
On the Logic of Expansion in Natural Language

Glyn Morrill and Oriol Valentı́n

Departament of Computer Science, Universitat Politècnica de Catalunya
morrill@cs.upc.edu ovalentin@cs.upc.edu

Abstract. We consider, for intuitionistic categorial grammar, an iteration
modality with a rule of Mingle and an infinitary left rule, similar to infini-
tary action logic. Newly, we give Curry-Howard labelling for the iteration
modality, in terms of lists, and we prove soundness and completeness of
displacement calculus with additives and this modality, for phase seman-
tics. This result has as a corollary semantic Cut-elimination. We review
linguistic application of the iteration modality to unbounded addicity it-
erated coordination, and we present an application of a calibrated version
of the iteration modality to an unbounded addicity respectively construc-
tion, this being to our knowledge the first account of respectively taking
care of cases n > 2.

Keywords: expansion · exponentials · iterated coordination · Mingle ·
phase semantics · respectively construction · semantic Cut-elimination

1 Introduction

In standard logic information does not have multiplicity. Thus where +
is the notion of addition of information and is the notion of inclusion of
information we have x+x  x and x  x+x; together these two properties
amount to idempotency: x+x = x. These properties are expressed by the
rules of inference of Contraction and Expansion:

(1)
�(A,A)) B

Contraction
�(A)) B

�(A)) B
Expansion

�(A,A)) B

In general linguistic resources do not have these properties: grammat-
icality is not often preserved under addition or removal of copies of
expressions. However, there are some constructions manifesting some-
thing similar. In this paper we investigate categorial logic and expansion.

Iterated coordination has a kind of expansion, of unbounded addicity:

(2) John likes, Mary dislikes, . . . and Bill loves London.

Likewise an unbounded addicity respectively construction:

(3) Tom, Dick, . . . and Harry walk, talk, . . . and sing respectively.

That is, in logical grammar a controlled use of expansion is motivated. Gi-
rard (1987[4]) introduced exponentials for control of structural rules. For
the use of nonlinearity for iterated coordination in categorial grammar
see Morrill (1994[13]) and Morrill and Valentı́n (2015[11]).

The iteration modality is closely related to the Kleene star modal-
ity of the infinitary action logic of Buszkowski and Palka (2008[2]).1
Our new results include the Curry-Howard annotation of the iteration
modality, with (non-empty) lists, combination with the full displacement
calculus, and a strong completeness result à la Okada (1999[14]), namely
soundness and completeness with respect to phase semantics (Girard
1987[4]), and as a by product of this there is a semantic proof of Cut-
elimination, which di↵ers from the syntactic Cut-elimination of Palka
(2007[15]). Linguistic applications include for the first time in catego-
rial grammar syntactic and semantic analysis of an unbounded addicity
respectively construction.2

In Section 2 we define a displacement calculus DA? with additives,
and an existential exponential with a Mingle structural rule (Kamide
2002[5]) and an infinitary left rule, which entail expansion. In Section 3
we give a sound and complete phase semantics for DA?. The complete-
ness has as a corollary semantic Cut-elimination. In Section 4 we present
a calibrated version of the Mingle modality and present a linguistic frag-
ment including iterated coordination and the respectively construction
with analyses generated by a version of the categorial parser/theorem-
prover CatLog2.3

2 The categorial logic

The multiplicative basis is the displacement calculus of Morrill et al.
(2011[12]); in addition there are additives, and the existential exponen-
tial. The syntactic types of the categorial logic are sorted according to the
number of points of discontinuity their expressions contain. Each type
predicate letter has a sort and an arity which are naturals, and a corre-
sponding semantic type. Assuming ordinary terms to be already given,
where P is a type predicate letter of sort i and arity n and t1, . . . , tn are

1 We can define the Kleene star modality ⇤ in terms of our modality ? by: A⇤ = I�?A.
2 In the type logical literature iteration has been considered in Bechet et al. (2008[1])

who propose syntactic pregroup analyses but without enjoying intuitionistic Curry-
Howard labelling, nor algebraic models.

3
https://www.cs.upc.edu/

˜

morrill/CatLog/CatLog2/index.php

terms, Pt1 . . . tn is an (atomic) type of sort i of the corresponding semantic
type. Compound types are formed by connectives as in Figure 1.4

1. Fi ::= Fi+ j/F j T(C/B) = T(B)!T(C) over [9]
2. F j ::= Fi\Fi+ j T(A\C) = T(A)!T(C) under [9]
3. Fi+ j ::= Fi•F j T(A•B) = T(A)&T(B) continuous product [9]
4. F0 ::= I T(I) = > continuous unit [8]
5, k. Fi+1 ::= Fi+ j"kF j, 1  k  i+ j T(C"kB) = T(B)!T(C) extract [12]
6, k. F j ::= Fi+1#kFi+ j, 1  k  i+1 T(A#kC) = T(A)!T(C) infix [12]
7, k. Fi+ j ::= Fi+1�kF j, 1  k  i+1 T(A�kB) = T(A)&T(B) discontinuous product [12]
8. F1 ::= J T(J) = > discontinuous unit [12]
9. Fi ::= Fi&Fi T(A&B) = T(A)&T(B) additive conjunction [7, 10]
10. Fi ::= Fi�Fi T(A�B) = T(A)+T(B) additive disjunction [7, 10]
18. F0 ::= ?F0 T(?A) = T(A)+ existential exponential [13]

Fig. 1. Categorial logic types of DA?

For a type A, its sort s(A) is the i such that A 2 Fi. Tree-based sequent
calculus is as follows. Configurations are defined by:5

(4) O ::= ⇤
O ::= 1,O
O ::= F0,O
O ::= Fi>0{O : . . . : O| {z }

iO0s

},O

For a configuration � we define the type-equivalent �•, which is a type
which has the same algebraic meaning as �. Via the BNF formulation of
O in (4) one defines recursively �• as follows:

(5) ⇤•
de f
= I

(1, �)•
de f
= J • �•

(A, �)•
de f
=A • �•, if s(A) = 0

(A{�1 : . . . : �s(A)}, �)•
de f
= ((· · · (A �1 �•1) · · ·) �1+s(�1)+···+s(�s(A)) �

•
s(A)) • �•, if s(A) > 0

4 Observe that the iteration modality ? only applies to types of sort 0 because otherwise
expansion would not preserve the equality of antecedent and succedent sorts.

5 Note that the colons in the fourth clause of the definition punctuate the list of configu-
rations intercalating the points of discontinuity of Fi>0 of sort i; this is entirely distinct
from (the standard) use of colons in type assignments made later.

