
Preproceedings of the 20th Conference on Formal Grammar

Annie Foret, Glyn Morrill, Reinhard Muskens and Rainer Osswald (eds.)

August 8–9th 2015, Barcelona



Preface

FG provides a forum for the presentation of new and original research on formal grammar, mathe-
matical linguistics and the application of formal and mathematical methods to the study of natural
language. Themes of interest include, but are not limited to:

• Formal and computational phonology, morphology, syntax, semantics and pragmatics

• Model-theoretic and proof-theoretic methods in linguistics

• Logical aspects of linguistic structure

• Constraint-based and resource-sensitive approaches to grammar

• Learnability of formal grammar

• Integration of stochastic and symbolic models of grammar

• Foundational, methodological and architectural issues in grammar and linguistics

• Mathematical foundations of statistical approaches to linguistic analysis

Previous Formal Grammar meetings were held in Barcelona (1995), Prague (1996), Aix-
en-Provence (1997), Saarbrücken (1998), Utrecht (1999), Helsinki (2001), Trento (2002), Vi-
enna (2003), Nancy (2004), Edinburgh (2005), Malaga (2006), Dublin (2007), Hamburg (2008),
Bordeaux (2009), Copenhagen (2010), Ljubljana (2011), Opole (2012), Düsseldorf (2013) and
Tübingen (2014).

The present volume collects the papers from the 20th Conference on Formal Grammar cele-
brated in Barcelona in 2015. This preproceedings comprises two invited contributions, by Robin
Cooper and Tim Fernando, and 9 contributed papers selected from 14 submissions.

We thank for support the local organisers of ESSLLI 2015, with which the conference was
colocated.

July 2015 Annie Foret
Glyn Morrill
Reinhard Muskens
Rainer Osswald

Program Committee

Alexander Clark King’s College London, UK
Berthold Crysmann CNRS - LLF, France
Denys Duchier Université d’Orleans, France
Nissim Francez Technion, Israel
Philippe de Groote Inria Nancy, France
Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf, Germany
Makoto Kanazawa National Institute of Informatics, Japan
Greg Kobele University of Chicago, USA
Robert Levine Ohio State University, USA
Wolfgang Maier Heinrich-Heine-Universität Düsseldorf, Germany
Stefan Müller Freie Universität Berlin, Germany
Mark-Jan Nederhof University of St Andrews, UK
Christian Retoré LIRMM - Université Montpellier 2, France
Manfred Sailer Goethe University Frankfurt, Germany
Ed Stabler UCLA, USA
Jesse Tseng CNRS - CLLE-ERSS, France
Oriol Valent́ın Universitat Politècnica de Catalunya, Spain

i



Program Chairs and Standing Committee

Annie Foret IRISA - IFSIC, France
Glyn Morrill Universitat Politècnica de Catalunya, Spain
Reinhard Muskens Tilburg University, The Netherlands
Rainer Osswald Heinrich-Heine-Universität Düsseldorf, Germany

Table of Contents1

Invited contributions

Frames as Records 1
Robin Cooper

Types from frames as finite automata 18
Tim Fernando

Contributed papers

Cyclic Multiplicative-Additive Proof Nets of Linear Logic with an Application to
Language Parsing 39

Vito Michele Abrusci and Roberto Maieli

Algebraic Governance and Symmetry in Dependency Grammars 55
Carles Cardó

On the mild context-sensitivity of k-Tree Wrapping Grammar 72
Laura Kallmeyer

Distributional Learning and Context/Substructure Enumerability in Non-linear
Tree Grammars 89

Makoto Kanazawa and Ryo Yoshinaka

Between the Event Calculus and Finite State Temporality 107
Derek Kelleher, Tim Fernando and Carl Vogel

A Modal Representation of Graded Medical Statements 122
Hans-Ulrich Krieger and Stefan Schulz

Bias in Japanese Polar Questions from Constraints on Commitment Spaces 138
Lukas Rieser

Models for the Displacement Calculus 154
Oriol Valent́ın

On some Extensions of Syntactic Concept Lattices: Completeness and Finiteness Results 175
Christian Wurm

1 c© the individual authors

ii



Frames as Records

Robin Cooper

University of Gothenburg
Department of Philosophy, Linguistics and Theory of Science

Box 200, 405 30 Göteborg, Sweden
cooper@ling.gu.se

http://www.ling.gu.se/~cooper

Abstract. We suggest a way of formalizing frames using records in type
theory. We propose an analysis of frames as records which model situa-
tions (including events) and we suggest that frame types (record types)
are important in both the analysis of the Partee puzzle concerning rising
temperatures and prices and in the analysis of quantification which in-
volves counting events rather than individuals likes passengers or ships
passing through a lock.
Our original inspiration for frames comes from the work of [13, 14] and
work on FrameNet (https://framenet.icsi.berkeley.edu). An impor-
tant aspect of our approach to frames, which differs from the Fillmorean
approach, is that we treat them as first class objects. That is, they can
be arguments to predicates and can be quantified over. The proposal
that we have made for solving the Partee puzzle is closely related to the
work of [22, 23] whose inspiration is from the work of [2, 1, 3] rather than
Fillmore.

Keywords: frames, type theory, record types, events, situations

1 Introduction

In this paper1 we will suggest a way of formalizing frames using records in
type theory and apply this to two phenomena: the “Partee puzzle” concerning
rising temperatures and prices for which Montague [24] used individual concepts
(functions from possible worlds and times to individuals) and the problem of
apparent quantification over events rather than individuals in sentences like (1)
discussed by Krifka [18] among others.

(1) Four thousand ships passed through the lock

Our leading idea is to model frames as records and the roles in frames (or
frame elements in the terminology of FrameNet) as fields in records. Records

1 An expanded version of this paper with a more detailed formal development is avail-
able as Chapter 5 of a book draft [7]. This book draft also gives a general introduc-
tion to TTR (the type theory with records that we are using here). For a published
introduction see [6].



are in turn what we use to model situations so frames and situations in our
view turn out to be the same. Given that we are working in a type theory
which makes a clear distinction between types and the objects which belong
to those types it is a little unclear whether what we call frame should be a
record or a record type. We need both and we will talk of frames (records) and
frame types (record types). For example, when we look up the frame Ambi-
ent temperature (https://framenet2.icsi.berkeley.edu/fnReports/data/
frameIndex.xml?frame=Ambient_temperature) in FrameNet we will take that
to be an informal description of a frame type which can be instantiated by the
kinds of situations which are described in the examples there. In our terms we can
characterize a type corresponding to a very stripped down version of FrameNet’s
Ambient temperature which is sufficient for us to make the argument we wish
to make. This is the type AmbTempFrame defined in (2).2

(2)





x : Real
loc : Loc
e : temp(loc, x)





A record, r, will be of this type just in case in contains three fields with the
labels ‘x’,‘loc’ and ‘e’ and the objects in these fields are of the types Real, Loc
and temp(r.loc,r.x), that is, a type whose witness is a proof-object (a situation)
which shows that the real number in the ‘x’-field of r (r.x) is the temperature
at the location r.loc. r may contain more fields than those required by the type.
A record may not contain more than one field with a given label.

In order to characterize temperature changes we will introduce a notion of
scale relating to frames. A scale is a function which maps frames (situations) to
a real number. Thus a scale for ambient temperature will be of the type (3a)
and the obvious function to choose of that type is the function in (3b) which
maps any ambient temperature frame to the real number in its ‘x’-field.

(3) a. (AmbTempFrame → Real)
b. λr:AmbTempFrame . r.x

Let us call (3b) ζtemp. As a first approximation we can take an event of
a temperature rise to be a string3 of two temperature frames, r⌢1 r2, where
ζtemp(r1) < ζtemp(r2). Using a notation where Tn is the type of strings of length
n each of whose members are of type T and where for a given string, s, s[0] is
the first member of s, s[1] the second and so on, a first approximation to the
type of temperature rises could be (4).

(4)

[

e : AmbTempFrame2

crise : ζtemp(e[0]) < ζtemp(e[1])

]

2 Our treatment of the Partee puzzle here represents an improvement over the proposal
presented in Cooper [6] in that it allows a more general treatment of the type of
rising events

3 The idea of events as strings is taken from an important series of papers by Fernando,
[8–12] among others

2



In the crise-field of (4) we are using < as an infix notation for a predicate
‘less-than’ with arity 〈Real, Real〉 which obeys the constraint in (5).

(5) less-than(n, m) is non-empty (“true”) iff n < m

A more general type for temperature rises is given by (6) where we abstract
away from the particular temperature scale used by introducing a field for the
scale into the record type. This, for example, allows for an event to be a temper-
ature rise independent of whether it is measured on the Fahrenheit or Celsius
scales.

