separating documents
into relevant/non-relevant categories.

By definition, recall and precision are negatively correlated, i.e. pushing
recall causes a fall in precision. The van Rijsbergen’s F-measure (F), as used in
IR, provides a method for combining recall and precision into a single measure.
As can be seen in the following formula:

F =
(β2 + 1.0) ∗ P ∗R

β2 ∗ P + R
(2.1)

recall and precision have relative weights. Theβ parameter determines the rela-
tive importance given to recall over precision. If recall and precision are equally
important,β is set to 1.0.

We make use of the same measures to evaluate the method we present in this
thesis. The set of patterns obtained by our method is able to extract informa-
tion for some of the slots of the output templates for the ST task, but not all of
them. The official scorer can’t deal with partial results and therefore we manu-
ally calculate the values for the measures. For this reason, we can’t perform a
fair comparison between our work with the MUC-7 participating systems.

2.2 Some Recent and Actual IE Projects

The Message Understanding Conferences and the TIPSTER program have boos-
ted research in IE. In addition to MUC evaluations several projects have been or
are being developed within the IE field. Some of these projects are applications
of the IE technology to specific tasks while others are focused on developing
tools for IE in various European languages. This section doesn’t give an ex-
haustive historical review of IE projects, but that makes a survey of recent and
actual IE projects which do research to address the specific problems this work
is concerned with.

Under the Language Engineering (LE) program of the European Union, sev-
eral IE projects are being or have been supported. The TREE10 (TRans European
Employment) project will provide a multilingual11 World-Wide Web employ-
ment service for job seekers to view details of professional opportunities in their
own language. The AVENTINUS12 (Advanced Information System for Multi-

10http://www.mari.co.uk/tree/
11The initial prototype system currently implemented can store and retrieve job advertisements

in three languages, English, Flemish, and French, with a small Swedish retrieval module.
12http://www.dcs.shef.ac.uk/research/groups/nlp/funded/aventinus.html
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national Drug Enforcement) project built a system to seek information on drug
enforcement distributed over different international sources; the system supports
multilingual search of text bases other than in the user’s native language. The
ECRAN13 (Extraction of Content: Research at Near-Market) project aims at ex-
tracting information from full-text on the basis of POS taggers, robust parsers
and its major concern is on automatic lexical acquisition and automatic lexicon
tuning; the system’s users can access information sources in a range of Euro-
pean languages (English, French, Italian). The SPARKLE14(Shallow PARsing
and Knowledge extraction for Language Engineering) project developed shal-
low parsing technology in four European languages together with corpus-based
lexical acquisition techniques, and applied parsers to multilingual information
retrieval and speech dialogue systems. The Proteus15 project conducted a wide
range of research related to IE including name extraction, event extraction and
application of unsupervised methods, in several languages (English, Japanese,
Spanish and Chinese). The main goal of the FACILE16(Fast Accurate Cate-
gorization of Information using Language Engineering) project was to build a
system capable of categorizing financial text to high degree of detail.

The GENIA17 project seeks to automatically extract useful information from
texts written by scientists to help overcome the problems caused by information
overload. Currently, they are working on the key task of extracting event in-
formation about protein interactions in the micro-biology domain, but the basic
methods should be generalizable to knowledge acquisition in other scientific and
engineering domains.

Under the Translingual Information Detection, Extraction and Summariza-
tion (TIDES) program, supported by the DARPA agency, several projects are
collaborating to develop resources and tools for various language engineering
tasks. The tasks include Information Extraction, Machine Translation, Summari-
sation and Cross-Language Information Retrieval.

In this thesis we present a new method for extracting information from free
text, also called unstructured text. The projects just mentioned refer to systems
dealing with free text, but there are also systems that apply IE techniques to pro-
cess rigidly structured text (mainly coming from the Internet) namedwrappers.
The problem of extracting information from structured text is somewhat differ-
ent from ours in that it works on different domains and it makes a very limited
use of linguistic knowledge. Some examples of wrapper induction systems are

13http://www.dcs.shef.ac.uk/research/ilash/Ecran/overview.html
14http://www2.echo.lu/langeng/en/le1/sparkle/sparkle.html
15http://nlp.cs.nyu.edu/
16http://www.quinary.com/pagine/innovation/facproj.htm
17http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/
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(Kushmerick 1997; Kushmerick 1998), (Muslea et al. 1998a) and (Hsu 1998).

2.3 Related Work in IE Pattern Acquisition

The process of acquiring IE patterns is one of the most difficult steps when build-
ing an IE system. Researchers have tried to facilitate this process in different
ways, for example, by developing tools to assist the expert in writing patterns
or by designing ML tools to automatically, or semiautomatically, acquire pat-
terns from training corpora. The subject of this thesis is centered on the latter
approach, in particular on the automatic acquisition of IE patterns from free text.
In this section we review some related efforts for learning IE patterns used for
free text. A summary of work on learning methods for IE pattern acquisition can
be found in (Yangarber and Grishman 2000). In (Muslea 1999) there is a review
of the different types of extraction patterns that are generated by ML algorithms.
A detailed survey on the use of empirical ML methods for the entire IE task, and
in particular for the pattern acquisition component of an IE system, can be found
in (Cardie 1997).

The difference between corpus-based methods for learning IE patterns is
made up of many and varied factors such as the type of patterns being learned,
the kind and amount of training corpus required, the learning strategy or the de-
gree of expert intervention in the acquisition process. Our primary criterion for
classifying ML approaches to IE pattern acquisition is the degree of expert inter-
vention. From this point of view we can notice how IE systems tend to reduce
expert intervention in favor of using unsupervised techniques.

2.3.1 Supervised Machine Learning Approaches

Most of the first IE systems that tried to automatize the process of acquiring
patterns often required the assistance of an expert. The kind and degree of the
expert’s assistance varies from one system to another one. For example, the
expert can be required for annotating the training corpus, for manually reviewing
the learned patterns or to online assist the learning process.

AutoSlog (Riloff 1993) was one of the first systems to take advantage of ML
techniques for obtaining IE patterns. AutoSlog learns patterns (calledconcept
nodedefinitions) from an annotated corpus (training corpus) in which the infor-
mation to be extracted is marked and tagged with IE-task specific semantic tags.
The process consists of specializing a set of general syntactic linguistic patterns
by searching in the training texts for positive examples that can instantiate them.
The IE patterns learned consist of a trigger word, a syntactic context and the
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Concept-Node Definition:

Name = target-subject-passive-verb-bombed
Trigger = bombed
Variable Slots = (target (*S* 1))
Constraints = (class phys-target *S*)
Constant Slots = (type bombing)
Enabling Conditions = ((passive))

Figure 2.2: Concept node definition for extracting the “target” of a terrorist at-
tack.

information to be extracted. A concept node is activated when the trigger word
appears in the linguistic context, and it is able to infer the role played by the target
information in this context. A concept node is able to extract only one single slot
per sentence. Figure 2.2 shows an example of a concept node definition. The lin-
guistic pattern that applies in this example is<subject> passiveverb; this pattern
says that the subject must be a physical target (“Constraints”), and the enabling
conditions require a passive construction. The triggering word is “bombed” and
the variable slots specify that the information to be extracted is the subject of the
sentence (*S*).

AutoSlog uses a one-shot learning algorithm designed specifically for the IE
task. In addition to the annotated training corpus, it requires a small lexicon
with semantic information, a partial parser which is able to assign the semantic
information to nouns and modifiers, and a predefined set of linguistic patterns
(approx. 13) that are mostly domain independent.

In this approach, a human expert must examine the set of patterns learned in
order to decide which ones to keep.

CRYSTAL (Soderland et al. 1995a) is another system that inductively gener-
ates a dictionary ofconcept definitionsthat cover the positive examples contained
in the training texts.

CRYSTAL’s concept definitions are multi-slot rules. They allow both se-
mantic and exact word constraints on any component phrase. Figure 2.3 shows
an example of a concept definition that applies to the sentence “He succeeds Jack
Harper, a company founder who was named chairman”. From this sentence,
CRYSTAL creates a case frame with PersonIn slot filled by “Jack Harper, a
company founder”, and the Position slot filled by “who was named chairman”.
A later processing will eliminate nonessential words included as part of the ex-
tracted information.

The learning process is aniterated bottom-up covering algorithmwhich ob-
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Concept type: Succession Event
Constraints:

OBJ::
Classes include: <Person Name>
Extract: Person_In

REL-OBJ::
Terms include: WHO NAMED
Classes include: <Corporate Post>
Extract: Position

Figure 2.3: ACRYSTAL’s concept definition. It looks forPersonIn in the
direct object andPosition in a relative clause. The relative clause must also
include the terms “who” and “named”.

tains a new IE pattern, that covers some positive examples and does not cover
negative examples, at each iteration. Learning finishes when all positive exam-
ples are covered. In addition to the training texts,CRYSTAL also makes use
of a partial parser, a domain specific semantic hierarchy and associated lexicon
created for the task by the expert.

The LIEP (Huffman 1995) system induces extraction patterns from posi-
tive instances provided by an expert and events to be extracted from them. The
induced patterns are multi-slot rules which are able to identify semantic relation-
ships between two target noun phrases (role-filler constituents) in a sentence.
LIEP’s patterns cannot handle single slot extraction.

A LIEP pattern consists of both syntactic constraints between constituents
(e.g., constituent A is the subject of a verb and constituent B is the direct object
of the same verb) and semantic constraints (e.g., the head of the constituent A is a
“personname”). TheLIEP pattern from figure 2.4 extracts the name of a person,
the title position in a company to which the person is being moved and the name
of the company. The syntactic constraints indicate that PNG is the subject of a
sentence that also contains a verb group followed by a prepositional phrase; the
semantic constraints specify that PNG is a person name, TNG is a title position,
CNG is a company name, the verb is one of “named”, “elected” or “appointed”
and it used in its passive form, and the preposition for the prepositional phrase is
one of “of”, “at” or “by”.

As stated in (Huffman 1995),LIEP’s learning can be seen as an example of
Explanation Based Learning (EBL) with an overgeneral and incomplete domain
theory.LIEP’s patterns are induced from positive examples only; these examples
are provided by an expert who interactively identify events (entities of interest
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n_was_named_t_by_c:
noun-group(PNG,head(isa(person-name))),
noun-group(TNG,head(isa(title))),
noun-group(CNG,head(isa(company-name))),
verb-group(VG,type(passive),

head(named or elected or appointed)),
preposition(PREP,head(of or at or by)),

subject(PNG,VG),
object(VG,TNG),
post_nominal_prep(TNG,PREP),
prep_object(PREP,CNG)

==> management_appointment(M,person(PNG),
title(TNG),company(CNG))

Figure 2.4: ALIEP information extraction pattern. It identifies persons moving
into a company management position.

and combinations of them that signify events to be extracted) in texts.
PALKA (Kim and Moldovan 1995) inductively builds phrasal patterns that

define a sequence of lexical items or semantic categories in the sentence in order
to extract information.PALKA ’s patterns are similar in form to AutoSlog’s con-
cept nodes. They are represented as a pair of a meaning frame defining the types
of information to be extracted, and a phrasal pattern describing the syntactic or-
dering. To combine a meaning frame and a phrasal pattern, each slot of the frame
is linked18 to the corresponding element in the phrasal pattern. This representa-
tion is called theFP-structure(Frame-Phrasal pattern structure). By matching
the phrasal pattern to a sentence in the input text, the FP-structure is activated
and then the meaning frame is used to extract the relevant information from the
sentence. Figure 2.5 shows an example of an FP-structure able to extract infor-
mation concerning a terrorist incident. By matching this pattern to the sentence
“At 0115 this morning (0415 GMT) incendiary bombs were hurled at a Mormon
temple at Nunoa district, in Santiago.”, it will produce a bombing incident type
with instrument “incendiary bombs” and target “Mormon temple”.

PALKA performs both generalization, to include a new positive instance, and
specialization, to avoid a negative instance, of an initial pattern.

This method requires more background knowledge than the previous ones:
a set of annotated training texts, a set of predefined keywords used to trigger
patterns, a concept hierarchy, a domain specific semantic hierarchy and an as-

18These mappings are acquired from filled output templates.
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FP-structure = Meaning Frame + Phrasal Pattern

Meaning Frame: (BOMBING
agent: ANIMATE
target: PHYSICAL-OBJ
instrument: PHYSICAL-OBJ
effect: STATE)

Phrasal Pattern: ((BOMB) BE HURT AT (PHYSICAL-OBJ))

FP-structure:(BOMBING
target: PHYSICAL-OBJ
instrument: BOMB
pattern: ((instrument) BE HURT AT (target)))

Figure 2.5: The frame-phrasal pattern representation used byPALKA . This FP-
structure is able to extract the “instrument” and the “target” objects concerning
a bombing incident.

sociated lexicon. The concept hierarchy contains generic concept definitions for
each kind of information to be extracted.

A different method for learning IE patterns is proposed inTIMES (Chai
1998). This system makes use of a graphical user interface to create an ini-
tial set of rules for the target information contained in the training text. A rule
is represented as a “transition” made of two nodes (usually, noun phrases) and
a relation between two nodes (usually, verb phrases or prepositions). The sense
information for each headword in a noun phrase is provided by WordNet. Word-
Net is also used in the process of generalizing the initial set of rules. The rules
learned byTIMESare single slot. Figure 2.6 shows a sample set of extraction
rules which have been created based on the same relevant sentence but with dif-
ferent type of target information. The left hand side of each rule specifies con-
ditions (a conjunction of entities each one consisting of three fields: a variable
to be instantiated by a new phrase, a concept, and the type of the target informa-
tion); the right hand side specifies actions (identifies the phraseXi as the target
informationTi).

TIMEShas a rule generalization engine to control the degree of generaliza-
tion according to the user’s demands. First, each specific rule is generalized to its
most general form (i.e., noun entities in the specific rule are generalized to their
top hypernym in the WordNet hierarchy); in this situation, recall is as high as
possible while precision may be too low. Then, to adjust the precision depend-
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R1: S(X1,{group,...},COMPANY)∧ S(X2,{need,...},none)∧
S(X3,{professional,...},POSITION)=⇒ FS(X1,COMPANY)

R2: S(X1,{group,...},COMPANY)∧ S(X2,{need,...},none)∧
S(X3,{professional,...},POSITION)=⇒ FS(X3,POSITION)

R3: S(X1,{group,...},COMPANY)∧ S(X2,{need,...},none)=⇒ FS(X1,COMPANY)

Figure 2.6: Examples of extraction rules created by theTIMESsystem.

ing on the user’s needs, the system automatically adapts the generalization levels
for each noun entity by means of the statistical classifier. This tool calculates
the relevancyrate19 for each object concept and generates its corresponding GT
(Generalization Tree). Based on the GT model and according to a threshold pre-
defined by the user, the system replaces two20 most general concepts by the sets
of optimal concepts (concepts whose relevancyrate is higher than the predefined
threshold).

TIMESis enhanced by adding to the semantic generalization a syntactic gen-
eralization step. Syntactic generalization is performed by means of a combina-
tion function (used to select the appropriate number on entities in a rule), and a
permutation function (used to get the appropriate order of entities in a rule).

RAPIER (Califf 1998) is a system inspired byInductive Logic Programming
(ILP) that is able to learn IE patterns expressing relational dependencies in CP1
logic. This system overcomes the computational cost problem of ILP systems by
using an incremental approach.

RAPIER learns single slot extraction rules. A rule consists of three fields: the
pre-filler and post-filler patterns, that are matching conditions for the text preced-
ing and following, respectively, the filler, and the filler pattern which describes
the matching conditions for the actual slot filler. The rules contain lexical con-
straints (exact match words), semantic constraints and/or part of speech on each
item for each field. Figure 2.7 shows an example of an extraction rule learned
by RAPIER for the Area slot in the computer-related jobs domain. The pre and
post filler specify that information to be extracted must be preceded by the word
“leading” and followed either by “firm” or by “company”. The filler pattern
specifies the matching conditions for the information to be extracted that, in this
example, are at most two words with a POS tag “nn” or “nns”.

RAPIER uses a not pure bottom-up approach because it combines bottom-up
approach with a top-down component. For each slot, it begins with the most
specific rule-base for that slot and then compacts the rule-base by generalizing

19How many times an object concept is activated by an actual relevant object.
20Corresponding to the two noun entities in the rule.
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AREA extraction rule:

Pre-filler Pattern:
1)word: leading

Filler Pattern:
1)list: length 2

Post-filler Pattern:
1)word:{firm,company}

syntactic: {nn,nns}

Figure 2.7: A sampleRAPIER rule to extract the Area slot.

the specific rules. To do this, it takes random pairs of rules from the rule-base
and applies a beam-search algorithm to find the best generalization of each pair:
first, it only generalizes the filler patterns and creates rules with the least general
generalization filler pattern obtained and with empty pre and post filler patterns;
then, it specializes the resulting rules by adding constraints into the pre and post
filler patterns.

RAPIER needs relatively large amounts of training examples, consisting of
documents paired with filled templates, even for relatively simple extraction
tasks. It also makes use of a part-of-speech tagger (the Brill’s tagger) and a
domain-independent lexicon (WordNet).

In order to ease the expert’s task of annotating the training corpus,active
learningmethods have been proposed. An active learning system is able to influ-
ence the examples it is given, for example, by selecting the subset of examples,
from a set of unsupervised examples, that will be the most informative. Such
approach is known asselective sampling(Cohn et al. 1994; Lewis and Catlett
1994). The basic idea of this approach is starting with a small set of annotated
examples and a large set of unannotated examples, the learner attempts to select
additional examples for annotation that are likely to be the most useful. Some
works that have applied selective sampling to IE pattern acquisition are (Soder-
land 1999), (Thompson et al. 1999) and (Turmo 2002).

