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What is it that holds categorial grammar together, and what is it that
holds it apart?  What the various trends have in common seems to be a
footing in mathematical philosophy.  Where they differ is in their reach
into linguistics and computation.  Contemporary categorial grammar in
computational linguistics can be perhaps fairly classified into three
main schools: unificational, combinatory, and logical.  The unificational
school is represented by such names as Klein, Pollard, Uszkoreit; the
combinatory by Steedman, Szabolcsi; the logical by van Benthem,
Moortgat.  This paper will offer a construal of the field which sees the
logical school embracing the unificational and combinatory, which are
reactions of the core to computational and linguistic demands
respectively.  This will be done by showing how the logical view
explains the unificational and combinatory approaches.

The thesis of the combinatory school is that the description of
(discontinuous) dependencies in certain natural language
constructions requires a variety of functional operations: combinators.
The logical perspective explains these combinatory primitives as
consequences of type theory.  In addition however, the lure of
linguistic significance has lead the combinatory school to overreach
itself in pursuit of both observational and descriptive goals.

In relation to observational adequacy, such operations as mixed
composition violate the interpretaton of directional division formulated
by Lambek; the logical correction required here is that rather than treat
discontinuity by adding improper rules of formation, the requisite
resource transformations should be controlled from within the logic by
means of structural modalities or other type-constructors.  In relation to
descriptive adequacy, the claim has been offered that the cognitive
(and presumably universal) possibilities of natural grammar are
explained as being the computational properties of a handful of
‘useful’ primitive combinators (e.g. Szabolcsi 1987 seeks a ‘mystery’
combinator X, guided by concern with paradoxical combinators and



Gödel incompleteness, ...).  The technical reality however is that the
valid combination schemes cannot be finitely axiomatised, and the
author has also claimed that the demands on combination made by
empirical criteria must be declaratively described in their generality by
recursive rules (Morrill 1988).

The unificational school is likewise transparently named: its tenet is
that computational implementation of featural information flow in
grammar processing should consist of unification.  Again, the logical
perspective expains unification as the implementation of type
inference with universally quantified types.  A computational outlook
which regards rules as creating search space has lead to a tendency to
try to limit modes of combination to those of the basic AB calculus,
which it is generally necessary to augment with some kind of feature
percolation devices in order to create the combinatorics for
discontinuity.  The type-theoretic basis however insists upon the
inclusion of all valid combination schemes, and these themselves
perform the role otherwise advanced more procedurally by percolation
mechanisms.  Observe for example that if an element is of a type
(category) A then it is  an element which combines with elements
taking As into Bs, to form a B.  Hence lifting is valid, whatever the
temptation to believe that actual grammars may be completely
implemented without it

THE RULE-TO-RULE FRAMEWORK

We attribute the architecture to be presented to Montague,
though there are considerable terminological differences with his UG.
We begin by assuming that the aspect of language we wish to model
is an assocation between symbols and meanings in various parts of
speech. (we could have targeted more or other linguistic dimensions).
This sets a different context than the usual point of departure which
takes as its goal the assignment of structural descriptions (syntactic
structures) to the sentences of a language.  Unless structural
descriptions are interpreted in terms of empirically realised prosodic or
semantic properties, they are literally meaningless and discussion of
their nature is idle.  Below, structural descriptions or syntactic
structures are understood as derivational structures which do indeed
predict a relation between prosodics and semantics, but they are just a
side-effect of defining a relation between prosodics and semantics,
being a summary of the way in which a linking is generated.

We assume prosodic and semantic algrebras.  An algebra consists
of a set of elements, and a set of operations over that domain; an
algebraic element is identified with its properties in relation to the
operations.  What we call the prosodic algebra, Montague would have
called the syntactic algebra.  We understand syntax instead as a
theoretical relation between prosodics and semantics; the term



prosody is chosen as a dilution of the term phonology, often used to
mean nothing more that word order.

A sign is a pair consisting of a prosodic object and a semantic
object.  A type is a set of signs.  The product of the prosodic and
semantic algebras is the set of all possible signs; its powerset is the
set of possible types.  A language model is just a set of types.
Prosodic and semantic objects are designated structurally by prosodic
and semantic forms which are interpreted in the prosodic and
semantic algebras.  Prosodic forms could be lists, trees, headed trees,
labelled trees, etc.; their interpretation as prosodic objects is not
necessarily one-to-one: e.g. trees with the same yield might be
interpreted as having the same prosodic sequence object value.
Semantic forms are typically terms of higher-order type logic; again the
interpretation as semantic objects need not be one-to-one: distinct
lambda terms may designate the same semantic object.  An indexed
language model is an indexed set of types.  An indexed language
model defines a language model which is the set of types indexed.