(6)





scale : (AmbTempFrame → Real)
e : AmbTempFrame2

crise : scale(e[0]) < scale(e[1])





This type, though, is now too general to count as the type of temperature rising
events. To be of this type, it is enough for there to be some scale on which the rise
condition holds and the scale is allowed to be any arbitrary function from tem-
perature frames to real numbers. Of course, it is possible to find some arbitrary
function which will meet the rise condition even if the temperature is actually
going down. For example, consider a function which returns the number on the
Celsius scale but with the sign (plus or minus) reversed making temperatures
above 0 to be below 0 and vice versa. There are two ways we can approach this
problem. One is to make the type in the scale-field a subtype of (AmbTempFrame

→ Real) which limits the scale to be one of a number of standardly accepted
scales. This may be an obvious solution in the case of temperature where it is
straightforward to identify the commonly used scales. However, scales are much
more generally used in linguistic meaning and people create new scales depend-
ing on the situation at hand. This makes it difficult to specify the nature of the
relevant scales in advance and we therefore prefer our second way of approaching
this problem.

The second way is to parametrize the type of temperature rising events. By
this we mean using a dependent type which maps a record providing a scale to
a record type modelling the type of temperature rising events according to that
scale. The function in (7) is a dependent type which is related in an obvious way
to the record type in (6).

(7) λr:
[

scale:(AmbTempFrame → Real)
]

.
[

e : AmbTempFrame2

crise : r.scale(e[0]) < r.scale(e[1])

]

According to (6) an event will be a temperature rise if there is some scale
according to which the appropriate relation holds between the temperatures of
the two stages of the event which we are comparing. According to (7) on the other
hand, there is no absolute type of a temperature rise. We can only say whether an
event is a temperature rise with respect to some scale or other. If we choose some

3



non-standard scale like the one that reverses plus and minus temperatures as we
suggested above then what we normally call a fall in temperature will in fact be a
rise in temperature according to that scale. You are in principle allowed to choose
whatever scale you like, though if you are using the type in a communicative
situation you had better make clear to your interlocutor what scale you are using
and perhaps also why you are using this scale as opposed to one of the standardly
accepted ones. The dependent types introduce a presupposition-like component
to communicative situations. We are assuming the existence of some scale in the
context.

Why do we characterize the domain of the function in (7) in terms of records
containing a scale rather than just scales as in (8)?

(8) λσ:(AmbTempFrame → Real) .
[

e : AmbTempFrame2

crise : σ(e[0]) < σ(e[1])

]

The intuitive reason is that we want to think of the arguments to such functions
as being contexts, that is situations (frames) modelled as records. The scale will
normally be only one of many informational components which can be provided
by the context and the use of a record type allows for there to be more compo-
nents present. In practical terms of developing an analysis it is useful to use a
record type to characterize the domain even if we have only isolated one param-
eter since if further analysis should show that additional parameters are relevant
this will mean that we can add fields to the domain type thereby restricting the
domain of the function rather than giving it a radically different type.

And indeed in this case we will now show that there is at least one more
relevant parameter that needs to be taken account of before we have anything like
a reasonable account of the type of temperature rise events. In (2) we specified
that an ambient temperature frame relates a real number (“the temperature”)
to a spatial location. And now we are saying that a temperature rise is a string
of two such frames where the temperature is higher in the second frame. But
we have not said anything about how the locations in the two frames should be
related. For example, suppose I have a string of two temperature frames where
the location in the first is London and the location in the second is Marrakesh.
Does that constitute a rise in temperature (assuming that the temperature in the
second frame is higher than the one in the first)? Certainly not a temperature
rise in London, nor in Marrakesh. If you want to talk about a temperature
rise in a particular location then both frames have to have that location and
we need a way of expressing that restriction. Of course, you can talk about
temperature rises which take place as you move from one place to another and
which therefore seem to involve distinct locations. However, it seems that even
in these cases something has to be kept constant between the two frames. One
might analyse it in terms of a constant path to which both locations have to
belong or as a constant relative location such as the place where a particular
person (or car, or airplane) is. You cannot just pick two arbitrary temperature
frames without holding something constant which ties them together. We will

4



deal here with the simple case where the location is kept constant.4 We will say
that the background information for judging an event as a temperature rise has
to include not only a scale but also a location which is held constant in the two
frames. This is expressed in (9).

(9) λr:

[

fix:
[

loc:Loc
]

scale:(AmbTempFrame → Real)

]

.
[

e : (AmbTempFrame∧.
[

loc=r.fix.loc:Loc
]

)2

crise : r.scale(e[0]) < r.scale(e[1])

]

Here we have introduced two new pieces of notation. The symbol ‘∧. ’ represents
that two record types are to be merged, an operation which corresponds to
unification of feature structures. Essentially, T1∧. T2 is a record type T3 such that
for any record r, r : T3 iff r : T1 and r : T2. We also introduce a manifest

field
[

loc=r.fix.loc:Loc
]

. A manifest field
[

ℓ=a:T
]

is a convenient notation for
[

ℓ:Ta

]

where Ta is a singleton type such that b : Ta iff a : T and b = a. Thus
a manifest field in a type specifies what the value in the corresponding record
must be. Precise definitions of these concepts can be found in [6, 7]. Here we
give an example of the merge of AmbTempFrame (spelled out in (10a)) and
[

loc=r.fix.loc:Loc
]

which is identical to (10b).

(10)
a.





x : Real
loc : Loc
e : temp(loc, x)



 ∧.
[

loc=r.fix.loc:Loc
]

b.





x : Real
loc=r.fix.loc : Loc
e : temp(loc, x)





The ‘fix’-field in the domain type of (9) is required to be a record which
provides a location. One reason for making the ‘fix’-field a record rather than
simply a location is that we will soon see an example where more than one
parameter needs to be fixed. It will also help us ultimately in characterizing a
general type for a rising event (not just a rise in temperature) if we can refer to
the type in the ‘fix’-field as Rec (“record”) rather than to list a disjunction of all
the various types of the parameters that can be held constant in different cases.

The temperature rise event itself is now required to be a string of two frames
which belong to a subtype of AmbTempFrame, namely where the ‘loc’-field has
been made manifest and is specified to have the value specified for ‘loc’ in the
‘fix’-field. Here we are using the record in the ‘fix’-field of the argument to the
function to partially specify the type AmbTempFrame by fixing values for some
of its fields. One can think of the ‘fix’-record as playing the role of a partial

4 Although in astronomical terms, of course, even a location like London is a relative
location, that is, where London is according to the rotation of the earth and its
orbit around the sun. Thus the simple cases are not really different from the cases
apparently involving paths.

5



assignment of values to fields in the type. To emphasize this important role and
to facilitate making general statements without having to name the particular
fields involved, we shall introduce an operation which maps a record type, T ,
and a record, r to the result of specifying T with r, which we will notate as
T ‖ r. (11) provides an abstract example of how it works.

(11)





ℓ1:T1

ℓ2:T2

ℓ3:T3



‖





ℓ2=a

ℓ3=b

ℓ4=c



 =





ℓ1:T1

ℓ2=a:T2

ℓ3=b:T3





provided that a : T2 and b : T3

In a case where for example a : T2 but not b : T3 we would have (12).

(12)





ℓ1:T1

ℓ2:T2

ℓ3:T3



‖





ℓ2=a

ℓ3=b

ℓ4=c



 =





ℓ1:T1

ℓ2=a:T2

ℓ3:T3





Using this notation we can now rewrite (9) as (13).

(13) λr:

[

fix:
[

loc:Loc
]

scale:(AmbTempFrame → Real)

]

.
[

e : (AmbTempFrame‖r.fix)2

crise : r.scale(e[0]) < r.scale(e[1])

]

This is still a very simple theory of what a temperature rise event may be
but it will be sufficient for our current purposes. We move on now to price rise
events. We will take (14) to be the type of price frames, PriceFrame.

(14)









x : Real
loc : Loc
commodity : Ind
e : price(commodity, loc, x)









The fields represented here are based on a much stripped down version of the
FrameNet frame Commerce scenario where our ‘commdodity’-field corresponds
to the frame element called ‘goods’ and the ‘x’-field corresponds to the frame
element ‘money’. A price rise is a string of two price frames where the value in
the ‘x’-field is higher in the second. Here, as in the case of a temperature rise,
we need to keep the location constant. It does not make sense to say that a price
rise has taken place if we compare a price in Marrakesh with a price in London,
even though the price in London may be higher. In the case of price we also
need to keep the commodity constant, something that does not figure at all in
ambient temperature. We cannot say that a price rise has taken place if we have
the price of tomatoes in the first frame and the price of oranges in the second
frame. Thus, following the model of (13), we can characterize the dependent type
of price rises as (15).

6



(15) λr:





fix:

[

loc:Loc
commodity:Ind

]

scale:(PriceFrame → Real)



 .

[

e : (PriceFrame‖r.fix)2

crise : r.scale(e[0]) < r.scale(e[1])

]

Finally we consider a third kind of rising event discussed in [6] based on the
example in (16).

(16) As they get to deck, they see the Inquisitor, calling out to a Titan
in the seas. The giant Titan rises through the waves, shrieking at
the Inquisitor.

http://en.wikipedia.org/wiki/Risen_(video_game)

accessed 4th February, 2010

Here what needs to be kept constant in the rising event is the Titan. What needs
to change between the two frames in the event is the height of the location of
the Titan. Thus in this example the location is not kept constant. In order to
analyze this we can use location frames of the type LocFrame as given in (17).

