
LOGICAL GRAMMAR
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1 FORMAL GRAMMAR

The canonical linguistic process is the cycle of the speech-circuit [Saussure, 1915].
A speaker expresses a psychological idea by means of a physiological articulation.
The signal is transmitted through the medium by a physical process incident on a
hearer who from the consequent physiological impression recovers the psychological
idea. The hearer may then reply, swapping the roles of speaker and hearer, and
so the circuit cycles.

For communication to be successful speakers and hearers must have shared
associations between forms (signifiers) and meanings (signifieds). De Saussure
called such a pairing of signifier and signified a sign. The relation is one-to-many
(ambiguity) and many-to-one (paraphrase). Let us call a stable totality of such
associations a language. It would be arbitrary to propose that there is a longest
expression (where would we propose to cut off I know that you know that I know
that you know . . . ?) therefore language is an infinite abstraction over the finite
number of acts of communication that can ever occur.

The program of formal syntax [Chomsky, 1957] is to define the set of all and only
the strings of words which are well-formed sentences of a natural language. Such a
system would provide a map of the space of expression of linguistic cognition. The
methodological idealisations the program requires are not unproblematic. How
do we define what is a ‘word’? Speaker judgements of well-formededness vary.
Nevertheless there are extensive domains of uncontroversial and robust data to
work with. The greater scientific prize held out is to realize this program ‘in the
same way’ that it is done psychologically, i.e. to discover principles and laws of
the language faculty of the mind/brain. Awkwardly, Chomskyan linguistics has
disowned formalisation as a means towards such higher goals.

The program of formal semantics [Montague, 1974] is to associate the mean-
ingful expressions of a natural language with their logical semantics. Such a sys-
tem would be a characterisation of the range and means of expression of human
communication. Again there are methodological difficulties. Where is the bound-
ary between linguistic (dictionary) and world (encyclopedic) knowledge? Speaker
judgements of readings and entailments vary. The program holds out the promise
of elucidating the mental domain of linguistic ideas, thoughts and concepts and
relating it to the physical domain of linguistic articulation. That is, it addresses
a massive, pervasive and ubiquitous mind/body phenomenon.
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It could be argued that since the program of formal syntax is hard enough in
itself, it’s pursuit should be modularised from the further challenges of formal
semantics. That is, that syntax should be pursued autonomously from semantics.
On the other hand, attention to semantic criteria may help guide our path through
the jungle of syntactic possibilities. Since the raison d’être of language is to express
and communicate, i.e. to have meaning, it seems more reasonable to posit the
syntactic reality of a syntactic theory if it supports a semantics. On this view, it
is desirable to pursue formal syntax and formal semantics in a single integrated
program of formal grammar.

We may speak of syntax, semantics or grammar as being logical in a weak sense
when we mean that they are being systematically studied in a methodologically
rational inquiry or scientific (hypothetico-deductive) fashion. But when the formal
systems of syntax resemble deductive systems, we may speak of logical syntax in
a strong sense. Likewise, when formal semantics models in particular the logical
semantics of natural language, we may speak of logical semantics in a strong sense.
Formal grammar as comprising a syntax which is logical or a semantics which is
logical may then inherit the attribute logical, especially if it is logical in both of
the respects.

In section 1 of this article we recall some relevant logical tools: predicate logic,
sequent calculus, natural deduction, typed lambda calculus and the Lambek cal-
culus. In section 2 we comment on transformational grammar as formal syntax
and Montague grammar as formal semantics. In section 3 we take a tour through
some grammatical frameworks: Lexical-Functional Grammar, Generalized Phrase
Structure Grammar, Head-driven Phrase Structure Grammar, Combinatory Cat-
egorial Grammar and Type Logical Categorial Grammar. There are many other
worthy approaches and no excuses for their omission here will seem adequate to
their proponents, but reference to these formalisms will enable us to steer towards
what we take to be the ‘logical conclusion’ of logical grammar.

2 LOGICAL TOOLS

2.1 Predicate logic

Logic advanced little in the two millennia since Aristotle. The next giant step was
Frege’s [1879] Begriffsschrift (‘idea writing’ or ‘ideagraphy’). Frege was concerned
to provide a formal foundation for arithmetic and to this end he introduced quan-
tificational logic. Peano called Frege’s theory of quantification ‘abstruse’ and at
the end of his life Frege considered that he had failed in his project; in a sense it
was proved shortly afterwards in Gödel’s incompleteness theorem that the project
could not succeed. But Frege had laid the foundations for modern logic and al-
ready in the Begriffsschrift had effectively defined a system of predicate calculus
that would turn out to be complete. Frege used a graphical notation; in the tex-
tual notation that has come to be standard the language of first-order logic is as
follows:
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[c]g = F (c) for c ∈ C
[x]g = g(x) for x ∈ V

[f(t1, . . . , ti)]g = F (f)([t1]g, . . . , [ti]g) for f ∈ F i, i > 0

[Pt1 . . . ti]g =
{

{∅} if 〈[t1]g, . . . , [ti]g〉 ∈ F (P )
∅ otherwise for P ∈ P i, i ≥ 0

[¬A]g = [A]g
{∅}

[(A ∧ B)]g = [A]g ∩ [B]g
[(A ∨ B)]g = [A]g ∪ [B]g

[(A → B)]g =
{

{∅} if [A]g ⊆ [B]g
∅ otherwise

[∀xA]g =
⋂

d∈D[A](g−(x,g(x)))∪{(x,d)}

[∃xA]g =
⋃

d∈D[A](g−(x,g(x)))∪{(x,d)}

Figure 1. semantics of first-order logic

(1) Definition (language of first-order logic)

Let there be a set C of (individual) constants, a denumerably infinite set
V of (individual) variables, a set F i of function letters of arity i for each
i > 0, and a set P i of predicate letters of arity i for each i ≥ 0. The set T of
first-order terms and the set F of first-order formulas are defined recursively
as follows:

T ::= C | V | F i(T 1, . . . , T i), i > 0
F ::= P iT 1 . . . T i, i ≥ 0

| ¬F | (F ∧ F) | (F ∨ F) | (F → F) | ∀V T | ∃V T

The standard semantics of first-order logic was given by Tarski [1935]; here
we use {∅} and ∅ for the truth values true and false respectively, so that the
connectives are interpreted by set-theoretic operations. An interpretation of first-
order logic is a structure (D,F ) where domain D is a non-empty set (of individuals)
and interpretation function F is a function mapping each individual constant to
an individual in D, each function letter of arity i > 0 to an i-ary operation in DDi

,
and each predicate letter of arity i ≥ 0 to an i-ary relation in Di. An assignment
function g is a function mapping each individual variable to an individual in D.
Each term or formula φ receives a semantic value [φ]g relative to an interpretation
(D,F ) and an assignment g as shown in figure 1.

A formula A entails a formula B, or B is a logical consequence of A, if and
only if [A]g ⊆ [B]g in every interpretation and assignment. Clearly the entailment
relation inherits from the subset relation the properties of reflexivity (A entails A)
and transitivity (if A entails B and B entails C, then A entails C).
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2.2 Sequent calculus

First-order entailment is an infinitary semantic notion since it appeals to the class
of all interpretations. Proof theory aims to capture such semantic notions as en-
tailment in finitary syntactic formal systems. Frege’s original proof calculus had
proofs as sequences of formulas (what are often termed Hilbert systems). Such
systems have axiom schemata (that may relate several connectives) and rules that
are sufficient to capture the properties of entailment. However, Gentzen [1934]
provided a great improvement by inventing calculi, both sequent calculus and nat-
ural deduction, which aspire to deal with single occurrences of single connectives
at a time, and which thus identify in a modular way the pure inferential properties
of each connective.

A classical sequent Γ ⇒ ∆ comprises an antecedent Γ and a succedent ∆ which
are finite, possibly empty, sequences of formulas. A sequent is read as asserting
that the conjunction of the antecedent formulas (where the empty sequence is the
conjunctive unit true) entails the disjunction of the succedent formulas (where the
empty sequence is the disjunctive unit false). A sequent is called valid if and only
if this assertion is true; otherwise it is called invalid. The sequent calculus for the
propositional part of classical logic can be presented as shown in figure 2. Each
rule has the form Σ1 ... Σn

Σ0
, n ≥ 0 where the Σi are sequent schemata; Σ1, . . . ,Σn

are referred to as the premises, and Σ0 as the conclusion.
The identity axiom id and the Cut rule are referred to as the identity group;

they reflect the reflexivity and transitivity respectively of entailment. All the
other rules are left (L) introduction rules, introducing the active formula on the
left (antecedent) of the conclusion, or right (R) introduction rules, introducing the
active formula on the right (succedent) of the conclusion.

The rules W (weakening), C (contraction) and P (permutation) are referred to
as structural rules; they apply to properties of all formulas with respect to the met-
alinguistic comma (conjunction in the antecedent, disjunction in the succedent).
Weakening corresponds to the monotonicity of classical logic: that conjoining
premises, or disjoining conclusions, preserves validity. Contraction and Permu-
tation correspond to the idempotency and commutativity of conjunction in the
antecedent and disjunction in the succedent. They permit each side of a succedent
to be read, if we wish, as a set rather than a list, of formulas.

Then there are the logical rules, dealing with the connectives themselves. For
each connective there is a left rule and a right rule introducing single principal
connective occurrences in the active formula in the antecedent (L) or the succedent
(R) of the conclusion respectively.

A sequent which has a proof is a theorem. The sequent calculus is sound (every
theorem is a valid sequent) and complete (every valid sequent is a theorem).

All the rules except Cut have the property that all the formulas in the premises
are either in the conclusion (the side-formulas in the contexts Γ(i)/∆(i), and the
active formulas of structural rules), or else are the (immediate) subformulas of
the active formula (in the logical rules). In the Cut rule, the Cut formula A is a
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id
A ⇒ A

Γ1 ⇒ ∆1, A A,Γ2 ⇒ ∆2
Cut

Γ1,Γ2 ⇒ ∆1,∆2

∆1,∆2 ⇒ ∆
WL

∆1, A,∆2 ⇒ ∆

∆ ⇒ ∆1,∆2
WR

∆ ⇒ ∆1, A,∆2

∆1, A,A,∆2 ⇒ ∆
CL

∆1, A,∆2 ⇒ ∆

∆ ⇒ ∆1, A,A,∆2
CR

∆ ⇒ ∆1, A,∆2

∆1, A,B,∆2 ⇒ ∆
PL

∆1, B,A,∆2 ⇒ ∆

∆ ⇒ ∆1, A,B,∆2
PR

∆ ⇒ ∆1, B,A,∆2

Γ ⇒ A,∆
¬L

¬A,Γ ⇒ ∆

∆, A ⇒ Γ
¬R

∆ ⇒ ¬A,Γ

∆1, A,B,∆2 ⇒ ∆
∧L

∆1, A ∧ B,∆2 ⇒ ∆

∆ ⇒ ∆1, A,∆2 ∆ ⇒ ∆1, B,∆2
∧R

∆ ⇒ ∆1, A ∧ B,∆2

∆1, A,∆2 ⇒ ∆ ∆1, B,∆2 ⇒ ∆
∨L

∆1, A ∨ B,∆2 ⇒ ∆

∆ ⇒ ∆1, A,B,∆2
∨R

∆ ⇒ ∆1, A ∨ B,∆2

Γ ⇒ A ∆1, B,∆2 ⇒ ∆
→ L

∆1,Γ, A → B,∆2 ⇒ ∆

∆1, A,∆2 ⇒ Γ1, B,Γ2
→ R

∆1,∆2 ⇒ Γ1, A → B,Γ2

Figure 2. Sequent calculus for classical propositional logic
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new unknown reading from conclusion to premises. Gentzen proved as his Haup-
satz (main clause) that every proof has a Cut-free equivalent (Cut-elimination).
Gentzen’s Cut-elimination theorem has as a corollary that every theorem has a
proof containing only its subformulas (the subformula property), namely any of its
Cut-free proofs.