An assignment is a pair consisting of a prosodic form and a
semantic form.  A category is a set of assignments.  A formal language
model or inhabitation is an indexed set of categories.  A formal
language model defines an indexed language model which is the
indexed set of signs that its assignments designate, and this in turn
defines a language model.  An ordered triple consisting of a prosodic
form, a semantic form, and a type index is called a type assignment.

Operations over prosodic and semantic forms are called prosodic
and semantic constructors.  A cohabitation condition or arrow is a
pairing of equal adicity prosodic and semantic constructors the inputs
and outputs of which receive the same type indices.  A theory of
habitation is a set of arrows.

An inhabitation satisfies an arrow  if and only if the result of applying
the prosodic and semantic constructions to any assignments to its
input type indices yields an assignment to its output type index.  A
inhabitation satisfies a theory of habitation if and only if it satisfies each
arrow in that theory.  A theory of habitation and an initial assignment
define a formal language model which it the smallest extension of the
initial assignment satisfying the theory of habitation.

In order to reference prosodic and semantic constructions, more or
less formal meta-languages are used.  These may talk loosely of how
to construct one prosodic form from others (‘replace the first
occurrence of a verb by its third person singular present form’ ...; the
English semantic evaluation procedure in EFL), or more formal
prosodic and semantic meta-languages may be employed
(transformational grammar; IL of PTQ).  The prosodic and semantic
representation languages are composed of variables over and
constuctors on prosodic and semantic forms.  Constructions on
prosodic and semantic forms are represented by prosodic and
semantic terms.



A statement of formation consists of a prosodic term and a
semantic term labelled by a succedent type index, with their free
variables labelled by the same antecedent type indices.  We write the
following:
(1) a1 - x1: A1, ..., an- xn: An ⇒ α(a1, ..., an) - φ(x1, ..., xn) : A
A statement of formation designates a cohabitation condition.  A
theory of formation is a set of statements of formation including
identity statements for each type formula, and which is closed under
Cut:
(2) a - x : A ⇒ a - x : A [id]

Γ ⇒ β - ψ: B ∆(b - y : B) ⇒ α - φ : A
--------------------------------------------------------[Cut]
        ∆(Γ) ⇒ α[b €€← β] - φ[y ← ψ] : A

A theory of formation designates a theory of habitation; id and Cut
correspond to the fact that any inhabitation satisfying a theory of
habitation respects the reflexivity and transitivity of set containment.

A presentation of a theory of formation is an inductive definition of
a theory of formation consisting of axiomatic and proper rules of
formation, where a rule of formation consists of a mapping from zero
(axiomatic) or more (proper) premise statements of formation to
conclusion statements of formation.  A derivation is a sequence of
statements of formation each of which is either axiomatic, or is the
conclusion of a proper rule of formation the premises of which appear
earlier in the sequence.  A derivational structure is a graph
summarising a derivation, in a way such as that in which a tree
summarises a CF-PSG derivation.

With respect to prosodic and semantic formal algrebras, a grammar
formalism contains a space of possible lexical assignments and
theories of habitation.  A grammar presentation  consists of an initial
assignment and a presentation of a theory of formation.
Computational implementation of formal grammars might address
procedures for solving a number of problems.  One processing task
which arises is recognition of signs.  There are two versions.  For a
given language model, the fixed language recognition problem is the
task of recognising signs in the language model.  More generallly, for a
given grammar formalism the universal language recognition problem
is the task of determining for a given theory of habitation and sign
whether that sign is in the language model defined.

Processing tasks more interesting than recognition are parsing and
generation.  The parsing problem is traditionally regarded as the task
of recovering the ‘structural description’ assigned to a prosodic object
by a grammar presentation.  If the structural descriptions determine
meaning, this is tantamount to computing the mapping from prosodic
objects to semantic objects; it is this task which we wish to regard as
parsing; generation is the reverse mapping.



Now we may talk about e.g. the universal generation problem for
GPSG.  We can address the decidability or computational complexity
of such problems.  In some formalisms, such as DCG and PATR-II,
these problems are necessarily undecidable, a fact following from their
simulation of Turing Machines.  For others it is consistently found that
the complexity of universal parsing problems is exponential in time,
i.e. in a technical sense intractable/unfeasable.