(17)





x : Ind
loc : Loc
e : at(x, loc)





The dependent type for a rise in location event is (18).

(18) λr:

[

fix:
[

x:Ind
]

scale:(LocFrame → Real)

]

.
[

e : (LocFrame‖r.fix)2

crise : r.scale(e[0]) < r.scale(e[1])

]

Here the obvious scale function does not simply return the value of a field in the
location frame. What is needed is a scale based on the height of the location.
One way to do this would be to characterize the type of locations, Loc, as the
type of points in three-dimensional Euclidean space. That is, we consider Loc to
be an abbreviation for (19).

(19)





x-coord : Real
y-coord : Real
z-coord : Real





Each of the fields in (19) corresponds to a coordinate in Euclidean space. A
more adequate treatment would be to consider locations as regions in Euclidean
space but we will not pursue that here. Treating Loc as (19) means that we
can characterize the scale function as returning the height of the location in the
location frame, as in (20).

7



(20) λr:LocFrame . r.loc.z-coord

If we wish to restrict the dependent type of rising events to vertical rises we can
fix the x and y-coordinates of the location as in (21).

(21) λr:









fix:





x:Ind

loc:

[

x-coord:Real
y-coord:Real

]





scale:(LocFrame → Real)









.

[

e : (LocFrame‖r.fix)2

crise : r.scale(e[0]) < r.scale(e[1])

]

We have now characterized three kinds of rising events. In [5, 6] we argued
that there is in principle no limit to the different kinds of rising events which can
be referred to in natural language and that new types are created on the fly as
the need arises. The formulation in those works did not allow us to express what
all these particular meanings have in common. We were only able to say that the
various meanings seem to have some kind of family resemblance. Now that we
have abstracted out scales and parameters to be fixed we have an opportunity
to formulate something more general. There are two things that vary across the
different dependent types that we have characterized for risings. One is the frame
type being considered and the other is the type of the record which contains the
parameters held constant in the rising event. If we abstract over both of these
we have a characterization of rising events in general. This is given in (22).

(22) λr:









frame type:RecType
fix type:RecType
fix:fix type
scale:(frame type → Real)









.

[

e : (r.frame type‖r.fix)2

crise : r.scale(e[0]) < r.scale(e[1])

]

(22) is so general (virtually everything of content has been parametrized) that
it may be hard to see it as being used in the characterization of the meaning
of rise. What seems important for characterizing the meanings of rise that a
speaker has acquired is precisely the collection of frame types, and associated
fix types and scales which an agent has developed through experience. (22)
seems to be relevant to a kind of meta-meaning which specifies what kind of
contents can be associated with the word rise. In this sense it seems related
to the notion of meaning potential, a term which has its origins in the work of
Halliday [16] where meanings are spoken of informally as being “created by the
social system” and charaterized as “integrated systems of meaning potential”
(p. 199). The notion is much discussed in more recent literature, for example,
Linell [19], where meaning potential is discussed in the following terms: “Lexical
meaning potentials are (partly) open meaning resources, where actual meanings
can only emerge in specific, situated interactions” (p. 330).

8



2 Individual vs. frame level nouns

Perhaps the most recent discussion of the Partee puzzle is that of Löbner [23].
As we will see, his proposal is closely related to our own. The puzzle is one that
Barbara Partee raised while sitting in on an early presentation of the material
that led to [24]. In its simplest form it is that (23c) should follow from (23a,b)
given some otherwise apparently harmless assumptions.

(23) a. The temperature is rising
b. The temperature is ninety
c. Ninety is rising

Clearly, our intuitions are that (23c) does not follow from (23a,b).
A central aspect of our analysis of the Partee puzzle is that the contents of

common nouns are functions that take frames, that is records, as arguments.
We make a distinction between individual level predicates like ‘dog’ whose arity
is 〈Ind〉 and frame level predicates like ‘temperature’ whose arity is 〈Rec〉. The
content associated with an utterance event of type “dog” would be (24a). This
is contrasted with the content for an utterance of type “temperature” given in
(24b).

(24) a. λr:
[

x:Ind
]

.
[

e : dog(r.x)
]

b. λr:
[

x:Rec
]

.
[

e : temperature(r.x)
]

We make an exactly similar distinction between individual level and frame level
verb phrases. In (25) we present contents which can be associated with utterances
of type “run” and “rise” respectively.

(25) a. λr:
[

x:Ind
]

.
[

e : run(r.x)
]

b. λr:
[

x:Rec
]

.
[

e : rise(r.x)
]

When we predicate the content of rise, that is, (25b), of a temperature frame
that has no consequence that the real number in the ‘x´-field of the temperature
frame also rises.

We have made a distinction between individual level nouns like dog and
frame level nouns like temperature, differentiating their contents as in (24) and
motivating the distinction with the Partee puzzle. Now consider (26).

(26) a. The dog is nine
b. The dog is getting older/aging
c. Nine is getting older/aging

We have the same intuitions about (26) as we do about the original tem-
perature puzzle. We cannot conclude (26c) from (26a,b). Does this mean that
dog is a frame level noun after all? Certainly, if we think of frames as being like
entries in relational databases it would be natural to think of age (or information

9



allowing us to compute age such as date of birth) as being a natural field in a
dog-frame.

Our strategy to deal with this will be to say that contents of individual level
nouns can be coerced to frame level contents, whereas the contents of frame level
nouns cannot be coerced “down” to individual level contents. Thus in addition
to (24a), repeated as (27a) we have (27b).

(27) a. λr:
[

x:Ind
]

.
[

e : dog(r.x)
]

b. λr:
[

x:Rec
]

.
[

e : dog frame(r.x)
]

The predicate ‘dog frame’ is related to the predicate ‘dog’ by the constraint in
(28).

(28) dog frame(r) is non-empty implies r :

[

x:Ind
e:dog(x)

]

There are several different kinds of dog frames with additional information
about a dog which an agent may acquire or focus on. Here we will consider just
frames which contain a field labelled ‘age’ as specified in (29).

(29) If r :









x:Ind
e:dog(x)
age:Real
cage:age of(x,age)









then dog frame(r) is non-empty

An age scale, ζage, for individuals can then be defined as the function in (30).

(30) ζage = λr:





x:Ind
age:Real
cage:age of(x,age)



 . r.age

We can think of the sentence the dog is nine as involving two coercions: one
coercing the content of dog to a frame level property and the other coercing the
content of be to a function which when applied to a number will return a frame
level property depending on an available scale. Such coercions do not appear to
be universally available in languages. For example, in German it is preferable
to say die Temperatur ist 35 Grad “the temperature is 35 degrees” rather than
#die Temperatur ist 35 “the temperature is 35”. Similarly der Hund ist neun

Jahre alt “the dog is nine years old” is preferred over #der Hund ist neun “the
dog is nine”.

3 Passengers and ships

Gupta [15] points out examples such as (31).

10



(31) a. National Airlines served at least two million passengers in 1975
b. Every passenger is a person
c. National Airlines served at least two million persons in 1975

His claim is that we cannot conclude (31c) from (31a,b). There is a reading of
(31a) where what is being counted is not passengers as individual people but
passenger events, events of people taking flights, where possibly the same people
are involved in several flights. Gupta claims that it is the only reading that this
sentence has. While it is certainly the preferred reading for this sentence (say, in
the context of National Airlines’ annual report or advertizing campaign), I think
the sentence also has a reading where individuals are being counted. Consider
(32).

(32) National Airlines served at least two million passengers in 1975.
Each one of them signed the petition.

While (32) could mean that a number of passengers signed the petition several
times our knowledge that people normally only sign a given petition once makes
a reading where there are two million distinct individuals involved more likely.
Similarly, while (31c) seems to prefer the individual reading where there are two
million distinct individuals it is not impossible to get an event reading here.
[18] makes a similar point. Gupta’s analysis of such examples involves individual
concepts and is therefore reminiscent of the functional concepts used by [20, 21]
to analyze the Partee puzzle.

Carlson [4] makes a similar point about Gupta’s examples in that nouns
which appear to normally point to individual related readings can in the right
context get the event related readings. One of his examples is a traffic engineer’s
report as in (33).

(33) Of the 1,000 cars using Elm St. over the past 49 hours, only 12 cars
made noise in excess of EPA recommended limits.

It is easy to interpret this in terms of 1,000 and 12 car events rather than
individual cars. Carlson’s suggestion is to use his notion of individual stage, what
he describes intuitively as “things-at-a-time”. Krifka [18] remarks that “Carlson’s
notion of a stage serves basically to reconstruct events”. While this is not literally
correct, the intuition is nevertheless right. Carlson was writing at a time when
times and time intervals were used to attempt to capture phenomena that in
more modern semantics would be analyzed in terms of events or situations.
Thus Carlson’s notion of stage is related to a frame-theoretic approach which
associates an individual with an event.

Consider the noun passenger. It would be natural to assume that passen-
gers are associated with journey events. FrameNet5 does not have an entry for
passenger. The closest relevant frame appears to be TRAVEL which has frame
elements for traveller, source, goal, path, direction, mode of transport, among

5 As of 13th May 2015.

11



others. The FrameNet lexical entry for journey is associated with this frame.
Let us take the type TravelFrame to be the stripped down version of the travel
frame type in (34a). Then we could take the type PassengerFrame to be (34b).

