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Abstract

We describe the possibility of a systematic correspondence between
combined algebraic and relational interpretation of categorial logic, and
the form of proof structures and paths in proof nets, illustrating with
reference to medial extraction, in situ binding and discontinuity.

Type logic for linguistic description (e.g. Moortgat 1988, 1997; Morrill 1994;
Carpenter 1997) is based on what we may refer to as a Lambek-van Benthem
correspondence: (logical) formulas as (linguistic) categories. Lexical signs are
classified by category formulas, and the language model projected by a lexicon
is determined by the consequence relation induced on category formulas by their
interpretation.

In this logical model of language, (logical) proofs correspond to (linguis-
tic) derivations, but such syntax serves just to calculate what is generated, not
to define it. Although syntax plays no definitional role linguistically, from a
computational linguistic point of view we are interested in the processing of
language, and we can reinstate syntactic structure as the trace of such process-
ing. Addressing the question ‘What is the essential structure of the relevant
kinds of proofs?’ yields an answer to the question ‘What is syntactic structure?’
under the application of proof nets as syntactic structures. We suggest, with
reference to type logic for medial extraction, in situ binding and discontinuity,
the possibility of a systematic correspondence between relational interpretation
and paths in proof nets.

*I thank all those who have helped regarding proof nets, including Michele Abrusci, Claudia
Casadio, Bob Carpenter, Philippe de Groote, Frangois Lamarche, Alain Lecomte, Josep Maria
Merenciano, Michael Moortgat, Dick Oehrle, Fernando Pereira and Christian Retoré, and
apologise for errors.



1 Introduction

Whereas phrase structure grammar models language as a formal system, i.e. a
set of strings, categorial grammar models language as a communicative system,
i.e. a set of signs (form-meaning associations). Parse trees for CFG are con-
crete structures defining the equivalence classes of string rewriting derivations.
Corresponding structures for categorial grammar must be deeper, since they
incorporate also semantics. Here we pursue the idea that proof nets (Girard
1987, Danos and Regnier 1990!) are those structures (see e.g. Moortgat 1990b,
1992; Hendriks and Roorda 1991; Lecomte 1992, 1993; Lecomte and Retoré
1995; Oehrle 1994, 1995; Morrill 1996, 1999; Merenciano and Morrill 1997; de
Groote and Retoré 1996), that proof nets are for categorial grammar what parse
trees are for CFG. This provides a particularly vivid realisation of the notion
of categorial syntactic connection of Ajdukiewicz (1935) as a harmonic mutual
connectivity of the valencies of the words making up a sentence.

The syntactic calculus L of Lambek (1958) provides a logical model of lan-
guage which presents formulas as categories and proofs as derivations. Proof
nets for the calculus, recognizable as a multiplicative fragment of non-commutat-
ive intuitionistic linear logic (Girard 1989; Abrusci 1990), were developed in
(Roorda 1991). The question arises as to how to characterise proof nets for
phenomena which go beyond the expressivity of L. A line of approach will be
described here.

1.1 Associative Lambek calculus

In the (associative) Lambek calculus L the category formulas F are constructed
from atomic category formulas A (atoms) by a product operator e and two
directional divisors, \ (“under”), and / (“over”), as follows:

.7: :::.A | .7:1..7:2 | .7:1\.7:2 | .7:1/.7:2 (1)

Lambek (1958, 1988) gives an algebraic interpretation in a semigroup (L, +), a
set I closed under an associative binary operation + (we may think of the set
of strings over some vocabulary, and the operation of concatenation). Formulas
are interpreted as subsets of L. Given an interpretation [P] for each atom P,
each category formula A receives an interpretation [A] thus:

[A\B] = {s|Vs' € [A],s'+s € [B]} (2)
[B/A] = {s| Vs €[A], s+s' € [B]}
[[AOB]] = {81+82| S1 € [[A]] & sy € [[B]]}

Van Benthem (1991) gives a relational interpretation in a set V' (we may think
of the starting and ending moments of utterances). Formulas are interpreted as
binary relations, i.e. as subsets of V' x V. Given an interpretation [P] for each

LCf. also Gallier 1992.



atom P, each category formula A receives an interpretation [A] thus:

[A\B] = {(v2,vs)| Vo1, (v1,v2) € [A] = (v1,v3) € [B]} (3)
[B/A] = {{v1,v2)| Vus,(v2,vs) € [A] = (v1,v3) € [B]}
[AeB] = {{v1,vs)| Fva, (v1,v2) € [A] & (v2,v3) € [B]}

A sequent I' = A comprises a succedent category formula A and an an-
tecedent configuration I' which is a finite sequence of category formulas.? A
sequent Aj,..., A, = A asserts that for all algebraic interpretations, for all
S1y...58n € L, if 5; € [A;],1<i<n then s1+---+s, € [A], and that for all
relational interpretations, for all vo, ..., v, € V, if {v;_1, v;) € [4;], 1<é<n then
(v, v) € [A]- The valid sequents are those generated by the following sequent
calculus (T'(A) indicates a configuration I with a distinguished subconfiguration