For a configuration �, its sort s(�) is |�|1, i.e. the number of metalin-
guistic separators 1 which it contains. A sequents �) A comprises an
antecedent configuration � and a succedent type A such that s(�) = s(A).
The figure �!A of a type A is defined by:

(6) �!A =
8>>><>>>:

A if sA = 0
A{1 : . . . : 1| {z }

sA 10s

} if sA > 0

Where � is a configuration of sort i and �1, . . . ,�i are configurations, the
fold � ⌦ h�1 : . . . : �ii is the result of replacing the successive 1’s in � by
�1, . . . ,�i respectively. Where � is a configuration of sort i > 0 and � is a
configuration, the kth metalinguistic wrap � |k �, 1  k  i, is given by

(7) � |k � =d f � ⌦ h1 : . . . : 1| {z }
k�1 1’s

: � : 1 : . . . : 1| {z }
i�k 1’s

i

i.e. the kth metalinguistic wrap � |k � is the configuration resulting from
replacing by � the kth separator in �.

Where the notation ⌅(⌦) signifies a configuration ⌅ with a distin-
guished subconfiguration ⌦, the notation �h�i abbreviates �0(� ⌦ h�1 :
. . . : �ni), i.e. a configuration with a potentially discontinuous distin-
guished subconfiguration �with external context�0 and internal context
�1, . . . ,�n.

The semantically annotated identity axiom id and Cut rule are:

(8) id, P atomic
P: x) P: x

�) A:� �h�!A : xi) B: �
Cut

�h�i) B: �{�/x}
The semantically annotated multiplicative rules of DA? are given in
Figure 2. The semantically annotated additive and exponential rules are
given in Figure 3.6

6 Notice that although the sequent calculus is infinitary and has possibly infinite proofs,
the proveable sequents are always finite. The system is undecidable by a result of
Buszkowski and Palka (2008[2]) but a linguistically su�cient fragment, without ante-
dent iteration modalities, is decidable.

The expansion rule with iteration modalities is derivable by the following reason-
ing. Given an arbitrary type A of sort 0, for every i > 0 and a fixed index j0 > 0, by
one application of ?R and a finite number of applications of the Mingle rule we get
the infinite provable sequents indexed by i (i > 0) Ai,Aj0) ?A. We can then apply the
?L rule, obtaining ?A,Aj0) ?A. Since j0 is a positive natural, we have that for every
j > 0, ?A,Aj) ?A. We can apply again then the ?R rule, whence ?A, ?A) ?A. This
proves the expansion rule.

�) B: �h��!C: zi) D:!
/L

�h��!C/B: x, �i) D:!{(x �)/z}
�,
�!B : y) C:�

/R
�) C/B:�y�

�) A:� �h��!C: zi) D:!
\L

�h�,���!A\C: yi) D: {(y �)/z}

�!A : x, �) C:�
\R

�) A\C:�x�

�h�!A : x,�!B : yi) D:!
•L

�h�����!A•B: zi) D:!{⇡1z/x,⇡2z/y}
�1) A:� �2) B:

•R
�1, �2) A•B: (�,)

�h⇤i) A:�
IL

�h�!I : xi) A:�
IR

⇤) I: 0

�) B: �h��!C: zi) D:!
"kL

�h�����!C"kB: x |k �i) D:!{(x)/z}
� |k �!B : y) C:�

"kR
�) C"kB:�y�

�) A:� �h��!C: zi) D:!
#kL

�h� |k ����!A#kC: yi) D:!{(y �)/z}

�!A : x |k �) C:�
#kR

�) A#kC:�x�

�h�!A : x |k �!B : yi) D:!
�kL

�h����!A�kB: zi) D:!{⇡1z/x,⇡2z/y}
�1) A:� �2) B:

�kR
�1 |k �2) A�kB: (�,)

�h1i) A:�
JL

�h�!J : xi) A:�
JR

1) J: 0

Fig. 2. Multiplicative rules of DA?

�h�!A : xi) C:�
&L1

�h���!A&B: zi) C:�{⇡1z/x}
�h�!B : yi) C:�

&L2
�h���!A&B: zi) C�{⇡2z/y}

�) A:� �) B:
&R

�) A&B: (�,)

�h�!A : xi) C:�1 �h�!B : yi) C:�2 �L
�h���!A�B: zi) C: z! x.�1; y.�2

�) A:�
�R1

�) A�B: ◆1�

�) B:
�R2

�) A�B: ◆2�

�(A: x)) B: ([x]) �(A: x,A: y)) B: ([x, y]) · · ·
?L

�(?A: z)) B: (z)

�) A:�
?R

�) ?A: [�]

�) A:� �) ?A:�0
?M

�,�) [�|�0]: ?A

Fig. 3. Additive and exponential rules of DA?

3 Phase semantics

DA? incorporates the useful language-theoretic concept of iteration. This
is done by means of an (existential) exponential modality, notated ? which
licenses the structural rule of Mingle, which entails expansion.

Let i, j and k range over the set of natural numbers !. Where A is a
type of sort 0, and i > 0, Ai denotes A, . . . ,A

| {z }
i times

. A0 is the empty string ⇤.

3.1 Semantic Interpretation

In the following, we describe the phase space machinery in order to give
a result of strong completeness in the style of Okada (1999[14]). Phase
spaces from linear logic (Girard 1987[4]) are based on (commutative)
monoids. Likewise, the proper algebras for the displacement calculus
D are the so-called displacement algebras (DA for short) (see Valentı́n
2012[17]) which can be seen as a generalisation of (non-commutative)
monoids where the operations of k-th intercalation in a punctuated string
are incorporated. In Valentı́n (2012[17]) it is proved that DAs can be

axiomatised; see Figure 4). We can define the class of residuated DAs
(Valentı́n forthcoming[18]), and therefore models.

Given a mapping v : Pr ! A where A is a residuated DA, there
exists a unique !-sorted homomorphismbv which extends v as follows:
bv : Tp ! A and bv (p) = v(p) for any primitive type. Needless to say,
since we are working in an !-sorted setting, equations, inequations and
mapping and so on, are to be understood modulo sorting; in order to give
a smoother reading of formulas we always avoid if possible the explicit
reference to sorts.