(34)
a.





traveller : Ind
source : Loc
goal : Loc





b.









x : Ind
e : passenger(x)
journey : TravelFrame

ctravel : take journey(x, journey)









A natural constraint to place on the predicate ‘take journey’ is that in (35).

(35) If a:Ind and e:TravelFrame, then the type take journey(a, e) is
non-empty just in case e.traveller = a.

Let us suppose that the basic lexical entry for passenger provides the content
(36).

(36) λr:
[

x:Ind
]

.
[

e:passenger(r.x)
]

We can coerce this lexical item to (37).

(37) λr:
[

x:Rec
]

.
[

e:passenger frame(r.x)
]

This means that the non-parametric content is a property of frames. An agent
who has the frame type PassengerFrame available as a resource can use it to
restrict the domain of the property. This produces (38).

(38) λr:
[

x:PassengerFrame
]

.
[

e:passenger frame(r.x)
]

This means that the non-parametric content will now be a property of passenger
frames of type PassengerFrame. This introduces not only a passenger but also
a journey, an event in which in which the passenger is the traveller.

It seems that we have now done something which Krifka [18] explicitly warned
us against. At the end of his discussion of Carlson’s analysis he comes to the
conclusion that it is wrong to look for an explanation of event-related readings
of these sentences in terms of a noun ambiguity. One of Krifka’s examples is (39)
(which gives the title to his paper).

(39) Four thousand ships passed through the lock

This can either mean that four thousand distinct ships passed through the lock or
that the there were four thousand ship-passing-through-the-lock events a number
of which might have involved the same ships. The problem he sees is that if we

12



treat ship as being ambiguous between denoting individual ships or ship stages
in Carlson’s sense then there will be too many stages which pass through the
lock. For example, suppose that a particular ship passes through the lock twice.
This gives us two stages of the ship which pass through the lock. But then, Krifka
claims, there will be a third stage, the sum of the first two, which also passes
through the lock. It is not clear to me that this is an insuperable problem for
the stage analysis. We need to count stages that pass through the lock exactly
once. Let us see how the frame analysis fares.

We will start with a singular example in order to avoid the additional prob-
lems offered by the plural. Consider (40).

(40) Every passenger gets a hot meal

Suppose that an airline has this as part of its advertizing campaign. Smith,
a frequent traveller, takes a flight with the airline and as expected gets a hot
meal. A few weeks later she takes another flight with the same airline and does
not get a hot meal. She sues the airline for false advertizing. At the hearing, her
lawyer argues, citing Gupta [15], that the advertizing campaign claims that every
passenger gets a hot meal on every flight they take. The lawyer for the airline
company argues, citing Krifka [18], that the sentence in question is ambiguous
between an individual and an event reading, that the airline had intended the
individual reading and thus the requirements of the advertizing campaign had
been met by the meal that Smith was served on the first flight. Smith’s lawyer
then calls an expert witness, a linguist who quickly crowdsources a survey of
native speakers’ interpretations of the sentence in the context of the campaign
and discovers that there is an overwhelming preference for the meal-on-every-
flight reading. (The small percentage of respondents who preferred the individual
reading over the event reading gave their occupation as professional logician.)
Smith wins the case and receives an additional hot meal.

What is important for us at the moment is the fact that there is an event
reading of this sentence. We use the coerced content associated with passenger

in (38).
In order to simplify matters let us treat gets a hot meal as if it were an

intransitive verb corresponding to a single predicate ‘get a hot meal’. This is a
predicate whose arity is 〈Ind〉. It is individuals, not frames (situations), that get
hot meals. Thus the content of gets a hot meal will be (41).

(41) λr:
[

x:Ind
]

.
[

e:get a hot meal(r.x)
]

We need a coercion which will obtain a frame level intransitive verb to match
the frame level noun. The new content for get a hot meal will be (42).

(42) λr:
[

x:Rec
]

.
[

e:get a hot meal frame(r.x)
]

Recall that if p is a predicate of individuals then p frame is a predicate of frames
that contain an individual of which p holds. This means that an argument, r,

13



to ‘get a hot meal frame’ which makes the type ‘get a hot meal frame(r)’ non-
empty will be of type (43).

(43)

[

x : Ind
e : get a hot meal(x)

]

Thus intuitively the ‘every’ relation holding between the two frame-level coerced
individual properties corresponding to passenger and get a hot meal will mean
“every frame (situation) containing an individual in the ‘x’-field who is a pas-
senger taking a journey will be a frame where the individual in the ‘x’-field gets
a hot meal”. Or, more formally, (44).

(44) every r of type









x : Ind
e : passenger(x)
journey : TravelFrame

ctravel : take journey(x, journey)









is of type

[

x : Ind
e : get a hot meal(x)

]

This means that every frame of type PassengerFrame will be of type (45).

(45)









x : Ind
e : passenger(x)∧get a hot meal(x)
journey : TravelFrame

ctravel : take journey(x, journey)









Thus even though we have coerced to a frame-level reading it is still the pas-
sengers (i.e. individuals) in the frames who are getting the hot meal not the
situation which is the frame.

4 Conclusion

In this paper we have proposed an analysis of frames as records which model
situations (including events) and we have suggested that frame types (record
types) are important in both the analysis of the Partee puzzle concerning rising
temperatures and prices and in the analysis of quantification which involves
counting events rather than individuals likes passengers or ships passing through
a lock.

Our original inspiration for frames comes from the work of [13, 14] and work
on FrameNet (https://framenet.icsi.berkeley.edu). An important aspect
of our approach to frames is that we treat them as first class objects. That is,
they can be arguments to predicates and can be quantified over. While this is
important, it is not surprising once we decide that frames are in fact situations
(here modelled by records) or situation types (here modelled by record types).
The distinction between frames and frame types is not made in the literature

14



deriving from Fillmore’s work but it seems to be an important distinction to
draw if we wish to apply the notion of frame to the kind of examples we have
discussed in this chapter.

The proposal that we have made for solving the Partee puzzle is closely
related to the work of Löbner [22, 23] whose inspiration is from the work of
Barsalou [2, 1, 3] rather than Fillmore. Barsalou’s approach embedded in a the-
ory of cognition based on perception and a conception of cognition as dynamic,
that is, a system in a constant state of flux [25], seems much in agreement with
what we are proposing. Barsalou’s [3] characterization of basic frame proper-
ties constituting a frame as: “(1) predicates, (2) attribute-value bindings, (3)
constraints, and (4) recursion” seem to have a strong family resemblance with
our record types. Our proposal for incorporating frames into natural language
semantics is, however, different from Löbner’s in that he sees the introduction of
a psychological approach based on frames as a reason to abandon a formal se-
mantic approach whereas we see type theory as a way of combining the insights
we have gained from model theoretic semantics with a psychologically oriented
approach.

Our approach to frames has much in common with that of Kallmeyer and
Osswald [17] who use feature structures to characterize their semantic domain.
We have purposely used record types in a way that makes them correspond
both to feature structures and discourse representation structures which allows
us to relate our approach to more traditional model theoretic semantics at the
same time as being able to merge record types corresponding to unification in
feature-based systems. However, our record types are included in a richer system
of types including function types facilitates a treatment of quantification and
binding which is not available in a system which treats feature structures as a
semantic domain.6

References

1. Barsalou, L.W.: Cognitive psychology. An overview for cognitive scientists.
Lawrence Erlbaum Associates, Hillsdale, NJ (1992)

2. Barsalou, L.W.: Frames, concepts, and conceptual fields. In: Lehrer, A., Kittay,
E.F. (eds.) Frames, fields, and contrasts: New essays in semantic and lexical orga-
nization, pp. 21–74. Lawrence Erlbaum Associates, Hillsdale, NJ (1992)

3. Barsalou, L.W.: Perceptual symbol systems. Behavioral and Brain Sciences 22,
577–660 (1999)

4. Carlson, G.N.: Generic Terms and Generic Sentences. Journal of Philosophical
Logic 11, 145–81 (1982)

5. Cooper, R.: Frames in formal semantics. In: Loftsson, H., Rögnvaldsson, E., Hel-
gadóttir, S. (eds.) IceTAL 2010. Springer Verlag (2010)

6. Cooper, R.: Type theory and semantics in flux. In: Kempson, R., Asher, N., Fer-
nando, T. (eds.) Handbook of the Philosophy of Science, vol. 14: Philosophy of
Linguistics, pp. 271–323. Elsevier BV (2012), general editors: Dov M. Gabbay,
Paul Thagard and John Woods

6 It is possible to code up a notation for quantification in feature structures but that
is not the same as giving a semantics for it.