A):3

a. A=A id =4 AM4)=B_ (4)
Cut
A(l)= B

b. IT'=A4 AB)=C AT =B
\L \R
A(T',A\B) = C I' = A\B

c. I'=A4 A(B):CL I'A=B

A(B/AT)=C I' = B/A
d. TI'(4,B)=C r=4 A=8H
ol .
I'(AeB) = C [A = AeB

Each connective has a rule of use in which it appears in the antecedent of the
conclusion sequent, and a rule of proof in which it appears in the succedent of
the conclusion sequent; in every instance of these logical rule schemata there is
exactly one more connective occurrence in the conclusion than in the premises
so that backward chaining proof steps involving these rules are complexity-
reducing: trying to prove conclusions by proving the premises generates strictly
simpler subgoals. The identity rule schemata id and Cut reflect respectively
the reflexivity and transitivity of set containment. The id rule schema has zero
premises, i.e. it is an axiom schema; the instances where A is a compound for-
mula are derivable by the other rules from atomic instances, hence id can be
restricted to apply to atoms without altering the set of theorems generated. In
the Cut rule schema the Cut formula A is duplicated in the premises and the rule
fails to be complexity-reducing in the sense of the logical rules. However, the

20fficially the antecedent is non-empty, a detail we gloss over.

3Regarding completeness with respect to semigroup, free semigroup, and relational inter-
pretation see Buszkowski (1986), Pentus (1994) and Andréka and Mikulds (1994) respectively;
see also Kurtonina (1995). Buszkowski (1996) gives a survey.



calculus has the property of Cut-elimination: for every proof there is an equiv-
alent Cut-free proof. This means that naive Cut-free backward chaining proof
search constitutes a decision procedure for theoremhood. The Cut-elimination
result has as a corollary the subformula property that every theorem has a proof
containing only its subformulas — namely any Cut-free proof.

Lambek calculus provides a classificatory framework for subcategorisation
which synchronizes naturally with Fregean semantics of incompleteness and
compositionality. It provides for some proper treatment of quantification, and
for some action-at-a-distance. Still, from a linguistic point of view the possi-
bilities of the Lambek calculus are extremely limited since it is a logic of only
concatenation, i.e. continuity, whereas language exhibits discontinuity.

1.2 Discontinuity

By way of examples of discontinuity beyond the reach of L we consider medial
extraction, and in situ binding. In (5) the relative pronoun binds a position
which is medial in the relative clause.

(the dog) that; John gave t; to Mary (5)

Defining the relative pronoun as R/(N\S) or R/(S/N) (where R is CN\CN)
allows it to bind only left or right peripheral positions: (5) is not generated.
To deal with such cases, Moortgat (1988) defines as follows a binary operator
which we write 1.:

[Bt.A] = {s1+52|Vs € [A], s1+s+s2 € [B]} (6)

Assigning the relative pronoun to category R/(S1T.N) allows both medial and
peripheral extraction, via the rule of proof (7).

Fla Aa FZ = B (7)
—— R
Iy, I's = BT, A

Such a treatment potentially accommodates obligatory extraction valencies:*
a. (the man) that; John assured Mary ¢; to be reliable (8)

b. *John assured Mary Bill to be reliable.

If the extraction valency of “assured” is marked by 1., a sequent corresponding
to (8a) is valid while that for (8b) is invalid, as required. But Moortgat (1988:
121-2) observes that a satisfactory sequent rule of use cannot be formulated,
and, as pointed out by I. Sag (p.c.), in the absence of a rule of use it is impossible
to actually derive all cases like (8a) since when the obligatory extraction valency

40f. e.g. Ochrle (1990). Morrill (1994) considers medial and obligatory extraction in terms
of S/AN rather than Sft.N, where A is a modality licensing permutation (Barry, Hepple,
Leslie and Morrill 1991). It remains to explore whether the current methods can be applied
to such a modality.



verb is subordinate to some functor, one needs to make use of the operator in
the course of the derivation.

Regarding in situ binding, in (9) the quantifier phrase and reflexive are in
situ binders, taking scope at the sentence and verb phrase levels respectively.

a. John bought someone Fido. (9)
b. John bought himself Fido.

Moortgat (1996) gives a ternary operator () which we may interpret:

[Q(B, A, C)] = {s|Vs1,s3,[Vsy € [A], s1+s2+s3 € [B]] = s1+s+s3 € (10)
[CT}

Moortgat categorises quantifier phrases and reflexives as sentence and verb
phrase in situ binders: Q(S, N, S) and Q(N\S, N, N\S) respectively. Cases such
as (9) are generated by means of the rule of use (11).

I(A) =B AC)= DQL (11)
AT(Q(B,A,C))) = D

However, this time no satisfactory rule of proof can be given. Therefore, as
pointed out by H. Hendriks (p.c.), a valid sequent such as (12), showing that a
sentence in situ binder is also a verb phrase in situ binder, cannot actually be
derived.