WHAT IS THE LOGICAL SCHOOL?

The central tenet of the logical school is that type indices are
formulas freely generated by type-constructors and compositionally
interpreted according to the meaning of the type-constructors as
operations on sets of signs.  Thus the theory of habitation is fixed
once and for all by the meaning of the type-constructors.  This
position is summed up by the slogan: ‘All and only logical rules of
formation’.  The theory of habitation is invarient, and the only
‘parameter’ of grammar is the lexical assignment.  Then the entire
theory of habitation dimension disappears from the universal
language tasks: we consider only variation in lexical assignment.  In
more detail, the logical school has the following closely related
characteristics: logic without structural rules as a formalism for grammar
of prosodic forms; classification of signs by means of type formulas
with a universal logic -- i.e. full lexicalism; ‘formulas-as-types’
semantics.

Interpretation of type formulas as sets of signs is, for example,
thus:
() [[A/B]] = {<a, x>| for all <b, y> in [[B]], <a+b, (x y)> in [[A]]}
A consequence of the compositional denotational interpretation of
complex type formulas is that since basic type inhabitation determines
all type inhabitation, the ‘data’ consisting of signs inhabiting basic
types, determines the correct grammars: those inducing the same
inhabitation as the one following by the interpretation of type-
constructors from the inhabitation of basic types.

STATE OF THE ART AND FUTURE PROSPECTS

The state of the art as regards categorial processing is as follows.
Moortgat (1988) explains the basis of cut-free ‘parsing-as-deduction’.
The principle problem arising is derivational equivalence.  For the
division fragment, a normalisation approach is developed in König
(1989) and Hepple (1990a).  This is adapted, insofar as that is
straightforward, to a more general logic fragment in Morrill (1990c).
However, proper treatment of derivational equivalence in parsing for
more general logic fragments, by means of normalisation or otherwise



(e.g. the ‘proof nets’ of linear logic), is a large research topic.
Generation, even for just Lambek’s division, is a major research topic
on which work has barely begun.

In relation to complexity, note that conjunctive type-construction
means that any finite number of lexical types A1, A2, ..., An can be
trivially compressed into a single lexical entry of type A1∧A2∧…∧An.
Of course the processing complexity arising from lexical ambiguity
does not thereby disappear, but becomes transferred to the work load
of theorem proving. Complexity is reduced by building the
polymorphism deeper into types, capturing whatever generalisations
are possible.  A potential additional parameter is that of main clause
type(s) (Morrill and Gavarró 1991): rather than assuming a necessarily
atomic distinguished type, we allow a complex one  Disjunctive type-
construction means that any finite number of target types A1, A2, ...,
An can be trivially compressed into a single distinguished type
A1∨A2∨…∨An.

Our survey of the logical field will by structured by families of type-
constructor: multiplicatives, intensional modalities, quantified types,
Boolean types, and structural modalities.

The product and dual directional division basis is given in Lambek
(1958, 1961).  Moortgat (1988, 1990a, 1990b) offers extraction and
infixation operators ↑ and ⇑.  A matter arising is the inablity of
Lambek’s Gentzen sequent format to express complete logics for
these type-constructors, a problem Moortgat has addressed by
moving from non-commutative statements of formation with implicit
left-to-right prosodic constructions, to multiset statements of
formation with explicit prosodic terms.  A methodological question is
whether it is advisable to use such high-level type-constructors as ↑
and ⇑, or whether we should seek to ‘decompose’ these into
structural modalities.

A second class of type-constructor is given by the semantic
modalities (Morrill 1989, 90).  A matter arising here is formulation of
polymodal logic for polyindexical intensional semantics.  Assume for
instance modalities Lw and Lt for worlds and times; a simple
juxtaposition of independent inference rules would not derive
commuted statements of formation such as LwLtA ⇒ LtLwA.  The
proposals for semantic modality were originally made with close
attention to possible applications in the description of locality.  A
development in Hepple (1990b) pursues modality without semantic
commitment; such syntactic polymodality raises similar technical
questions to those arising semantically; methodologically however,
the employment of apparatus geared soley towards the capture of
boundedness and islandhood can appear ad hoc.