15



7. Cooper, R.: Type theory and language: from perception to linguistic commu-
nication (in prep), https://sites.google.com/site/typetheorywithrecords/

drafts, draft of book chapters available from https://sites.google.com/site/

typetheorywithrecords/drafts

8. Fernando, T.: A finite-state approach to events in natural language semantics.
Journal of Logic and Computation 14(1), 79–92 (2004)

9. Fernando, T.: Situations as strings. Electronic Notes in Theoretical Computer Sci-
ence 165, 23–36 (2006)

10. Fernando, T.: Finite-state descriptions for temporal semantics. In: Bunt, H.,
Muskens, R. (eds.) Computing Meaning, Volume 3, Studies in Linguistics and
Philosophy, vol. 83, pp. 347–368. Springer (2008)

11. Fernando, T.: Situations in LTL as strings. Information and Computation 207(10),
980–999 (2009)

12. Fernando, T.: Constructing Situations and Time. Journal of Philosophical Logic
40, 371–396 (2011)

13. Fillmore, C.J.: Frame semantics. In: Linguistics in the Morning Calm, pp. 111–137.
Hanshin Publishing Co., Seoul (1982)

14. Fillmore, C.J.: Frames and the semantics of understanding. Quaderni di Semantica
6(2), 222–254 (1985)

15. Gupta, A.: The Logic of Common Nouns: An Investigation in Quantified Model
Logic. Yale University Press, New Haven (1980)

16. Halliday, M.A.K.: Text as semantic choice in social contexts. In: van Dijk, T.,
Petöfi, J. (eds.) Grammars and descriptions, pp. 176–225. Walter de Gruyter,
Berlin (1977)

17. Kallmeyer, L., Osswald, R.: Syntax-driven semantic frame composition in Lexi-
calized Tree Adjoining Grammars. Journal of Language Modelling 1(2), 267–330
(2013)

18. Krifka, M.: Four Thousand Ships Passed through the Lock: Object-induced Mea-
sure Functions on Events. Linguistics and Philosophy 13, 487–520 (1990)

19. Linell, P.: Rethinking Language, Mind, and World Dialogically: Interactional and
contextual theories of human sense-making. Advances in Cultural Psychology: Con-
structing Human Development, Information Age Publishing, Inc., Charlotte, N.C.
(2009)

20. Löbner, S.: Intensionale Verben und Funktionalbegriffe. Untersuchung zur Syntax
und Semantik von wechseln und den vergleichbaren Verben des Deutschen. Narr,
Tübingen (1979)

21. Löbner, S.: Intensional Verbs and Functional Concepts: More on the “Rising Tem-
perature” Problem. Linguistic Inquiry 12(3), 471–477 (1981)

22. Löbner, S.: Evidence for frames from human language. In: Gamerschlag, T., Ger-
land, D., Petersen, W., Osswald, R. (eds.) Frames and Concept Types, Studies
in Linguistics and Philosophy, vol. 94, pp. 23–68. Springer, Heidelberg, New York
(2014)

23. Löbner, S.: Functional Concepts and Frames (in prep), http://

semanticsarchive.net/Archive/jI1NGEwO/Loebner_Functional_Concepts_

and_Frames.pdf, available from http://semanticsarchive.net/Archive/

jI1NGEwO/Loebner_Functional_Concepts_and_Frames.pdf.
24. Montague, R.: The Proper Treatment of Quantification in Ordinary English. In:

Hintikka, J., Moravcsik, J., Suppes, P. (eds.) Approaches to Natural Language:
Proceedings of the 1970 Stanford Workshop on Grammar and Semantics, pp. 247–
270. D. Reidel Publishing Company, Dordrecht (1973)

16



25. Prinz, J.J., Barsalou, L.W.: Steering a course for embodied representation. In:
Dietrich, E., Markman, A.B. (eds.) Cognitive Dynamics: Conceptual and Repre-
sentational Change in Humans and Machines, pp. 51–77. Psychology Press (2014),
previously published in 2000 by Lawrence Erlbaum

17



Types from frames as finite automata

Tim Fernando

Trinity College Dublin, Ireland

Abstract. An approach to frame semantics is built on a conception
of frames as finite automata, observed through the strings they accept.
An institution (in the sense of Goguen and Burstall) is formed where
these strings can be refined or coarsened to picture processes at various
bounded granularities, with transitions given by Brzozowski derivatives.

Keywords: frame, finite automaton, trace, derivative, institution

1 Introduction

A proposal for frame semantics recently put forward in Muskens 2013 analyzes
a frame of the sort studied by Barsalou 1999, Löbner 2014, and Petersen &
Osswald 2014 (not to forget Fillmore 1982) as a fact in a data lattice 〈F, ◦, 0〉
with zero 0 ∈ F and meet ◦ : (F× F) → F (Veltman 1985). A frame such as

smashJohn window
agent

theme

is analyzed, relative to any three entities e, x and y, as the ◦-combination

smash e ◦ agent ex ◦ John x ◦ theme ey ◦ window y

of five facts, smash e, agent ex, John x, theme ey, and window y. In general,
any fact g ∈ F induces a function [g] from facts to one of three truth values, t, f
and n, such that for all f ∈ F− {0},

[g](f) =







t if f ◦ g = f (i.e., f incorporates g)
f if f ◦ g = 0 (i.e., f and g are incompatible)
n otherwise.

Functions such as [g] from F to {t, f ,n} are what Muskens calls propositions,
breaking from possible worlds semantics in replacing possible worlds with facts,
and adding a third truth value, n, for a gap between truth and falsity. Sentences
are interpreted as propositions, assembled compositionally from an interpreta-
tion of words as λ-abstracts of propositions, as in

smash = λyxλf∃e.[smash e ◦ agent ex ◦ theme ey]f. (1)

Muskens attaches significance to the separation of facts from propositions. Iden-
tifying frames with facts, he declares



I reject the idea (defended in Barsalou 1999, who explicitly discusses
frame representations of negation, disjunction, and universal quantifica-
tion) that all natural language meaning can profitably be represented
with the help of frames

(page 176).
One way to evaluate Muskens’ proposal is by comparing it with others. An

alternative to existentially quantifying the event e in (1) is λ-abstraction, as in
the analysis of sortal frames in Petersen & Osswald 2014, with

λe. smash ′(e) ∧ animate ′(agent′(e)) ∧ concrete ′(theme′(e)) (2)

for the typed feature structure (a), or, to bring the example closer to (1),

λe. smash ′(e) ∧ all ′(agent′(e)) ∧ all ′(theme′(e)) (3)

for the typed feature structure (b) over a vacuous all-encompassing type all .1

(a)





smash

agent animate

theme concrete



 (b)





smash

agent all

theme all



 (c)





smash

agent

theme





It is understood in both (2) and (3) that e is in the domain of the partial functions
agent

′ and theme
′, making the terms agent′(e) and theme

′(e) well-defined.
We will simplify (b) shortly to (c), but before dropping all , let us use it to
illustrate how to express the definedness presuppositions in (2) and (3) under
the approach of Cooper 2012. To model a context, Cooper uses a record such as
(d), which is of type (e) assuming all encompasses all.

(d)

[

agent = x

theme = y

]

(e)

[

agent : all
theme : all

]

(f)





p1 : smash(r)
p2 : animate(r.agent)
p3 : concrete(r.theme)





Now, if bg is the record type (e), and ϕ is the type (f) dependent on a record r
of type bg, we can form the function

(λr : bg) ϕ (4)

mapping a record r of type bg to the record type ϕ. (4) serves as Cooper’s
meaning function with

- domain bg (for background) encoding the definedness presuppositions, and
- record type ϕ replacing what a Montagovian would have as a truth value.

Compared to the prefix λyx in Muskens’ (1), the prefix (λr : bg) in (4) provides
not just the parameters x and y but the information that they are the agent
and theme components of a record r, around which abstraction is centralized in
accordance with the methodological assumption

1 This introductory section presupposes some familiarity with the literature, but is
followed by sections that proceed in a more careful manner, without relying on a full
understanding of the Introduction.

19



(†) components are extracted from a single node associated with the frame.

The number of components may be open-ended, as argued famously for events
in Davidson 1967

Jones did it slowly, deliberately, in the bathroom with a knife, at midnight

(page 81). Under pressure from multiple components, the assumption (†) is re-
laxed for non-sortal frames in Löbner 2014 and Petersen & Osswald 2014, with
the latter resorting to ǫ-terms (page 249) and ι-terms (page 252). It is, however,
possible to maintain (†) by adding attributes that extend the central node to
incorporate the required components (making ǫ- and ι-terms unnecessary). At
stake in upholding (†) is a record type approach, a finite-state fragment of which
is the subject of the present paper.

In Cooper 2012, record types are part of a rich system TTR of types with
function spaces going well beyond finite-state methods. Viewing frames as finite
automata — bottom-dwellers in the Chomsky hierarchy — certainly leads us
back to Muskens’ contention that frames cannot capture all natural language
meaning. But while any single finite automaton is bound to fall short, much
can be done with many automata. Or so the present paper argues. Very briefly,
the idea is to reduce the matrices (a)–(c) to the sets (a)′–(c)′ of strings over
the alphabet {smash,agent,theme, animate, concrete, all}, and to represent
the typing in (g) by the matrix (h) that is reduced to the language (h)′ over an
expansion of the alphabet with symbols ax and ay for x and y respectively.