2.3.2 Semi-supervised Approaches

All these systems obtain IE patterns without the hard work of writing them man-
ually. However, they need an annotated training corpus. This too is tedious work
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that must be done by a human expert. An important improvement in the process
of acquiring IE patterns would be to avoid the need for an annotated corpus.

An early attempt to elude this problem isAUTOSLOG-TS (Riloff and Shoen
1995), which obtains conceptual patterns for IE using a previously classified
training corpus without text annotations. This system is an extension ofAU-
TOSLOG, described above, in which the annotated corpus is substituted by a set
of unannotated texts containing positive examples. In this approach, an expert
has to validate the set of patterns learned and indicate the information they are
able to extract.

More recently, systems have also been proposed which avoid the task of fully
annotating the corpus (Brin 1998; Collins and Singer 1999; Riloff and Jones
1999; Agichtein and Gravano 2000; Yangarber 2001). All of them are based on
the use of a set of seed examples from which they learn some context conditions
that then enable them to hypothesize new positive examples, from which they
learn new context conditions, and so on. This approach is known asbootstrap-
ping.

In IE, Riloff and Jones (1999) present a method for simultaneously learning
a semantic lexicon and a set of patterns for one slot of the output template. The
system starts with a small set of words (seeds) that belong to the semantic cat-
egory to be extracted. Occurrences of these are then found in the unannotated
corpus and extraction patterns are inferred based on the surrounding context. The
set of patterns is used to extract new words that belong to the semantic category,
and the process is repeated.

DIPRE(Brin 1998) is another system for acquiring patterns which is able to
extract binary relations from Web documents. Very simple patterns are learned
from a set of seed word pairs that fulfil the target relation (for example, Company
- Location). Examples are used to search Web pages for pieces of texts where
one word in the relation appears very close to the other. In this case, a pattern
is created which expresses the fact that both semantic categories are separated
by the same lexical items that separate the example seed words in the piece of
text found. The set of patterns obtained from the example relations are used to
find more pairs of related words and the process is repeated. TheSNOWBALL

system (Agichtein and Gravano 2000) is a further development of this idea which
uses statistical techniques to avoid the formation of low precision patterns.

Finally, EXDISCO (Yangarber et al. 2000a; Yangarber 2001) is a bootstrap-
ping method in which extraction patterns are learned from an initial set of IE
patterns whose application in a text indicates that the text is suitable for extract-
ing a target event. By applying the set of seed patterns, the unannotated corpus
is divided into relevant and irrelevant texts. An exploratory search for patterns
correlated with the set of relevant texts, allows one to guess new extraction pat-
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terns that can be used to search new relevant documents, and so on. Unlike the
previous approaches, a human expert has to indicate which slots of the output
template are filled by each learned pattern.

In spite of the fact that the bootstrapping approach is very appealing due
to its reduction in handcrafting, it does present some problems. The main dis-
advantage of bootstrapping approaches is that, although the initial set of seed
examples could be very reliable for the task in hand, the accuracy of the learned
patterns quickly decreases if any wrong patterns are accepted in a single round.
Systems based on bootstrapping techniques must incorporate statistical or confi-
dence measures for patterns in order to limit this problem. Another drawback is
that these systems need a large corpus (of the order of thousands of texts), which
is not feasible in some domains. Finally, the bootstrapping approach is also de-
pendent on the set of seed examples that are provided by the expert. A bad set of
seed examples could lead to a poor set of extraction patterns.

Bootstrapping is closely related toCo-training (Blum and Mitchell 1998).
Though the approaches are not identical Co-training theory could be useful for
providing a theoretical basis in a Probably Approximately Correct (PAC) learn-
ing framework for the approaches described above. Blum and Mitchell (1998)
present formal results for learnability from a small set of examples and a large
set of unlabelled examples where the examples can be described using two dif-
ferent views (sets of features describing the examples) that can be used inde-
pendently for learning the target concept21. Two learning algorithms are started
independently, each one on a different view of the examples. When the set of la-
belled examples has been exhausted, the concept learned from one view is used
to label unlabelled examples that will be used for learning in the other view. In
the systems presented above for IE tasks, bootstrapping is always between two
sides: words in a semantic category and patterns for extracting words in this
category (Riloff and Jones 1999); examples of a binary relation and extraction
patterns for this relation (Brin 1998; Agichtein and Gravano 2000); relevant doc-
uments and patterns to extract information from relevant documents (Yangarber
et al. 2000a; Yangarber 2001). Learning (or expansion) takes place on both sides.
Each side can be conceptualized as a view in the Co-training framework.

While Co-training has been successfully applied in NLP, especially in IR,
the only work we know to date of an explicit application of this framework to
an IE task (Named Entity task, not Scenario Template) is the work of Collins
and Singer (1999). They apply the Co-training approach that is improved using
boostingtechniques (Schapire 1990). Although their approach is well grounded
formally, using it for the Named Entity task seems too ad-hoc, especially because

21Plus other theoretical conditions, for example, independence of both sets of features.
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of the preprocessing of data and the selection of the set of features to represent
the examples.

In addition to the issue of handcrafting the set of IE patterns or annotating a
corpus for learning, there is another issue that makes the process of building IE
systems costly, namely the construction of a semantic lexicon. Semantic knowl-
edge helps define more specific constraints on the information to be extracted by
an IE pattern, especially in IE on non-structured texts where syntax is usually
not enough to proportion a reliable extraction of information. Most systems that
use semantic knowledge rely on a semantic ontology that is created by a human
expert. The only exceptions we know of are Riloff and Jones (1999), reviewed
above, which learns semantic categories along with IE patterns, and Baggaet
al. (1997), which relies on the use of WordNet (Miller 1995) for aiding the ex-
pert in building IE patterns.

This thesis presents a new method that facilitates the process of building an
IE system by limiting the expert’s effort to defining the task and supervising the
final results. This involves the acquisition of extraction patterns without anno-
tated corpora and with a general domain ontology - WordNet in our case. This
is achieved through theESSENCEmethod which appliesELA, a new learning
algorithm for acquiring IE patterns.



Chapter 3

The ESSENCEmethod

TheESSENCEmethod is intended to reduce human expert effort when building
IE patterns. This goal is achieved by means of a pattern generalization (learning)
algorithm, calledELA, which delays the expert intervention as far as possible
and simplifies the amount of information he/she has to deal with. Nevertheless,
an expert is still required in order to validate the results and specify the type of
information to be extracted.

The method we propose makes use of NLP tools such as a semantic ontology
and a syntactic parser. In order to make theESSENCEmethod as portable as
possible, the knowledge sources and NLP tools it uses must also be as portable
as possible. For this reason, WordNet1, a general-purpose lexicon, has been
selected. WordNet offers lexical, syntactic and semantic information which is
useful in the generalization process. Although the suitability of WordNet to IE
tasks is controversial, we found it effective in the experiments we conducted.
In section 7.1 we point out some reasons that could explain the adequacy of
WordNet. However, the lack of covering for some domain specific words such
as entity names can be overcame by using domain linguistic modules such as
gazetteers and domain specific word lists. Portability of the syntactic parser is
assured because it is domain independent.

The distinctive features ofESSENCEcan be synthesized as:

• The training corpus has no annotations, neither syntactic tags nor semantic
tags, but must include typical examples of text carrying information that is
to be extracted.

• Human intervention is restricted to thetask definitionandtypificationand
final validationof patterns.

1http://www.cogsci.princeton.edu/∼wn

31
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Crash_Event:
Crash_Site: Dominican Republic
Crash_Date: 06-02-1996
Aircraft: 757
Airline: Alas Nacionales
Manufacturer: Boeing
Departure: Dominican Republic
Destination: -

Figure 3.1: Example of filled event template.

• For the generalization (learning) process a semantic hierarchy is needed.
ESSENCEmakes use of WordNet, which is able to cover multi-domain
vocabulary, instead of a hand built semantic hierarchy tailored to each new
domain.

Each component step of theESSENCEmethod, depicted later in figure 3.3, is
described in the following sections.

3.1 Task Definition

Since IE is oriented to a specific task, the expert has to define the type of infor-
mation to be extracted. TheTask Definitionmodule has been designed to assist
the expert in this work. Basically, for each slot of the output template (see sam-
ple template in figure 3.1) he/she defines a set ofExtracting Synsetsand a set of
Context Keywords. These sets are necessary for theESSENCEmethod, and thus
the task definition step (depicted in figure 3.2) must be done in advance.

Extracting Synsets

The set ofExtracting Synsetsrepresents the semantic values that an output slot
can take. A synset is a number that identifies a concept in the WordNet onto-
logy. For example, consider theCRASH-SITE slot in the output template for
the aircraft crash domain. In this case, following the requirements of the task,
we could assign to this slot the values:2 6666185, 6359477, 6668569, 2661119,
6691504, 6667942, corresponding respectively to the concepts “bodyof water”,
“region”, “ground”, “facility”, “geological formation” and “terrafirma”. The

2The synset numbers are extracted from version 1.6 of WordNet.
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Definition

Extracting Synsets

Training
Corpus

Task

Context Keywords

Expert

WordNet

Figure 3.2: The Task Definition step.

meaning of this assignment is that only words with these semantic values (or
hyponyms of these values) in WordNet can be used to fill the slot.

In case the expert is not familiar with WordNet, he/she is aided by an easy-to-
use interface. This tool asks for examples of words that can fill a slot. From these
words, the tool shows a set of synsets that correspond to the union of synsets de-
fined in WordNet for the words. The expert can remove synsets that do not
correspond to valid senses for filling the slot. For example, the expert may pro-
vide the word “plane” meaning an airplane. In this case, the tool will provide all
synsets (along with the description) corresponding to “plane”. Now the expert
can remove senses (synset numbers) that are not appropriate for filling the target
slot.

Then, for each of these synset values, the tool shows its hypernym synset
(along with its description or textual gloss) in WordNet and asks the expert if
this synset is a better description for the slot. In our example, the tool will show
the hypernym of synset 2014460 for “plane”. The new synset, number 2170808,
represents the concept “aircraft”. This is a more general sense and allows the
slot to be filled, for example, with helicopter crashes or other items that were not
covered by the synset for plane. If the expert accepts the new synset for filling
the slot, the process is repeated showing a new hypernym and so on until the
expert rejects the proposal.

In some cases, the information to be extracted is expressed in linguistic terms
not covered by WordNet. For example, in the aircraft crash domain, the specific
aircraft model or the airline involved in the crash. In these cases, domain specific
Named Entity recognizers are responsible for the identification of the semantic
category for the entity. Each of these modules tags entities not covered by Word-
Net with a specific semantic tag. When it is possible, the specific semantic tag
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must be a compatible WordNet synset. For example, the entity names provided
by a gazetteer can be tagged with the synset number in WordNet corresponding
to the concept “region”, which is defined as an Extracting Synset. When this is
not possible, the expert must define a new specific semantic tag for the category
identified by the domain specific recognizer, and use this tag as the Extracting
Synset for the slot.

Context Keywords

TheContext Keywordsfor a slot is a list of words that commonly appear together
with the type of information to be extracted. They therefore play the role of trig-
ger words for selecting sentences that might contain relevant information. Con-
text keywords must be nouns or verbs, and their POS must be explicitly given3.
In order to obtain the keywords, the expert can guess some words or browse the
corpus to find an initial set of words. This set of words is automatically extended
by finding in WordNet all synonyms and hyponyms of each word in the initial
set. The resulting set is filtered by the expert and it is finally completed by means
of a morphological tool which generates all the forms of each word depending
on its syntactic category.

The reason for using words instead of synset numbers, as in the case of the
extracting synsets, is a practical one: to avoid the semantic tagging of the whole
corpus, the Relevant Sentence Filtering process (relevant in the sense that the
sentence carries a context keyword), described later in section 3.4.1, limits se-
mantic tagging to relevant sentences. Note that the filtering process is prior to
semantic tagging, and therefore we have to select relevant sentences on the basis
of the presence of words rather than the presence of meanings.

In chapter 5, an example of the whole process of task definition that includes
the generation of the sets of context keywords and the sets of extracting synsets
is shown.

3.2 Preparing the Training Corpus

The ESSENCEmethod is designed to extract target information from free texts.
It starts with an untagged corpus of a particular domain, including prototypical
texts for that domain. The set of texts will be used for training the system and
must contain relevant texts to the IE task. This means that the training corpus
must contain instances of events to be extracted although instances of irrelevant
events can also be present. InESSENCE, even if the expert supplies the system

3Sometimes a word is a useful trigger word as a verb but not as a noun.
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with a corpus containing non-relevant documents, they will be automatically ex-
cluded because usually they will not contain sentences with context keywords
defined by the expert. This is an implicit text-filtering process.

ESSENCEhas proved experimentally to be useful for acquiring IE patterns
when working with only 100 texts for training (about 750 words per text) in an
IE task in the aircraft crashes domain (see results in section 5.3). This feature
distinguishes our approach from the bootstrapping approaches described in sec-
tion 2.3.2.

3.3 Partial Parsing

Once the training corpus is available, major syntactic constituents for each sen-
tence in the text, such as noun groups, verb groups or prepositional groups, are
identified by thePartial Parsingmodule. InESSENCEthis task is performed by
an extended version ofMARMOT, a shallow syntactic parser developed by the
NLP laboratory at the University of Massachusetts4.

In order to includeMARMOT in theESSENCEmethod, we had to extend it in the
following ways:

• Broaden the Syntactic Dictionary:

MARMOT was designed to use a domain specific dictionary. As we are in-
terested in makingESSENCEas portable as possible, we extended the base
dictionary ofMARMOT with syntactic knowledge drawn from WordNet.
Although WordNet was not designed primarily for describing syntactic
information, we selected it in order to maintain consistency because the
same tool will be used later in the generation of IE patterns. In order to
resolve tagging ambiguities, some heuristics were added toMARMOT to
determine the right tag.

• Extend the general-purpose partial lexicons:

MARMOT also has two partial lexicons: one contains known abbreviations
and the other is a phrasal lexicon. Both lexicons help the process that re-
solves sentence boundaries. The use of these lexicons might not be limited
to one domain if they contained general-purpose expressions, for example,
“Mr.” or “Cmdr.”, the abbreviations of “mister” and “commander” respec-
tively, and considering “take off” as a single unit, are all of general use.

4http://www-nlp.cs.umass.edu/
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The initial list of abbreviations and the phrasal lexicon proved to be too
simple. For this reason, they were extended using a table of standardized
abbreviations and a thesaurus, respectively.

In addition to these domain independent modifications, sometimesMARMOT

has to be tuned for the specific domain of the IE task. Tuning mainly consists
of adding some domain specific vocabulary. Although WordNet offers a large
covering across domains, there are several domain specific words that do not
appear. For example, in the scenario concerning aircraft crashes, names of arti-
facts, proper nouns, organization names and some locations were not found. It is
worth mentioning that most of these domain specific names were multi-word ex-
pressions, and it is very important to recognize each multi-word expression as a
single unit for further processing. Specific Named Entity recognizers, gazetteers
or specific word lists resolve the lack of covering of domain specific vocabulary.
All the entities recognized by using a given Named Entity module will be as-
signed to the same semantic category and will be tagged with a special semantic
tag. Semantic tagging is completed later (see section 3.4.3).

At the end of this module we have a partially parsed corpus that feeds the
Pattern Acquisition module.

3.4 Pattern Acquisition

Multi-modulePattern Acquisitionrepresents the core of the method: it produces
generalized patterns from a set of analyzed sentences.Pattern Acquisitioncom-
prises six sub-modules, as depicted in figure 3.4.

3.4.1 Relevant Sentence Filtering

Relevant Sentence Filteringallows the system to focus only on sentences that
contain information related to the task in hand; those sentences that contain one
or more context keywords with the right part of speech are considered relevant.
From the whole set of sentences the system only keeps the relevant ones.

Relevant sentence filtering is performed at this point, after partial parsing,
because it requires the part of speech attached to each word in the sentence to be
known.

3.4.2 Windowing

From eachrelevant sentencewe build a parameter-sized context window. A win-
dow is the context surrounding an occurrence of a context keyword, and the size
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Specific pattern: ( number_of_sentence
list_of_syntactic_groups )

Syntactic group : ( syntactic_category_of_the_group
list_of_constituents_of_the_group )

Constituent : ( syntactic_category
word
set_of_synset_numbers )

Figure 3.5: Template for specific patterns.

(width) of a window is the maximum number of syntactic groups it includes5.
The keyword will be in the center of the window and the context will be formed
by bwidth−1

2
c syntactic components before the keyword anddwidth−1

2
e syntactic

components after the keyword.
Some sentences containing context keywords are too large and include a large

amount of information. Part of this information is usually irrelevant to the task
and slows down the generalization process. The windowing procedure attempts
to rid of from long sentences information that is not related to the keyword, in
the hope that the context windows will retain the target information.

3.4.3 Semantic Tagging

This step tags the headword of each syntactic group with WordNet’s synsets.
Synsets are collected by searching in WordNet for all possible meanings of the
headword corresponding to the POS assigned to the word. Note that no disam-
biguation procedure is performed at this point.

TheSemantic Taggingmodule implements the idea that the meaning of the
headword of a syntactic group represents the meaning of the whole group. The
head of a group is a verb or a noun. This is especially convenient for our ap-
proach because it allows us to generalize semantic senses using WordNet, and
establishes the hyponymy/hypernymy hierarchical relations needed for the gen-
eralization process.

Semantic tagging using WordNet is not performed on groups where the head
has been recognized by a Named Entity module in thePartial Parsingstep (see
section 3.3) as domain specific vocabulary. When a headword has been recog-
nized neither by WordNet nor by domain specific NE modules, the semantic tag

5It is a maximum number because a window does not exceed sentence boundaries.
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Sentences:

1- The flier whose Navy F-14A fighter plunged into a Nashville suburbon Mon-
day, killing himself and four other people,crashedanother jet into the sea
last April.