A third class consists of quantified types.  First-order and second-
order cases, and their relation to unification, are discussed in Morrill



(1990a) and van Benthem (1989) respectively.  For application of
second-order quantification to type-assignment to natural language
quantifiers see Emms (1990).  The principle technical issue raised is
decidability and completeness of type inference.

A fourth class is made up what are in linear logic terminology called
additives.  These have a natural set-theoretic interpretation as
intersection and union on types (see Morrill 1990a); however the
existing logic is incomplete with respect to this interpretation.  This
matter is addressed in a proposed reconstrual in Roorda
(forthcoming).

Finally there are structural modalities (Morrill et al. and Barry et al.),
or what have been called in linear logic exponentials.  These type
constructors control structural operations such as contraction,
weakening, and permutation.  Dropping these structural rules lead to
type systems with increasing structure on resources.  Associative
categorial logic deals with sequences of formulas; non-associative
with bracketed sequences, i.e. trees.  A recent development is to
attribute even more structure, in the form of headed trees (Moortgat
and Morrill 1991); traditional transformational grammar dealt with
(category-) labelled trees.  In these various cases, structural modalities
may be used to license flexibility where this is required.  In general,
there is good space for both application of existing apparatus in
empirical work, and effort towards an increased theoretical
understanding of it in terms of interpretation and completeness.

The logical school has been closely aligned to Montague
Semantics; so has the combinatory school; the same is not true of the
unificational, which has tended towards discourse semantics.

The purpose of a grammar regarding syntax is to define amongst
possible sentences those which are well-formed.  The purpose
regarding semantics is to define amongst the meanings of sentences
such notions as synonomy, antynomy, tautology, contradiction, and
entailment.  In truth-conditional model-theoretic semantics the
semantic relations are derived as follows: a class of mathematical
structures called 'models' is defined that represent situations with
respect to which meanings may be considered.  In each model a
meaning maps to a value, in particular, sentence meanings map to
truth values.  Thus a meaning is identified with its truth conditions on
models representing world situations.  Sentence meanings are
synonyms iff they have the same truth values in every model,
antonyms iff they have opposite truth values in every model; a
sentence meaning is a tautology iff it is true in every model, a
contradiction iff it is false in every model; and one sentence meaning
entails another iff there is no model in which the one is true and the
other false.

The two principle achievements of Montague Semantics are its
analysis of intensionality, and quantification.  Categorial logic has
recently ‘caught up’ with the type discipline that Montague surely



wanted to observe.  In respect of intensionality see Morrill (1990b); in
respect of quantification there are currently two proposals: Moortgat
(1990a) and Emms (1990).  

In Montague Grammar a sentence is syntactically well-formed iff it
has at least one reading/construel/meaning, thus well-formedness
may be seen as a derivative of meaningfulness.  This position paper
began with a rejection of syntax as a level of description, in favour of
syntax as a theory of description.  A possibility left open there was for
‘more or other’ linguistic dimensions than prosodics and semantics,
but surely not ‘syntax’.  A matter now is whether we should regard
finer-grained levels such as phonetics and pragmatics as additional, or
as alternative, more informative, refinements.  In respect of discourse
semantics there is reason to believe that pragmatics need not be
additional to semantics, but could subsume it, e.g. with ‘static’
semantics being a derivative of ‘dynamic semantics’.  Categorial
accomodation of such a perspective is a subject for research.
Likewise for prosodics, it remains to be seen if descent to detail
supercedes or supplements word order description.  The ‘multi-
dimensional’ outlook is presented in Oehrle (1988).  However this is
resolved, type-theory must extend beyond its current rudiments as
regards its applicability to description of natural language grammar.

The position presented is summarised in the following points:
1.  The grammar architecture is of the rule-to-rule design used by
Montague.
2.  Type (category) indices are formulas freely generated by type-
constructors and compositionally interpreted according to the
meaning of the type-constructors.
3.  From 2 it follows that the type logic is fixed, being the embodiment
of the interpretation of type-constructors; the laws of formation cannot
be varied for different languages.
4.  From 3 it follows that the Montague lexicon plus rules design loses
enirely the rule dimension, i.e. there is total lexicalism; we allow
however language-particular specification of a main clause type.
5.  Parsing is the task of computing the set of semantic objects
associated with a given prosodic object in a given type.
6.  Generation is the task of computing the set of prosodic objects
associated with a given semantic object in a given type.
7.  From 4 it follows that rules are not a variable in the universal parsing
and generation tasks, hence their solution in terms of the pure logic
provides universal parsing and generation procedures.
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