(a)′ {smash, agent animate, theme concrete}
(b)′ {smash, agent all , theme all}
(c)′ {smash, agent, theme}

(g)





smash

agent = x

theme = y



 :





smash

agent : animate

theme : concrete



 (h)













smash

agent

[

animate

ax

]

theme

[

concrete

ay

]













(h)′ {smash, agent ax, theme ay} ∪ {agent animate, theme concrete}

To interpret the strings in the sets (a)′, (b)′, (c)′ and (h)′, we assume every
symbol a in the string alphabet Σ is interpreted as a (partial) function [[a]],
which we extend to strings s ∈ Σ∗, setting [[ǫ]] to the identity, and [[sa]] to the
sequential composition λx.[[a]]([[s]](x)). Then in place of the λ-expressions (1) to
(4), a language L is interpreted as the intersection

⋂

s∈L

domain([[s]]) (5)

of the domains of the interpretations of strings in L. It is customary to present
the interpretations [[a]] model-theoretically (as in the case of the interpretation
agent

′ of agent in (2)), making the interpretations [[s]] and (5) model-theoretic.

20



But as will become clear below, the functions [[α]] can also be construed as the
α-labeled transitions in a finite automaton. The ultimate objective of the present
work is to link frames to the finite-state perspective on events in Fernando 2015
(the slogan behind the bias for finite-state methods being less is more), as well
as to more wide ranging themes of “semantics in flux” in Cooper 2012, and
“natural languages as collections of resources” in Cooper & Ranta 2008.

The intersection (5) approximates the image {r : bg | ϕ} of Cooper’s meaning
function (λr : bg)ϕ but falls short of maintaining the careful separation that
(λr : bg)ϕ makes between the presuppositions bg and the dependent record type
ϕ. That separation is recreated below within what is called an institution in
Goguen and Burstall 1992, with bg formulated as a signature and ϕ as a sentence
of that signature. Clarifying this formulation is largely what the remainder of the
present paper is about, which consists of three sections, plus a conclusion. The
point of departure of section 2 is the determinism of a frame — the property
that for every state (or node) q and every label a on an arc (or edge), there
is at most one arc from q labeled a. Based on determinism and building on
Hennessy & Milner 1985, section 2 reduces a state q to a set of strings of labels
(i.e., a language). This reduction is tested against states as types and states as
particulars in section 3. To ensure the languages serving as states are accepted
by finite automata (i.e., regular languages), section 4 works with various finite
sets Σ of labels. The sets Σ are paired with record types for signatures, around
which approximations are structured following Goguen & Burstall 1992.

One further word about the scope of the present work before proceeding.
Functions and λ’s are commonly taken for granted in a compositional syn-
tax/semantics interface, yet another significant proposal for which is detailed in
Kallmeyer and Osswald 2013 using Lexicalized Tree Adjoining Grammar (dis-
tinct from frames with a first-order formulation in §§3.3.3−3.3.4 there compatible
with (5) above2). The present paper steers clear of any choice of a syntactic for-
malism, making no claim of completeness in focusing (modestly) on types from
frames as finite automata.

2 Deterministic systems and languages

Fix a (possibly infinite) set A of labels. An A-deterministic system is a partial
function δ : Q×A⇁ Q from pairs (q, a) ∈ Q×A to elements of Q, called states
(of which there may or may not be infinitely many). Let ǫ be the null string
(of length 0) and for any state q ∈ Q, let δq : A∗ ⇁ Q be the partial Q-valued
function from strings over the alphabet A that repeatedly applies δ starting at
q; more precisely, δq is the ⊆-least set P of pairs such that

(i) (ǫ, q) ∈ P , and
(ii) (sa, δ(q′, a)) ∈ P whenever (s, q′) ∈ P and (q′, a) ∈ domain(δ).

2 The compatibility here becomes obvious if the moves described in footnote 5 of page
281 in Kallmeyer and Osswald 2013 are made, and a root added with attributes to
the multiple base nodes.

21



For example,

aa′ ∈ domain(δq) ⇐⇒ (q, a) ∈ domain(δ) and a′ ∈ domain(δδ(q,a)).

The partial functions δq determine

transitions q
s→ δq(s) whenever s ∈ domain(δq)

which we can also read as

s-components δq(s) of q, for all s ∈ domain(δq).

The labels in A may correspondingly be regarded as acts or as attributes. In
either case, there is, we will see, a useful sense in which the language domain(δq)
over A holds just about all the A-deterministic system δ has to say about q. An
element of domain(δq) is called a trace of q (from δ), and henceforth, we write
traceδ(q) interchangably with domain(δq).

2.1 Satisfaction and traces

Given a set A of labels, the set ΦA of (A-modal) formulas ϕ is generated

ϕ ::= ⊤ | ¬ϕ | ϕ ∧ ϕ′ | 〈a〉ϕ

from a tautology ⊤, negation ¬ , conjunction ∧, and modal operators 〈a〉 with
labels a ∈ A (Hennessy & Milner 1985). We interpret a formula ϕ ∈ ΦA relative
to an A-deterministic system δ : Q × A ⇁ Q and state q ∈ Q via a satisfaction
relation |= in the usual way, with (keeping δ implicit in the background)

q |= ⊤,

‘not’ ¬

q |= ¬ϕ ⇐⇒ not q |= ϕ,

‘and’ ∧

q |= ϕ ∧ ϕ′ ⇐⇒ q |= ϕ and q |= ϕ′

and the accessibility relation {(q, δq(a)) | q ∈ Q and a ∈ domain(δq)} for 〈a〉

q |= 〈a〉ϕ ⇐⇒ a ∈ domain(δq) and δq(a) |= ϕ

It is not difficult to see that the set

ΦA(q) := {ϕ ∈ ΦA | q |= ϕ}

of formulas |=-satisfied by q depends precisely on domain(δq). That is, recalling
that traceδ(q) is domain(δq), the following conditions, (a) and (b), are equivalent
for all states q, q′ ∈ Q.

22



(a) traceδ(q) = traceδ(q
′)

(b) ΦA(q) = ΦA(q
′)

Let us write q ∼ q′ if (a), or equivalently (b), holds,3 and pronounce ∼ trace

equivalence.

2.2 Identity of indiscernibles and states as languages

Identity of indiscernibles (also known as Leibniz’s law, and mentioned in Osswald
1999, invoking Quine) can be understood against the set A of attributes as the
requirement on δ that distinct pairs q, q′ of states (in Q) not be trace equivalent

q 6= q′ =⇒ q 6∼ q′.

Basing discernibility on formulas ϕ ∈ ΦA, we say ϕ differentiates q from q′ if
q |= ϕ but not q′ |= ϕ. It follows that

ϕ differentiates q from q′ ⇐⇒ ¬ϕ differentiates q′ from q

and

q ∼ q′ ⇐⇒ no formula in ΦA differentiates q from q′.

We can replace formulas by attributes and make differentiation symmetric, by
agreeing that a label a differentiates q from q′ if (exactly) one of the following
holds

(i) a ∈ traceδ(q)− traceδ(q
′)

(ii) a ∈ traceδ(q
′)− traceδ(q)

(iii) a ∈ traceδ(q) ∩ traceδ(q
′) and ΦA(δq(a)) 6= ΦA(δq′(a)).

In the case of (i) and (ii), we can see q 6∼ q′ already at a, whereas (iii) digs
deeper. Two other equivalent ways to say a differentiates q from q′ are (a) and
(b) below.

(a) a is a prefix of a string in the symmetric difference of trace sets

(traceδ(q) ∪ traceδ(q
′))− (traceδ(q) ∩ traceδ(q

′))

(b) there exists ϕ ∈ ΦA such that the formula 〈a〉ϕ differentiates either q from
q′ or q′ from q

The notion of an attribute a ∈ A differentiating q from q′ generalizes straight-
forwardly to a string a1 · · · an ∈ A

+ differentiating q from q′.
In fact, if we reduce a state q to the language traceδ(q), the notions of dif-

ferentiation above link up smoothly with derivatives of languages (Brzozowski

3 Readers familiar with bisimulations will note that ∼ is the largest bisimulation (de-
terminism being an extreme form of image-finiteness; Hennessy & Milner 1985).

23



1964, Conway 1971, Rutten 1998, among others). Given a language L and a
string s, the s-derivative of L is the set

Ls := {s′ | ss′ ∈ L}

obtained from strings in L that begin with s, by stripping s off. Observe that
for all q ∈ Q and s ∈ traceδ(q), if L = traceδ(q) then the s-derivative of L
corresponds to the s-component δq(s) of q

Ls = traceδ(δq(s))

and L decomposes into its components

L = ǫ+
∑

a∈A

aLa. (6)

The fact that ǫ belongs to traceδ(q) reflects prefix-closure. More precisely, a
language L is said to be prefix-closed if s ∈ L whenever sa ∈ L. That is, L is
prefix-closed iff prefix (L) ⊆ L, where the set prefix (L) of prefixes in L

prefix (L) := {s | Ls 6= ∅}

consists of all strings that induce non-empty derivatives. For any non-empty
prefix-closed language L, we can form a deterministic system δ over the set

{Ls | s ∈ L}

of s-derivatives of L, for s ∈ L, including ǫ for Lǫ = L = traceδ(L), where
domain(δ) is defined to be {(Ls, a) | sa ∈ L} with

δ(Ls, a) := Lsa whenever sa ∈ L.