Computationally, the contraction rule is potentially problematic since it (as well
as Cut) introduces material in backward-chaining proof search reading from con-
clusion to premises. But such Cut-free proof search becomes a decision procedure
for classical propositional logic when antecedents and succedents are treated as
sets. First-order classical logic is not decidable however.

2.3 Natural deduction

Intuitionistic sequent calculus is obtained from classical sequent calculus by re-
stricting succedents to be non-plural. Observe for example that the following
derivation of the law of excluded middle is then blocked, since the middle sequent
has two formulas in its succedent: A ⇒ A / ⇒ A,¬A / ⇒ A ∨ ¬A. Indeed, the
law of excluded middle is not derivable at all in intuitionistic logic, the theorems
of which are a proper subset of those of classical logic.

Natural deduction is a single-conclusioned proof format particularly suited to
intuitionistic logic. A natural deduction proof is a tree of formulas with some coin-
dexing of leaves with dominating nodes. The leaf formulas are called hypotheses:
open if not indexed, closed if indexed. The root of the tree is the conclusion: a
natural deduction proof asserts that the conjunction of its open hypotheses entails
its conclusion. A trivial tree consisting of a single formula is a proof (from itself,
as open hypothesis, to itself, as conclusion, corresponding to the identity axiom
of sequent calculus). Then the proofs of {→,∧,∨}-intuitionistic logic are those
further generated by the rules in figure 3. Hypotheses become indexed (closed)
when the dominating inference occurs, and any number of hypotheses (including
zero) can be indexed/closed in one step, cf. the interactive effects of Weakening
and Contraction.

2.4 Typed lambda calculus

The untyped lambda calculus was introduced as a model of computation by Alonzo
Church. It uses a variable binding operator (the λ) to name functions, and forms
the basis of functional programming languages such as LISP. It was proved equiva-
lent to Turing machines, hence the name Church-Turing Thesis for the notion that
Turing machines (and untyped lambda calculus) capture the notion of algorithm.

Church [1940] defined the simply, i.e. just functionally, typed lambda calculus,
and by including logical constants, higher-order logic. Here we add also Cartesian
product and disjoint union types.

(2) Definition (types)
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···
A

···
A → B

E →
B

Ai

···
B

I →i

A → B

···
A ∧ B

E∧1
A

···
A ∧ B

E∧2
B

···
A

···
B

I∧
A ∧ B

···
A ∨ B

Ai

···
C

Bi

···
C

E∨i

C

···
A

I∨1
A ∨ B

···
B

I∨2
A ∨ B

Figure 3. Natural deduction rules for {→,∧,∨}-intuitionistic logic

The τ set of types is defined on the basis of a set δ of basic types as fol-
lows:

τ ::= δ | τ → τ | τ&τ | τ + τ

(3) Definition (type domains)

The type domain Dτ of each type τ is defined on the basis of an assign-
ment d of sets (basic type domains) to the set δ of basic types as follows:

Dτ = d(τ) for τ ∈ δ
Dτ1→τ2 = D

Dτ1
τ2 i.e. the set of all functions from Dτ1 to Dτ2

Dτ1&τ2 = Dτ1 × Dτ2 i.e. {〈m1,m2〉| m1 ∈ Dτ1 & m2 ∈ Dτ2}
Dτ1+τ2 = Dτ1 0 Dτ2 i.e. ({1} × Dτ1) ∪ ({2} × Dτ2)

(4) Definition (terms)

The sets Φτ of terms of type τ for each type τ are defined on the basis
of a set Cτ of constants of type τ and an denumerably infinite set Vτ of
variables of type τ for each type τ as follows:

Φτ ::= Cτ | Vτ

| (Φτ ′→τ Φτ ′) functional application
| π1Φτ&τ ′ | π2Φτ ′&τ projection
| (Φτ1+τ2 → Vτ1 .Φτ ; Vτ2 .Φτ ) case statement

Φτ→τ ′ ::= λVτΦτ ′ functional abstraction
Φτ&τ ′ ::= (Φτ ,Φτ ′) pair formation
Φτ ::= ι1Φτ+τ ′ | ι2Φτ ′+τ injection
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[c]g = f(c) for c ∈ Cτ

[x]g = g(x) for x ∈ Vτ

[(φ ψ)]g = [φ]g([ψ]g)
[π1φ]g = the first projection of [φ]g
[π2φ]g = the second projection of [φ]g

[(φ→ y.ψ; z.χ]g =
{

[ψ](g−{(y,g(y))})∪{(y,d)} if [φ]g = 〈1, d〉
[χ](g−{(z,g(z))})∪{(z,d)} if [φ]g = 〈2, d〉

[λxτφ]g = Dτ 1 d 2→ [φ](g−{(x,g(x))∪{(x,d)}

[(φ,ψ)]g = 〈[φ]g, [ψ]g〉
[ι1φ]g = 〈1, [φ]g〉
[ι2φ]g = 〈2, [φ]g〉

Figure 4. Semantics of typed lambda calculus

Each term φ ∈ Φτ receives a semantic value [φ]g ∈ Dτ with respect to a valuation
f which is a mapping sending each constant in Cτ to an element in Dτ , and an
assignment g sending each variable in Vτ to an element in Dτ , as shown in figure 4.

An occurrence of a variable x in a term is called free if and only if it does not
fall within any part of the term of the form λx· or x.·; otherwise it is bound (by
the closest variable binding operator within the scope of which it falls). The result
φ{ψ/x} of substituting term ψ (of type τ) for variable x (of type τ) in a term φ
is the result of replacing by ψ every free occurrence of x in φ. The application
of the substitution is free if and only if no variable in ψ becomes bound in its
new location. Manipulations can be pathological if substitution is not free. The
laws of lambda conversion in figure 5 obtain (we omit the so-called commuting
conversions for the case statement · → x.·; y.·).