Continuous associativity
x + (y + z) ⇡ (x + y) + z

Discontinuous associativity
x ⇥i (y ⇥ j z) ⇡ (x ⇥i y) ⇥i+ j�1 z
(x ⇥i y) ⇥ j z ⇡ x ⇥i (y ⇥ j�i+1 z) if i  j  1 + s(y) � 1

Mixed permutation
(x ⇥i y) ⇥ j z ⇡ (x ⇥ j� s(y)+1 z) ⇥i y if j > i + s(y) � 1
(x ⇥i z) ⇥ j y ⇡ (x ⇥ j y) ⇥i+s(y)�1 z if j < i

Mixed associativity
(x + y) ⇥i z ⇡ (x ⇥i z) + y if 1  i  s(x)
(x + y) ⇥i z ⇡ x + (y ⇥i�s(x) z) if x + 1  i  s(x) + s(y)

Continuous unit and discontinuous unit
0 + x ⇡ x ⇡ x + 0 and 1 ⇥1 x ⇡ x ⇡ x ⇥i 1

Fig. 4. Axiomatisation of a DA

A subset B of the carrier set A of a DA is called a same-sort subset i↵
there exists an i 2 ! such that for every a 2 B, s(a) = i. Notice that ; vacu-
ously satisfies the same-sort condition. P(A) is in fact an !-sorted subset
(P(A)i)i2! where for every i,P(A)i = {X : X is a same-sort subset of sort i}.
Definition 1. A displacement phase space P = (A,Closed) is a structure
partially ordered by the relation of subset inclusion such that:

1. A is a DA.
2. Closed = (Closedi)i is a set of subsets such that Closedi ✓ P(A)i,

Closedi \ Closed j = {;} i↵ i , j, and:
a) For every F 2 Closedi, F is called a closed subset.

b) Closed is closed by intersections of arbitrary families of same-sort sub-
sets. In particular, the intersection of the empty family of closed subsets
of sort i is Ai which belongs to Closedi.

d) For all F 2 Closedi, and for all x 2 Aj:

x\F 2 Closedi� j F/x 2 Closedi� j
F"kx 2 Closedi� j+1 x#kF 2 Closedi� j+1

Closed is also called (an !-sorted) closure system.
Where F, G denote subsets of A of sort i, we define the!-sorted closure

operator cli:

(9) cli(G)
de f
=
T{F 2 Closedi : G ✓ F}

We write G
i
for cli(G). If the context is clear we omit the subscript.

Where F and G are same-sort subsets, it is readily seen that:

i) F is the least closed set of sort s(F) such that F ✓ F.
ii) cl(·) is extensive, i.e.: G ✓ G .

iii) cl(·) is monotone, i.e.: if G1 ✓ G2 then G1 ✓ G2 .
iv) cl(·) is idempotent, i.e.: cl2(G) = cl(G).

We define the following operators at the level of same-sort subsets:

– F�G
de f
= { f + g : f 2 F and g 2 G}

– F�iG
de f
= { f ⇥i g : f 2 F and g 2 G}

– f�G
de f
= { f }�G and F�g

de f
= F�{g}

– f�iG
de f
= { f }�iG and F�ig

de f
= F�i{g}

– G//F
de f
= {h : 8 f 2 F, h + f 2 G} and similarly for F\\G

– G""iF
de f
= {h : 8 f 2 F, h ⇥i f 2 G} and similarly for F##iG

– G// f
de f
= G//{ f } and similarly for f\\G

– G""i f
de f
= G""i{ f } and similarly for f##iG

The following basic properties for!-sorted closure operators are evident:

Lemma 1.

• F�G ✓ H i↵ F ✓ H//G i↵ G ✓ F\\H.
• F�iG ✓ H i↵ F ✓ H""iG i↵ G ✓ F##iH.
• By construction, F is the least closed subset such that F ✓ F . Hence:
• If A ✓ F and F = F then A ✓ F .

Lemma 2. If A is closed, then:

• A//F,F\\A,A""iF, and F##iA are closed.
Proof: A""iF =

T
x2F A""ix, whence A""iF is closed.ut

• Similarly for the other implicative operations.
• cl(F)�cl(G) ✓ cl(F�G). Similarly, cl(F)�icl(G) ✓ cl(F�iG)

• Hence, F �G ✓ F�G , and F �i G ✓ F�iG
• It follows that cl(cl(F)�cl(G)) = cl(F�G) and cl(cl(F)�icl(G)) = cl(F�iG)

Proof: Let us see the case of �i. F�iG ✓ F�iG . By residuation, F ✓ F�iG ""iG.
F�iG ""iG is a closed subset (see previous proof). Hence, F ✓ F�iG ""iG.
Applying again residuation, we have F �iG ✓ F�G
We repeat the process with G, obtaining G ✓ F ##i F�iG . It follows that:

F �i G ✓ F�iG . Hence, F �i G ✓ F�iG

We see now operations on closed subsets which return values into the
set of closed subsets. This paves the path to the definition of valuations
from the set of types into phase spaces, concretely into the set of closed
sets. Given F,G closed sets:

(10) F�G
de f
= F�G

F�iG
de f
= F�iG

F&G
de f
= F \ G. In general we write F \ G.

F[G
de f
= F [G .

G""iF
de f
= G""iF. In general we write ""i avoiding the use of ""i.

Similarly for the other implications.

I
de f
= {0} .

J
de f
= {1} .

Valuations in phase spaces are mappings between the set of types into
the set of closed sets. More concretely, given a valuation v : Pr! Closed,
where P = (A,Closed) is a phase space, we see the interpretation of v and
its recursive extension bv w.r.t. any type in the set of primitive types by
using the closed operation on the set of closed subsets defined in (10):7

– v(p) is closed subset of Ai where p is primitive of sort i.
We extend recursively v tobv :

7 The semantic interpretation of a configuration � (for a given valuation v) is

bv(�)
de f
= bv(�•).

– bv (B"iA)
de f
=bv (B)""ibv (A). Similarly for the other implications.

– bv (A • B)
de f
=bv (A)�bv (B). bv (A �i B)

de f
=bv (A)�ibv (B).

– v(A � B)
de f
= v(A)[v(B). v(A&B)

de f
= v(A) \ v(B).

– bv (I)
de f
= I. bv (J)

de f
= J.

Notice that for any type A, v(A) is a closed subset.

3.2 The Semantics of the Iteration Connective

Given a phase space model (P, v), we definebv (?A) as:

(11) bv (?A)
de f
=
S

i>0 bv (A)i

Lemma 3. Where (Fi)i2! ✓ P, F,G ✓ P, and A is a type of sort 0
We have:S

i2! Fi =
S

i2! Fi

Proof. ✓ is obvious.
◆ For every k 2 !, Fk ⇢ Si2! Fi . Hence, Fk ⇢ Si2! Fi for every k.

Therefore,
S

i2! Fi ✓ Si2! Fi . Taking closure, we obtain
S

i2! Fi ✓S
i2! Fi . ut

Let (P, v) be a phase space model. We know that �h�i abbreviates
�0|k(�⌦h�1; . . . ;�s(�)i) for a certain �0, �i, and k > 0. We recall that

bv (�⌦h�1; . . . ;�s(�)i) de f
= bv (�) ⇥1bv (�1) . . . ⇥1+s(�1)+...+s(�s(�))bv (�s(�)).

(12) bv (�⌦h�1; . . . ;�s(�)i) de f
= (. . . (bv (�) ⇥1bv (�1)) . . .) ⇥1+s(�1)+...+s(�s(�))bv (�s(�))

The rhs of (12) is abbreviated overloading the symbol ⌦, i.e.:

bv (�⌦h�1; . . . ;�s(�)i)de f
=bv (�) ⌦ hbv (�1); . . . ;bv (�)i.