53- Commerce Secretary Ron Brown and 32 others on a Balkan trade mission
were presumed killedwhen their planeslammedinto a Croatian hillside
during heavy storms Wednesday.

(1 ((PP ((PREP ON NIL) (DATE MONDAY DATE)))
(PP ((PREP KILLING NIL) (NPST HIMSELF NIL)

(CONJ AND NIL) (NOUN FOUR (9896114))
(ADV OTHER NIL)
(NOUN PEOPLE (5957883 6069040 6080290 5976176))))

(VP ((VERB CRASHED (1342612 1431218 1076088 1379139
1076294 1813216 1378886 1076442 1035304 303160
12099))))

(NP ((NPST ANOTHER NIL)
(NOUN JET (2875044 5531909 10710122 2717915))))

(PP ((PREP INTO NIL) (NPST THE NIL)
(NOUN SEA (6781925 9922052 7845203))))

(PP ((DATE LAST_APRIL DATE)))))

(53 ((PP ((CONN WHEN NIL)))
(NP ((NPST THEIR NIL) (NOUN PLANE (2174460 9985988

10046013 3137218 3136725))))
(VP ((VERB SLAMMED (847148 846778 1295221 847023))))
(PP ((PREP INTO NIL) (NPST A NIL)

(NOUN CROATIAN (7052505))
(NOUN HILLSIDE (6724431))))

(PP ((PREP DURING NIL) (NOUN HEAVY (7314549 4553181))
(NOUN STORMS (7803078 10069810 627161))))

(PP ((DATE WEDNESDAY DATE)))))

Figure 3.6: Examples of specific patterns derived from sentences in the aircraft
crash domain. Context window width is set to 6.
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assigned to it isNIL .
The output of this module is a set of context windows with their syntactic

constituents semantically tagged. This set is called the set ofspecific patterns
which will be used as observations for the learning algorithm described in the
next chapter. The structure of specific patterns is depicted in figure 3.5.

Figure 3.6 shows two sentences extracted from the corpus used in our ex-
periments. These sentences have been selected because they contain context
keywords, in this case “crashed” and “slammed”. The figure also shows the
corresponding specific patterns obtained from these sentences after parsing and
windowing have been performed. The value for thewidth parameter is 6. The
headword of each syntactic group recognized by WordNet is tagged with all
senses of the word. Groups recognized by auxiliary NE modules are semanti-
cally tagged with specific semantic tags (in the example,DATE).

3.4.4 Informative Specific Pattern Filtering

Once the semantic tagging has been performed, a second filter is applied to the
set of specific patterns. This filter will retain only specific patterns that contain at
least one group with semantic values that can be used to fill one slot of the output
template. The semantic values that can fill a slot are theextracting synsetsfor the
slot or their hyponyms. The reason for doing this filtering is that specific patterns
that do not carry information to be extracted are useless for learning relevant IE
patterns for the task defined.

We call those groups in a generalized or specific pattern that are semantically
tagged with an extracting synset (or a hyponym of one) for one slot of the output
templateinformative groups.

3.4.5 Learning Algorithm

From the set of specific patterns theLearning Algorithmgenerates a set ofgene-
ralized patterns. A generalized pattern is a set of syntactic and semantic con-
straints that are fulfilled by a set of specific patterns. These constraints require
the presence of precise syntactic groups (verb groups, noun groups or preposi-
tional groups with the right preposition) with precise semantic tags.

Syntactic patterns are able to recognize exactly the same information they
hold. Therefore, they are patterns with very reduced applicability. Generaliza-
tion is required to make specific patterns applicable to new texts in the domain.

TheLearning Algorithmmodule is detailed in chapter 4.
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3.4.6 Useful IE Pattern Filtering

This last filtering process allows the system to discard any useless patterns that
the generalization procedure may generate. Here, generalized patterns with no
generalized semantic tags are removed. These generalized patterns can appear
in some cases because they seemingly cover several specific patterns that in fact
correspond to literally repeated pieces of text.

In addition, the expert can define a minimum number of cases that each pat-
tern must cover. In case that one pattern does not achieve this covering, it is also
discarded.

3.5 Typification

A generalized pattern requires the presence of precise syntactic groups with pre-
cise semantic tags in sentences. Some of the required groups areinformative(see
section 3.4.4). The remaining groups arecontextual. The presence of the latter
increases the precision of the pattern, but no information is extracted from them.

In order to extract the target information, a link must still be provided be-
tween the information that informative groups extract and the output slots.

The Typificationmodule “gives names” to the different pattern groups, in-
dicating the type of information they will extract. It then determines which ex-
tracted information will fill which slot of the output template. A typified gener-
alized pattern is in effect an IE pattern.

The typification process is usually automatic. In the task definition step, the
expert defines the set ofextracting synsetsfor each slot of the output template,
that is, the semantic values each slot can take. When the semantic value of a
group in a generalized pattern is the same as (or a hyponym of) the semantic
values that one slot can take, the process links that output slot to that group,
indicating that the group will extract such information. The only exception to
this is when the semantic value of a group is an extracting synset (or a hyponym
of) for more than oneoutput slot. In such cases, the expert must decide which
slot the group will fill.

Figure 3.7 describes the structure of typified generalized patterns, that is,
final IE patterns. Figure 3.8 shows an example of such patterns. The example
pattern requires: (1) a verb group with its head in set 1 of context keywords
(defined by the expert in our experiments to extract crash locations and crash
dates), (2) a preposition group with the preposition"INTO" and a WordNet
“geological formation” head, and (3) a preposition group containing a date. The
pattern has been typified to extract information for theCRASH-SITE and the
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IE pattern : ( number_of_groups_in_the_pattern
cost_of_the_last_relaxation
list_of_constraints )

Constraint : ( syntactic_category_of_the_constraint
list_of_constituents_of_the_constraint
slot_to_be_filled_by_the_constraint )

Constituent : ( syntactic_category
words_in_the_training_set_matched
synset_number_or_specific_semantic_tag )

Figure 3.7: Template for typified generalized patterns.

((3 6)
((VP ((VERB (CRASHED SLAMMED) KEYWORD-1))

CONTEXTUAL-GROUP)
(PP ((PREP INTO NIL) (NOUN (SEA HILLSIDE) (9457)))

CRASH-SITE)
(PP ((PREP NIL NIL) (DATE (LAST_APRIL WEDNESDAY) DATE))

CRASH-DATE))
)

Figure 3.8: Example of a typified generalized pattern, i.e., a final IE pattern. The
last tag of each group indicates which slot of the output template will be filled
with information extracted by that group.

CRASH-DATEslots. The remaining group, that which requires the context key,
is typified as acontextual group.

3.6 Validation

Finally, the set of extraction patterns obtained must be validated. The validation
process consists in applying the IE patterns to extract the information from a test
corpus.

For some domains, it is possible to compare the information extracted by the
system with a database containing the correct answers, to evaluate the system
performance. Examples of these domains are those used in MUC competitions.

Results on testing are then analyzed by the expert. If results at this stage were
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not satisfactory, they could still be useful as feedback for a new execution of the
learning process. For example, the expert could resolve to change the window
width parameter or enlarge context keyword lists.



Chapter 4

The ESSENCELearning Algorithm:
ELA

The learning algorithm is the core of theESSENCEmethod. Inspired by ML
techniques,ELA explores the set of specific patterns provided by theSeman-
tic Taggingmodule (see section 3.4.3) in order to find regularities that will be
used to build a set of generalized patterns. The proposed learning algorithm has
been designed specifically for IE tasks. It builds extraction patterns from a set
of observations (unannotated instances) rather than from a set of labelled exam-
ples, thereby becoming closer to a text data mining algorithm than to a classical
supervised learning algorithm.

In ML approaches for learning IE patterns, the expert usually has to provide
the system with an annotated corpus containing examples of the type of infor-
mation to be extracted. Such examples not only consist of a set of particular
sentences that contain information to be extracted, but also an indication of the
specific information to be extracted from the sentence and the slot it must fill in
the output template. The main drawback of these approaches is the cost associ-
ated with annotating a corpus in such a way.

One way to overcome this problem is to useunsupervised learningalgo-
rithms which do not learn from examples but from observations. In IE, an obser-
vation is defined as an example without annotations referring to information to
be extracted.

Unsupervised learning has mainly been used forconcept formationbased on
similarity between observations. Specifically, Michalski and Stepp (1983) pro-
posed the termconceptual clusteringas the task of discovering ‘understandable’
patterns in data. This topic is closely related to research done onclusteringal-
gorithms in statistics (Kaufmann and Rousseeuw 1990), which group objects or
observations that are close (given a similarity measure) in the feature space that

45
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describes them. Currently, these techniques are widely used inData Miningand
Knowledge Discovery.

The goal of these approaches is to build sets of observations (calledclusters
or concepts) by analyzing similarities between observations. Similar observa-
tions fall into the same cluster. Most algorithms describe clusters or concepts
learned by means of aprototype(the average observation inside the class) or by
defining a set of properties that every member of the cluster fulfils (this is also
known as acovering description).

In order to apply an unsupervised learning algorithm to the acquisition of IE
patterns, we assume that in Natural Language, the structure of the sentence and
the semantics of words allow the grouping of pieces of text by the information
to be extracted. This is an assumable hypothesis that is implicit in the use of
patterns for extracting information. In fact, an IE pattern can be considered the
definition of a cluster (a covering description).

ELA builds clusters starting from a seed specific pattern (our observations),
and iteratively adds to the cluster the closest observation satisfying a set of con-
ditions until no new observations can be added. The measure that determines the
closest observation to a cluster is defined in the next section. The main advantage
of the approach we present is that only a corpus representative of the domain is
needed. This corpus contains no annotated sentences.

4.1 Relaxation

In our approach, an IE pattern is composed of a set of constraints represented
asnoun groups, verb groupsandpreposition groups. Each group is tagged with
a WordNet synset that is determined by the generalization procedure described
below. These groups specify which type of groups a sentence must contain in
order to satisfy the IE pattern.

Information from a sentence is extracted by an IE pattern when the sentence
contains, for each group in the pattern, a group that matches with it. We say that
a group in a sentencematchesa group in the IE pattern when the head of the
sentence’s group has a semantic tag that is a hyponym in WordNet of the synset
of the pattern’s group1. In this way, information to be extracted is contained in
those groups in the sentence that match informative groups in the IE pattern.

As described in section 3.4.3, a specific pattern is a windowed sentence com-

1Additional constraints can be added in order to consider when two groups match. In our
experiments we also require the same preposition in preposition groups. In further experiments
we could also require the same voice for verb groups, the same number for noun groups, or the
same relative position in the pattern.
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posed of syntactic groups, where the headword of each syntactic group is tagged
semantically with the corresponding set of WordNet synsets. This structure is
too specific as an IE pattern because it describes a set of constraints that can only
be satisfied by the sentence that originated it. For effective IE systems, we need
to find more widely applicable patterns. Ageneralized patternis a candidate for
being an IE pattern describing a set of constraints that are fulfilled by several
specific patterns (that is, for each group of the generalized pattern, there exists a
group in each specific pattern that matches it). If this holds then we say that all
these specific patterns arecoveredby the generalized pattern.

The algorithm we propose (ELA) follows a bottom-up approach. The way
to obtain a generalized pattern consists of initially setting it to a randomly se-
lected specific pattern and then repeatedly generalizing it in order to cover a new
specific pattern with each iteration. Generalization is achievedby relaxing the se-
mantic tagsassociated with the groups of the pattern and/orby removing groups
from the pattern when the former is not possible.

Relaxation of a semantic tag in the generalized pattern is performed in or-
der to find a semantic description of the group that could also cover a group
in the new specific pattern (allowing both groups to match). For example, as-
sume that the generalized pattern has a group with the semantic tag representing
an AVALANCHE and the specific pattern has a group tagged semantically as a
CRASH. If the semantic ontology has defined both concepts as hyponyms ofAC-

CIDENT, then both groups can be covered if the semantic tag of the generalized
pattern is relaxed (generalized) toACCIDENT.

The selection of the new pattern to be covered each time is done by searching
the whole set of specific patterns for the oneclosestto the generalized pattern in
hand. InELA, the closest pattern is the specific pattern that requires aminimum
generalizationof the generalized pattern in order to cover also the specific pat-
tern (in other words, the specific pattern that forces a minimum generalization
of the generalized pattern in order to be covered by it). As we have seen, gen-
eralization is done by relaxing semantic tags associated with the groups in the
pattern and/or by removing groups from the pattern when the former is not possi-
ble. The measure of the cost of generalization, ourrelaxation measure, takes into
account the number of groups that remain (a measure of the removed groups),
and the generalization that has been done in the semantic ontology in the groups
that remain. Formally, the relaxation measure is defined as follows:

Relax(x, y,M) = w1 (LW − |M |) + w2

∑

<i,j>∈M

MC(xi, yj) (4.1)
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whereM is a coherent2 set of pairs< i, j > indicating that group numberi of
the generalized3 patternx (represented byxi) matches groupj of the specific
patterny (yj), LW is the maximum number of groups in a pattern (the width
parameter in section 3.4.2),MC(xi, yj) is the cost of generalizing groupsxi and
yj for allowing their match, and finally,w1 andw2 are parameters given by the
user in order to balance the relative influence of the cost of generalizing semantic
tags with respect to removing groups in theRelax function.

This formula measures the cost of generalizing patternx in order to cover
patterny for the set of matching groups defined inM . The fact that removing
a group is similar to generalizing that group to the top node of the semantic
hierarchy could give us some clues for assigning values tow1 andw2. Assuming
that the average depth of a synset in WordNet is7, settingw1 to 7 andw2 to 1
will give approximately the same influence to both terms in the equation. Giving
values higher than 10 tow1 whenw2 is set to 1 will facilitate the maintaining of
groups in the generalized pattern. Values forw1 less than 5 whenw2 is set to 1
will facilitate the removal of groups in the generalized pattern. Note that,Relax
being a comparative measure andw1, w2 relative values (for example, values
w1 = 2 andw2 = 1 would lead to the same ranking of similarity among patterns
as settingw1 = 2k andw2 = 1k for anyk), the measure could be formulated
using only one parameter, for exampleα (0 ≤ α ≤ 1), and replacingw1 byα and
w2 by (1−α). Nevertheless, we keep the original formulation because it is easier
for the expert to work with relative values than to work with theα parameter.

The generalization cost for matching groupsxi from the generalized pattern
andyj from the specific pattern,MC(xi, yj), is measured by counting the min-
imum number of levels to climb in the ontology from the semantic tag ofxi, to
find a synset that covers both groups. In cases where headwords ofxi andyj

werecontext keywordsfor the same output slot, or were recognized by the same
domain specific named entity module, the generalization cost is 0. Formally,

2That is,i andj cannot appear more than once in the set and both values are less than or equal
to the number of groups in patternsx andy respectively. In addition, the syntactic category (and
the preposition in preposition groups) forxi andyj has to be the same.

3We consider a seed pattern also as a generalized pattern.
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MC(xi, yj) =





0
if ∃ k (h(xi), h(yj) ⊆ CKk ∨

S(xi), S(yj) = NEk )

min
k ∈ S(xi)
l ∈ S(yj)

D(k)−D(mchper(k, l)) if ∃mchper(k, l) ∧
D(mchper(k, l)) > θ1

∞ otherwise.
(4.2)

whereD(k) is the depth in the WordNet ontology of sensek, h(xi) is the head-
word of groupxi, CKk is the set of context keywords for the slotk of the output
template,S(xi) is the set of semantic tags of the headword in groupxi, NEk is
the semantic category attached by the named entity modulek, mchper(k, l) is
the minimum common hypernym in WordNet for synsetsk andl, and finally,θ1

is a threshold parameter for preventing generalized patterns with the excessively
general concepts existing in the first levels of the WordNet ontology (where all
concepts do match).

Now, finding the closest pattern for generalizing patternx is defined as find-
ing the patterny with a set of matching groupsM that minimizes theRelax
measure. That is, if we defineBestM(x, y) as the setM of matching groups
that minimizes theRelax measure betweenx and y patterns (in cases where
more than one setM minimizes this measure, we take one of them randomly),

BestM(x, y) = arg min
M

Relax(x, y, M) (4.3)

the closest pattern to patternx (which we callCP (x)) is defined as the following:

CP (x) = arg min
y

Relax(x, y, BestM(x, y)) (4.4)

In cases where more than one pattern minimizes this measure, one of them is
selected randomly as the closest pattern tox.

Minimum generalization of generalized patternx to cover specific patterny
is achieved by performing a minimum generalization of all groups in the gener-
alized pattern that match the specific pattern (followingBestM(x, y)), and by
removing the other groups.Minimum generalization of a groupis performed
by setting the semantic tag of the generalized group to themchper(k, l) that
minimizedMC(xi, yj). Using these definitions, patternx is transformed into a
more general pattern by performing a minimum generalization of the generalized
pattern to cover the closest specific patternCP (x).
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In order to avoid an excessive generalization when attempting to cover the
closest pattern, we define theθ2 parameter. When theRelax value for the closest
pattern is higher than a threshold parameterθ2

4, no further generalization of the
generalized pattern is performed.

It is worth noting that minimum generalization involves an implicit word
sense disambiguation (WSD) process. From the set of synsets describing the
headword ofyj, we assume that the right one is the closest in the WordNet hier-
archy to the headword of the matching group in the generalized pattern (note that
the matching group in the generalized pattern has only one semantic tag because
it results from a previous generalization where disambiguation was implicitly
performed). This side effect is not undesirable at all. All specific patterns are ex-
tracted from the same corpus provided for one specific domain, contain context
keywords and carry at least one group with an extracting synset. We can con-
clude that to some extent they share the same context. Some successful WSD
procedures attempt to find out the sense of one word by assuming that words
in the same context conditions will have similar meanings. In some works, for
example (Agirre and Rigau 1996), similarity is even measured using WordNet
relations.