Q(S, N, S) = Q(N\S, N, N\S) (12)

However, it may be that a proof net syntax can still be provided for such
systems.

2 Proof nets

Surveys of proof nets include Lamarche and Retoré (1996) and Retoré (1996).
Works on (possibly) non-commutative or partially commutative proof nets in-
cludes Retoré (1993, 1997), Bellin and van de Wiele (1995), Ruet (1997), Abrusci
and Ruet (1998), de Groote (1999) and Moot and Puite (1999). Here we con-
sider the possibility of a systematic correspondence between combined algebraic
and relational interpretation and paths in proof nets, for which it is convenient
to describe, in the following two subsections, some aspects of classical linear
logic, and proof nets for classical linear logic, and in subsection 2.3 proof nets
for the Lambek-van Benthem categorial calculus. In section 3 we consider paths
in proof nets for the Lambek calculus, and in subsections 3.1, 3.2 and 3.3, paths
in proof nets for the medial divisor the in situ binder, and discontinuity more
generally.



2.1 Classical linear logic

Formulas for classical linear logic can be defined as follows:
Fu=A | F1® Fy | F19F | F1—oF | Ft (13)

In the sequent calculus (14), sequents are of the form I' = A where configura-
tions I' and A are finite sequences of formulas.

a. = AL A AT, = A, (14)
id Cut
A=A Fl,F2:>A1,A2
b. Ty,A,B,Ty= A = A, A, B, A,

PL R
Fl,B,A,ngA F:>A1,B,A,A2

c. I'A,B= A ' = A A T's= B, A,
—®L @R
F,A@BiA Fl,F2:>A®B,A1,A2

d ATi1= A B/TI;= A, I'= A A B
PL R,
AWB,Fl,FQ = Al,AQ I'=> A,AWB

e. T''=AAy B, IT;= A, I'A= B,A
—oLL

-0
Fl,A—OB,FQ = Al,AQ I'= A—OB,A

R

f. = A4A A=A
J_L 1
[,At = A [ = AL A

We recognize for @ (“times”), § (“par”), —o (“linear implication”), and +
(“perp”) classical sequent rules for conjunction, disjunction, implication and
negation respectively. Indeed, the only difference with respect to classical logic
is that the structural rules of contraction and weakening are not included. This
calculus, multiplicative classical linear logic, has the property of Cut-elimination.

Those properties of classical logic which do not depend on contraction and
weakening are inherited by classical linear logic. For example, the negation is
involutive, At+ < A:

a. A=A b. A=A (15)
—J_L I
A AL = = AL A
J_R J_L
A= AL AL = 4

And there are the following proofs of the two sides of the de Morgan law



(Ao B)t & AtpBt:

a. A=A B=B b. A=A B = B (16)
1R LL L 1L
= A, At = B,Bt At A= BLB=
®R 0
= A® B, A+, B+ AlpBL A, B =
PR @ L
= A@ B, At9Bt i ALOBY AOB = |
(A@ B)* = AtpB* AtpBt = (A0 B)*

The other de Morgan law, (A9 B)* < A1 @ BL, is obtained similarly, and also
the equivalence A—oB < AL9B. Consequently, all formulas have a negation
normal form for which they may be regarded as metalinguistic abbreviations;
that is the way classical linear logic is usually presented but, for expository
reasons, we do otherwise here.®

2.2 Proof nets for classical linear logic

In sequent calculus each formula is situated with respect to an opposition,
antecedent-succedent. In proof nets, each formula A will be correspondingly
situated by signing it as of either input polarity, A*, or as of output polarity,
A°. In order to define proof nets we first define a class of proof structures of
which they are a subset. A proof structure is a connected graph with nodes
labelled by signed formulas, assembled out of the proof links given in figure 1;
in the identity links, X and X are A® and A° (in either order). FEach formula
in a proof link (and a proof structure) is also labelled implicitly as either a
premise or a conclusion, or else as internal. We draw edges in such a way that
premises always look upwards and conclusions always look downwards; the log-
ical links each have two premises and one conclusion; the id axiom link has two
conclusions and no premises, the Cut link two premises and no conclusions.®

We define a signed formula tree to be a finite tree with leaves labelled by
signed atoms, each local tree of which is a logical link. A proof frame is a finite
sequence’ of signed formula trees. A proof structure is obtained from a proof
frame by connecting complementary leaves with axiom links, and complemen-
tary roots with Cut links, in such a way that each leaf is connected to exactly
one other, and each root to at most one other. Alternatively viewed, proof
structures are assembled by identifying premises and conclusions of proof links
which are of the same signed formula; see figure 2.

A proof structure with input conclusions A¢*,..., A,* and output conclu-
sions B1°,..., B° is read as asserting that Aq,..., A, = By,..., B, is valid.

5Furthermore, sincee.g. ', A = A ifand only if ' = AL A one may convert every sequent
to an equivalent one-sided sequent, and work with a one-sided calculus; but for comparison
with later calculi, we retain the (more cumbersome) two-sided view.