But what about languages that are not prefix-closed? Without the assump-
tion that L is prefix-closed, we must adjust equation (6) to

L = o(L) +
∑

a∈A

aLa

with ǫ replaced by ∅ in case ǫ 6∈ L, using

o(L) :=

{

ǫ if ǫ ∈ L

∅ otherwise

(called the constant part or output of L in Conway 1971, page 41). Now, the
chain of equivalences

a1 · · · an ∈ L ⇐⇒ a2 · · · an ∈ La1
⇐⇒ · · · ⇐⇒ ǫ ∈ La1···an

means that L is accepted by the automaton with

24



(i) all s-derivatives of L as states (whether or not s ∈ prefix (L))

Q := {Ls | s ∈ A
∗}

(ii) s-derivatives Ls for s ∈ L as final (accepting) states
(iii) transitions forming a total function Q× A → Q mapping (Ls, a) to Lsa

and initial state Lǫ = L (e.g., Rutten 1998).
An alternative approach out of prefix closure (from deterministic systems) is

to define for any label a ∈ A and language L ⊆ A
∗, the a-coderivative of L to

be the set

aL := {s | sa ∈ L}

of strings that, with a attached at the end, belong to L. Observe that the a-
coderivative of a prefix-closed language is not necessarily prefix-closed (in con-
trast to s-derivatives). Furthermore,

Fact 1. Every language is the coderivative of a prefix-closed language.

Fact 1 is easy to establish: given a language L, attach a symbol a not occurring
in L to the end of L, and form prefix (La) before taking the a-coderivative

aprefix (La) = L.

An a-coderivative effectively builds in a notion of final state (lacking in a deter-
ministic system δ) around not o(L) but o(La), checking if ǫ is in La, rather than
L (i.e., a ∈ L, rather than ǫ ∈ L). The idea of capturing a type of state through
a label (such as a for a-coderivatives) is developed further next.

3 From attribute values to types and particulars

An A-deterministic system δ : Q× A⇁ Q assigns each state q ∈ Q a set

δ̂(q) := {(a, δ(q, a)) | a ∈ A ∩ traceδ(q)}

of attribute value pairs (a, q′) with values q′ that can themselves be thought as

sets δ̂(q′) of attribute values pairs. Much the same points in section 2 could be
made appealing to the modal logic(s) of attribute value structures (Blackburn
1993) instead of Hennessy & Milner 1985. But is the reduction of q to its trace
set, traceδ(q), compatible with intuitions about attribute value structures? Let

us call a state q δ-null if δ̂(q) = ∅; i.e., traceδ(q) = {ǫ}. Reducing a δ-null state
q to traceδ(q) = {ǫ} lumps all δ-null states into one — which is problematic
if distinct atomic values are treated as δ-null (Blackburn 1993). But what if
equality with a fixed value were to count as a discerning attribute? Let us define
a state q to be δ-marked if there is a label aq ∈ A such that for all q′ ∈ Q,

aq ∈ traceδ(q
′) ⇐⇒ q = q′.

25



Clearly, a δ-marked state q is trace equivalent only to itself. If a state q is not

δ-marked, we can introduce a fresh label aq (not in A) and form the (A∪ {aq})-
deterministic system

δ[q] := δ ∪ {(q, aq, q)}
with q δ[q]-marked. To avoid infinite trace sets traceδ[q](q) ⊇ aq

∗ (from loops
(q, aq, q)), we can instead fix a δ-null (or fresh) state

√
and mark q in

δ[q,
√
] := δ ∪ {(q, aq,

√
)}.

Marking a state is an extreme way to impose Leibniz’s law. A more moderate
alternative described below introduces types over states, adding constraints to
pick out particulars.

3.1 Type-attribute specifications and containment

To differentiate states in a set Q through subsets Qt ⊆ Q given by types t ∈ T

is to define a binary relation v ⊆ Q × T (known in Kripke semantics as a T -
valuation) such that for all q ∈ Q and t ∈ T

v(q, t) ⇐⇒ q ∈ Qt.

We can incorporate v into δ : Q×A⇁ Q by adding a fresh attribute at, for each
t ∈ T , to A for the expanded attribute set

AT := A ∪ {at | t ∈ T}

and forming either the AT -deterministic system

δ[v] := δ ∪ {(q, at, q) | t ∈ T and v(q, t)}

or, given a δ-null state
√

outside
⋃

t∈T Qt, the AT -deterministic system

δ[v,
√
] := δ ∪ {(q, at,

√
) | t ∈ T and v(q, t)}.

In practice, a type t may be defined from other types, as in (a) below.

(a) t =





smash : ⊤
agent : animate

theme : concrete



 (b) e =





smash = x

agent = y

theme = z





The record e given by (b) is an instance of t just in case x, y and z are instances
of the types ⊤, animate and concrete respectively

e : t ⇐⇒ x : ⊤ and y : animate and z : concrete.

It is natural to analyze t in (a) as the modal formula ϕt with three conjuncts

ϕt = 〈smash〉⊤ ∧ 〈agent〉〈animate〉⊤ ∧ 〈theme〉〈concrete〉⊤

26



(implicitly analyzing ⊤, animate and concrete as ⊤, 〈animate〉⊤ and 〈animate〉⊤
respectively) and to associate e with the trace set

q(e) = ǫ + smash q(x) + agent q(y) + theme q(z)

(given trace sets q(x), q(y) and q(z) for x, y and z respectively) for the reduction

e : t ⇐⇒ q(e) |= ϕt

⇐⇒ animate ∈ q(y) and concrete ∈ q(z).

We can rewrite (a) as the A
′-deterministic system

τ ′ := {(t, smash,⊤), (t,agent, animate), (t,theme, concrete)}
over the attribute set

A
′ := {smash,agent,theme}

and state set

T ′ := {t,⊤, animate, concrete}
given by types. To apply τ ′ to a deterministic system δ with states given by
tokens of types, the following notion will prove useful. A (T,A,

√
)-specification

is an AT -deterministic system τ : T × AT ⇁ T where
√ ∈ T is τ -null and each

t ∈ T − {√} is τ -marked, with for all t′ ∈ T ,

(t′, at) ∈ domain(τ) ⇐⇒ t = t′

(the intuition being to express a type t as the modal formula 〈at〉⊤). For τ ′ given
above, we can form the (T ′ ∪ {√},A′,

√
)-specification

τ ′ ∪ {(x, ax,
√
) | x ∈ T ′}.

Let us agree that a set Ψ of modal formulas is true in δ if every fornula in Ψ is
satisfied, relative to δ, by every δ-state. The content of a (T,A,

√
)-specification

τ is given by the set

spec(τ) := {〈at〉⊤ ⊃ 〈a〉⊤ | (t, a,√) ∈ τ} ∪
{〈at〉⊤ ⊃ 〈a〉〈at′〉⊤ | (t, a, t′) ∈ τ and t′ 6= √}

of formulas true in an AT -deterministic system δ precisely if for every (t, a, t′) ∈ τ

and q ∈ Qt,
a ∈ traceδ(q) and δ(q, a) ∈ Qt′

where for every t ∈ T − {√}, Qt is {q ∈ Q | at ∈ traceδ(q)} and Q√ = Q. We
can express membership in a trace set

s ∈ traceδ(q) ⇐⇒ q |=δ 〈s〉⊤
through formulas 〈s〉ϕ defined by induction on s:

〈ǫ〉ϕ := ϕ and 〈as〉ϕ := 〈a〉〈s〉ϕ
so that for a1a2 · · · an ∈ A

n,

〈a1a2 · · · an〉ϕ = 〈a1〉〈a2〉 · · · 〈an〉ϕ.
Given a language L, let us say q δ-contains L if L ⊆ traceδ(q).

27



Fact 2. For any (T,A,
√
)-specification τ , spec(τ) is true in an AT -deterministic

system δ : Q×AT ⇁ Q iff for every t ∈ T−{√} and q ∈ Q, q δ-contains traceτ (t)
whenever q δ-contains {at}.

Under certain assumptions, traceτ (t) is finite. More specifically, let T0 = ∅ and
for any integer n ≥ 0,

Tn+1 := {t ∈ T | τ ∩ ({t} × A× T ) ⊆ T × A× Tn}

(making T1 = {√}). For each t ∈ Tn, traceτ (t) is finite provided

(⋆) for all t ∈ T , {a ∈ A | (t, a) ∈ domain(τ)} is finite.

Although (⋆) and T ⊆ ⋃

n Tn can be expected of record types in Cooper 2012,
notice that if (t, a, t) ∈ τ then t 6∈ ⋃

n Tn and a∗ ⊆ traceτ (t).