Figure 4.2 shows a set of generalized patterns obtained from the two specific
patterns shown in figure 4.1. Note that all patterns have a relaxation value below
16 because the maximum relaxation allowed,θ2, has been set to this value. Note
also that all of them contain three matching groups because, in the example,
we limited the number of matches|M | to this value. Finally, note that each
generalized pattern contains a group tagged with the labelKEYWORD-1rather
than a synset number. This represents the constraint that any sentence fulfilling
the IE pattern must contain at least one context keyword.

4.2 ELA

The goal ofELA is to find a set of generalized patterns able to extract infor-
mation relevant to the task. In the training corpus, this information is contained
in those groups of specific patterns that are semantically tagged withextracting
synsetsfor one slot.

ELA learns a set of patterns that covers information to be extracted. Each
pattern is learned in the run of a function calledlearn-one-patternthat takes the
set of specific patterns as input and returns a generalized pattern covering part
of the information to be extracted. Information covered by this new pattern is
marked as extractable and will no longer be considered for learning. The process

4That is, whenRelax(x,CP (x), BestM(x,CP (x))) > θ2.
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Sentences:

1- The flier whose Navy F-14A fighter plunged into a Nashville suburbon Mon-
day, killing himself and four other people,crashedanother jet into the sea
last April.

53- Commerce Secretary Ron Brown and 32 others on a Balkan trade mission
were presumed killedwhen their planeslammedinto a Croatian hillside
during heavy storms Wednesday.

(1 ((PP ((PREP ON NIL) (DATE MONDAY DATE)))
(PP ((PREP KILLING NIL) (NPST HIMSELF NIL)

(CONJ AND NIL) (NOUN FOUR (9896114))
(ADV OTHER NIL)
(NOUN PEOPLE (5957883 6069040 6080290 5976176))))

(VP ((VERB CRASHED (1342612 1431218 1076088 1379139
1076294 1813216 1378886 1076442 1035304 303160
12099))))

(NP ((NPST ANOTHER NIL)
(NOUN JET (2875044 5531909 10710122 2717915))))

(PP ((PREP INTO NIL) (NPST THE NIL)
(NOUN SEA (6781925 9922052 7845203))))

(PP ((DATE LAST_APRIL DATE)))))

(53 ((PP ((CONN WHEN NIL)))
(NP ((NPST THEIR NIL) (NOUN PLANE (2174460 9985988

10046013 3137218 3136725))))
(VP ((VERB SLAMMED (847148 846778 1295221 847023))))
(PP ((PREP INTO NIL) (NPST A NIL)

(NOUN CROATIAN (7052505))
(NOUN HILLSIDE (6724431))))

(PP ((PREP DURING NIL) (NOUN HEAVY (7314549 4553181))
(NOUN STORMS (7803078 10069810 627161))))

(PP ((DATE WEDNESDAY DATE)))))

Figure 4.1: Initial specific patterns.
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Structure:
((numberof matches measureof relaxation)

list of generalized groups that compose the generalized pattern)

((3 9)
((VP ((VERB (CRASHED SLAMMED) KEYWORD-1)))

(PP ((PREP INTO NIL) (NOUN (SEA HILLSIDE) (9457))))
(PP ((PREP NIL NIL)

(DATE (LAST_APRIL WEDNESDAY) DATE)))))
((3 10)

((VP ((VERB (CRASHED SLAMMED) KEYWORD-1)))
(PP ((PREP INTO NIL) (NOUN (SEA HILLSIDE) (9457))))
(NP ((NOUN (JET PLANE) (2174460))))))

((3 4)
((VP ((VERB (CRASHED SLAMMED) KEYWORD-1)))

(PP ((PREP NIL NIL)
(DATE (LAST_APRIL WEDNESDAY) DATE)))

(NP ((NOUN (JET PLANE) (2174460))))))
((3 13)

((VP ((VERB (CRASHED SLAMMED) KEYWORD-1)))
(PP ((PREP NIL NIL)

(DATE (LAST_APRIL WEDNESDAY) DATE)))
(NP ((NOUN (JET PLANE) (2859872))))))

((3 15)
((VP ((VERB (CRASHED SLAMMED) KEYWORD-1)))

(PP ((PREP NIL NIL)
(DATE (LAST_APRIL WEDNESDAY) DATE)))

(NP ((NOUN (JET PLANE) (9457))))))

Figure 4.2: Generalized patterns with|M | = 3 from specific patterns shown
in figure 4.1. Note that the last three patterns match the same groups but with
different synset numbers.

is repeated until all information to be extracted from specific patterns has been
covered or no more generalized patterns can be learned. This procedure defines
a sequential coveringlearning algorithm. Examples of this type of learning al-
gorithms are AQ (Michalski et al. 1986), FOIL (Quinlan 1990) and CN2 (Clark
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Algorithm 1 : learn-one-patternfunction which is called fromELA.

{ Requires: Set of specific patterns (SP ) from which to learn, and seed
specific pattern (seed pattern) from which to start the generalization process.}

Function learn-one-pattern (seed pattern, SP ) returns generalizedpattern
Setpattern list as the list with onlyseed pattern
Setl pats to the empty list
while not emptypattern list do

Setcurrent pattern to the first one ofpattern list
Removecurrent pattern from pattern list
for eachspecific patternspi ∈ SP do

Create the minimum generalization ofcurrent pattern that coversspi

and that contain at least one informative group ofspi not extractable
by current pattern. If this generalization exists, store it in
pattern list aux

endfor
Remove patterns frompattern list aux with generalization cost higher

thanθ2

if not emptypattern list aux then
Add current pattern to l pats
Setpattern list to pattern list aux
Sort patterns inpattern list by the relaxation done to obtain them

endif
endwhile
Evaluation of the list of patternsl pats and selection of thebest pattern
if positive evaluation ofl pats

then return thebest pattern
else returnNIL

endif
Endfunction

and Niblett 1989). This approach has been successfully used to generate IE pat-
terns inCRYSTAL (Soderland et al. 1995a) andRAPIER (Califf 1998), among
others.

The learn-one-patternfunction builds each generalized pattern in a bottom-
up way starting from a randomly selected specific pattern. At each iteration the
pattern is generalized to cover the closest pattern following theRelax measure,
until the next closest pattern to be covered involves a generalization cost higher
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thanθ2. Since the goal is to cover information contained in groups carrying ex-
tracting synsets, a new condition is added to the definition of the closest pattern:
the closest pattern is that which minimizes the generalization cost and that con-
tains a group carrying an extracting synset not yet covered by previously learned
patterns. This leads pattern generalization to extract relevant information while
avoiding redundant IE pattern formation. Algorithm 1 shows the implementation
of the learn-one-patternfunction that generates the minimum generalizations of
the current pattern with all specific patterns, and from them attempts to obtain
the closest pattern that fulfils the required constraints.

Note that the algorithm stores the history of generalizations from the specific
pattern to the last generalization in thel pats list. At the end of the generaliza-
tion iteration,l patslist must be validated and the best pattern in the list must be
selected. This procedure is necessary becauseELA does not learn from positive
examples but frompossiblepositive examples. Note that the set of specific pat-
terns is a set of candidates for positive examples because they contain a context
keyword and at least one group carrying an extracting synset for one slot of the
output template. Nevertheless, in some cases, the generalization of the current
pattern could be done to include a specific pattern that would not be classified as
positive if examples were labelled. Sometimes, the seed specific pattern could be
irrelevant or even a negative example for extracting target information. Taking
this into account, it is necessary to validate and select the best pattern inl pats.

In our method, there are two different ways of doing this. The first way is
a visual examination of the list of patterns by the expert. However, this method
could be tedious or, even worse, misleading because patterns are not tested on the
corpus. A second way is to select from the list the pattern with a highest mixture
of recall andprecision, known asF (Lehnert and Sundheim 1991). Briefly, while
recall measures the covering of IE patterns, precision measures the quality of IE
patterns. Both values are expressed as percentages. A 100% recall indicates
that all information that had to be extracted was actually extracted. A 100%
precision indicates that all information extracted was right. In order to select the
best pattern from thel pats list, the most generalized pattern is applied to the
training texts. The extracted information is presented to the expert, who marks it
as rightly or wrongly extracted.

The expert’s report will be used to measure precision for each pattern in
l pats. Measuring recall (covering) is harder because it is not possible to know
in advance all information that should be extracted from the corpus. Neverthe-
less, we use a comparative measure of recall, calledRelative Recall. The most
generalized pattern will extract, by definition, more information than the other
patterns inl pats. Therefore, the recall of the most generalized pattern will be
used to measure recall of the other patterns. TheRelative Recallof a pattern
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Algorithm 2 : ELA algorithm.

{ Requires: Set of specific patterns (specific patterns) containing groups with
context keywords and groups with synset numbers equal or hyponym of a
extracting synset for the slot for which we try to learn a set of patterns.}

Function ELA (specific patterns) returns set of patterns
Setw1, w2, θ1, θ2 parameters
Setgeneralized patterns set to the empty set
SetSeed Set to specific patterns
while not emptySeed Set do

Seed Pattern:=RandomOneFrom(Seed Set)
gen pat := learnonepattern(Seed Pattern, specific patterns)
RemoveSeed Pattern from Seed Set
if gen pat then

Add gen pat to generalized patterns set ;
Mark the groups of specific patterns covered bygen pat
Remove fromSeed Set specific patterns covered bygen pat

endif
endwhile
return generalized patterns set

Endfunction

is then measured as the percentage of information recovered by it with respect
to the information extracted by the most generalized pattern. Finally, the best
pattern in the list will be the one with the highestF replacing recall by Relative
Recall.

The learn-one-patternfunction must be called wisely in order to generate a
complete set of generalized IE patterns for the current IE task. The point is to
call the function with a different seed pattern each time until no specific patterns
remain to be used as seed, or until all informative groups of each specific pattern
are covered by the current set of generalized patterns. The resulting algorithm is
calledELA and is shown in Algorithm 2.
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Chapter 5

MUC-like Experiment

In this chapter we present the results obtained testingESSENCEon a MUC-like
task following the MUC guidelines. This first experiment allows us to evaluate
the success ofESSENCE in a standard non-structured style corpus. A second
kind of experiments, designed to obtain a more solid evaluation of the learning
abilities ofESSENCE, will be presented in the next chapter.

Previous to the exposition of the results from the MUC-like experiment, we
will describe to some extent the domain and scenario of extraction, how the
expert defines the task in theESSENCEframework, and the values chosen for the
parameters of theESSENCEmethod.

5.1 The Task and the Data

The set of experiments presented here are intended to testESSENCEon a MUC
domain, concretely, we appliedESSENCEto MUC-7 dry-run texts.

The scenario for the MUC-7 IE task concerned aircraft crash or accident
incident reports and updates. The goal was to find out information about aircraft
crashes or accidents, such as the location and the date of the accident, the model
of the aircraft involved in it, and flight information (such as the departure and
arrival information, the owner of the aircraft or the company that manufactured
the aircraft).

MUC-7 organization delivered two text sets, one for training and the other
for testing purposes. Each set was composed of 100 texts from the New York
Times News Service (see figure 5.1 for an excerpt from a news story). Not all
the news stories in the corpus describe the crash of an aircraft but all of them
mention the word “crash” at least once.

57
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<DOC>
<DOCID> nyt960207.0722 </DOCID>
<TEXT>
SEATTLE - It’s the phone call no one wants to get, but
everyone knows might come one day.
It came late Tuesday when Boeing got word that a chartered
757 aircraft crashed shortly after takeoff from the
Dominican Republic. All 189 passengers are feared dead.
The crash, only the second in the history of the Boeing
757, came less than two months after an American Airlines
757 slammed into a mountain as it approached Cali,
Colombia. Four people survived the Dec. 20 crash that
killed 160 people. The cause has not yet been determined.
After hearing the news of Alas Nacionales Flight 301
Tuesday night, members of Boeing’s Air Safety
Investigation Group monitored the situation throughout the
night and quickly assembled a team of safety experts to be
on standby in case they were needed at the crash scene.
One Boeing air safety investigator was expected to arrive
Thursday in Puerto Plata to assist a team from the
National Transportation Safety Board and the Dominican
Republic in trying to determine why the two-engine jet
crashed. More Boeing engineers will be called in if
needed.
...
</TEXT>
</DOC>

Figure 5.1: An excerpt from a document of the aircraft crash domain.

Specifically, theESSENCEmethod was used to extract the following infor-
mation:

Crash Date: The date of the crash or accident. Examples: “January 17”.

Crash Site: The location of the crash or accident. Examples: “Long Island”,
“Lockerbie”.

Aircraft: The aircraft model involved in the accident or crash. Examples: “DC-
9”, “F-14”, “727”.

Airline: The owner of the aircraft; it will either be an organization or a person.
Examples: “Navy”, “Air Force”.
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Manufacturer: The company that manufactured the aircraft. Examples: “Boe-
ing”, “Cessna”.

Destination: The location to which the aircraft was headed when the accident
or crash occurred. Examples: “JFK International Airport”, “Paris”.

Departure: The location from which the aircraft departed. Examples: “Bonn”,
“Heathrow Airport”.

Although ESSENCEdoes not need a corpus with annotations about infor-
mation that should be extracted (answer keys), MUC competitions deliver them.
We use the answer keysnot for learningbut to automatically validate the patterns
generated, and thus releasing the expert from this task. Validation is performed
with the known measures of recall, precision and their harmonic average, also
known as theF measurement with theβ value set to one (see section 2.1.1 for a
description of these measures).

5.2 Applying the Method to the Task

In the first step of theESSENCEmethod, the expert must define a set of context
keywords for each slot to be filled in the output event template, in this case for
crash information slots (which include theCRASH-SITE and CRASH-DATE
slots), and for flight information slots (which include theDESTINATION, DE-
PARTURE, AIRLINE , MANUFACTURER, andAIRCRAFTslots).

5.2.1 Crash-information Slots

Context keywords

The set of context keywords forverb groupsused for the crash information slots
(CRASH-SITE andCRASH-DATEslots) was built up from six concept words
selected by an expert and that usually describe a flight crash. These verbs were:

1. CRASHexpressing the crash of a flight,

2. FALL describing the fall of an aircraft,

3. DISAPPEARexpressing the disappearance of a flight from radar screens,

4. EXPLODEdescribing an explosive flight accident,

5. PLUNGEexpressing a crash into water, and
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6. KILL expressing an accident in which people died.

This set of words was selected because they are frequently used to define aircraft
accidents or effects of aircraft accidents. Information about accidents, as the date
and the site of the accident, is likely to appear near these words.

From this set of words, the expert selected synonyms and hyponyms of these
words in WordNet to complete the set of context keywords. The expanded set of
context keywords used was the following:

BUMP, CLASH, COLLIDE, CRASH, HIT, JAR, KNOCK, RAM, SHOCK, SLAM,

STRIKE, DESCEND, DOWN, FALL, LAND, DISAPPEAR, LOSE, BLEW, BOMB,

EXPLODE, FIRE, DIE, KILL, PERISH, DIVE, NOSEDIVE, PLUMMET, PLUNGE.

Finally, this set was further automatically extended by adding all forms of each
word using a morphological tool, resulting in the following bag of words:

BLEW, BLEW UP, BLOW, BLOWING UP, BLOWN, BLOWN UP, BLOW UP,

BOMB, BOMBED, BOMBING, BOMBS, BUMP, BUMPED, BUMPING, BUMPS,

CLASH, CLASHED, CLASHES, CLASHING, COLLIDE, COLLIDED, COL-

LIDES, COLLIDING, CRASH, CRASHED, CRASHED-INTO, CRASHES, CRASH-

ING, DESCEND, DESCENDED, DESCENDING, DESCENDS, DIE, DIED, DIES,

DISAPPEAR, DISAPPEARED, DISAPPEARING, DISAPPEARS, DIVE, DIVED,

DIVES, DIVING, DOWN, DOWNED, DOWNING, DOWNS, DYING, EXPLODE,

EXPLODED, EXPLODED-OVER, EXPLODES, EXPLODING, FALL, FALL-

OUT, FALLEN, FALLING, FALLING, FALLS, FELL, FIRE, FIRED, FIRES,

FIRING, HIT, HITED, HITS, HITTING, JAR, JARED, JARING, JARRED, JAR-

RING, KILL, KILLED, KILLING, KILLS, KNOCK, KNOCKED, KNOCKED-

DOWN, KNOCKING, KNOCKS, LAND, LANDED, LANDING, LANDS, LOSE,

LOSING, LOST, NOSEDIVE, NOSEDIVED, NOSEDIVES, NOSEDIVING, PER-

ISH, PERISHES, PERISHED, PERISHING, PLUMMET, PLUMMETED, PLUM-

METING, PLUMMETS, PLUNGE, PLUNGED, PLUNGES, PLUNGING, RAM,

RAMED, RAMING, RAMMING, RAMS, SHOCK, SHOCKED, SHOCKING,

SHOCKS, SLAM, SLAMED, SLAMING, SLAMMED, SLAMMING, SLAMS,

SMASH, SMASHED, SMASHES, SMASHING, STRIKE, STRIKED, STRIKES,

STRIKING, GO-DOWN, GOES-DOWN, GOING-DOWN, WENT-DOWN, GONE-

DOWN.1

1Note that not all words returned by the morphological tool are correct words in English. The
morphological tool tries to find all possible derivations for one word by following very simple
rules. This fact does not affect the system performance because incorrect derivations will not be
present in the corpus.
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The set of context keywords fornoun and preposition groups(that is, noun con-
text words) was defined in the same way by selecting an initial set of noun words,
expanding it with hypernyms and hyponyms in WordNet of these words, and fi-
nally by expanding the set of noun words applying a morphological tool. The fi-
nal set of noun context keywords selected forCRASH-SITE andCRASH-DATE
slots was:

ATTACK, ATTACKS, BOMBING, BOMBINGS, DEATH, DEATHS, DESTRUC-

TION, DISASTER, DISASTERS, DOWN, EXPLOSION, EXPLOSIONS, FALL,

FALLING, FALLS, TERRORISM, TRAGEDY, CRASH, CRASHING, CRASHES,

WRECK, WRECKING, WRECKS, COLLISION, COLLISIONS, COLLAPSE,

COLLAPSES, SMASH, SMASHING, SMASHES, HIT, HITS, HITTING, STRIK-

ING, CRASH-INVESTIGATION, CRASH-PROOF, CRASH-RELATED, SMASHED,

STRIKINGLY, WRECKAGE, WRECKED, LOST.