The Curry-Howard correspondence [Girard et al., 1989] is that intuitionistic
natural deduction and typed lambda calculus are isomorphic. This formulas-as-
types and proofs-as-programs correspondence takes place at the following three
levels:

(5) intuitionistic natural deduction typed lambda calculus
formulas types

proofs terms
proof normalisation lambda reduction

Overall, the laws of lambda reduction are the same as the natural deduction proof
normalisations (elimination of detours) of Prawitz [1965]. For the calculi we have
given we have formulas-as-types correspondence →∼=→,∧ ∼= &,∨ ∼= +. By way of
illustration, the β- and η-proof reductions for conjunction are as shown in figures 6
and 7 respectively.
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λyφ = λx(φ{x/y})
if x is not free in φ and φ{x/y} is free
φ→ y.ψ; z.χ = φ→ x.(ψ{x/y}); z.χ

if x is not free in ψ and ψ{x/y} is free
φ→ y.ψ; z.χ = φ→ y.ψ;x.(χ{x/z})

if x is not free in χ and χ{x/z} is free
α-conversion

(λxφ ψ) = φ{ψ/x}
if φ{ψ/x} is free

π1(φ,ψ) = φ
π2(φ,ψ) = ψ

ι1φ→ y.ψ; z.χ = ψ{φ/y}
if ψ{φ/y} is free
ι2φ→ y.ψ; z.χ = χ{φ/z}
if χ{φ/z} is free

β-conversion

λx(φ x) = φ
if x is not free in φ

(π1φ,π2φ) = φ
η-conversion

Figure 5. Laws of lambda-conversion

φ
···
A

ψ
···
B

I∧
A ∧ B

E∧1
A

⇒
φ
···
A

φ
···
A

ψ
···
B

I∧
A ∧ B

E∧2
B

⇒
ψ
···
B

Figure 6. β-reduction for conjunction

φ
···

A ∧ B
E∧1

A

φ
···

A ∧ B
E∧2

B
I∧

A ∧ B

⇒
φ
···

A ∧ B

Figure 7. η-reduction for conjunction
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In contrast to the untyped lambda calculus, the normalisation of terms (eval-
uation of ‘programs’) of our typed lambda calculus is terminating: every term
reduces to a normal form in a finite number of steps.

2.5 The Lambek calculus

The Lambek calculus [Lambek, 1958] is a predecessor of linear logic [Girard, 1987].
It can be presented as a sequent calculus without structural rules and with single
formulas (types) in the succedents. It is retrospectively identifiable as the mul-
tiplicative fragment of non-commutative intuitionistic linear logic without empty
antecedents.

(6) Definition (types of the Lambek calculus)

The set F of types of the Lambek calculus is defined on the basis of a set P
of primitive types as follows:

F ::= P | F•F | F\F | F/F

The connective • is called product, \ is called under, and / is called over.

(7) Definition (standard interpretation of the Lambek calculus)

A standard interpretation of the Lambek calculus comprises a semigroup
(L,+) and a function [[·]] mapping each type A ∈ F into a subset of L
such that:

[[A\C]] = {s2| ∀s1 ∈ [[A]], s1+s2 ∈ [[C]]}
[[C/B]] = {s1| ∀s2 ∈ [[B]], s1+s2 ∈ [[C]]}
[[A•B]] = {s1+s2| s1 ∈ [[A]] & s2 ∈ [[B]]}

A sequent Γ ⇒ A of the Lambek calculus comprises a finite non-empty an-
tecedent sequence of types (configuration) Γ and a succedent type A. We extend
the standard interpretation of types to include configurations as follows:

[[Γ1,Γ2]] = {s1+s2| s1 ∈ [[Γ1]] & s2 ∈ [[Γ2]]}

A sequent Γ ⇒ A is valid iff [[Γ]] ⊆ [[A]] in every standard interpretation. The
Lambek sequent calculus is as shown in figure 8 where ∆(Γ) indicates a configura-
tion ∆ with a distinguished subconfiguration Γ. Observe that for each connective
there is a left (L) rule introducing it in the antecedent, and a right (R) rule in-
troducing it in the succedent. Like the sequent calculus for classical logic, the
sequent calculus for the Lambek calculus fully modularises the inferential prop-
erties of connectives: it deals with a single occurrence of a single connective at a
time.
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id
A ⇒ A

Γ ⇒ A ∆(A) ⇒ B
Cut

∆(Γ) ⇒ B

Γ ⇒ A ∆(C) ⇒ D
\L

∆(Γ, A\C) ⇒ D

A,Γ ⇒ C
\R

Γ ⇒ A\C

Γ ⇒ B ∆(C) ⇒ D
/L

∆(C/B,Γ) ⇒ D

Γ, B ⇒ C
/R

Γ ⇒ C/B

∆(A,B) ⇒ D
•L

∆(A•B) ⇒ D

Γ ⇒ A ∆ ⇒ B
•R

Γ,∆ ⇒ A•B

Figure 8. Lambek sequent calculus

(8) Proposition (soundness of the Lambek calculus)

In the Lambek calculus, every theorem is valid.

Proof. By induction on the length of proofs. !

(9) Theorem (completeness of the Lambek calculus)

In the Lambek calculus, every valid sequent is a theorem.

Proof. [Buszkowski, 1986]. !

Soundness and completeness mean that the Lambek calculus is satisfactory as a
logical theory.

(10) Theorem (Cut-elimination for the Lambek calculus)

In the Lambek calculus, every theorem has a Cut-free proof.

Proof. [Lambek, 1958]. !

(11) Corollary (subformula property for the Lambek calculus)

In the Lambek calculus, every theorem has a proof containing only its sub-
formulas.