8We consider the premises of proof links to be ordered, left and right, in the way they
are drawn; to maintain a purely graph-theoretic view we should say that there is an implicit
directed edge between the premises of logical links.

" Again, regarding this ordering see the previous note.
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Figure 1: Proof links of classical linear logic
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Figure 2: Assembly of a proof structure
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Figure 3: Expanded logical links of classical linear logic

Thus, the proof structure of figure 2 asserts N = (N—oS)—oS, which is in fact
true, but not all proof structures are correct; indeed ® and ¢ are not distin-
guished: the splitting of contexts by binary sequent rules is not represented.
We shall define correctness conditions on proof structures in terms of what we
call ezpanded proof links/frames/structures. The conditions are easily applied to
proof structures themselves in virtue of their (unique) expansion, but reference
to the expanded level allows for a perhaps tidier statement. The links which
alter on expansion are given in figure 3. In the ®- and ®-output links the
central node is the principal connective of the conclusion. In the ®- and -
input links the central node is the de Morgan dual of the principal connective of
the conclusion; this is because we regard input polarity as negating.® In the —o-
output link we see the disjunction and polarity propagation of the equivalence
A—oB < AL9B, and in the —o-input link we see the conjunction and polarity

8That is, we adopt the point of view of one-sided sequents in which the antecedent is empty,
which is the usual perspective of linear logic; but one could equally adopt the point of view
of one-sided sequents in which the succedent is empty, which is the usual point of view of
refutation, in which case we would regard output polarity as negating.



propagation of the equivalence (A—oB)* < A® Bt.

The original correctness criterion of Girard (1987), the long trip condition,
is as follows. Each ®- and #-fork in an expanded proof structure is considered
a switch which determines travel instructions according to which of two states it
is in: open to the left (and closed to the right) or open to the right (and closed
to the left). Entering an open premise, we always exit through the conclusion,
but the other two cases depend on the connective. Entering the closed premise
of ® we exit through the other (open) premise, but entering the closed premise
of 2 we bounce, returning immediately out of the same (closed) premise back
the way we came. Entering the conclusion of ® we go out through the closed
premise, but entering the conclusion of ¥ we go out through the open premise.
Finally, when we arrive at a conclusion, we also bounce, returning immediately
in the direction from which we just came.

A trip is a path through a proof structure according to a switching; note
that once begun a trip extends deterministically. A trip is long if and only if
it returns to its starting point having traversed each edge exactly once in each
direction. A switching defines a long trip if and only if there is some long trip
for the switching; in view of determinism and periodicity, a switching defines
some long trip if and only if starting anywhere results in a long trip. A proof
structure is correct, that is it is a proof net, if and only if every switching defines
a long trip. A sequent I' = A is a theorem of the sequent calculus if and only
if there is a proof net with input conclusions I' and output conclusions A.

The proof nets, like the sequent calculus, have the property of Cut-eliminat-
ion: for every proof net there is an equivalent Cut-free proof net — having the
same bindings in identity links of the atoms of conclusions. This means that
there is the following decision procedure for determining theoremhood via proof
nets. Given a sequent Aq,..., A, = Bi,..., By, construct the proof frame
with conclusions A;*,..., A,*, B1°,..., By, ° comprising the sequence of signed
formula trees given by the following recursive unfolding:

A* B A°  B° A*  B* A°  B° (17)
e © @ — @ ——F

Ao B* A® B° APB* APB°

A°  B* A*  B° A° A

® £
A—oB* A—oB° At Ate

Then test whether the long trip condition is satisfied for some Cut-free proof
structure (there are a finite number) that can be built by putting axiom links
on the proof frame.

Testing the long trip condition as it stands is not attractive computationally
since in a proof structure with 7 #-links and j © -links there are 2/ switchings
to be tried. The situation is improved with the correctness criterion as formu-
lated by Danos and Regnier (1989), which considers only switchings of §-links.
For any given switching, a certain graph results by removing from an expanded
proof net the edges between each #-conclusion and its closed premise. The re-
sult of Danos and Regnier is that a proof structure is a proof net if and only



if for every switching of #-links, the result of removing these edges is acyclic
and connected. A direct application of this simplified criterion requires only 2*
switchings to be tried.

2.3 Lambek-van Benthem calculus

Consider formulas defined as follows.
Fu=A|FLF: | F1—oF, (18)

In the calculus (19) sequents are of the form I' = A where the antecedent
configuration is a sequence of formulas, but the succedent comprises exactly
one formula.

a. =4 AT,=B (19)
id Cut
A=A I',I's =B

b. T1,A,B,Ty=C
p
T1,B, ATy = C

c. I''A,B=C I'in=A4 I;=28B
— oL

® @R

I'AoB = C Iy,I's => A0 B

d I'i=A4 BI;=/C I''A=10B
—oL —oR

I',A—-B, Iy = C I' = A—oB

We recognize positive intuitionistic sequent rules for conjunction and implica-
tion; indeed, the only difference with respect to positive intuitionistic logic is
that the structural rules of contraction and weakening are not included. This is
the Lambek-van Benthem categorial calculus LP: a multiplicative fragment of
intuitionistic linear logic; it has the property of Cut-elimination. Compared to
classical linear logic, we see that there is now only one (left-sided) permutation
rule, since there are never two formulas in the succedent to which a right per-
mutation rule could apply. All the rules are instances of rules of the classical
calculus, so intuitionistic proof nets are a special case of classical proof nets,
and every intuitionistic linear theorem is also a classical linear theorem.