Extracting synsets

In addition to the set of context keywords, theESSENCEmethodology requires
when possible, for each slot, the definition of a set of semantic tags in WordNet
(synset numbers) representing the kind of information to be extracted for that
slot. This set of semantic tags, namedextracting synsetsin the methodology,
allows the system to focalize and speed up the search of candidate sentences
for building IE patterns. For theCRASH-SITE slot, were defined the follow-
ing noun synsets in WordNet 1.6 that describe possible locations for a crash:
6666185, 6359477, 6668569, 2661119, 6691504, 6667942. These synset num-
bers correspond to:

6666185 meaning:body of water, water [ the part of the earth’s surface covered
with water; “they invaded our territorial waters” ]

6359477 meaning:region [ a large indefinite location on the surface of the
Earth; “penguins inhabit the polar regions” ]

6668569 meaning:land, ground, soil [ what plants grow in (especially with ref-
erence to its quality or use); “the land had never been plowed”; “good
agricultural soil” ]

2661119 meaning:facility, installation [ something created to provide a partic-
ular service; “the assembly plant is an enormous facility” ]

6691504 meaning:geologicalformation, geology, formation [ the geological
features of the earth ]
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6667942 meaning:land, dry land, earth, ground, solidground, terrafirma [ the
solid part of the earth’s surface; “the plane turned away from the sea and
moved back over land”; “the earth shook for several minutes”; “he dropped
the logs on the ground” ]

This set of semantic tags were selected by the expert according to the constraints
expressed in the MUC task definition for filling this slot.

In other cases, the information to be extracted cannot be characterized us-
ing WordNet, because it is expressed in domain dependent words not covered
by WordNet or because their specific structure. TheCRASH-DATEslot is one
example of the later case. Since WordNet is not able to identify its semantic
structure in texts, we used a modified version of the syntactic analyzerMAR-
MOT (as described in section 3.3) that is able to perform detection of dates in
texts.

5.2.2 Flight-information Slots

Context keywords

In the same way that was done for crash-information slots, a set of context key-
words for theDESTINATION andDEPARTUREwas defined. The initial set of
context keywords contained words describing actions like traveling, leaving an
airport and approaching to an airport. The set of verb context keywords was:

LEAVE, GO, RETURN, TRAVEL, LAND, FLY, APPROACH, VISIT, ARRIVE,

LAUNCH, BOUND.

while the initial set of noun context keywords for the same slots was:

APPROACH, DESTINATION, FLIGHT, TRAVEL, LANDING, ARRIVAL, VISIT,

DEPARTURE, LIFTOFF.

These sets of words were further completed with synonyms and hyponyms in
WordNet as it was done in the previous case.

For theAIRLINE andMANUFACTURERslots, the set of seed context key-
words referred to buy and sell (general activities that are related to companies)
and to operate and build (specific activities of this kind of companies). The set
of verbs was:

BUY, ORDER, OWN, RENT, BORROW, DELIVER, OPERATE, BUILD.
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while the initial set of noun context keywords for the same slots was:

BUILDER, RENTER, OWNER.

These sets of words were further extended with the help of WordNet and the
morphological tool as in the previous cases. Then, these sets of context key-
words were completed by adding the context keywords used for crash informa-
tion slots. The reason for including also the set of context keywords defined for
crash information slots is that when describing a crash it is usual to refer to the
airline or to the manufacturer of the plane.

Finally, context keywords for theAIRCRAFTslot included all context key-
words of the other slots, that is, the union of context keywords forCRASH-SITE,
CRASH-DATE, DESTINATION, DEPARTURE, AIRLINE andMANUFACTU-
RERslots.

Extracting synsets

The semantic information to be extracted forDESTINATION andDEPARTU-
REslots are physical places. The expert selected synsets in WordNet to cover
geographic regions (including countries and cities) and facilities to cover airports
and other installations. The obtained set is a subset of the extracting synsets for
the CRASH-SITE slot (because destination and departure locations are usual
places of a crash), that does not include generic places as, for example, oceans.
The final set of extracting synsets defined by the expert was:

6359477 meaning:region [ a large indefinite location on the surface of the
Earth; “penguins inhabit the polar regions” ]

6667942 meaning:land, dry land, earth, ground, solidground, terrafirma [ the
solid part of the earth’s surface; “the plane turned away from the sea and
moved back over land”; “the earth shook for several minutes”; “he dropped
the logs on the ground” ]

2661119 meaning:facility, installation [ something created to provide a partic-
ular service; “the assembly plant is an enormous facility” ]

The definition of the extracting synsets for theAIRCRAFT slot was more
difficult. In this case, WordNet provides some covering because it includes the
generic concept of aircraft. Then the expert firstly included the following Word-
Net synsets to the set of extracting synsets for the slot:
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2170808 meaning:aircraft – (a vehicle that can fly)

3215456 meaning;reaction-propulsion engine, reaction engine – (a jet or rocket
engine based on a form of aerodynamic propulsion in which the vehicle
emits a high-speed stream)

Nevertheless, there are also other terms referring to planes that are not covered
by WordNet. For instance “F14” is an example of such terms that are not covered
by WordNet. To solve this problem, the expert used a list of airplane models in
order to supply the lack of covering of WordNet. In the semantic analysis of
sentences (see section 3.3), when one word was not recognized by WordNet, the
system checked whether the word was in the list of airplane models or not. If the
word was in the list, it was marked with the special tag@PLANE@which, at the
same time, was added to the set of extracting synsets for theAIRCRAFTslot.

We encountered a similar problem when defining the extracting synsets for
the MANUFACTURERslot, because plane manufacturers are organizations that
are not covered by WordNet. We had to add a list of companies and acronyms of
companies that is used in the semantic analysis step to tag words uncovered by
WordNet with the special tag@ORG@which, at the same time, was used as the
extracting synset for theMANUFACTURERslot.

The definition of the extracting synsets for theAIRLINE slot was as follows.
As in the case of manufacturers, airlines are organizations and thus the semantic
tag@ORG@just described was also defined as an extracting synset for this slot.
But following the MUC guidelines, theAIRLINE slot can also be filled with
proper names of persons or families when the owner of the crashed aircraft is an
individual. For identifying these cases, we also added toMARMOT a hand made
entity recognizer for person names, that tags them with the special tag@PER@
which was also used as an extracting synset for theAIRLINE slot.

5.2.3 Other Parameters

The definition of the context keywords and the extracting synsets is done at the
task definition step of the methodology (see section 3.1). Other steps of the
method require values for some parameters to be selected. In our experiments
we have selected the following values:

Window width

In the windowing step of the method (see section 3.4.2), the influence of a context
keyword in the text is limited to a number of syntactic groups surrounding it. The
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window width parameter determines how many syntactic groups placed before
and after the context keyword would be considered in order to generalize patterns
and to extract information from them. The effect of this parameter is rather
obvious: the widest the window the higher recall but the lesser precision. In the
experiments we selected heuristically a window width of 5 (that is, two syntactic
groups before and two syntactic groups after the context keyword). Section 6.3
will report experimental results for one slot using other window width.

The ELA parameters

The ELA learning algorithm depends on the following parameters:θ1, θ2 and,
eitherw1 andw2 or |M |.

The first parameter,θ1, determines how high we can climb in the WordNet
hierarchy to allow the matching of patterns. In WordNet, all nouns are hyponyms
of the root object and thus, all objects do match. We put a limit in order to avoid
so general matchings. We foundθ1=3 an adequate value for our experiments, that
is, we did not allow matchings in the three first levels of the WordNet hierarchy
of concepts.

The second parameter,θ2, puts a limit on how much generalization is allowed
in a single generalization step. This is expressed as the maximum number of lev-
els in the WordNet hierarchy that are allowed to be climbed in order to find a
matching concept. We tested different values from 2 to 15 and we found that
values in the range 8 to 13 worked well. We decided setθ2=10 in our experi-
ments.

Finally, ELA considers the cost of any generalization step as the sum of the
cost of the minimum generalization necessary to allow the matching of groups
which would remain in the pattern, plus the cost of the generalization made in
order to remove the no matching groups (see in page 47 formula 4.1). Thew2

parameter weights the former while thew1 parameter weights the later. An spe-
cial case is when the user prefers to consider patterns with a constant number
of matching groups (see end of section 4.1. This corresponds to the case when
the user begins learning with specific patterns having a fixed number of match-
ing groups,|M |, and sets the parameterw1 to ∞. In this way we do not allow
any group to be removed from the pattern. Since the initial number of matching
groups is|M |, it will remain constant through the generalization process. We
chose for these experiments to set the initial number of matching groups|M | to
2 (that is, each pattern will contain 2 matching groups: one group for the context
keyword and another for one extracting synset).

We conducted preliminary experiments in order to guess the adequate num-
ber of syntactic groups for the patterns to be learned. We also tried to learn
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patterns with 3 groups (that is,|M | = 3). Results for these experiments showed
that while precision of patterns was higher than patterns with 2 groups, recall
dropped too much. The final F measure results showed that patterns with 2
matching groups were more suitable to the proposed domain when given the
same relevance to recall and precision (that is, when considering the F measure
with β = 1) than patterns with 3 matching groups.

Minimum number of cases covered by an IE pattern

Finally, in order to ensure that the patterns generated byELA are minimally
generalized, we require that each generated pattern could be applied at least in 3
cases in the training corpus. This constraint prevents the generation of too spe-
cific patterns which are applicable only to one or two sentences. Consequently,
it reduces the number of learned patterns by ensuring that the patterns have a
minimum applicability.

This constraint is implemented in thelearn-one-patternfunction described
in page 53. At the end of the function, positive evaluation of the best pattern
requires that the pattern covers at least 3 cases in the training test.

5.3 Results in a MUC-like Evaluation

From the sets of context keywords, the sets of extracting synsets and the val-
ues for parameters described in the previous section, theESSENCEmethod was
applied to the 100 texts that compose the training set for the task. The set of
training and test texts is fixed and delivered by the MUC organizers.

As it is indicated in section 4.2, the functionlearn-one-patternobtains a list
of patterns sorted by their generalization degree, being the last pattern the most
general one. From this list, it must be selected the best pattern which is returned
by the function. The selection of the best pattern can be done either by the expert
or automatically by using simple heuristics.

In the MUC-like experiments reported in this chapter we selected the best
pattern by showing to the user the sentences in the training texts that the most
general pattern is able to cover. This set of sentences has not to be calculated
because it is exactly the set of sentences that generated the pattern. We simply
store the identifier of the sentences covered by each pattern as part of the infor-
mation the pattern holds whileELA is building it. The most general pattern (that
is, the last one of the generalization list) is applied to these sentences showing
to the user the information extracted by the pattern. The extracted values for the
first 40 sentences (at the maximum) are shown to the expert. The expert tags
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each extracted value as correct or incorrect for the slot intended to be filled. The
sampling of 40 sentences is used to evaluate theestimated precisionfor each
pattern in the list. This estimation is defined as the amount of correctly extracted
information out of the total amount of information extracted by the pattern, that
is:

EstimatedPi =
ExtractedTaggedRight i

TotalExtracted i

(5.1)

wherei stands for thei-nth pattern in the list.

In addition, we define therelative recall for one pattern as the amount of
correctly extracted information by the pattern compared with the amount of cor-
rectly extracted information by the most general pattern.

RelativeRi =
ExtractedTaggedRight i

ExtractedTaggedRightn

(5.2)

wheren is the number of the last pattern of the generalization list (the more
general one). Notice thatRelativeRi values are in the [0..1] range because the
amount of information extracted by the most general pattern is always higher
than the information extracted by any other pattern in the list of patterns. Note
that once the expert has tagged the information extracted by patterns as correct or
incorrect for estimating the precision of patterns, the computation of the relative
recall is made without any additional intervention of the expert.

With these definitions on mind we guess the best pattern by following thebest
relative F measurecriterium. The best pattern is the one with highestRelative F
measure, defined as:

RelativeFi =
2 · RelativeRi · EstimatedPi

RelativeRi + EstimatedPi

(5.3)

wherei stands for thei-nth pattern in the list (1 ≤ i ≤ n). This is the formula to
calculate the F measure withβ = 1 but replacing recall and precision by relative
recall and estimated precision, respectively.

The set of patterns obtained by applyingESSENCEto the training texts with
the procedure described above to select the best pattern, was tested on both the
training set and the test set2. Recall, precision and F measure results for each slot
to be filled in the IE task are shown in table 5.1.

2The goal of testing the patterns in the training set was to test whether those patterns were
representative for the training texts, not for validating them.
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Training set Test set
Concept R P F R P F
Crash information
Crash Site 67.6 68.0 67.8 59.4 51.2 55.0
Crash Date 78.3 62.0 69.2 75.4 82.6 78.8
Flight information
Aircraft 69.0 100.0 81.6 65.0 100.0 78.8
Airline 55.7 57.9 56.8 65.2 55.2 59.9
Manufacturer 56.2 53.6 54.9 39.5 62.3 48.4
Departure 52.1 87.7 65.3 57.6 51.5 54.4
Destination 54.3 94.8 69.1 60.7 72.9 66.3

Table 5.1: Results for the Aircraft Crash domain.

Results show an average level for F measure of 66.4% in training and 63.1%
in testing, which are reasonably high compared to the overall performance of
other systems in similar MUC tasks (MUC 1991; MUC 1992; MUC 1993; MUC
1995; MUC 1998).

Note that for some slots the results obtained on the test set are better than
those obtained on the training set. This effect appears because of the small num-
ber of texts in both sets. It is also worth to note the high differences between
results on the training set and results on the test set, technically known ashigh
variance, that suggest that these results are not a definitive validation of the pro-
posed method. In the next chapter we will describe a more complete set of
experiments that average results for different runs on different training and test
sets to reduce variance produced by a single test.

Some of the results shown in table 5.1 could be improved upon. The worse
results are for theMANUFACTURERandAIRLINE slots, in both training and
test sets. In the description of theSemantic Taggingmodule in section 3.4.3, we
suggested that the information to be extracted from a syntactic group is usually
the type of information in itsheadword, but this is not always true. For exam-
ple, theMANUFACTURERinformation usually takes the role of amodifierof the
crashed plane which is the headword of the group, for example “Boeing 747”.
This explains the poor recall values for this slot. The scores for theAIRLINE
andMANUFACTURERslots could be greatly improved by also allowing the ex-
traction of information frommodifiersof headwords.
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The procedure for extracting information from modifiers is straightforward:
when a specific type of target information is often used as a modifier of a se-
mantic class of headwords (this is easy to guess for the expert who defines the
task), then the expert has to also define specific extracting synsets for this kind
of headwords. Then, when theESSENCEmethod is applied, IE patterns for these
headwords will also be learned. Later, in the extraction phase, these patterns are
applied as usual but when they extract a syntactic group the returned information
to fill the slot will not be the headword but the modifier.

For example, airlines are very often used as modifiers of aircrafts (for ex-
ample, “TWA 747”, etc.). In order to extract the airline information when it
plays the role of modifier of a plane, the user defines theextracting synsets for
a modified headwith the semantic tags for aircraft models (that is, the extract-
ing synsets for theAIRCRAFTslot that we have seen above). Later,ELA will
learn patterns for extracting aircraft models among the patterns for extracting the
AIRLINE slot. These are special patterns in the sense that they do not extract
information carried by the headword but by a modifier of the headword. When
one of these patterns extracts a noun or preposition group with the headword
semantically tagged as@PLANE@, the system will search in the syntactic group
a modifier semantically tagged as@ORG@or @PER@(the real extracting synsets
for AIRLINE ), and use this information to fill theAIRLINE slot. When the
system does not find a modifier with these tags, nothing is extracted. Note that in
the latter case, the application of the pattern is not counted for recall or precision
scores because nothing is extracted.

The reason for not generating IE patterns for modifiers in the same way as
for headwords, i.e., defining extracting synsets for the target modifiers, is that
they cannot be generalized using WordNet. There is no hyponym/hypernym
relation between modifiers. If we wish to acquire IE patterns taking advantage
of generalization using the WordNet hierarchy, we can only rely on generalizing
the headword.

In the next chapter we will describe a set of experiments conducted to test
the procedure for extracting information from modifiers. We applied this proce-
dure to extract information for filling theAIRLINE andMANUFACTURERslots.
Results indicate that recall for both slots can achieve up to 75%.
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Chapter 6

Detailed Empirical Study

This chapter reports the results obtained applyingESSENCEon the same domain
as that of the previous chapter but with an evaluation procedure designed to ob-
tain a more sound and complete evaluation of the learning abilities ofESSENCE

than the obtained by following MUC rules. In particular, we conducted an ex-
haustive set of experiments to evaluate the performance of the system with dif-
ferent number of training texts and with different values for some parameters of
the learning algorithm.

6.1 Evaluation Procedure

One problem with testing in MUC-style competitions is that training and testing
of the systems are performed on exactly one fixed training set and one fixed test
set. Although dealing with one fixed training set and one fixed test set is the
usual procedure when building an IE system (that MUC tries to evaluate), this
method does not allow a fair comparison between learning systems.