Proof. Every rule except Cut has the property that all the types in the premises
are either in the conclusion (side formulas) or are the immediate subtypes of the
active formula, and Cut itself is eliminable. !
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(12) Corollary (decidability of the Lambek calculus)

In the Lambek calculus, it is decidable whether a sequent is a theorem.

Proof. By backward-chaining in the finite Cut-free sequent search space. !

3 FORMAL SYNTAX AND FORMAL SEMANTICS

3.1 Transformational grammar

Noam Chomsky’s short book Syntactic Structures published in 1957 revolutionised
linguistics. It argued that the grammar of natural languages could be characterised
by formal systems, so-called generative grammars, as models of the human capac-
ity to produce and comprehend unboundedly many sentences, regarded as strings.
There, and in subsequent articles, he defined a hierarchy of grammatical produc-
tion/rewrite systems, the Chomsky hierarchy, comprising type 3 (regular), type
2 (context-free), type 1 (context-sensitive) and type 0 (unrestricted/Turing pow-
erful) grammars. He argued formally that regular grammars cannot capture the
structure of English, and informally that context-free grammars, even if they could
in principle define the string-set of say English, could not do so in a scientifically
satisfactory manner. Instead he forwarded transformational grammar in which
a deep structure phrase-structure base component feeds a system of ‘transforma-
tions’ to deliver surface syntactic structures.

To emphasize the link with logical formal systems, we describe here a ‘proto-
transformational grammar’ like sequent calculus in which base component rules
are axiomatic rules and transformational rules are structural rules.

Let there be modes n (nominal), v (verbal), a (adjectival) and p (prepositional).
Let there be types PN (proper name), NP (noun phrase), VP (verb phrase), TV
(transitive verb), COP (copula), TPSP (transitive past participle), Pby (preposi-
tion by), CN (count noun), . . . . Let a configuration be an ordered tree the leaves
of which are labelled by types and the mothers of which are labelled by modes.
Then we may have base component rules:

(13) [vTV, NP ] ⇒ V P
[vNP, V P ] ⇒ S
[nDET,CN ] ⇒ NP
[nPN ] ⇒ NP

There may be the following agentive passive transformational rule:

(14) [v[nΓ1], [vTV, [nΓ2]]] ⇒ S
Agpass

[v[nΓ2], [vCOP, TPSP, [pPby, [nΓ1]]]] ⇒ S

Then the sentence form for The book was read by John is derived as shown
in figure 9. This assumes lexical insertion after derivation whereas transfor-
mational grammar had lexical insertion in the base component, but the proto-
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[nDET, CN ] ⇒ NP [vTV, NP ] ⇒ V P
Cut

[vTV, [nDET, CN ]] ⇒ V P

[nPN ] ⇒ NP [vNP, V P ] ⇒ S
Cut

[v [nPN ], V P ]] ⇒ S
Cut

[v [nPN ], [vTV, [nDET, CN ]]] ⇒ S
Agpass

[v[nDET, CN ], [vCOP, TPSP, [pPby, [nPN ]]]] ⇒ S

Figure 9. Proto-transformational derivation of agentive passivization

transformational formulation shows how transformations could have been seen as
structural rules of sequent calculus.

3.2 Montague grammar

Montague [1970b; 1970a; 1973] were three papers defining and illustrating a frame-
work for grammar assigning logical semantics. The contribution was revolutionary
because the general belief at the time was that the semantics of natural language
was beyond the reaches of formalisation.

‘Universal Grammar’ (UG) formulated syntax and semantics as algebras, with
compositionality a homomorphism from the former to the latter. The semantic
algebra consisted of a hierarchy of function spaces built over truth values, entities,
and possible worlds.

‘English as a Formal Language’ (EFL) gave a denotational semantics to a frag-
ment of English according to this design. Since denotation was to be defined
by induction on syntactic structure in accordance with compositionality as ho-
momorphism, syntax was made an absolutely free algebra using various kinds of
brackets, with a ‘(dis)ambiguating relation’ erasing the brackets and relating these
to ambiguous forms.

‘The Proper Treatment of Quantification’ (PTQ) relaxed the architecture to
generate directly ambiguous forms, allowing itself to assume a semantic represen-
tation language known as (Montague’s higher order) Intensional Logic (IL) and
including an ingenious rule of term insertion (S14) for quantification (and pronoun
binding) which is presumably the origin of the paper’s title.

4 GRAMMATICAL FRAMEWORKS

4.1 Lexical-Functional Grammar

The formal theory of Lexical-Functional Grammar [Kaplan and Bresnan, 1982;
Bresnan, 2001] is a framework which takes as primitive the grammatical functions
of traditional grammar (subject, object, . . . ). It separates, amongst other lev-
els of representation, constituent-structure (c-structure) which represents category
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S

NP
(↑ SUBJ) =↓

!!!!!!!!!!!
V P
↑=↓

"""""""""

Felix
V

↑=↓

########
NP

(↑ OBJ) =↓

$$$$$$$$$$

hit Max

Figure 10. LFG c-structure for Felix hit Max

and ordering information, and functional-structure (f-structure) which represents
grammatical functions and which feeds semantic interpretation.

The phrase-structural c-structure rules are productions with regular expressions
on their right-hand side, and which have have ‘functional annotations’ defining
the correspondence between c-structure nodes and their f-structure counterparts,
which are attribute-value matrices providing the solution to the c-structure con-
straints. The functional annotations, which also appear in lexical entries, are
equations containing ↑ meaning my mother’s f-structure and ↓ meaning my own
f-structure:

(15) a. hit : V, (↑ TENSE) = PAST
(↑ PRED) = ‘hit〈(SUBJ, OBJ)〉’

b. S → NP
(↑ SUBJ) =↓

V P
↑=↓

V P → V
↑=↓

NP
(↑ OBJ) =↓

Then Felix hit Max receives the c-structure and f-structure in figures 10 and 11
respectively.