In order to prove soundness for phase semantics it is useful to di-
rectly compute configurations w.r.t. valuations without the use of type-
equivalence. We have:

(13) bv (⇤)
de f
=bv (I)

bv (1, �)
de f
=bv (J)�bv (�)

bv (A, �)
de f
=bv (A)�bv (�), if s(A) = 0

bv (A{�1 : . . . : �s(A)}, �)
de f
=

((· · · (bv (A)�1�1) · · ·)�1+s(�1)+···+s(�s(A)�s(A)bv (�s(A))�bv (�), if s(A) > 0

But how do we interpret�h�i? As said before,�h�i abbreviates�0h�⌦
h�1; . . . ;�s(�)ii. � ⌦ h�1; . . . ;�s(�)i is a configuration. We have:

(14) bv (� ⌦ h�1; . . . ;�s(�)i)de f
= (· · · (bv (A)�1�1) · · ·)�1+s(�1)+···+s(�s(A)�s(A)bv (�s(�))

=by lemma 2= (· · · (bv (A)�1�1) · · ·)�1+s(�1)+···+s(�s(A)�s(A)
bv (�s(A))

We abbreviate (14) as bv (�)⌦ hbv (�1); . . . ;bv (�s(�)i and by lemma 2 as
bv (�) ⌦ hbv (�1); . . . ;bv (�s(�)i .
Sobv (�h�i) = bv (�0)�k (bv (�) ⌦ hbv (�1); . . . ;bv (�s(�))i) =
bv (�0)�k(bv (�) ⌦ hbv (�1); . . . ;bv (�s(�))i) , for a certain k > 0, and where the
last equality is due to lemma 2. We abbreviatebv (�h�i) asbv (�)(bv (�)). By
simple tonicity properties we have that ifbv (�1) ✓bv (�2) thenbv (�)(bv (�)1) ✓
bv (�)(bv (�2)).

Theorem 1. DA? is sound w.r.t. phase semantics.

Proof. By induction on the derivation of DA? sequents. For reasons of
space we omit the proof cases of the remaining multiplicative and ad-
ditive connectives, and units, and we only prove a representative case
of the discontinuous implicative extract connective, and the case of the
iteration connective.

Case of "kL k > 0 (similar for the #k connective) we have:

(15)
�) A �h�!B i) C "kL
�h���!C"kB|k�i) C

By induction hypothesis (i.h.), bv (�) ✓ bv (A). We have bv (���!B"kA|k�) =

bv (���!B"kA)�kbv (�) ✓ bv (B). Hence bv (�)(bv (���!B"kA|k�)) ✓ bv (�)(bv (�!B) ✓ bv (C),
where the last equality follows from the i.h.

Let us see rule ?L. By i.h. for every i > 0bv (�hAii) ✓bv (B).bv (�hAii) =
bv (�)�kbv (A)i , for a certain k > 0. bv (�)�kbv (A)i ✓ bv (�)�kbv (A)i . HenceS

i>0bv (�)�kbv (A)i ✓ bv (B). But
S

i>0bv (�)�kbv (A)i = bv (�)�k
S

i>0bv (A)i.
Taking closure bv (�)�k

S
i>0bv (A)i =lemma 3=

bv (�)�k
S

i>0bv (A)i = bv (�)�kbv (?A) =bv (�(?A)) ✓bv (B).
Rule ?R soundness is due to the fact that by i.h. bv (�) = bv (A) ✓S

i>0bv (A)i =bv (?A).
Finally, let us see the Mingle rule ?M:

(16)
�1) A �2) ?A

?M
�1, �2) ?A

By i.h bv (�1) ✓ A and bv (�2) ✓ bv (?A). bv (�1)�bv (�2) ✓ bv (A)�Si>0 v(A)i ✓
S

i>0 v(A)i. Taking closure we obtain bv (�1)�bv (�2) ✓ Si>0 v(A)i =
S

i>0 v(Ai) =
bv (?A). ut

Let us use the following notation:

(17) For any type A, [A]
de f
= {� 2 O : �) �A}

where) � means provability without Cut

The strategy of the proof of strong completeness is to construct a canon-
ical model which we call the syntactic phase space. Its underlying DA is
the DA of configurations O with its operations of concatenation and
intercalation, so that we define the phase space (M, cl) where M =
(O, conc, (interci)i>0,⇤, 1). cl is the least!-sorted closure system such that it
is generated by the family ([D])D2Tp. The condition 2.d) from definition 1
is satisfied (by way of example we prove it only for one discontinuous
implication): Let F be a closed set and � be a configuration. Let us see
that F""i� is a closed set. By definition there exists a same-sort family of
types G such that F =

T
D2G [D]. We have � 2 F""i� i↵ �|i� 2 F i↵ for

any D 2 G �|i� 2 [D] i↵ D 2 G �|i�• 2 [D] i↵ for any D 2 G � 2 [D"i�•].
Therefore since F""i� is the intersection of a same-sort family of sets, it
is a closed set.

Lemma 4. Let v be the valuation v : Pr ! cl such that v(p)
de f
= [p] for any

primitive type p. There holds:

(18) �!A 2bv (A) ✓ [A] for any type A

Proof. By induction on the structure of type A:

- If A = p where p is a primitive type, we have by definition v(A) = [A].
Hence, �!A 2 v(A) ✓ [A].

- Case A = J (the discontinuous unit). By the JR rule, 1 2 [J], i.e. {1} ✓ [J].
Applying closurebv (J) = {1} ✓ [J].
On the other hand bv (J) =

T
D2G for a certain family G. 1 2 bv (J), i.e., for

every D 2 G, 1 2 [D]. By JL rule, �!J 2 [D]. Therefore �!J 2bv (J).

- Suppose A = B�i C. v(B)�iv(C) = {�B|i�C : �B 2bv (B), and �C 2bv (C)}. By
i.h. v(B) ✓ [B] andbv (C) ✓ [C]. Hence, by application of �iLbv (B)�ibv (C) ✓
[B�i C]. Hence, bv (B)�ibv (C) ✓ [B �i C]. This provesbv (B�i C) ✓ [B �i C].

On the other hand,bv (B�i C) =
T

D2G[D] for a certain G. By i.h. �!B 2bv (B)
and �!C 2 bv (C). Hence �!B |i�!C 2 bv (B)�ibv (C) ✓ bv (B �i C). Then, for ev-
ery D 2 G �!B |i�!C 2 [D]. By application of �iL, ����!B �i C 2 [D]. Hence,����!B �i C 2bv (B �i C).

- Suppose A = C"iB. The case for the other implicative connectives is com-
pletely similar. Let � 2 v(C)""iv(B). By i.h.,�!B 2 v(B). We have �|i�!B) v(C)
and v(C) ✓ [C] by i.h. Hence, �|i�!B ✓ [C], and by application of "iR,
� 2 [C"iB].