We give the proof links in figure 4. An LP signed formula tree is a finite
tree with atomic (signed) leaves each local tree of which is an LP logical link.
An LP proof frame is a finite sequence of LP signed formula trees. An LP
proof structure is obtained by connecting complementary leaves with axiom
links and complementary roots with Cut links in such a way that each leaf is
connected to exactly one other and each root is connected to at most one other,
and which has exactly one conclusion of output polarity. A proof structure with
input conclusions I' and output conclusion A is read as asserting that I' = A is
valid. Being special cases of classical proof nets, intuitionistic proof nets must
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Figure 4: Logical proof links of LP and their expansions



satisfy the following, otherwise there would be cyclicity on some Danos-Regnier
switching:

Acyclicity condition. Every cycle must cross both edges of some #-link. (20)

Now, so far as we are aware, an intuitionistic sequent, i.e. a single conclu-
sion sequent of { ®, —o}-formulas, is an intuitionistic theorem if and only if it
is a classical theorem®, and (20) is even sufficient for LP correctness. Then
as LP proof nets satisfy Cut-elimination, there is the following decision pro-
cedure for determining LP theoremhood by searching for Cut-free proof nets.
Given a sequent Aqy,..., A, = A construct the proof frame with conclusions
Aq®, ..., A%, A° comprising the sequence of signed formula trees given by the
following recursive unfolding;:

A* B A° B° A° B* A* B° (21)
P @ —Q —F
A®B* A®B° A—oB* A—oB°

Then test whether there is some proof structure that can be built by putting
axiom links on the proof frame, which satisfies the Acyclicity condition.

Since LP is a restriction of intuitionistic logic, each proof can be read as
an intuitionistic proof. The intuitionistic natural deduction proof, encoded as a
linear term of A-calculus with function and pair types, is extracted from a proof
net as follows (cf. de Groote and Retoré 1996). First, one associates distinct
variables with each output implication link and distinct constants with each
input conclusion. Then, one starts travelling upwards at the unique output
conclusion: going up into an output division (i.e. implication) link, A-abstract
over the associated variable the result of going up into the output premise; going
up into an output product (i.e. conjunction) link, pair the result of going up
into the premise for the first subformula with the result of going up into the
premise for the second subformula; going up into one premise of an id link, go
down into the other premise; going down into one conclusion of a Cut link, go up
into the other conclusion; going down into an input division link, functionally
apply the result of going down into its conclusion to the result of going up into
the other premise; going down into the premise for the first subformula of an
input product link, take the first projection of the result of going down into
its conclusion; going down into the premise for the second subformula of an
input product link, take the second projection of the result of going down into
its conclusion; going down into an output division link, return the associated
variable; and going down into an input root, return the associated constant.
This extraction procedure is the same for all categorial products and divisions.

9 Attributed by Bellin and Scott (1994) to J. van de Wiele; cf. also Lamarche (1994, 1995).



3 Lambek calculus and extensions

The (associative) Lambek calculus L, a multiplicative fragment of intuitionistic
non-commutative linear logic,'® has the formulas and sequent calculus of (1)
and (4). When we read @ as @ and both A\B and B/A as A—oB, each rule is
LP-derivable, so every theorem of L is also a theorem of LP when read in this
way, and for a proof structure to be a proof net it is necessary that there be
no vicious circle in the sense before. But this is no longer sufficient since in the
absence of permutation, order must be taken into account.

Roorda (1991) addresses the ordering component in terms of a directional
balance by specifying that in output logical links the subformulas of the conclu-
sion appear with their left/right ordering switched in the premises. Then proof
structures are required to be planar, and a (planar) proof structure is a proof
net if and only if it satisfies acyclicity in the usual manner.'' Here, however,
we will be concerned to admit some flexibility in ordering, and we consider cor-
rectness conditions based on unifiability (Morrill 1996). We will maintain the
order switching of output unfolding, but do not require proof structures to be
planar. Rather, we describe resolution conditions corresponding to relational
interpretation.