One of the first LFG analyses was the lexical treatment of passive in Bresnan
[1982]. She argued against its treatment in syntax, as since Chomsky [1957]. Since
around 1980 there has been a multiplication of grammar formalisms also treating
other local constructions such as control by lexical rule. More recently Bresnan’s
LFG treatment of lexical rules such as passive have been refined under ‘lexical
mapping theory’ with a view to universality.

Kaplan and Zaenan [1989] propose to treat long-distance dependencies in LFG
by means of functional annotations extended with regular expressions: so-called
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PRED ‘hit〈(SUBJ, OBJ)〉’

SUBJ




PRED ‘Felix’
PER 3
NUM SG





TENSE PAST

OBJ




PRED ‘Max’
PER 3
NUM SG









Figure 11. LFG f-structure for Felix hit Max.

functional uncertainty. Consider an example of topicalization:

(16) Mary John claimed that Bill said that Henry telephoned.

They propose to introduce the topic Mary and establish the relation between this
and telephoned by a rule such as the following:

(17) S′ →
XP

(↑ TOPIC) =↓
(↑ TOPIC) = (↑ COMP ∗ OBJ)

S

Here, ∗ is the Kleene star operator, meaning an indefinite number of iterations.
To deliver logical semantics in LFG, Dalrymple [1999] adopts linear logic as

a ‘glue language’ to map f-structure to semantic-structure (s-structure), for ex-
ample to compute alternative quantifier scopings under Curry-Howard proofs-as-
programs. The multistratality of the c/f/s-structure of LFG is seen by its pro-
ponents as a strength in that it posits a level of f(unctional)-structure in relation
to which universalities can be posited. But consider the non-standard constituent
conjunts and coordination in say right node raising (RNR):

(18) John likes and Mary dislikes London.

It seems that in view of its traditional c(onstituent)-structure LFG could not char-
acterise such a construction without treating likes in c-structure as an intransitive
verb. How could this be avoided?

4.2 Generalized Phrase Structure Grammar

Generalized Phrase Structure Grammar (GPSG; [Gazdar, 1981; Gazdar et al.,
1985]) aimed to develop a congenial phrase structure formalism without exceeding
context-free generative power.

Let there be a basic context-free grammar:

(19) S → NP V P
V P → TV NP
V P → SV CP
CP → C S
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(20) Bill := NP
claimed := SV
Henry := NP
John := NP
Mary := NP
said := SV
telephoned := TV
that := C

To treat unbounded dependencies, Gazdar [1981] proposed to extend categories
with ‘slash’ categories B/A signifying a B ‘missing’ an A. Then further rules may
be derived from basic rules by metarules such as the following:1

(21)
B → Γ A

slash introduction
B/A → Γ

C → Γ B
slash propagation

C/A → Γ B/A

Then assuming also a topicalisation rule (23), left extraction such as (22) is derived
as shown in figure 12.

(22) Mary John claimed that Henry telephoned.

(23) S′ → XP S/XP

The phrase structure schema (24) will generate standard constituent coordina-
tion.

(24) X → X CRD X

But furthermore, if we assume the slash elimination rule (25), non-standard con-
stituent RNR coordination such as (18) is also generated; see figure 13.

(25) B → B/A A

However, if GPSG needs to structure categories with slashes to deal with ex-
traction and coordination, why not structure categories also to express subcate-
gorization valencies?

4.3 Head-driven Phrase Structure Grammar

The framework of Head-driven Phrase Structure Grammar (HPSG; [Pollard and
Sag, 1987; Pollard and Sag, 1994]) represents all linguistic objects as attribute-
value matrices: labelled directed (but acyclic) graphs. Like LFG and GPSG,
HPSG is a unification grammar, meaning that the matching of formal and actual
parameters is not required to be strict identity, but merely compatibility/unifiability.

1Gazdar et al. [1985] delegated slash propagation to principles of feature percolation, but the
effect is the same.
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The form (signifier) associated with a sign is represented as the value of a
PHON(OLOGY) attribute and the meaning (signified) associated with a sign as
the value of a CONTENT attribute. Subcategorization is projected from a lexical
stack of valencies on heads: the stack-valued SUBCAT(EGORIZATION) feature
(there are additional stack-valued features such as SLASH, for gaps). Thus there
is a subcategorization principle:

(26) H[SUBCAT 〈. . .〉] → H[SUBCAT 〈X, . . .〉],X

where the phonological order is to be encoded by linear precedence rules, or by
reentrancy in PHON attributes. See figure 14. HPSG is entirely encoded as typed
feature logic [Kasper and Rounds, 1990; Johnson, 1991; Carpenter, 1992]. The
grammar is a system of constraints, and the signs in the language model defined
are those which satisfy all the constraints.

HPSG can treat left extraction and right node raising much as in GPSG, but
what about left node raising (LNR) non-standard constituent coordination such
as the following?

(27) Mary gave John a book and Sue a record.

Since it is the head which is left node raised out of the coordinate structure in
LNR it is unclear how to categorize the conjuncts and derive them as constituents
in Head-driven Phrase Structure Grammar.

4.4 Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG; [Steedman, 1987; Steedman, 2000]) ex-
tends the categorial grammar of Adjukiewicz [1935] and Bar-Hillel [1953] with
a small number of additional combinatory schemata. Let there be forward- and
backward-looking types B/A and A\B defined recursively as in the Lambek cal-
culus.2 Then the classical cancellation schemata are:

(28) >: B/A,A ⇒ B
<: A,A\B ⇒ B

Thus:

(29)

Felix

N

hit

(N\S)/N

Max

N
>

N\S
<

S

CCG adds combinatory schemata such as the following:

2CCG writes B\A to mean “looks for an A to the left to form a B”, but we keep to the
original Lambek notation here.
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Figure 15. Left extraction in CCG
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S/N

London

N

S

Figure 16. Right node raising in CCG

(30) T : A ⇒ B/(A\B)
B : C/B, B/A ⇒ C/A

(The combinator names define the associated semantics: T = λxλy(y x);B =
λxλyλz(x (y z)).) This allows left extraction and right node raising to be derived
as shown in figures 15 and 16 [Steedman, 1987].