It is well known that in order to compare different learning systems, them
must be compared by their performance on different training and test sets. Ran-
domness in the selection of one training set and one test set could produce by
chance a non representative training set or a extremely difficult (or simple) test
set. The average of the results for different training and test sets reduce the mis-
leading effects of the random selection of texts.

In order to soundly evaluate the learning ability ofESSENCEon the data set
described in the previous chapter, we decided to average the results of learning
on 20 random partitions of the whole data set into a training set and a test set.

The size of the test set was 20 texts, that is relatively small compared with the
test set in MUC competitions (100 texts), but since we performed 20 tests (one

71



72 CHAPTER 6. DETAILED EMPIRICAL STUDY

for each partition), the total number of tests performed was 20x20 = 400 which
is statistically more significant than MUC tests.

The training set was composed of the remaining 180 texts from the data set.
Since one of the features ofESSENCEwe wanted to know is the evolution of its
performance as the number of training texts increases, we have divided the train-
ing set into five subsets containing 20, 60, 100, 140 and 180 texts, respectively.
We named these subsetsTrn20, Trn60, Trn100, Trn140 andTrn180 respectively.
These subsets fulfill thatTrni ⊂ Trnj wheni < j, that is, training setTrn20 is
composed of 20 texts of the training set, these 20 texts and 40 more texts com-
poseTrn60 set, all them and new 40 texts composeTrn100, and so on until the
whole data training set is contained inTrn180. The details of the data preparation
procedure are described in algorithm 3.

There are other ways to evaluate the performance of learning systems, the
most usual arek-fold cross validationandleave one out. k-fold cross validation
consists in dividing the data set intok disjoint sets, each one with the same
number of texts (k/n texts, wheren is the number of texts in the whole data set).
Validation is done by averaging results fork evaluations where at each evaluation
a different subset is used as the test set while the remaining are used for training.
Thus, validation consists in the average ofk runs on test sets composed ofk/n
texts. Whenk is 1, we have theleave one outprocedure.

The testing procedure we propose is more accurate than 10-fold cross vali-
dation because we perform 20 evaluations on test sets with 20 texts instead of
10 tests on test sets with 20 texts. It is also more accurate than 20-fold cross-
validation because the later consists on 20 evaluations on test set with only 10
texts. Nevertheless, the procedure we propose has the drawback that the 20 test
sets are not disjoint an thus, results for different runs are slightly correlated (they
are not statistically independent).

With the testing procedure we propose, we are interested in studying the
number of learned patterns and the precision, recall and F measures obtained
depending on the number of texts supplied for training. We expected that as the
number of training texts is increased, recall will also be increased. In addition,
one of the goals ofESSENCEis the ability to learn from a relative small set of
texts. This hypothesis will be tested by inspecting how the learning measures
evolve as the number of training texts is increased.

As we stated in section 4.2, thelearn-one-patternfunction used by ELA
needs a procedure to choose the best pattern from the list of generalized patterns.
We described in the same section a procedure for selecting the best pattern (that
has been used in the MUC like experiment - see section 5.3). This procedure
tries to balance estimations of recall and precision to select the best pattern.
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Algorithm 3 Data preparation procedure

Require: DS (Data set with 200 texts)

{Build 20 random divisions of the whole data set into training setTrn (180
texts) and test setTst (20 texts). Also divide each training setTrn into sets
with 20, 60 ,100, 140 and 180 texts.}

for k = 1 to 20do
Tstk ← RandomSampling(DS, 20){ k-thTest set}
Trnk ← DS−Tstk { k-thTraining set}
i ← 20
Trnk

i ← RandomSampling(Trnk , 20)
while i ≤ 180do

Trnk ← Trnk − Trnk
i

Trnk
i+40 ← Trnk

i ∪ RandomSampling(Trnk , 40)
i ← i + 40

end while
end for

Another procedure for selecting the pattern from the list of generalized pat-
terns is to sort the list by their precision in a sample of the training set (estimated
precisionas it is described in section 5.3) andchoosing the first pattern with esti-
mated precision higher than a minimum valuewhich we will see as a threshold.
Since precision is inversely proportional to recall, the minimum allowed value
of estimated precision for IE patterns can be seen as a tuning parameter of the
learning algorithm that allows the user to bias the learning either towards high
recall or high precision. A low threshold of estimated precision biases learning
towards high recall of patterns, while a high threshold of estimated precision
biases learning towards precise patterns.

Taking this into account, we will also study in this chapter how the selection
of patterns by requiring different values for the threshold of estimated precision
influences recall, precision and F measures on the test set.

Finally, the tradeoff between quality (precision) and covering (recall) is an-
other interesting property of learning algorithms that will be studied by showing
actual recall-precision plots.

With the training and test sets obtained in the way described above,ESSENCE

will be tested as shown in algorithm 4 in order to obtain the number of patterns
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Algorithm 4 Test procedure

Require: Set of training and test sets obtained in algorithm 3

{20 runs test procedure for each slot considering the number of texts and re-
quiring a minimum estimated precision of patterns}

for each slots do
for each number of training texts valuei in {20, 60, 100, 140, 180} do

for k = 1 to 20do
for each relative precision valuep in {0, 10, 20, 30, ..., 90, 100} do

SetIE k
i ,p(s) to the set of patterns for slots obtained withESSENCE

from Trnk
i with relative precision higher or equal top

SetRk
i,p(s) to the Recall results of testingTstk with IE k

i ,p

SetP k
i,p(s) to the Precision results of testingTstk with IE k

i ,p

SetF k
i,p(s) to the F measure results of testingTstk with IE k

i ,p

end for
end for
Print average results of|IE k

i ,p(s)|, Rk
i,p(s), P k

i,p(s) andF k
i,p(s) for k vary-

ing from 1 to 20
end for

end for

learned, and recall, precision and F measures for the chosen domain.

6.2 Results

In this section we report and analyze the results obtained by theESSENCEmethod
applying the evaluation procedure described above. The experiments were based
on the air crashes domain described in the previous chapter. The sets of context
keywords and extracting synsets for each slot are the same than we defined in the
MUC-like experiment. The values for the parameters of theESSENCEmethod
also remain unchanged.

The only difference with the MUC-like experiments (in addition to the eval-
uation method) is that now we have implemented the procedure that allow the
system to extract information from modifiers. We tested the new procedure to
extract information for theAIRLINE andMANUFACTURERslots.

In the case of theMANUFACTURERslot, since manufacturers are often used
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as modifiers of aircrafts (for example, “Boeing 747”), the expert defined as ex-
tracting synsets for a modified head the extracting synsets for theAIRCRAFT
slot. Thus, patterns to identify aircraft models will be learned in order to extract
manufacturer information from their modifiers.

Finally, since airlines are also often used as modifiers of aircrafts (for exam-
ple, “TWA 747”), the expert defined as extracting synsets for a modified head
the extracting synsets for theAIRCRAFTslot. In addition, since airlines are also
modifiers of the word “flight”, for instance “TWA flight”, the user also defined
as extracting synsets for a modified head the WordNet synset:

195002 meaning:flight [ a scheduled trip by plane between designated airports;
“I took the noon flight to Chicago” ]

In the following section we report the results obtained applying the evaluation
procedure proposed. In particular we are interested in studying the number of
learned patterns, recall and precision measures, and the relationship between
recall and precision.

6.2.1 Number of Learned Patterns

One of the goals ofESSENCE is to learn IE patterns with a small number of
training texts when compared with other unsupervised approaches for learning
patterns. One way to measure the success of this goal is by analyzing the number
of extraction patterns acquired as the number of texts for training increases. Fig-
ures 6.2 to 6.7 show for each slot of the task how many IE patterns are learned as
the number of training texts increases. Each curve in a plot represents the num-
ber of learned patterns when a minimum allowed value of estimated precision is
required.

All plots show that by increasing the threshold of estimated precision, the
number of learned patterns drops. This was expected: sometimes thelearn-one-
pattern function of ELA generates list of patterns without any pattern with an
estimated precision above the threshold. In this case no pattern is returned. As
the minimum allowed value of estimated precision is increased this case is more
likely to appear.

Plots also show that as the number of training texts is increased, the number
of learned patterns also increases. This effect was expected too: the addition of
new training texts allow the learner to discover new patterns in texts1.

1Nevertheless, note that this general statement is not fulfilled for high values of threshold
of estimated precision. For instance, in figure 6.1, for threshold of estimated precision 100%
and training on a number of texts from 140 to 180, the number of learned patterns seems to
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However, the more interesting information that these plots show is that the
increase in the number of patterns is appreciable from 20 to 100 texts, but from
140 texts on, the increase in the number of patterns is not so large. The effect is
more evident in sets of patterns for which a minimum value of estimated preci-
sion between 40 and 100 is required.

Thus, at first glance, the property we are trying to validate, the learning from
a small set of training texts, is partially true (at least for sets of patterns for
which a high threshold of estimated precision is required) for this domain and
slots considering as small a number of training texts around 140.

Nevertheless notice that the fact that the number of patterns is increased does
not imply that learning measures are will increased too, even for recall. Patterns
that appear when training on 180 texts but do not appear when training on 140
texts, are patterns that usually have avery low recall. Notice that we needed 180
texts to discover them. Considering, in addition, that precision is independent
from the number of texts used for learning, the resulting F measure for learning
from 180 texts should not be increased significatively, even when the number of
patterns grows. This explanation will be confirmed in the next sections where
plots for recall and F measures are shown.

By inspecting plots from 6.2 to 6.7, we can find singularities that are worth
to be commented.

In some cases, when we require a high minimum value of estimated preci-
sion, the system returns an empty set of patterns. This is the case for the slots
CRASH-DATE(for threshold of estimated precision 100% and training texts
from 100 to 140) andMANUFACTURER(for thresholds of estimated precision
from 100% to 60% when learning from 20 texts, and for thresholds of estimated
precision from 100% to 80% when learning from 60 texts). In the following
sections, plots will not show information of recall and precision for this cases
because the empty set of patterns has neither recall nor precision.

Another singular case is shown in the plot 6.6 for theAIRCRAFTslot. This
plot shows only one curve. That means that whichever the minimum estimation
precision we required, we obtained the same set of patterns. The cause of having
only one curve is that all patterns had a 100% estimated precision. The high pre-

decrease. In fact, the number of patterns does not decrease, but that the number of patterns above
a threshold of estimated precision decreases. Note that estimated precision is computed on a
sampling of sentencesin the training setwhich the pattern covers (see section 5.3). Thus, some
patterns with estimated precision above a certain threshold, when are used on new texts, have a
precision under that threshold. For instance, some patterns that had 100% estimated precision
when tested on 140 texts, are not longer 100% reliable when the test considers 180 texts (the
pattern fails at least in one case in the new texts). These are the patterns missing from 140 to 180
texts. This effect is more noticeable when requiring a high estimated precision threshold.
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cision of these patterns is due to the specialized vocabulary for aircraft models.
Every time we find a context keyword near a group with the head semantically
tagged as@PLANE@, the headword is the model of the airplane that crashed. This
did not happen in other slots for which we had to use a list of words to supply the
lack of coverage of WordNet, like in theMANUFACTURERandAIRLINE slots
for which we used the tag@ORG@. For instance, when extracting information
by using patterns for theMANUFACTURERslot we extract something tagged as
@ORG@, we are not sure that we have extracted a manufacturer. It could be an
airline or another kind of organization. This partially explains why precision of
patterns forMANUFACTURERandAIRLINE slots is not always 100%.
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Figure 6.1: Evolution of the number of IE patterns learned above a threshold of
estimated precision, for extractingCRASH-SITE information, as the number of
training texts is increased. Margins show the standard deviation obtained for 20
runs.
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Figure 6.2: Evolution of the number of IE patterns learned above a threshold of
estimated precision, for extractingCRASH-DATEinformation, as the number of
training texts is increased. Margins show the standard deviation obtained for 20
runs.
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Figure 6.3: Evolution of the number of IE patterns learned above a threshold of
estimated precision, for extractingDEPARTUREinformation, as the number of
training texts grows. Margins show the standard deviation obtained for 20 runs.
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Figure 6.4: Evolution of the number of IE patterns learned above a threshold of
estimated precision, for extractingDESTINATION information, as the number
of training texts is increased. Margins show the standard deviation obtained for
20 runs.
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Figure 6.5: Evolution of the number of IE patterns learned above a threshold
of estimated precision, for extractingAIRLINE information, as the number of
training texts is increased. Margins show the standard deviation obtained for 20
runs.
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Figure 6.7: Evolution of the number of IE patterns learned above a threshold of
estimated precision, for extracting the slotMANUFACTURER, as the number of
training texts is increased. Margins show the standard deviation obtained for 20
runs.
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6.2.2 Evolution of the Recall Measure

Another feature ofESSENCE interesting to know is how recall of the set of
learned patterns evolves as the number of texts for training is increased and as
the threshold of estimated precision changes.

Figures (a) from 6.8 to 6.14 show that recall do increase as the size of the
training set is increased. The reason is that as the number of texts for training
increases, the number of learned patterns increases too (see the previous section)
and thus, recall also increases. Nevertheless, these figures also show that recall
does not grow in the same way that the number of patterns. Note, for exam-
ple, that in figure 6.8 (a) the difference in recall for curves with thresholds of
estimated precision 0 and 20 is not proportional to the difference in the number
of patterns shown in figure 6.1 for the same thresholds of estimated precision.
The reason was explained in the previous section: patterns that appear late in the
learning process have low recall, while patterns that appear early in the learn-
ing process have a high recall. Another reason can explain (at less extent) the
difference between number of patterns and recall plots. When one information
is extracted by two different patterns, index of recovered information is only in-
creased once. Thus, some patterns are redundant and, though there are actually
more patterns, they do not increase recall.

Another observation worth to mention is that the lower threshold of estimated
precision, the higher recall.

Note that although, in general, recall increases with the number of training
texts, sometimes it drops a little. For example, in figure 6.8 (a), in the curve with
threshold of estimated precision 60%, recall decreases when training is increased
from 140 to 180 texts. This fact is explained similarly to the case of the number
of patterns. Some patterns learned from 140 texts had an estimated precision
above 60% in the 140 training texts, but the same patterns disappear from the set
of patterns for which a minimum value of estimated precision of 60% is required
when learning is done with 180 texts, because their estimated precision on the
training set is now below 60%. The loss of these patterns implies a loss of recall.

Figures (b) from 6.8 to 6.14 show the effect of the threshold of estimated
precision on the recall measure. These figures show that differences in recall
by learning from 140 texts and by learning from 180 texts are not significative
whichever the threshold of estimated precision chosen. Thus learning seems to
stop at 140 texts.
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Notice also the following singularities:

• First, recall scores for theAIRLINE andMANUFACTURERslots, are much
higher than those reported for the MUC-like experiments. The explanation
for this is that now we are using a procedure for extracting information
from modifiers.

• Second, the curves in plots 6.9 (a) and 6.14 (a) for theCRASH-DATEand
MANUFACTURERslots do not report some recall values for high thresholds
of estimated precision, because the set of patterns returned byESSENCE

was empty (see previous section). In addition, for theCRASH-DATEslot
at 100% of minimum allowed estimated precision and 60 training texts, we
obtained a very low recall. This fact is explained because only 1 run out
of the 20 runs performed, returned an unique pattern while the remaining
runs returned the empty set. The average result for all the 20 runs is the
value reported in the corresponding plot.

• Finally, in some cases only one pattern is responsible of a very high recall.
This kind of patterns always appear very early in the learning process.
They can be easily detected because for curves corresponding to similar
threshold of estimated precision there is a big gap in between. For ex-
ample, in figure 6.14 (a) for theMANUFACTURERslot there is a big gap
between curves for 60 and 40 threshold of estimated precision. The gap is
present since starting learning from 20 texts. The responsible is a pattern
with estimated precision on the training text between 40% and 50% that
is able to recover 38% of manufacturers. The other curves for threshold
of estimated precision higher than 50 do not achieve this recall even when
learning from 180 texts because the real precision of the pattern is below
the minimum required precision of 50%.
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Figure 6.8: (a) Evolution of recall on test set for patterns learned with estimated
precision above a given threshold, for extractingCRASH-SITE information, as
the number of training texts is increased, and (b) evolution of recall on test set
for patterns learned from different number of training texts as the threshold of
estimated precision is increased.
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Figure 6.9: (a) Evolution of recall on test set for patterns learned with estimated
precision above a given threshold, for extractingCRASH-DATEinformation, as
the number of training texts is increased, and (b) evolution of recall on test set
for patterns learned from different number of training texts as the threshold of
estimated precision is increased.
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Figure 6.10: (a) Evolution of recall on test set for patterns learned with estimated
precision above a given threshold, for extractingDEPARTUREinformation, as
the number of training texts is increased, and (b) evolution of recall on test set
for patterns learned from different number of training texts as the threshold of
estimated precision is increased.
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Figure 6.11: (a) Evolution of recall on test set for patterns learned with estimated
precision above a given threshold, for extractingDESTINATION information, as
the number of training texts is increased, and (b) evolution of recall on test set
for patterns learned from different number of training texts as the threshold of
estimated precision is increased.
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Figure 6.12: (a) Evolution of recall on test set for patterns learned with esti-
mated precision above a given threshold, for extractingAIRLINE information,
as the number of training texts is increased, and (b) evolution of recall on test set
for patterns learned from different number of training texts as the threshold of
estimated precision is increased.
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Figure 6.13: (a) Evolution of recall on test set for patterns learned with estimated
precision above a given threshold, for extractingAIRCRAFT information, as
the number of training texts is increased, and (b) evolution of recall on test set
for patterns learned from different number of training texts as the threshold of
estimated precision is increased.
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Figure 6.14: (a) Evolution of recall on test set for patterns learned with estimated
precision above a given threshold, for extractingMANUFACTURERinformation,
as the number of training texts is increased, and (b) evolution of recall on test set
for patterns learned from different number of training texts as the threshold of
estimated precision is increased.
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6.2.3 Evolution of the Precision Measure

In the same way we did for recall, we now study the evolution of recall of learned
patterns as the number of training texts is increased and as the threshold of esti-
mated precision is changed.