In order to construe L in a manner uniform with subsequent extensions, con-
sider the interpretation of L formulas that results from combining the algebraic
and relational models. Interpretation takes place with respect to a semigroup
(L,+) and a set V. Formulas are interpreted as subsets of L x V' x V. Given
an interpretation [P] for each atom P, each category formula A receives an
interpretation [A] thus:

[A\B] = {{s,v2,v3}| Vs',v1,{s,v1,v2) € [A] = (s'+s,v1,v3) € [B]} (22)
[B/A] = {{s,v1,v3)| V', v3, (s, va,v3) € [A] = {s+s', v1,v3) € [B]}
[[AOB]] = {<81—|—82, VU1, Ug>| E'Ug, <81, V1, Ug> c [[A]] & <82, V3, Ug> c [[B]]}

The expansion of proof links will reflect the binary relational quantificational
structure. Each node labelled by a formula will have two incident dashed edges
referred to as its start and its end parameter edges. For an input formula the
start comes on the left and the end comes on the right; for an output formula
this is reversed:

start A* end end A° start (23)

These parameter edges are connected to quantifiers in the expanded proof
structures which bind the parameters of formulas regarded as binary predicates.
The proof links of L are given in figures 5 and 6. The expansions are a
systematic reflection of the propositional and quantificational structure of the
interpretation (negated in the input case). Just as before, an L signed formula

10 Again, we gloss over minor differences regarding whether or not empty antecedents are
admitted.

11 Planarity, reflecting more fundamentally correct bracketing, only works for Cut-free proof
nets; for the general case see Abrusci (1995).
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Figure 7: Parameter expansion of conclusions

tree is a finite tree with atomic (signed) leaves each local tree of which is an L
logical link. An L proof frame is a finite sequence of L signed formula trees and
an L proof structure is the result of connecting complementary leaves with axiom
links and complementary roots with Cut links in such a way that each leaf is
connected to exactly one other, each root is connected to at most one other, and
there is exactly one conclusion of output polarity. An expanded proof structure

has the annotation of figure 7 on its conclusions A4;%,..., A,*, A° in the proof
frame. This corresponds to the meaning of a sequent A;,..., A, = A with
respect to binary relational interpretation: for all vg,...,v, € V,if (v;_1,v;) €

[A:], 1<i<n then (v, v,) € [A].

The complementary atoms linked by axioms in proof nets can be seen as
the counterparts of the complementary pairs in a (non-clausal) resolution proof.
This gives rise to the following condition for correctness on parameter paths in
proof structures. First, to each existential quantifier we associate a new free
variable, and to each universal quantifier we associate a Skolem term; note that
polarities are the opposite of what is usual since resolution proofs are refutations,
i.e. negate succedent formulas, whereas proof nets negate antecedent formulas.
A Skolem term is a new constant in the case that the universal quantifier is not
descended from any existential; otherwise it comprises a new n-place function
symbol with arguments the n variables of the n ancestor existentials. Each
axiom link requires the start and end parameters of its two atoms to be unified,
and for a proof structure to be correct as a whole, the unification problem
defined by its axiom linkings must be solvable.

We can show that the quantificational structure of a proof net is correct
by exhibiting a unifier, but we do not need to insist on such a constructive
proof of unifiability: the condition only requires than such a unifier exists.
Unification fails in two cases, clash: if we attempt to match a constant to a
different constant, or to match a structured term to a structured term with a
different function symbol, or to a constant, or occurrence: if we attempt to match
a variable to a structured term containing this variable. Let us define a V3-
cycle as a cyclic path alternating between universals and dominating existentials
as shown in figure 8 (the directionality, shown explicitly, is from descendent
to ancestor); thus we can test satisfaction of unifiability of expanded proof
structures by the following:

Resolution conditions. No two distinct universals are connected by (24)
parameter edges (clash check) and there is no V3-cycle (occurrence

check).



m

Figure 8: Clash check and occurrence check violations

The idea is that the clash check and occurrence check together take the place
of planarity and acyclicity requirements (in particular the notion of V3-cycle
is highly similar to that of AFE-cycle in Lecomte and Retoré 1995, though the
rationale is entirely different) so that we can show that a proof structure is
incorrect by identifying either a clash check violation or an occurrence check
violation.

That satisfaction of the Resolution conditions is necessary is immediate for, if
a proof structure is correct, it must be correct as a (non-clausal) resolution proof
of classical logic. The question arises as to whether satisfaction of the resolution
condition is also sufficient. If it is not one must do more to show correctness than
just assure solvability of the unification problem defined by a proof structure,
but we conjecture that for at least product-free L a proof structure is a proof
net if and only if it satisfies the Resolution conditions. Assuming this, and given
Cut-elimination for L proof nets, there is the following algorithm for deciding
the validity of an L sequent Aq,..., A, = A. Construct the proof frame with
conclusions A;*,..., A,*, A° comprising the sequence of signed formula trees
given by the following recursive unfolding;:

A°  B* B° A B*  A° A*  B° (25)
@ £ ® S—
A\B* A\B° B/A® B/ A°
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A*  B* B°  A°
s}
AeB* AeB°

Then test whether some proof structure can be built be adding axiom links
which complies with the resolution condition.