- v(C) =
T

D2G[D] for some G. By i.h., �!C 2 v(C). Applying "iL, we get���!C"iB|i�B 2 [D] for all �B 2 bv (B) (by i.h. bv (B)[B]). We have then that���!C"iB�ibv (B) ✓ [D] for all D 2 G, whence ���!C"iB�ibv (B) ✓ bv (C). By applying
residuation, ���!C"iB 2bv (C)""ibv (B) =bv (C"iB).

- Case A = B � C. By i.h. v(B) ✓ [B] and v(C) ✓ [C]. Hence, v(B) [v(C) ✓
cl([B][[C]) ✓ [B�C]. The first inclusion is due to the monotony property
and properties of cl. In fact, we have [B][[C] ✓ [B�C]. For, [B] ✓ [B�C]
and [C] ✓ [B�C] by �iR (i = 1, 2). It follows that cl(v(B)[v(C)) ✓ [B�C].

- On the other hand, v(B � C) =
T

D2G[D] for a certain G. By i.h �!B 2 v(B).
Hence, �!B ✓ cl(v(B) [v(C)). Similarly, �!C ✓ cl(v(B) [v(C)). Therefore, for
any D 2 G, �!B 2 [D] and �!C 2 [D]. By �L we get ����!B � C 2 [D]. It follows
that ����!B � C ✓ v(B � C).

- Case C = ?A

(19)

�1) A

�i�1) A

�i) A
?R

�i) ?A
?M

...
?M

�2, . . . ,�i) ?A
?M

�1, . . . ,�i) ?A

The proof above shows that for every i > 0 bv (A)i ✓ [?A]. We have then
S

i>0bv (A)i ✓ [?A]. Applying the closure map we get
S

i>0bv (A)i ✓ [?A],
whencebv (?A) ✓ [?A].
We prove now ?A 2bv (?A). We know thatbv (?A) =

T
D2G [D], for a certain

family of closed sets G. By i.h. A 2 bv (A). It follows that for every i > 0

Ai 2bv (Ai), whence Ai 2 Sk>0bv (Ai) ✓bv (?A). We have therefore:

For every i > 0 Ai 2bv (?A) i↵ For every i > 0, and for every D 2 G, Ai 2 [D]
i↵ For every D 2 G, ?A 2 [D], by application of ?R
i↵ ?A 2bv (?A)

ut
Theorem 2 (Strong Completeness à la Okada).
Let�) A be such that for every (P, v), (P, v) |= �) B. It follows that�) �B.

Proof. In particular, this sequent holds in the syntactic phase displace-
ment model. By the previous lemma, for any A, �!A 2 bv (A). Hence
� 2 bv (�). By soundness, for every (P,w) bw (�) ✓ bw (B). Therefore we
have that bv (�) ✓ bv (B). Since � 2 bv (�), � 2 bv (A), which entails (by the
truth lemma) that � 2 [A], i.e. �) �A. ut
By the previous theorem �) A is provable without Cut, whence:

Corollary 1 (Cut admissibility). The Cut rule is admissible.
ut

4 CatLog2 analyses

In Figure 5 we give a mini-lexicon for a fragment. The heart of the analy-
sis of iterated coordination is the assignment to a coordinator of types of
the form (?A\A)/A. For a respectively construction we employ in conjunc-
tion with displacement connectives a calibrated version ?n of the Mingle
exponential as follows, with list Curry-Howard labelling:

�(A1: x1, . . . ,An: xn)) B: ([x1, . . . , xn])
?nL

�(?nA: z)) B: (z)

�) A:�
?nR

�) ?1A: [�]

�) A:� �) ?nA:�0
?nM

�,�) [�|�0]: ?n+1A

A crucial aspect of what makes the respectively construction work here
is the information sharing between two ?A connectives in the type as-
signment to respectively — an implicit quantification over the natural A
in the type: i.e. a kind of dependent type.

The output of a version of CatLog2 for some examples is as follows:

and : (?S f\S f)/S f : (�n+ 0 and)
and : (?(S f/NA)\(S f/NA))/(S f/NA) : (�n+ (s 0) and)
and : (?(S f/!NA)\(S f/!NA))/(S f/!NA) : (�n+ (s 0) and)
and : (?(NA\S f)\(NA\S f))/(NA\S f) : (�n+ (s 0) and)
and : (?((NA\S f)/NB)\((NA\S f)/NB))/((NA\S f)/NB) : (�n+ (s (s 0)) and)
and : (?((NA\S f)/!NB)\((NA\S f)/!NB))/((NA\S f)/!NB) : (�n+ (s (s 0)) and)
and+1+and+1+respectively :?ANB\((SC"(ND\SC))"(NE•?A(NF\SC))) :
�G�H�I(((�n+ 0 and) (I ⇡1H)) (�+ ⇡2H G))
Bill : Nt(s(m)) : b
danced : NA\S f : �B(Past (dance B))
John : Nt(s(m)) : j
Mary : Nt(s(f)) : m
laughed : NA\S f : �B(Past (laugh B))
likes : (Nt(s(A))\S f)/NB : like
London : ⌅Nt(s(n)) : l
love : (NA\Sb)/NB : love
praised : (NA\S f)/NB : �C�D(Past ((praise C) D))
sang : NA\S f : �B(Past (sing B))
sings : Nt(s(A))\S f : sing
talks : Nt(s(A))\S f : talk
walks : Nt(s(A))\S f : walk
will : (NA\S f)/(NA\Sb) : �B�C(Fut (B C))

Fig. 5. Lexicon

4.1 Iterated coordination

To express the lexical semantics of (iterated) coordination, including it-
erated coordination and various arities (zeroary e.g. sentence, unary e.g.
verb phrase, binary e.g. transtive verb, . . .), we use combinators: a non-
empty list map apply ↵+, a non-empty list list apply �+, and a non-empty
list map�n combinator�n+.8

The non-empty list map apply combinator ↵+ is as follows:

(20) (↵+ [x] y) = [(x y)]
(↵+ [x, y|z] w) = [(x w)|(↵+ [y|z] w)]

The non-empty list list apply combinator ↵+ is as follows:

(21) (↵+ [x] [y]) = [(x y)]
(↵+ [x|y] [z|w]) = [(x z)|(↵+ y w)]

The non-empty list map�n combinator�n+ is thus:

8 For the list map apply cf. Schiehlen (2005[16]. The combinator� is such that� x y z w =
x (y w) (z w) (Curry and Feys 1958[3]).

(22) (((�n+ 0 and) x) [y]) = [y ^ x]
(((�n+ 0 and) x) [y, z|w]) = [y ^ (((�n+ 0 and) x) [z|w])]

((((�n+ (s n) c) x) y) z) = (((�n+ n c) (x z)) (↵+ y z))

These equations mean that in semantic evaluation any subterm of the
form on the left is to be replaced by that on the right, successively.