Figures from 6.15 (a) to 6.21 (a) show evolution of precision as the train-
ing set is increased. Note that, in general, minimum allowed value of estimated
precision of 100% does not ensure an actual 100% precision on the test set. It
is worth to remember again that when we set a threshold of estimated precision
for patterns to be learned, the estimated precision is measured in a sample of
the sentences covered by the pattern in the training set. This implies that pat-
tern learned at 100% threshold of estimated precision do not necessarily achieve
100% precision on the test set.

On the other hand, when requiring a minimum estimated precision of 0%, the
method usually returns sets of patterns with actual precision on the test set higher
than 50%. The reason is that in this set of patterns coexist poorly reliable patterns
with very reliable patterns (all of them above 0% of estimated precision).

As it was expected, figures (a) show horizontal lines, which means that thresh-
old of estimation precision is proportional to actual precision on the test set, and
that increasing the number of training texts does not have a clear influence in
actual precision.

The relationship between precision on test set and minimum estimated pre-
cision required on the training set can be also seen in figures 6.15 (b) to 6.21 (b).
Figures show how the increase in the threshold of estimated precision increases
the precision of the set of learned patterns. They show also the minimum and
maximum precision obtained by tuning the threshold parameter.
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Figure 6.15: (a) Evolution of precision on test set for patterns learned with esti-
mated precision above a given threshold, for extractingCRASH-SITE informa-
tion, as the number of training texts is increased, and (b) evolution of precision
on test set for patterns learned from different number of training texts as the
threshold of estimated precision is increased.
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Figure 6.16: (a) Evolution of precision on test set for patterns learned with esti-
mated precision above a given threshold, for extractingCRASH-DATEinforma-
tion, as the number of training texts is increased, and (b) evolution of precision
on test set for patterns learned from different number of training texts as the
threshold of estimated precision is increased.
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Figure 6.17: (a) Evolution of precision on test set for patterns learned with es-
timated precision above a given threshold, for extractingDEPARTUREinforma-
tion, as the number of training texts is increased, and (b) evolution of precision
on test set for patterns learned from different number of training texts as the
threshold of estimated precision is increased.
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Figure 6.18: (a) Evolution of precision on test set for patterns learned with es-
timated precision above a given threshold, for extractingDESTINATION infor-
mation, as the number of training texts is increased, and (b) evolution of preci-
sion on test set for patterns learned from different number of training texts as the
threshold of estimated precision is increased.
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Figure 6.19: (a) Evolution of precision on test set for patterns learned with esti-
mated precision above a given threshold, for extractingAIRLINE information,
as the number of training texts is increased, and (b) evolution of precision on test
set for patterns learned from different number of training texts as the threshold
of estimated precision is increased.
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Figure 6.20: (a) Evolution of precision on test set for patterns learned with esti-
mated precision above a given threshold, for extractingAIRCRAFTinformation,
as the number of training texts is increased, and (b) evolution of precision on test
set for patterns learned from different number of training texts as the threshold
of estimated precision is increased.
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Figure 6.21: (a) Evolution of precision on test set for patterns learned with esti-
mated precision above a given threshold, for extractingMANUFACTURERinfor-
mation, as the number of training texts is increased, and (b) evolution of preci-
sion on test set for patterns learned from different number of training texts as the
threshold of estimated precision is increased.



6.2. RESULTS 101

6.2.4 Evolution of the F measure

Although it is interesting to study recall and precision scores, the definitive mea-
sure that will determine the success of learning is the F measure which balances
them (see description in page 19 and formula 2.1). As in the previous cases,
figures from 6.22 to 6.28 show the evolution of the F measure as the number of
training texts is increased and the threshold of estimated precision is changed.

Figures (a) show clearly that learning curves flattens out by 140 texts for
training. After that, more training texts do not significantly improve perfor-
mance. This indicates that, 140 training texts are enough for this domain.

Figures (b) show that, in general, F scores are very similar for thresholds
of estimated precision between 0% and 40%, which in addition, are the values
achieving better F scores. For higher values of the minimum allowed value of
estimated precision on the training set, recall falls too much to be balanced with
the increase in precision. Remember that for the set of patterns learned at 0%
threshold of estimated precision, precision on the test set varies from 50% to
100%, depending on the slot.

Even more important, these figures also show that threshold of estimated
precision is not an unstable parameter. A perturbation of the better value for the
threshold implies a very small change in the F score. Thus, it is not critical for
the final performance if we choose 40% or 30% for the threshold of estimated
precision instead of the best threshold value for the slot.

Finally, figures (b) show that the heuristic procedure that we used in the
MUC-like experiments for choosing the best pattern from the list of patterns
generated by thelearn-one-patternfunction (see section 5.3), was better than
requiring a fixed minimum of estimated precision of patterns. Note that for
each slot, figures show that the best F value achieved with 100 training texts
(the number of training texts in the MUC-like experiment) was similar but often
lower than results reported in the table. The only exception are the results for the
MANUFACTURERandAIRLINE slots, that are not comparable because in the
current experiments we are able to also extract information from modifiers.
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Figure 6.22: (a) Evolution of F measure withβ = 1 on test set for pat-
terns learned with estimated precision above a given threshold, for extracting
CRASH-SITE information, as the number of training texts is increased, and
(b) evolution of the same measure on test set for patterns learned from different
number of training texts as the threshold of estimated precision is increased.
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Figure 6.23: (a) Evolution of F measure withβ = 1 on test set for pat-
terns learned with estimated precision above a given threshold, for extracting
CRASH-DATEinformation, as the number of training texts is increased, and
(b) evolution of the same measure on test set for patterns learned from different
number of training texts as the threshold of estimated precision is increased.
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Figure 6.24: (a) Evolution of F measure withβ = 1 on test set for pat-
terns learned with estimated precision above a given threshold, for extracting
DEPARTUREinformation, as the number of training texts is increased, and (b)
evolution of the same measure on test set for patterns learned from different
number of training texts as the threshold of estimated precision is increased.
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Figure 6.25: (a) Evolution of F measure withβ = 1 on test set for pat-
terns learned with estimated precision above a given threshold, for extracting
DESTINATION information, as the number of training texts is increased, and
(b) evolution of the same measure on test set for patterns learned from different
number of training texts as the threshold of estimated precision is increased.
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Figure 6.26: (a) Evolution of F measure withβ = 1 on test set for pat-
terns learned with estimated precision above a given threshold, for extracting
AIRLINE information, as the number of training texts is increased, and (b) evo-
lution of the same measure on test set for patterns learned from different number
of training texts as the threshold of estimated precision is increased.
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Figure 6.27: (a) Evolution of F measure withβ = 1 on test set for pat-
terns learned with estimated precision above a given threshold, for extracting
AIRCRAFT information, as the number of training texts is increased, and (b)
evolution of the same measure on test set for patterns learned from different
number of training texts as the threshold of estimated precision is increased.



108 CHAPTER 6. DETAILED EMPIRICAL STUDY

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100
0 20 40 60 80 100 120 140 160 180 200

F
 m

ea
su

re

Number of training texts

Threshold Precision 0
Threshold Precision 20
Threshold Precision 40
Threshold Precision 60
Threshold Precision 80
Threshold Precision 100

(a)

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
0 10 20 30 40 50 60 70 80 90 100

F
 m

ea
su

re

Threshold Precision for patterns

20 training texts
60 training texts

100 training texts
140 training texts
180 training texts

(b)

Figure 6.28: (a) Evolution of F measure withβ = 1 on test set for pat-
terns learned with estimated precision above a given threshold, for extracting
MANUFACTURERinformation, as the number of training texts is increased, and
(b) evolution of the same measure on test set for patterns learned from different
number of training texts as the threshold of estimated precision is increased.
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6.2.5 Recall-Precision Plots

Other interesting plots that allow us to understand the tradeoff between recall
and precision (better than the F measure) are the so called Recall-Precision plots.
Figures from 6.29 to 6.35 show this relationship for each slot2.

The interesting thing of these figures is that they allow us to anticipate the re-
sults depending on the user’s different needs of recall and precision. Formula 2.1
for the F measure includes aβ parameter that weights the measure to prefer
better precision or better recall attending to user’s interests. Withβ > 1 the
user cares more about precision than recall. Withβ < 1 the user cares more
about recall than precision. In all the previous experiments we conducted, we
setβ to 1, giving in this way the same importance to recall and precision. Note
that, in some cases, giving equal importance to recall and precision would not
be desirable. For example we could be more interested in extracting accurate
information of crash accidents than in extracting all crash information but with a
lower precision.

The reported figures can be read in two ways: precision determines recall,
and recall determines precision. Let us consider that the user requires 80% pre-
cision for theCRASH-SITE slot when training on 100 texts. In this case, by
inspecting figure 6.29, we see that the system would achieve about 35% recall.
On the other hand, if the user were more interested in achieving a high recall
for the same slot (close to 60% recall with 180 training texts), the system would
obtain close to 50% precision.

Note that these figures do not report values for all the ordinate and coordinate
values. For instance, there is no recall info for recall for 20% precision in the
plot 6.29 for theCRASH-SITE slot. The reason is that, inESSENCE, whichever
value we use to tune the threshold of estimated precision parameter, we never
obtain results achieving less than 50% precision for that slot.

One common feature in all plots is that curves describing learning results
from 180 training texts are above all the other curves, which means that learning
from 180 texts outperforms learning from a smaller amount of training texts.
However, curves describing learning results for 140 and 180 training texts are
very close, which means that adding 20 new texts to 140 texts for training does
not improve performance very much.

2Notice that these figures compare precision of patterns on the test set with recall of patterns
on the test set, while figures 6.8 to 6.14 showed the relationship between recall on the test set and
the minimum allowed value of estimated precision (which is not a measure of true precision).



110 CHAPTER 6. DETAILED EMPIRICAL STUDY

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
0 10 20 30 40 50 60 70 80 90 100

R
ec

al
l

Precision

20 training texts
60 training texts

100 training texts
140 training texts
180 training texts

Figure 6.29: Recall-Precision plot for patterns learned from different number of
training texts for extractingCRASH-SITE information.
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Figure 6.30: Recall-Precision plot for patterns learned from different number of
training texts for extractingCRASH-DATEinformation.
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Figure 6.31: Recall-Precision plot for patterns learned from different number of
training texts for extractingDEPARTUREinformation.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
0 10 20 30 40 50 60 70 80 90 100

R
ec

al
l

Precision

20 training texts
60 training texts
100 training texts
140 training texts
180 training texts

Figure 6.32: Recall-Precision plot for patterns learned from different number of
training texts for extractingDESTINATION information.
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Figure 6.33: Recall-Precision plot for patterns learned from different number of
training texts for extractingAIRLINE information.
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Figure 6.34: Recall-Precision plot for patterns learned from different number of
training texts for extractingAIRCRAFTinformation.
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Figure 6.35: Recall-Precision plot for patterns learned from different number of
training texts for extractingMANUFACTURERinformation.
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6.3 Effect of Context Window Width

One parameter of theESSENCEmethod is the width of the window surrounding
the context keyword. An interesting experiment would be to compare results ob-
tained by different values of this parameter. In the previous sections we reported
results obtained with window width 5. In this section we report results running
ESSENCEfor theCRASH-SITE slot with window width 7. The evaluation pro-
cedure is the proposed in section 6.1.

The expected results should be that increasing the window width we should
achieve better recall but worse precision. It remains to be determined to what
extent this would happen. Figures 6.36 to 6.40 obtained results. By comparing
these figures with those for the same slot shown in the previous sections, we can
state that: (1) the overall tendency in plots is the same in both experiments, (2)
there has been an increase in recall, (3) the decrease in precision is proportional
(but lower) to the increase in recall, and (4) there has been an increase in the F
measure, although it is almost imperceptible.
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Figure 6.36: Evolution of the number of IE patterns learned above a threshold of
estimated precision, for extractingCRASH-SITE information, as the number of
training texts is increased. Margins show the standard deviation obtained for 20
runs. Window width 7.
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Figure 6.37: (a) Evolution of recall on test set for patterns learned with estimated
precision above a given threshold, for extractingCRASH-SITE information, as
the number of training texts is increased, and (b) evolution of recall on test set
for patterns learned from different number of training texts as the threshold of
estimated precision is increased. Window width 7.
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Figure 6.38: (a) Evolution of precision on test set for patterns learned with esti-
mated precision above a given threshold, for extractingCRASH-SITE informa-
tion, as the number of training texts is increased, and (b) evolution of precision
on test set for patterns learned from different number of training texts as the
threshold of estimated precision is increased. Window width 7.
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Figure 6.39: (a) Evolution of F measure withβ = 1 on test set for pat-
terns learned with estimated precision above a given threshold, for extracting
CRASH-SITE information, as the number of training texts is increased, and (b)
evolution of the same measure on test set for patterns learned from different num-
ber of training texts as the threshold of estimated precision is increased. Window
width 7.
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Figure 6.40: Recall-Precision plot for patterns learned from different number of
training texts for extractingCRASH-SITE information. Window width 7.
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6.4 Conclusions

From all the experiments described in this chapter, we conclude the following
remarks:

• Results obtained in recall and precision are competitive compared with
similar tasks of IE, for example other MUC tasks (MUC 1991; MUC 1992;
MUC 1993; MUC 1995; MUC 1998).

• ESSENCEdoes not require a large training set for learning. A training set
containing between 100 and 200 texts is enough for the selected domain.

• The heuristic procedure for selecting the best pattern of the list of pat-
terns generated by the functionlearn-one-patternhas proved effective for
learning, and a better procedure than selecting a fixed minimum required
estimated precision for all patterns.

• The learning algorithm does not have critical parameters. We have shown
that a moderate variation in the best value for the threshold of estimated
precision parameter does not affect the final F scores obtained. We also
showed that by changing the context window width, the results obtained
are very similar.

• Finally, ESSENCEhas the ability to deal with recall/precision tradeoff by
tuning the threshold of estimated precision parameter.
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Chapter 7

Concluding Remarks

This chapter begins with a brief discussion of the feasibility of using WordNet
for acquiring IE patterns. This discussion is originated from comments and sug-
gestions provided by anonymous reviewers of this work. This chapter also iden-
tifies a number of directions for future research that include improvements to
ESSENCEas well as studying the applicability ofESSENCEto other domains
and languages.

7.1 Discussion

One issue of our approach that has been discussed in (Grishman et al. 1992) is
the adequacy of using WordNet for IE pattern acquisition. IE is a NLP task that
is domain specific by definition, while WordNet is a general purpose tool. Since
WordNet is a generic resource, it has a limited covering of very specific vocab-
ulary, normally the kind of information to be extracted. Nevertheless, we found
WordNet useful for extracting information that involves specific vocabulary. For
example, one could wonder whether WordNet could be useful for extracting the
CRASH-SITE slot1 since WordNet covering of geographic places is restricted to
widely known places. Our experiments on news stories showed WordNet more
useful than expected. In the example of theCRASH-SITE slot, we found Word-
Net able to identify most of the places because:

• WordNet had a wider covering than expected, even being able to identify
locations in syntactic groups such as “into the Everglades”, “to Colorado
Springs”, etc.

1See chapter 5 to get information about theCRASH-SITE slot and other slots mentioned
below.
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• Sometimes, locations appear in syntactic groups where the head is a generic
place actually covered by WordNet such as “airport” in “to JFK Interna-
tional Airport”, “village” in “in Teton Village”, “mountain” in “into the
side of Sheep Mountain”, “inlet” in “off East Moriches Inlet”, “suburb” in
“into a Nashville suburb”, etc.

• Usually, in news stories, small locations that are not widely known are
accompanied by the name of the state or country in which they are located
(and which are covered by WordNet), such as in the following syntactic
groups: “in Cali, Colombia”, “to Frankfurt, Germany”, “from Pensacola,
Fla.”, etc.

All these examples show how our system is able to extract information about
places only using WordNet. Although we could use a gazetteer to solve some
cases such as “crashed in Khandahar”, which could not have been extracted by
our system because “Khandahar” is not covered by WordNet and because it is
not a modifier of a generic head (like mountain, etc), our experience shows that
recall will not be improved very much.

7.1.1 Contrast ofESSENCEwith Other Related Approaches

In section 2.3 we have reviewed related approaches in automatic IE pattern ac-
quisition. The method we present in this thesis is significantly different from
other approaches mainly because it learns without the need of annotated cor-
pus. However, a brief comparison of some features ofESSENCEwith similar
approaches could help to emphasize other contributions of our approach.

A relevant system related toESSENCEis PALKA (Kim and Moldovan 1995).
In both approaches exists one step (calledframe definitionstep inPALKA and
calledtask definitionstep inESSENCE) in which the expert defines, for each slot
to be filled: (1) a semantic category from the ontology and (2) a set of keywords
(context keywords inESSENCE) to focus the search for sentences that might
contain information for this slot.

Nevertheless, this step is different in our approach because we use WordNet
(not a handmade ontology) for the task definition. This is an important difference
becauseESSENCEavoids the handcrafting of a special purpose ontology. In
addition, ESSENCEallows the automatic extension of the set of keywords in
the task definition step, which cannot be done inPALKA . Finally, in the task
definition step,ESSENCEallows the definition of multiple semantic tags for the
slots of the output template.