Dowty [1988] observes that backward counterparts of (30) derive left node rais-
ing; see figure 17.

(31) T : A ⇒ (B/A)\B
B : A\B,B\C ⇒ A\C

However, multiple right node raising will require additional type shifts:

(32) a. John gave and Mary sent a book to Bill.
N, ((N\S)/PP )/N ⇒ (S/PP )/N

b. John bet and Mary also wagered Sue $10 that it would rain.
N, (((N\S)/CP )/N)/N ⇒ ((S/CP )/N)/N

Likewise, combined left and right node raising:
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(33) John gave Mary a book and John a record about bird song.
N,N/PP ⇒ ((((N\S)/N)/N)\(N\S))/PP

It seems unfortunate to have to posit new combinatory schemata adhoc on an
example-by-example basis. All the above type shifts are derivable in the Lambek
calculus, and type-logical categorial grammar takes that as its basis.

4.5 Type Logical Categorial Grammar

The framework of Type Logical Categorial Grammar (TLCG; [van Benthem, 1991;
Morrill, 1994; Moortgat, 1997]) is an enrichment of Lambek calculus with addi-
tional connectives, preserving the character of the latter as a non-commutative
intuitionistic linear logic. For our illustration here, let the set F of syntactic types
be defined on the basis of a set A of primitive syntactic types as follows:

(34) F ::= A | [ ]−1F | 〈 〉F | F ∧ F | F ∨ F | F\F | F/F | F•F | 6F

We define sequent antecedents as well-bracketed sequences of types; neither se-
quents nor brackets may be empty. The sequent calculus is as shown in figure 18.

The connectives 〈 〉 and [ ]−1 are bracket operators [Morrill, 1994; Moortgat,
1995]. They may be used to project bracketed domains; in our examples these
will be domains which are islands to extraction. We refer to this as structural
inhibition since the brackets may block association and permutation. ∧ and ∨
are additives in the terminology of linear logic. They can express polymorphism
[Lambek, 1961; Morrill, 1990]. The Lambek connectives \, •, / are multiplicatives.
The structural operator or modality 6 [Barry et al., 1991] licenses the structural
rule of permutation and is inspired by the exponentials of linear logic.

Consider a mapping as follows from our TLG syntactic types to the types of
the lambda calculus of section 2.4:

(35) T (〈 〉A) = T (A)
T ([ ]−1A) = T (A)
T (A ∧ B) = T (A)&T (B)
T (A ∨ B) = T (A) + T (B)
T (A•B) = T (A)&T (B)
T (A\C) = T (A) → T (C)
T (C/B) = T (B) → T (C)
T (6A) = T (A)

Under this mapping, every TLG proof has a reading as a proof in {→,∧,∨}-
intuitionistic logic. This categorial semantics is called Curry-Howard type-logical
semantics. Lambda-term lexical semantics is substituted into the lambda reading
of a syntactic proof/derivation to deliver the semantics of derived expressions.

Let there be the lexicon in figure 19. Then Felix hit Max is derived as follows
with semantics (hit max felix):
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id
A ⇒ A

Γ ⇒ A ∆(A) ⇒ B
Cut

∆(Γ) ⇒ B

∆(A) ⇒ C
[ ]−1L

∆([[ ]−1A]) ⇒ C

[Γ] ⇒ A
[ ]−1R

Γ ⇒ [ ]−1A

∆([A]) ⇒ C
〈 〉L

∆(〈 〉A) ⇒ C

Γ ⇒ A
〈 〉R

[Γ] ⇒ 〈 〉A

∆(A) ⇒ C
∧L

∆(A ∧ B) ⇒ C

∆(B) ⇒ C
∧L

∆(A ∧ B) ⇒ C

∆ ⇒ A ∆ ⇒ B
∧R

∆ ⇒ A ∧ B

∆(A) ⇒ C ∆(B) ⇒ C
∨L

∆(A ∨ B) ⇒ C

∆ ⇒ A
∨R

∆ ⇒ A ∨ B

∆ ⇒ B
∨R

∆ ⇒ A ∨ B

Γ ⇒ A ∆(C) ⇒ D
\L

∆(Γ, A\C) ⇒ D

A,Γ ⇒ C
\R

Γ ⇒ A\C

Γ ⇒ B ∆(C) ⇒ D
/L

∆(C/B,Γ) ⇒ D

Γ, B ⇒ C
/R

Γ ⇒ C/B

∆(A,B) ⇒ D
•L

∆(A•B) ⇒ D

Γ ⇒ A ∆ ⇒ B
•R

Γ,∆ ⇒ A•B

∆(A) ⇒ B
6L

∆(6A) ⇒ B

6∆ ⇒ B
6R

6∆ ⇒ 6B

∆(A,B) ⇒ C
6P, A or B 6-ed

∆(B,A) ⇒ C

Figure 18. TLCG sequent calculus
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and − λxλy[y ∧ x]
:= (S\[ ]−1S)/S

annoys − annoy
:= (〈 〉CP\S)/N

felix − f
:= N

from − λx((fromadn x), (fromadv x))
:= ((CN\CN) ∧ ((N\S)\(N\S)))/N

hit − hit
:= (N\S)/N

is − λxλy(x → z, [y = z];w.((w λu[u = y]) y))
:= (N\S)/(N ∨ (CN\CN))

max − m
:= N

that − λxλyλz[(y z) ∧ (x z)]
:= (CN\CN)/(S/6N)

that − λxx
:= CP/S

Figure 19. TLG lexicon

(36)
N ⇒ N

N ⇒ N S ⇒ S
\L

N,N\S ⇒ S
/L

N, (N\S)/N,N ⇒ S

Left extraction such as man that John thinks Mary loves is derived as shown in
figure 20 with semantics λz[(man z) ∧ (think (love z m) j)].