The first example is of iterated sentence coordination:

(23) John+walks+Mary+talks+and+Bill+sings : S f

Lexical lookup yields the following annotated sequent:

Nt(s(m)) : j,Nt(s(A))\S f : walk,Nt(s(f)) : m,Nt(s(B))\S f : talk, (?S f\S f)/S f :
(�n+ 0 and),Nt(s(m)) : b,Nt(s(C))\S f : sing) S f

The derivation is given in Figure 6. This delivers semantics:

Nt(s(m))) Nt(s(m)) S f) S f
\L

Nt(s(m)), Nt(s(m))\S f) S f

Nt(s(m))) Nt(s(m)) S f) S f
\L

Nt(s(m)), Nt(s(m))\S f) S f

Nt(s(f))) Nt(s(f)) S f) S f
\L

Nt(s(f)), Nt(s(f))\S f) S f
?R

Nt(s(f)),Nt(s(f))\S f) ?S f
?M

Nt(s(m)),Nt(s(m))\S f ,Nt(s(f)),Nt(s(f))\S f) ?S f S f) S f
\L

Nt(s(m)),Nt(s(m))\S f ,Nt(s(f)),Nt(s(f))\S f , ?S f\S f) S f
/L

Nt(s(m)),Nt(s(m))\S f ,Nt(s(f)),Nt(s(f))\S f , (?S f\S f)/S f ,Nt(s(m)),Nt(s(m))\S f) S f

Fig. 6. Derivation of John walks, Mary talks, and Bill sings

[(walk j) ^ [(talk m) ^ (sing b)]]

The second example is of iterated verb phrase coordination:

(24) John+walks+talks+and+sings : S f

Lexical lookup yields:

Nt(s(m)) : j,Nt(s(A))\S f : walk,Nt(s(B))\S f : talk,
(?(NC\S f)\(NC\S f))/(NC\S f) : (�n+ (s 0) and),Nt(s(D))\S f : sing) S f

The derivation is given in Figure 7. This delivers semantics:

[(walk j) ^ [(talk j) ^ (sing j)]]

The next example is of iterated transitive verb coordination, with a
non-standard constituent in the right hand conjunct:

(25) John+praised+likes+and+will+love+London : S f

Nt(s(m))) Nt(s(m)) S f) S f
\L

Nt(s(m)), Nt(s(m))\S f) S f
\R

Nt(s(m))\S f) Nt(s(m))\S f

Nt(s(m))) Nt(s(m)) S f) S f
\L

Nt(s(m)), Nt(s(m))\S f) S f
\R

Nt(s(m))\S f) Nt(s(m))\S f

Nt(s(m))) Nt(s(m)) S f) S f
\L

Nt(s(m)), Nt(s(m))\S f) S f
\R

Nt(s(m))\S f) Nt(s(m))\S f
?R

Nt(s(m))\S f) ?(Nt(s(m))\S f)
?M

Nt(s(m))\S f ,Nt(s(m))\S f) ?(Nt(s(m))\S f)

Nt(s(m))) Nt(s(m)) S f) S f
\L

Nt(s(m)), Nt(s(m))\S f) S f
\L

Nt(s(m)),Nt(s(m))\S f ,Nt(s(m))\S f , ?(Nt(s(m))\S f)\(Nt(s(m))\S f)) S f
/L

Nt(s(m)),Nt(s(m))\S f ,Nt(s(m))\S f , (?(Nt(s(m))\S f)\(Nt(s(m))\S f))/(Nt(s(m))\S f) ,Nt(s(m))\S f) S f

Fig. 7. Derivation of John walks, talks, and sings

Lexical lookup yields:

Nt(s(m)) : j, (NA\S f)/NB : �C�D(Past ((praise C) D)), (Nt(s(E))\S f)/NF :
like, (?((NG\S f)/NH)\((NG\S f)/NH))/((NG\S f)/NH) :
(�n+ (s (s 0)) and), (NI\S f)/(NI\Sb) : �J�K(Fut (J K)), (NL\Sb)/NM :
love,⌅Nt(s(n)) : l) S f

The derivation is given in Figure 8. This delivers semantics:

[(Past ((praise l) j)) ^ [((like l) j) ^ (Fut ((love l) j))]]

Finally we have an example of iterated coordination with right node
raising:

(26) John+praised+Bill+likes+and+Mary+will+love+London : S f

Lexical lookup yields:

Nt(s(m)) : j, (NA\S f)/NB : �C�D(Past ((praise C) D)),Nt(s(m)) : b, (Nt(s(E))\S f)/NF :
like, (?(S f/NG)\(S f/NG))/(S f/NG) : (�n+ (s 0) and),Nt(s(f)) : m, (NH\S f)/(NH\Sb) :
�I�J(Fut (I J)), (NK\Sb)/NL : love,⌅Nt(s(n)) : l) S f

There is the derivation in Figure 9. This delivers semantics:

[(Past ((praise l) j)) ^ [((like l) b) ^ (Fut ((love l) m))]]

4.2 The respectively construction

Kubota and Levine (2016[6]) provide a type logical account of binary
respectively constructions using empty operators. By contrast we account
here for unbounded addicity respectively constructions, without empty
operators.

Our first example synchronises parallel pairs of items:

(27) Bill+and+Mary+danced+and+sang+respectively : S f

N
t(s(n)))

N
t(s(n))

N
t(s(m

)))
N

t(s(m
))

Sb
)

Sb\L
N

t(s(m
)),

N
t(s(m

))\Sb
)

Sb
/L

N
t(s(m

)),
(N

t(s(m
))\Sb)/N

t(s(n))
,N

t(s(n)))
Sb\R

(N
t(s(m

))\Sb)/N
t(s(n)),N

t(s(n)))
N

t(s(m
))\Sb

N
t(s(m

)))
N

t(s(m
))

S
f
)

S
f\L

N
t(s(m

)),
N

t(s(m
))\S

f
)

S
f
/L

N
t(s(m

)),
(N

t(s(m
))\S

f)/(N
t(s(m

))\Sb)
,(N

t(s(m
))\Sb)/N

t(s(n)),N
t(s(n)))

S
f\R

(N
t(s(m

))\S
f)/(N

t(s(m
))\Sb),(N

t(s(m
))\Sb)/N

t(s(n)),N
t(s(n)))

N
t(s(m

))\S
f
/R

(N
t(s(m

))\S
f)/(N

t(s(m
))\Sb),(N

t(s(m
))\Sb)/N

t(s(n)))
(N

t(s(m
))\S

f)/N
t(s(n))

N
t(s(n)))

N
t(s(n))

N
t(s(m

)))
N

t(s(m
))

S
f
)

S
f\L

N
t(s(m

)),
N

t(s(m
))\S

f
)

S
f
/L

N
t(s(m

)),
(N

t(s(m
))\S

f)/N
t(s(n))

,N
t(s(n)))

S
f\R

(N
t(s(m

))\S
f)/N

t(s(n)),N
t(s(n)))

N
t(s(m

))\S
f
/R

(N
t(s(m

))\S
f)/N

t(s(n)))
(N

t(s(m
))\S

f)/N
t(s(n))