In figure 9 we give an expanded proof net for the valid sequent N = S/(N\S),
a lifting theorem. It defines the unification problem {0 =¢,1=1,i=0,2 = 2}
which has solution {0/7}. In figure 10 we give an expanded proof structure for
the invalid lowering sequent S/(N\S) = N; there is a clash check violation on
the outer parameter edges. Figure 11 shows a partial proof structure for the
invalid sequent = (S\(N\N))eS, in which the only parameter edge explicitly
marked participates in a V3-cycle completed by the two directed edges.

A categorial derivation defines a semantic construction, expressed by the
typed A-term extracted as for LP proofs, giving the semantics of the expression
derived in terms of the semantics of its lexical signs. In the lifting example of



—l ||||||||||||||||||||||||| o -0
R Z.
I 1
! |
|
| _,|o|/ |
L &N
TN\ \ I
ANNAN |
ANNAN |
N\
/I/I |||||| A _
oL — — . S/ —
\||||uv M >
T T T T |// _
7/ 7 // |
7/ N
P N\ _
/ \ BN
7
r s/ N = = Z
. S
_ / )
| | A
[ 7
| \\
| L - - - 7/
o /
Lo 7

Figure 10: Proof structure for lowering, with clash check violation



_____________________ q
|
|
|
|

Neo Ne :
|
\ / |
£ |
|
|
|
v |
|
|
N\N° Jse
\ p:/
|
|
\4
§ S\(N\N)°
~ W@ /
|
|
|
3
(S\(NAN))eS°

Figure 11: Partial proof structure with ¥3-cycle



figure 9, the semantic traversal yields the term Ax(x a) where a is the semantics
associated with the N* conclusion.

A categorial derivation also defines a prosodic construction giving the word
order of the composite expression in terms of its lexical expressions. This is
recovered from the parameter edges reflecting relational interpretation by the
following prosodic trip: begin travelling up at the start parameter of the unique
output conclusion; this arrives at the start parameter of the first lexical expres-
sion making up the composite; continue travelling up at the end parameter of
this input conclusion; this arrives at the start parameter of the second lexical
expression making up the composite; continue travelling up at the end parame-
ter of this input conclusion, and so on; the process ends by returning to the end
parameter of the unique output conclusion. In the lifting example of figure 9,
the prosodic traversal begins at the start parameter of the output conclusion
and follows the right outermost parameter edge round to the existential and the
left outermost parameter edge round to the start parameter of N*; travelling up
at the end parameter of N* we return down to the end parameter of the output
conclusion. In fact we write proof nets on the page in such a way that in general
this traversal visits the input conclusions in left-to-right order.

3.1 Medial divisor

Medial division involves a kind of non-commutativity. In the combined models
the medial divisor 1. is interpreted:

[Bt.A]l = {{s1+s2,v1,v2)| IvVs, {s,v,v) € [A] — (26)
(s1+s+s2,v1,v2) € [B]}

Proof links for the medial divisor are shown in figure 12. Again the expansion is
a systematic reflection of the propositional and relational quantificational struc-
ture of the interpretation. For reasons of uniformity we continue the convention
of switching the order of subformulas in output links, but the medial divisor can
give rise to non-planar proof nets.

In figure 13 we give the expanded proof net (abbreviating N\S to VP) for
the medial extraction (5) on the basis of the following assignments:

that —  intersect (27)
. R/(ST.N)
John -
: N
gave - give
:(N\S)/PP)/N
to+tMary - m
: PP

The unification problem defined (omitting repetitions) is {0 = 0,i = 4,j =
3,j=k,i=01=m,2=21=4k =3} which has solution {4/i,3/7,3/k,4/l,
1/m}.
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The edges of successive prosodic traversal are labelled 0, 1, 2, 3, 4: beginning
travelling up at the start of the unique output conclusion, five 0-lines lead to the
start of the type for ‘that’, which is the first word; going up at the end of this
type, twelve 1-lines lead to the start of the type for ‘John’; and so on, yielding
in order the words ‘gave’ and ‘to Mary’; hence the prosodic form of the sign is
that+John+gave+to+Mary.

Arrows mark the directions of semantic traversal; starting with the axiom
link going from the outermost right to the outermost left, successive stages of
semantic form extraction are as follows:

() (25)
(intersect )
(intersect Ax;-)
(intersect Az;(- +))
(intersect Az;(- - 7))
(intersect Az;(- - m j))
(intersect /\x](gwe z; mj)

Hence the semantic form of the sign is (intersect Az;(give x; m j)).
In figure 14 we give the expanded proof net (abbreviating (N\S)/VP to XVP)
for the obligatory extraction (8a), assuming (additional) type assignments:

assures - assure (29)
- ((N\S)/VPIEN)/N

Mary - m
: N

to+be+reliable -  reliable
: VP

The unification problem defined (omitting repetitions and equations of iden-
tical terms) is {i = 5,5 = 6(k),i = {,1 = m,l = 5,k = 4} which has solution
{5/4,5/1,4/k,6(4)/j, 1/m}. The sign generated has prosodic form that+John+-
assures+Mary-+to+be+reliable and the semantic form extracted is (intersect -
Az;(assure m x; reliable j).