The role of the permutation modality is to allow medial extraction such as man
that Mary met today as follows, where ADN and ADV abbreviate CN\CN and
(N\S)\(N\S) respectively:

(37) N, (N\S)/N,N,ADV ⇒ S
6L

N, (N\S)/N,6N,ADV ⇒ S
6P

N, (N\S)/N,ADV,6N ⇒ S
/R

N, (N\S)/N,ADV ⇒ S/6N ADN ⇒ ADN
/L

ADN/(S/6N), N, (N\S)/N,ADV ⇒ ADN

The use of the bracket operators in figure 19 marks coordinate structures and
sentential subjects as islands:

(38) a. *man that John likes Suzy and Mary loves
b. *man who that Mary likes annoys Bill
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N ⇒ N
#L

#N ⇒ N

N ⇒ N

S ⇒ S

N ⇒ N S ⇒ S
\L

N, N\S ⇒ S
/L

N, (N\S)/S, S ⇒ S
\L

N, (N\S)/S, N, N\S ⇒ S
/L

N, (N\S)/S, N, (N\S)/N,#N ⇒ S
/R

N, (N\S)/S, N, (N\S)/N ⇒ S/#N

CN ⇒ CN CN ⇒ CN
\L

CN, CN\CN ⇒ CN
/L

CN, (CN\CN)/(S/#N), N, (N\S)/S, N, (N\S)/N ⇒ CN

Figure 20. Left extraction in TLG

First, note how bracketed domains are induced. For, say, Mary talks and Suzy
talks:

(39)

N,N\S ⇒ S

N,N\S ⇒ S

S ⇒ S
[ ]−1L

[[ ]−1S] ⇒ S
\L

[N,N\S, S\[ ]−1S] ⇒ S
/L

[N,N\S, (S\[ ]−1S)/S,N,N\S] ⇒ S

And for, say, That Mary talks annoys Bill:

(40)

N ⇒ N

CP/S, N, N\S ⇒ CP
〈 〉R

[CP/S, N, N\S] ⇒ 〈 〉CP S ⇒ S
\L

[CP/S, N, N\S], 〈 〉CP\S ⇒ S
/L

[CP/S, N, N\S], (〈 〉CP\S)/N,N ⇒ S

Second, observe that the coordinator type (S\[ ]−1S)/S and the sentential subject
verb type (〈 〉CP\S)/N will block the overgeneration in (38) because the brackets
projected will block the conditionalised gap subtype from associating and permut-
ing into the islands.

5 WHY MIGHT GRAMMAR AND PROCESSING BE LOGICAL?

The formalisms we have considered have particular empirical and/or technical
characteristic features. LFG: grammatical functions; GPSG: context-freeness;
HPSG: heads and feature logic; CCG: combinators; TLCG: type logic. We have
traced a path leading from each to the next. Young science does not readily
renounce treasured key concepts, but our own ‘logical conclusion’ of logical gram-
mar, indeed formal grammar, is enrichment of non-commutative intuitionistic lin-
ear logic. This latter was already in existence at the time of Syntactic Structures
in the form of the Lambek calculus.
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One may question whether formal grammar is a good linguistic program at all.
All grammars leak, and logical semantics has little to say about allegory, metaphor,
or poetry. But that is not to say that grammaticality and truth conditions are not
real. It seems to me that formal grammar has been tried but not really tested:
after an initial euphoria, the going got heavy. But we have an opportunity to
develop linguistic formalism in the paradigm of modern mathematical logic.

We conclude by considering why it might have been expected that grammar
would take the form of a logic and processing would take the form of deduction.
We consider the engineering perspective of language engineering and the scientific
perspective of cognitive science.

On the engineering perspective, linguistic formalisms can be seen as construc-
tion kits for building formal languages which are like, or resemble, fragments of
natural language. The charting of natural language syntax and semantics is then a
massive information engineering task. It seems likely that logic would be a helpful
tool/organisational principle for this. Indeed, if the mapping strategy were not
logical, on what basis could it succeed?

Automated language processing divides mainly into parsing (computing mean-
ings/signifieds from forms/signifiers) and generation (computing forms/signifiers
from meanings/signifieds). When grammar is a logic, these computational tasks
take the form of parsing-as-deduction and generation-as-deduction. The setting
up of grammar as logic and processing as the corresponding deduction seems to
augur well for verificaton: the transparency of the correctness of processing with
respect to grammar.

We know something of the macroscopic and microscopic physiology of the brain,
and where the language faculty is normally located; and it is usual to view cognitive
processes as computations, or at least unconscious and automatic cognition such
as human language processing. We want to express our cognitive theories in terms
of algorithms, representations and processes eventually implemented neuronally.
But there is a huge gap in our knowledge of these concepts at the level at which
we want to theorise. We do not know how to define algorithms, representations or
processes except in ways dependent on arbitrary features of models of computation
like neural nets, RAMs, or Turing machines which we have no basis to posit as
characteristic of the levels of the higher cognitive functions of our psychological
theories.

Surely an eventual understanding of such concepts will come at least partly
from logic. As well as with knowledge and semantics, logic has deep relations
with computation (Cut-elimination, logic programming, resolution, computation
as proof-search, functional programming, computation as proof normalisation). A
natural theory of algorithms, representations and processes would be one akin to
logic. Pending such theory it seems reasonable to express our models of knowledge
of language —grammar— at a logical level of type formulas and proof terms.

As cognitive phenomena, parsing and generation are termed comprehension and
production. In TLCG syntactic structures are proofs (of grammaticality) and se-
mantic structures are also proofs: meanings are the way in which grammaticality
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is proved. So interpreted psychologically, TLCG models production and compre-
hension as synthesis and analysis of proofs. Not just manipulation of arbitrary or
language-specific structures and representations, but the resonance of reason in
the dynamics of words and concepts: logical grammar and processing.
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