Another difference betweenPALKA andESSENCEis thatPALKA does not
allow the generalization of context keywords. This fact increases the num-
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ber of patterns to be learned byPALKA when compared withESSENCE. For
example,PALKA requires the patterns<aircraft crashed inlocation >,
<aircraft plunged inlocation > and<aircraft slammed inloca-
tion > to express something that can be expressed in a unique pattern inESSEN-
CE because all these keywords (crashed, plunged and slammed) can be covered
by a more general concept.

But the main differences are in the learning algorithm. First, and most impor-
tant, theESSENCElearning algorithm learns from an unannotated corpus instead
of a set of positive and negative examples. Second,PALKA has specialization
procedures to deal with generalizations that include negative examples. These
specialization procedures generate disjunctive rules. SinceESSENCEalways ap-
ply the minimum generalization to build an IE pattern, specialization procedures
are not needed and, thus, disjunctive rules are avoided.

Another system that presents some similarities withESSENCEisTIMES(Chai
1998), a further version of the work described by Bagga et el. (1997). This sys-
tem uses WordNet for generalization asESSENCEdoes, but both systems are
very different. First, Bagga et al. describes an interface-driven system for build-
ing IE patterns: the user has to select seed positive examples from which to build
the set of IE patterns, whileESSENCElearns IE patterns without examples. Sec-
ond, their system does not tackle the problem of disambiguating word senses
provided by WordNet (that is solved with a simple heuristic or by the expert),
while our generalization procedure automatically disambiguates the sense of a
word. Third, their learning procedure does not allow the generalization of con-
text keywords, as in the case ofPALKA (see above). Finally, the generalization
procedure is totally different. Their approach is top-down, that is, they generalize
in the WordNet ontology as much as possible from a single example and then go
down in the generalization tree searching for the first pattern with an acceptable
precision. ESSENCEimplements a bottom-up corpus-driven approach, that is,
generalization is performed to cover new sentences in the corpus and from the
list of generalizations generated it returns the pattern with maximum relativeF
measure.

7.2 Future Work

This section explains some improvements and extensions that would enhance the
performance of the method we propose.
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7.2.1 Automatic Detection of Enough Amount of Training Text

In our experiments we have followed the underlying rules of MUC competitions,
where usually only 100 texts for training and 100 for testing are given. However,
the number of texts available for training and testing would not be so constrained
in some other applications. If the number of texts for training were not limited
(or very large) it might be possible to measure the influence of new training texts
in the generation of IE patterns in order to determine when to stop the learning
process. Specifically, if IE patterns are not more generalized after adding several
texts, or if new IE patterns are not generated after the addition of several new
training texts, we could infer that the number of training texts is sufficient and
stop the learning process. This idea could be used to develop an incremental
version of the algorithm that prompts the expert to stop feeding the system with
new training texts.

7.2.2 Methods for Extending the Set of Context Keywords

Another point that can be improved in our methodology is how to know whether
the expert has selected enough context keywords for each slot. This is a critical
point common to other approaches that use trigger words. If a useful word for
triggering has not been selected as a context keyword, sentences containing it
will not be considered for the generation of extraction patterns.

Nevertheless, this problem is reduced in our method because the set of words
initially collected by the expert is completed by using synonyms and/or hy-
ponyms/hypernyms from WordNet. This step is not present in other systems that
use trigger words, such as PALKA (Kim and Moldovan 1995) and LIEP (Huff-
man 1995), which extract the set of trigger words from a set of annotated texts but
do not extend it further. We think that our approach allows for better recall, be-
cause extending the set of context keywords by searching in WordNet hyponyms
and hypernyms of known context keywords, extends the set with suitable key-
words that do not appear in the training text (but that are synonyms, hyponyms
or hypernyms of words that appear in the text). These context keywords cannot
be obtained with the usual approaches that only extract keywords from a tagged
text.

Finally, if the expert is not sure about the set of context keywords proposed,
he/she can browse the corpus in order to evaluate whether the defined set of
words is enough. Note that browsing the corpus is much easier and less costly
than tagging the corpus.

However, doubt will always remain as to whether there are other undefined
words that would be useful for triggering a sentence. One approach to solving
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this problem could be searching for words in the corpus that appear near words
with meanings that correspond to extracting synsets, that is to say, in reverse: the
expert defines extracting synsets, and the system returns words that are usually
close to these synsets, defining a suitable measure of closeness. The expert can
browse this set of words in order to check whether any of them would be good
for triggering.

We are currently studying a bootstrapping approach similar to Riloff and
Jones (1999) in order to increment the set of triggering keywords from a set of
seed keywords.

The point is that although our method is not able to determine whether there
are enough trigger words, there are methods that could be used to automatically
extend this set of words.

7.2.3 PortingESSENCEto new domains and languages

The set of experiments we have conducted aimed to extract information con-
cerning different facts but from a single domain. We chose the dry-run MUC-7
domain due mainly to: (1) the challenge to deal with a “real” domain and IE task,
(2) the availability of English free text in a domain and (3) the availability of the
answer keys for the scenario template task. We started working on the formal-
run MUC-7 domain concerning air vehicle launch reports and updates but our
work is still unfinished.

The use of general tools allowsESSENCEto be applied to other languages. At
present Spanish WordNet is available (Spanish was included in the EuroWord-
Net(EWN)2 project to elaborate a multilingual version of the initial English
WordNet). Catalan WordNet developed at the Reference Centre for Linguis-
tic Engineering, financed by the Catalan government (CREL)3 is also available.
These lexical resources, together with the available NLP tools (Màrquez and
Padŕo 1997; Rigau et al. 1997; Cervell et al. 1998; Màrquez and Rodrı́guez
1998) developed in our research group for Catalan and Spanish4, will allow the
application of theESSENCEmethod to IE tasks in these languages.

7.3 Conclusions

Extracting relevant pieces of information is nowadays becoming an important
task that can be useful for a large number of applications in many different fields.

2http://www.hum.uva.nl/∼ewn
3http://www.crel.net
4http://www.lsi.upc.es/∼nlp
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Electronic text is generating a bulk of data which is difficult to process without
the help of systems that ease the access to the information. To build such sys-
tems is an arduous task, specially if it is done by hand. For that reason, several
approaches to IE system building have begun to use machine learning techniques
in various steps of the development process.

This document summarizes our research on the task of acquiring IE patterns
for building IE systems. We have presented a new method, calledESSENCE,
that performs this task on free text. The main advantage of this method is that
it reduces the effort of the expert in the process of developing an IE system, and
therefore the cost of production is also reduced. This is achieved by focusing the
expert’s effort on the definition of the task and on the validation and typification
of patterns, while tedious tasks have been automated using of ML techniques,
and general purpose linguistic resources and tools.

The linguistic resources are domain independent, for example WordNet and
the syntactic analyzer. The independence of the linguistic tools from the IE task
facilitates the portability of the method to new tasks and to new domains of
extraction.

Moreover, the use of general tools allows the method to be applied to other
languages. For example, there is available a multilingual version of WordNet and
there are also available NLP tools such as syntactic and morphological analyzers
for most of these languages.

7.4 Contributions of the Thesis

This thesis describesESSENCE, the main contribution of which is a method that
tries to reduce the effort of acquiring IE patterns based onELA, an unsupervised
ML algorithm. Nevertheless, different issues have been tackled to attain our
purpose and in some of them we have developed new proposals.

ESSENCEshows some novel features which are not present in previous ap-
proaches and that constitute the set of contributions of this work. These contri-
butions are summarized next in the same order as they appear in the thesis.

C1: Semantic Definition of the Task

The first step ofESSENCE, involves a definition of the IE task. In this step, the
user must define the semantic kind of information that has to be extracted for
each slot of the output template. The definition is made by using semantic tags
of WordNet (a general-purpose semantic hierarchy) or, when this is not possible,
by using specific labels that customized named entity recognizers use to label
domain specific information not covered by WordNet.
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Although the explicit definition of the task could seem an increase of the work
to be done by the expert, it is worth to be done because it produces the following
three profitable consequences:

• Improved precision. The explicit definition of the kind of information
to be extracted allows the system to increase precision scores because it
will only learn extraction patterns which extract the right semantic kind of
information from the training corpus. For instance, assume we are working
on the domain of air crashes as described in newspapers and, in particular,
we are interested in extracting information about the crashed aircraft, but
that the training corpus also contains texts reporting company crashes in
markets. Although descriptions of market crashes use words considered
as trigger keywords for aircraft crashes, learning will not take into account
sentences describing market crashes because the information attached to
the trigger keyword is not of the appropriate kind (aircrafts).

• Automatic typification. In unsupervised learning, when one candidate
for IE pattern is learned, a human expert must validate it andspecify which
specific slots of the output template it can fill. The last process is named
typification of the pattern. When the task is explicitly defined by the ex-
pert, this step becomes in most cases automatic, because knowing the se-
mantic kind of information for each slot (provided by the expert in the task
definition) and the semantic kind of information the pattern extracts, the
link between patterns and slots becomes immediate.

• Focusing learning only on relevant sentences for the task.Since the
learning process of the method is performed on unannotated text, the sys-
tem cannot distinguish relevant from irrelevant sentences for the IE task
on hand. After task definition, the system can focus learning on relevant
sentences for the task, that is, those sentences containing a trigger keyword
and having at least one syntactic group carrying the kind of semantic in-
formation defined for one slot of the output template. The capability of
the system to identify relevant sentences allows the system to learn from a
corpus without previously removing non-relevant texts.

C2: Automatic Extension of the Set of Trigger Keywords
ELA, the ESSENCElearning algorithm, bases learning and extraction of infor-
mation on trigger keywords (which are calledcontext keywordsin ESSENCE).
Other methods in the literature are also based on words for detecting sentences
carrying information that must be extracted, for instance (Riloff 1993). Such
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approaches has to deal with the problem of getting an adequate set of trigger
keys, because when no trigger keys are defined for a sentence carrying relevant
information, that information would not be extracted. This fact causes a loss in
the recall rate of the information to be extracted.

Usual procedures for defining trigger keys are: asking the expert, collecting
words from the expert by browsing the corpus, or learning from the corpus. All
these methods can miss some useful trigger words. Specially, note that both
browsing and learning methods only collect words that are present in the training
corpus.

ESSENCEextends an initial set of trigger keywords defined by the expert5 by
finding synonyms, hypernyms and hyponyms of them in WordNet, and adding
the resulting words to the initial set. The enlarged set of keywords is finally
filtered by the expert. This procedure allows us to increase recall because the
probability of missing a relevant trigger keyword is reduced, and at the same
time it allows the automatic definition of new trigger keys not present in the
training corpus, for instance synonyms of a valid trigger key. In this way, even
from few texts we can find a reasonable set of trigger keywords.

C3: Minimum Handcrafting of Linguistic Resources
As we noted in section 1.1, in order to ease the process of building an IE system
and therefore to ease the tuning process needed when porting the system to new
user domains, customization of tools and resources should be reduced as much
as possible. The main reason for this claim is that these customized tools are
handcrafted and therefore expensive.

We propose the use of general purpose tools, like WordNet, that can be used
at several steps of the IE system construction process.ESSENCEperforms an
extensive use of this tool. WordNet gets involved in many processes as: selection
of trigger keys, task definition, selection of extracting synsets, parsing, semantic
tagging and pattern generalization.

Nevertheless, there may remain some domain vocabulary not covered by
such general purpose tools. In these cases, one has to make use of domain spe-
cific customized tools.

C4: New Learning Algorithm on Unannotated Text
In order to achieve the main goals of this thesis, described in 1.1,ESSENCEuses
a new algorithm for learning IE patterns without user-labeled examples. The
learning algorithm, calledELA, focuses on sentences carrying trigger words and
finds semantic and syntactic regularities that allow the definition of information
extraction patterns.

5But also applicable to an initial set of trigger keywords acquired by learning from the corpus.
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ELA shows the following distinguishing features in information extraction:

CLA1: Learning without user-labeled examples.

CLA2: It uses semantic knowledge for learning but does not require an ex-
plicit Word Sense Disambiguation procedure (neither a human expert for
disambiguation).

CLA3: It uses WordNet instead of hand made ontologies.

CLA4: It defines a new measure for closest pattern selection that takes into
account the number of matching fields and semantic generalization in fields.

CLA5: Efficient exploration of the corpus by focusing on sentences which
contain trigger keywords (or context keywords) and extracting synsets (ex-
pected semantic information surrounding a keyword).

ELA is based on a bottom-up construction of candidates for IE patterns from
seed sentences. It returns a sorted list of patterns, from the initial seed pattern
to the most general pattern. The algorithm shows the following features for
selecting the best pattern or rejecting patterns resulted from the learning process:

CLA6: A method to estimate the best pattern in a list of consecutive general-
izations.

CLA7: The automatic elimination of patterns that are not enough general.
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Lluı́s Padŕo. A Hybrid Environment for Syntax-Semantic Tagging. Doctoral dissertation,
Department of Computer Science, Technical University of Catalonia. 1997.

Pazienza, Maria Teresa (ed.).Information Extraction. Lecture Notes in Artificial Intelli-
gence, No. 1714. Rome: Springer-Verlag. 1997.

Ross Quinlan. Learning Logical Definitions from Relation.Machine Learning. 1990.

German Rigau, Jordi Atserias, and Eneko Agirre. Combining Unsupervised Lexical
Knowledge Methods for Word Sense Disambiguation. InProceedings of joint
EACL/ACL-97. Madrid. 1997.

Ellen Riloff. Automatically Constructing a Dictionary for Information Extraction Tasks.
In Proceedings of the Eleventh National Conference on Artificial Intelligence (AAAI
93), 811–816. The AAAI Press/MIT Press. 1993.

Ellen Riloff. Dictionary Requirements for Text Classification: A Comparison of Three
Domains. InAAAI Spring Symposium on Representation and Acquisistion of Lexical
Knowledge. 1995.

Ellen Riloff. Automatically Generating Extraction Patterns from Untagged Text.Pro-
ceedings of the Thirteenth Annual Conference on Artificial Intelligence1044–1049.
1996a.

Ellen Riloff. An Empirical Study of Automated Dictionary Construction for Information
Extraction in Three Domains.Artificial Intelligence85:101–134. 1996b.



140 BIBLIOGRAPHY

Ellen Riloff. Using Learned Extraction Patterns for Text Classification. InConnectionist,
Statistical and Symbolic Approaches to Learning for Natural Language Processing,
ed. G. Scheler S. Wermter, E. Riloff. 275–289. Springer-Verlag. 1996c.

Ellen Riloff and Rosie Jones. Learning Dictionaries for Information Extraction by Multi-
Level Bootstrapping. InProceedings of the Sixteenth National Conference on Arti-
ficial Intelligence (AAAI 99). Orlando. 1999.

Ellen Riloff and Wendy Lehnert. Information Extraction as a Basis for High-Precision
Text Classification. ACM Transactions on Information Systems12(3):296–333.
1994.

Ellen Riloff and Jessica Shepherd. A Corpus-Based Approach for Building Semantic
Lexicons. InProceedings of the Second Conference on Empirical Methods in Natu-
ral Language Processing, ed. Claire Cardie and Ralph Weischedel. 117–124. Som-
erset, New Jersey: Association for Computational Linguistics. 1997.

Ellen Riloff and Jay Shoen. Automatically Acquiring Conceptual Patterns Without an
Annotated Corpus. InProceedings of the Third Workshop on Very Large Corpora,
148–161. 1995.

RISE. A repository of online information sources used in information extraction tasks.
[http://www.isi.edu/ muslea/RISE/index.html] Information Sciences Institute / USC.
1998.

Robert E. Schapire. The Strength of Weak Learnability.Machine Learning5:197–227.
1990.

Sam Scott and Stan Matwin. Text Classification Using WordNet Hypernyms. InUse
of WordNet in Natural Language Processing Systems: Proceedings of the Confer-
ence, ed. Sanda Harabagiu. Somerset, New Jersey: Association for Computational
Linguistics. 1998.

Satoshi Sekine and Chikashi Nobata. An Information Extraction System and a Cus-
tomization Tool. InProceedings of the New Challenges in Natural Language Pro-
cessing and its Application. Tokyo. 1998.

Stephen Soderland. Learning to Extract Text-based Information from the World Wide
Web. InProceedings of Third International Conference on Knowledge Discovery
and Data Mining (KDD-97). 1997.

Stephen Soderland. Learning Information Extraction Rules for Semi-structured and Free
Text. Machine Learning44(1-3):233–272. 1999.

Stephen Soderland, David Fisher, Jonathan Aseltine, and Wendy Lehnert.CRYSTAL:
Inducing a Conceptual Dictionary. InProceedings of the Fourteenth International
Joint Conference on Artificial Intelligence, 1314–1321. 1995a.



BIBLIOGRAPHY 141

Stephen Soderland, David Fisher, Jonathan Aseltine, and Wendy Lehnert. Issues in In-
ductive Learning of Domain-Specific Text Extraction Rules. InIJCAI-95 Workshop
on New Approaches to Learning for NLP. 1995b.

Stephen Soderland and Wendy Lehnert. Corpus-Driven Knowledge Acquisition for Dis-
course Analysis. InProceedings of the Twelfth National Conference on Artificial
Intelligence. 1994a.

Stephen Soderland and Wendy Lehnert. Wrap-Up: A Trainable Discourse Module
for Information Extraction.Journal of Artificial Intelligence Research2:131–158.
1994b.

Stephen G. Soderland.Learning Text Analysis Rules for Domain-Specific Natural Lan-
guage Processing. Doctoral dissertation, Department of Computer Science, Univer-
sity of Massachusetts Amherst. 1997.

Cynthia A. Thompson, Mary Elaine Califf, and Raymond J. Mooney. Active Learning
for Natural Language Parsing and Information Extraction. InProceedings of the
Sixteenth International Machine Learning Conference (ICML 99), 406–414. 1999.

Jordi Turmo.An Information Extraction System Portable to New Domains. Doctoral
dissertation, Department of Computer Science, Technical University of Catalonia.
2002.
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