N
t(s(n)))

N
t(s(n))

N
t(s(m

)))
N

t(s(m
))

S
f
)

S
f\L

N
t(s(m

)),
N

t(s(m
))\S

f
)

S
f
/L

N
t(s(m

)),
(N

t(s(m
))\S

f)/N
t(s(n))

,N
t(s(n)))

S
f\R

(N
t(s(m

))\S
f)/N

t(s(n)),N
t(s(n)))

N
t(s(m

))\S
f
/R

(N
t(s(m

))\S
f)/N

t(s(n)))
(N

t(s(m
))\S

f)/N
t(s(n))

?R
(N

t(s(m
))\S

f)/N
t(s(n)))

?((N
t(s(m

))\S
f)/N

t(s(n)))
?M

(N
t(s(m

))\S
f)/N

t(s(n)),(N
t(s(m

))\S
f)/N

t(s(n)))
?((N

t(s(m
))\S

f)/N
t(s(n)))

N
t(s(n))

)
N

t(s(n))
⌅

L
⌅

N
t(s(n))

)
N

t(s(n))

N
t(s(m

)))
N

t(s(m
))

S
f
)

S
f\L

N
t(s(m

)),
N

t(s(m
))\S

f
)

S
f
/L

N
t(s(m

)),
(N

t(s(m
))\S

f)/N
t(s(n))

,⌅
N

t(s(n)))
S

f\L
N

t(s(m
)),(N

t(s(m
))\S

f)/N
t(s(n)),(N

t(s(m
))\S

f)/N
t(s(n)),

?((N
t(s(m

))\S
f)/N

t(s(n)))\((N
t(s(m

))\S
f)/N

t(s(n)))
,⌅

N
t(s(n)))

S
f
/L

N
t(s(m

)),(N
t(s(m

))\S
f)/N

t(s(n)),(N
t(s(m

))\S
f)/N

t(s(n)),
(?((N

t(s(m
))\S

f)/N
t(s(n)))\((N

t(s(m
))\S

f)/N
t(s(n))))/((N

t(s(m
))\S

f)/N
t(s(n)))

,(N
t(s(m

))\S
f)/(N

t(s(m
))\Sb),(N

t(s(m
))\Sb)/N

t(s(n)),⌅
N

t(s(n)))
S

f

Fig. 8. Derivation of John praised, likes, and will love, London

N
t(s(n)))

N
t(s(n))

N
t(s(f)))

N
t(s(f))

Sb
)

Sb\L
N

t(s(f)),
N

t(s(f))\Sb
)

Sb
/L

N
t(s(f)),

(N
t(s(f))\Sb)/N

t(s(n))
,N

t(s(n)))
Sb\R

(N
t(s(f))\Sb)/N

t(s(n)),N
t(s(n)))

N
t(s(f))\Sb

N
t(s(f)))

N
t(s(f))

S
f
)

S
f\L

N
t(s(f)),

N
t(s(f))\S

f
)

S
f
/L

N
t(s(f)),

(N
t(s(f))\S

f)/(N
t(s(f))\Sb)

,(N
t(s(f))\Sb)/N

t(s(n)),N
t(s(n)))

S
f
/R

N
t(s(f)),(N

t(s(f))\S
f)/(N

t(s(f))\Sb),(N
t(s(f))\Sb)/N

t(s(n)))
S

f/N
t(s(n))

N
t(s(n)))

N
t(s(n))

N
t(s(m

)))
N

t(s(m
))

S
f
)

S
f\L

N
t(s(m

)),
N

t(s(m
))\S

f
)

S
f
/L

N
t(s(m

)),
(N

t(s(m
))\S

f)/N
t(s(n))

,N
t(s(n)))

S
f
/R

N
t(s(m

)),(N
t(s(m

))\S
f)/N

t(s(n)))
S

f/N
t(s(n))

N
t(s(n)))

N
t(s(n))

N
t(s(m

)))
N

t(s(m
))

S
f
)

S
f\L

N
t(s(m

)),
N

t(s(m
))\S

f
)

S
f
/L

N
t(s(m

)),
(N

t(s(m
))\S

f)/N
t(s(n))

,N
t(s(n)))

S
f
/R

N
t(s(m

)),(N
t(s(m

))\S
f)/N

t(s(n)))
S

f/N
t(s(n))

?R
N

t(s(m
)),(N

t(s(m
))\S

f)/N
t(s(n)))

?(S
f/N

t(s(n)))
?M

N
t(s(m

)),(N
t(s(m

))\S
f)/N

t(s(n)),N
t(s(m

)),(N
t(s(m

))\S
f)/N

t(s(n)))
?(S

f/N
t(s(n)))

N
t(s(n))

)
N

t(s(n))
⌅

L
⌅

N
t(s(n))

)
N

t(s(n))
S

f
)

S
f
/L

S
f/N

t(s(n))
,⌅

N
t(s(n)))

S
f\L

N
t(s(m

)),(N
t(s(m

))\S
f)/N

t(s(n)),N
t(s(m

)),(N
t(s(m

))\S
f)/N

t(s(n)),
?(S

f/N
t(s(n)))\(S

f/N
t(s(n)))

,⌅
N

t(s(n)))
S

f
/L

N
t(s(m

)),(N
t(s(m

))\S
f)/N

t(s(n)),N
t(s(m

)),(N
t(s(m

))\S
f)/N

t(s(n)),
(?(S

f/N
t(s(n)))\(S

f/N
t(s(n))))/(S

f/N
t(s(n)))

,N
t(s(f)),(N

t(s(f))\S
f)/(N

t(s(f))\Sb),(N
t(s(f))\Sb)/N

t(s(n)),⌅
N

t(s(n)))
S

f

Fig. 9. Derivation for John praised, Bill likes, and Mary will love, London

Lexical lookup yields:

Nt(s(m)) : b, ?ANB\((SC"(ND\SC))"(NE•?A(NF\SC))){Nt(s(f)) : m,NJ\S f :
�K(Past (dance K)) : NL\S f : �M(Past (sing M))} :
�G�H�I(((�n+ 0 and) (I ⇡1H)) (�+ ⇡2H G))) S f

There is the derivation given in Figure 10. This delivers semantics:

Nt(s(m))) Nt(s(m))
?R

Nt(s(m))) ?1Nt(s(m))

Nt(s(f))) Nt(s(f))

NA) NA S f) S f
\L

NA, NA\S f) S f
\R

NA\S f) NA\S f
?R

NA\S f) ?1(NA\S f)
•R

Nt(s(f)),NA\S f) Nt(s(f))•?1(NA\S f)

NA) NA S f) S f
\L

NA, NA\S f) S f
\R

NA\S f) NA\S f S f) S f
"L

S f "(NA\S f){NA\S f }) S f
"L

(S f "(NA\S f))"(Nt(s(f))•?1(NB\S f)){Nt(s(f)),NB\S f : NA\S f }) S f
\L

Nt(s(m)), ?1Nt(s(m))\((S f "(NA\S f))"(Nt(s(f))•?1(NB\S f))){Nt(s(f)),NB\S f : NA\S f }) S f