A partial proof structure for the ungrammatical (8b) is given in figure 15; the
only parameter edge explicitly marked mediates a clash between two universals.

3.2 In situ binder

In the combined models, the in situ binder ) is interpreted:

[Q(A,B,C)] = {{s,va,v3)| Vs1, 83,01, va, (30)
[VSQ, <82, V3, Ug> c [[A]] — <51+52+537 U1, U4> € [[B]]] -
(s1+5+s3,v1,v4) € [C}

The proof links for the in situ binder are shown in figure 16.  Again, the
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expansions are a systematic reflection of the interpretation, and for uniformity
orderings of polar opposites are mirror images.

In figure 17 we give the (expanded) proof net (abbreviating (N\S)/N to TV)
for the in situ binding (9a) assuming type assignments (31).

bought - buy (31)
: ((N\S)/N)/N
someone —  Az3y[(person y) A (z y)]
Q(S, N, S)
Fido - f
: N

The unification problem defined by the linking is {0 = k,k = m,j = [,j =
4,i=3,m = 0,1 = 4} which has solution {0/k,0/m,4/1,4/7,3/i}. The result
of semantic traversal is (someone Az(buy « fj)) which on substitution of lexical
semantics simplifies to Jy[(person y) A (buy y f j)]-

The reader may check the proof net constructions showing that the assign-
ment (32) yields the semantics (buy j fj) for (9b), and showing (12).

himself - Azdy(x yy) (32)
Q(N\S, N, N\S)

3.3 Discontinuity calculus

Much work has gone into development of calculi which do for discontinuity
what the Lambek calculus does for continuity (e.g. Solias 1992, 1996; Moortgat
1996a, 1996b; Morrill and Solias 1993; Oehrle 1994; Calcagno 1995; Hendriks
1995; Morrill 1995). For the present purposes it is convenient to consider just
continuous strings and strings with exactly one point of discontinuity (Versmis-
sen 1991), and to explicitly regiment the formation and interpretation of types
according to these sorts (Morrill and Merenciano 1996): F, interpreted alge-
braically as subsets of L (and relationally as binary relations), and F? inter-
preted algebraically as subsets of L? (and relationally as quaternary relations).
Our definition of category formulas becomes (33).

F u= A|FeF |F\F|F|F|FoF | FF (33)
Fr ou= FIF

The discontinuous product operator ® and the divisors | (“infix”) and 1 (“ex-
tract”) are interpreted by “residuation” with respect to an interpolation ad-
junction W of functionality L?, L — L, defined by (s1,s2)Ws = sy4s+s3, in
exactly the same way that the continuity operators are interpreted by residua-
tion with respect to a concatenation adjunction + of functionality L, L — L. In



the combined models we have the following:

[[A\I/B]] = {<57 V2, US>| VSl, 52, U1, U4, <517 52, V1, U2, U3, U4> € [[A]] — (34)
(s1+5+s2,v1,v4) € [B]}

[[BTA]] == {<517527017027037U4>| <57 02703> € [[A]] —
(s1+s+s2,v1,v4) € [B]}

[[AQB]] — {<51+5+527vlav4>| 3”27”37 <517527017027037U4> € [[A]] &

<57 V2, US> € [[B]]}

We have, then, Q(B, A, C) = (BtA)|C.'?

The two incident parameter edges of the binary relational predication of
formulas of sort string are notated in expanded proof nets according to (23);
the four incident parameter edges of the quaternary relational predication of
formulas of sort split string are notated in expanded proof nets as in (35):

start; endy A* starty end; end; starty A° ends starty (35)

The subscripts refer to the first (left) and second (right) string components
of a split string; note that, again, the input and output orderings are mirror-
images, which promotes visual symmetry. The expanded proof links for the
discontinuity connectives are given in figure 18.

Prosodic traversal visits split string conclusions fwice. On the first occa-
sion the parameter start; of the first component of a split string input conclu-
sion is visited, and travel continues up at the parameter endy; on the second
occasion the parameter starty of the second component is visited, and travel
continues up at ends; the material visited meanwhile is interpolated between
the two components. Thus the result of prosodic extraction for figure 19 is
John+gave+Mary+the+cold+shoulder. The result of semantic extraction
is (shun m j).

4 Conclusion

We have described a method indicating the possibility of a systematic corre-
spondence between combined algebraic and relational interpretation of catego-
rial logic, and the form of proof structures and paths in proof nets. This induces
a notion of prosodic traversal, and Resolution conditions which together with
acyclicity, or even alone, may be sufficient to define correctness. It is our con-
sideration that the resolution conditions may be sufficient for product-free L,
and may be sufficient together with acyclicity for wider varieties of relational
interpretation including those described here. Technical analysis is due in this
respect; even otherwise we hope that it may be positive to delimit the possibil-
ities of the method.

12And Bt A = (B1A)®I where I is the product unit; then the semantic types are not quite
identical, but there is a 1—1 correspondence between elements of D and elements of DX {1}

(and {1}—D).
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