Fig. 10. Derivation for Bill and Mary danced and sang respectively

[(Past (dance b)) ^ (Past (sing m))]

Our other example of the respectively construction synchronises par-
ellel triples of items:

(28) John+Bill+and+Mary+laughed+danced+and+sang+
respectively : S f

Lexical lookup yields the following:

Nt(s(m)) : j,Nt(s(m)) : b, ?ANB\((SC"(ND\SC))"(NE•?A(NF\SC))){Nt(s(f)) :
m,NJ\S f : �K(Past (laugh K)),NL\S f : �M(Past (dance M)) : NN\S f :
�O(Past (sing O))} : �G�H�I(((�n+ 0 and) (I ⇡1H)) (�+ ⇡2H G))) S f

There is the derivation given in Figure 11. This delivers semantics:

[(Past (laugh j)) ^ [(Past (dance b)) ^ (Past (sing m))]]

Interestingly, our account syntactically blocks examples of the kind
John and Peter walk, talk, and sing, respectively since the calibrated numbers
of occurrences are not equal. A variation of our account with uncalibrated
modalities would need to appeal to a semantic anomaly in relation to the
combinators.

Nt(s(m))) Nt(s(m))

Nt(s(m))) Nt(s(m))
?R

Nt(s(m))) ?1Nt(s(m))
?M

Nt(s(m)),Nt(s(m))) ?2Nt(s(m))

Nt(s(f))) Nt(s(f))

NA) NA S f) S f
\L

NA, NA\S f) S f
\R

NA\S f) NA\S f

NA) NA S f) S f
\L

NA, NA\S f) S f
\R

NA\S f) NA\S f
?R

NA\S f) ?1(NA\S f)
?M

NA\S f ,NA\S f) ?2(NA\S f)
•R

Nt(s(f)),NA\S f ,NA\S f) Nt(s(f))•?2(NA\S f)

NA) NA S f) S f
\L

NA, NA\S f) S f
\R

NA\S f) NA\S f S f) S f
"L

S f "(NA\S f){NA\S f }) S f
"L

(S f "(NA\S f))"(Nt(s(f))•?2(NB\S f)){Nt(s(f)),NB\S f ,NB\S f : NA\S f }) S f
\L

Nt(s(m)),Nt(s(m)), ?2Nt(s(m))\((S f "(NA\S f))"(Nt(s(f))•?2(NB\S f))){Nt(s(f)),NB\S f ,NB\S f : NA\S f }) S f

Fig. 11. Derivation for John, Bill, and Mary laughed, danced, and sang, respectively

Acknowlegements

Research partially supported by an ICREA Acadèmia 2012 to the alpha-
betically first author, and SGR2014-890 (MACDA) of the Generalitat de
Catalunya and MINECO project APCOM (TIN2014-57226-P). We thank
anonymous LACL referees for valuable comments and suggestions. All
errors are our own.

Bibliography

[1] D. Bechet, A. Dikowsky, A. Foret, and E. Garel. Optional and iter-
ated types for pregroup grammars. In C. Martin-Vide, F. Otto, and
H. Fernau, editors, Language and Automata Theory and Applications,
number 5196 in LNCS, pages 88–100. Springer, 2008.

[2] Wojciech Buszkowski and Ewa Palka. Infinitary action logic: Com-
plexity, models and grammars. Studia Logica, 89(1):1–18, 2008.

[3] Haskell B. Curry and Robert Feys. Combinatory Logic, volume I.
North-Holland, Amsterdam, 1958.

[4] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–
102, 1987.

[5] Norihiro Kamide. Substructural logics with mingle. Journal of Logic,
Language and Information, 11(2):227–249, 2002.

[6] Yusuke Kubota and Bob Levine. The syntax-semantics interface of
respective predication: a unified analysis in hybrid type-logical cat-
egorial grammar. Natural Language and Linguistic Theory, 34(3):911–
973, August 2016.

[7] J. Lambek. On the Calculus of Syntactic Types. In Roman Jakobson,
editor, Structure of Language and its Mathematical Aspects, Proceedings
of the Symposia in Applied Mathematics XII, pages 166–178. American
Mathematical Society, Providence, Rhode Island, 1961.

[8] J. Lambek. Categorial and Categorical Grammars. In R.T. Oehrle,
E. Bach, and D. Wheeler, editors, Categorial Grammars and Natural
Language Structures, volume 32 of Studies in Linguistics and Philoso-
phy, pages 297–317. D. Reidel, Dordrecht, 1988.

[9] Joachim Lambek. The mathematics of sentence structure. American
Mathematical Monthly, 65:154–170, 1958.

[10] Glyn Morrill. Grammar and Logical Types. In M. Stockhof and
L. Torenvliet, editors, Proceedings of the Seventh Amsterdam Collo-
quium, pages 429–450, Amsterdam, 1990. University of Amsterdam.

[11] Glyn Morrill and Oriol Valentı́n. Computational Coverage of TLG:
Nonlinearity. In M. Kanazawa, L.S. Moss, and V. de Paiva, ed-
itors, Proceedings of NLCS’15. Third Workshop on Natural Language
and Computer Science, volume 32 of EPiC, pages 51–63, Kyoto, 2015.
Workshop a�liated with Automata, Languages and Programming
(ICALP) and Logic in Computer Science (LICS).

[12] Glyn Morrill, Oriol Valentı́n, and Mario Fadda. The Displacement
Calculus. Journal of Logic, Language and Information, 20(1):1–48, 2011.

[13] Glyn V. Morrill. Type Logical Grammar: Categorial Logic of Signs.
Kluwer Academic Publishers, Dordrecht, 1994.

[14] Mitsuhiro Okada. Phase semantic cut-elimination and normaliza-
tion proofs of first- and higher-order linear logic. Theoretical Com-
puter Science, 227(1–2):333–396, September 1999.

[15] Ewa Palka. An infinitary sequent system for the equational theory
of *-continuous action lattices. Fundam. Inf., 78(2):295–309, April
2007.

[16] Michael Schiehlen. The role of lists in a categorial analysis of coor-
dination. In P. Dekker and M Franke, editors, Proceedings of the 15th
Amsterdam Colloquium, pages 221–226, 2005.

[17] Oriol Valentı́n. Theory of Discontinuous Lambek Calculus. PhD thesis,
Universitat Autònoma de Barcelona, Barcelona, 2012.

[18] Oriol Valentı́n. Models for the displacement calculus. In A. Foret,
G. Morrill, R. Muskens, R. Osswald, and S. Pogodalla, editors, Formal
Grammar 2015: Revised Selected Papers. Formal Grammar 2016: Proceed-
ings, volume 9804 of LNCS, pages 147–163, Berlin, 2016. Springer.