3.2 Terminal attributes, 3 and subtypes

Fact 2 reduces a (T,A,
√
)-specification τ to its trace sets, traceτ (t) for t ∈

T − {√}, unwinding spec(τ) to

〈at〉⊤ ⊃
∧

s∈traceτ (t)

〈s〉⊤ (7)

for t ∈ T − {√} (where the conjunction might be infinite). The converse of (7)
follows from at ∈ traceτ (t). (7) has the form

ϕt ⊃ ϕt[τ ]

with antecedent 〈at〉⊤ construed as a formula ϕt representing t, and consequent
∧

s∈traceτ (t)
〈s〉⊤ as a formula ϕt[τ ] representing τ ’s conception of t. The attribute

at often has the following property. Given an A-deterministic system δ, let us
say an attribute a ∈ A is δ-terminal if the set

TmlA(a) := {¬〈sab〉⊤ | s ∈ A
∗ and b ∈ A}

of formulas is true in δ — i.e., for every δ-state q, string s ∈ A
∗ and attribute

b ∈ A, sab 6∈ traceδ(q). It is natural to associate a frame such as

smashJohn window
agent

theme

with an A-deterministic system δ in which labels on nodes (i.e., John, smash

and window) are δ-terminal, while labels on arcs (agent, theme) are not.
Next, we quantify away the strings s mentioned in TmlA(a) for a useful

modal operator 3. Given an A-deterministic system δ : Q× A ⇁ Q, and states
q, q′ ∈ Q, we say q′ is a δ-component of q and write q ;δ q

′, if q′ is δq(s) for

28



some string s ∈ A
∗. With the relation ;δ, we extend satisfaction |= to formulas

3ϕ

q |= 3ϕ ⇐⇒ (∃q′) q ;δ q
′ and q′ |= ϕ

making 3ϕ essentially the infinitary disjunction
∨

s∈A∗〈s〉ϕ and its dual 2ϕ :=
¬3¬ϕ the infinitary conjunction

∧

s∈A∗ [s]ϕ (where [s]ϕ := ¬〈s〉¬ϕ). The exten-
sion preserves invariance under trace equivalence ∼

whenever q ∼ q′ and q |= 3ϕ, q′ |= 3ϕ.

That is, for the purpose of |=, we can reduce a state q to its trace set traceδ(q).
Accordingly, we collect all non-empty prefix-closed subsets of A∗ in

Mod(A) := {prefix (L ∪ {ǫ}) | L ⊆ A
∗}

(where “Mod” is for models) with the understanding that the transitions δ be-
tween q, q′ ∈ Mod(A) are given by derivatives

δ(q, a) = q′ ⇐⇒ qa = q′.

Given a set Ψ of modal formulas over A, we form the subset of Mod(A) satisfying
every formula of Ψ

ModA(Ψ) := {q ∈ Mod(A) | (∀ϕ ∈ Ψ) q |= ϕ}
and say Ψ is A-equivalent to a set Ψ ′ of modal formulas over A if they have the
same models

Ψ ≡A Ψ
′ ⇐⇒ ModA(Ψ) = ModA(Ψ

′).

Ψ can be strengthened to

2A(Ψ) := {¬〈s〉¬ϕ | s ∈ A
∗ and ϕ ∈ Ψ}

≡A {2ϕ | ϕ ∈ Ψ}
requiring that every formula in Ψ holds in all components. Clearly,

TmlA(a) ≡A 2A({¬〈ab〉⊤ | b ∈ A}).
Given representations ϕt and ϕu of types t and u, we can express the subtyping
t ⊑ u as the set

‘t ⊑ u’ := {¬〈s〉(ϕt ∧ ¬ϕu) | s ∈ A
∗}

of modal formulas denying the existence of components of type t but not u. Then
‘t ⊑ u’ requires ϕt ⊃ ϕu of all components

‘t ⊑ u’ ≡A 2(ϕt ⊃ ϕu)

bringing us back to the implication (7) above of the form ϕt ⊃ ϕτ [t]. Inasmuch
as an attribute a is represented by the formula 〈a〉⊤, we can speak of a being
contained in an attribute b, a ⊑ b, when asserting

2(〈a〉⊤ ⊃ 〈b〉⊤).

29



3.3 Typings and particulars

We can reduce a typing p : t to a subtyping through the equivalence

p : t ⇐⇒ {p} ⊑ t

assuming we can make sense of the singleton type {p}. Given an A-deterministic
system δ and a δ-state q, let us call a formula ϕ an (A, q)-nominal if q satisfies
the set

NomA(ϕ) := {¬(〈s′〉(ϕ ∧ 〈s〉⊤) ∧ 〈s′′〉(ϕ ∧ ¬〈s〉⊤)) | s, s′, s′′ ∈ A
∗}

≡A {¬(3(ϕ ∧ 〈s〉⊤) ∧ 3(ϕ ∧ ¬〈s〉⊤)) | s ∈ A
∗}

of formulas that together say any two δ-components that δ-satisfy ϕ δ-contain
the same languages over A. We can rephrase NomA(ϕ) as implications

NomA(ϕ) ≡A {3(ϕ ∧ 〈s〉⊤) ⊃ 2(ϕ ⊃ 〈s〉⊤) | s ∈ A
∗}

≡A {3(ϕ ∧ ψ) ⊃ 2(ϕ ⊃ ψ) | ψ ∈ ΦA}

making δ-components that δ-satisfy ϕ ΦA-indistinguishable.
4

Fact 3. Let δ be an A-deterministic system, q be a δ-state and ϕ be an (A, q)-
nominal.

(i) For all δ-components q′ and q′′ of q,

q′ |= ϕ and q′′ |= ϕ implies q′ ∼ q′′.

(ii) There is a δ-component of q that δ-satisfies ϕ and ψ

q |= 3(ϕ ∧ ψ)

iff every δ-component of q satisfies ϕ ⊃ ψ and some δ-component of q δ-
satisfies ϕ

q |= 2(ϕ ⊃ ψ) ∧ 3ϕ.

Now, an (A, q)-particular is an (A, q)-nominal ϕ such that q has a δ-component
that δ-satisfies ϕ — i.e., in addition to all formulas in NomA(ϕ), q satisfies 3ϕ.
We say (A, q) verifies p : t if

ϕ{p} is an (A, q)-particular and q |= 2(ϕ{p} ⊃ ϕt).

Part (ii) of Fact 3 says this is equivalent to ϕ{p} being an (A, q)-nominal and
q having a δ-component that δ-satisfies ϕ{p} ∧ ϕt. Note that if q is δ-marked
by aq then 〈aq〉⊤ is an (A, q′)-nominal for all δ-states q′. The weaker notion
of an (A, q)-nominal ϕ has the advantage over 〈aq〉⊤ that the set NomA(ϕ) of

4 NomA(ϕ) does the work of the scheme (NomN ) for nominals given in Blackburn
1993, just as TmlA(a) is analogous to the scheme (Term) there for instantiating
atomic information at terminal nodes.

30



modal formulas allows the modal formulas satisfied by a state δ-satisfying ϕ{p}
to vary with δ.5 We can use the set NomA(ϕ) ∪ {3ϕ} to lift the notion of an
(A, q)-particular to that of a (A, Ψ)-particular , given a set Ψ of modal formulas,
requiring that NomA(ϕ) ∪ {3ϕ} follow from Ψ in that

ModA(Ψ) ⊆ ModA(NomA(ϕ) ∪ {3ϕ}).

Having described how a particular can be understood as a formula (or at-
tribute a via 〈a〉⊤), it is perhaps worth emphasizing that we need not under-
stand particulars as formulas (or attributes). In the present context, particulars
are first and foremost δ-states in an A-deterministic system δ. For any δ-state q,
we can speak of types to which q belongs without introducing an attribute that
(relative to an extension of δ) represents q. What is important is that we build
into A all the structure in particulars we wish to analyze.

4 Finite approximations and signatures

Throughout this section, we shall work with a set A of labels that is large enough
so that we may assume trace equivalence ∼ is equality. Identity of indiscernibles
in an A-deterministic system δ reduces a state q to traceδ(q), allowing us to
identify a state with a prefix-closed, non-empty subset of A∗. As huge as A can
be, we can form the set Fin(A) of finite subsets of A and use the equality

A
∗ =

⋃

Σ∈Fin(A)

Σ∗

to approach a language L ⊆ A
∗ via its intersections L ∩Σ∗ (for Σ ∈ Fin(A))

L =
⋃

Σ∈Fin(A)

(L ∩Σ∗)

at the cost of bounding discernibility to Σ. For X ∈ Fin(A) ∪ {A}, we define
an X-state to be a non-empty, prefix-closed subset q of X∗ on which transitions
are given by derivatives

δ(q, a) = qa for a ∈ A ∩ q

making δq(s) = qs for s ∈ q. Henceforth, we put the notation δ aside, but track
the parameter X, which we set to a finite subset Σ of A to pick out what is of
particular interest.

Two subsections make up the present section. The first illustrates how the set
A of labels can explode; the second how, after this explosion, to keep a grip on

5 By contrast, for a language q over A, all formulas in the set

{2(〈aq〉⊤ ⊃ (〈s〉⊤ ∧ ¬〈s′〉⊤)) | s ∈ q and s
′ ∈ A

∗ − q}

must be satisfied for aq to mark q.

31



satisfaction |= of formulas. We associate the formulas with setsX ∈ Fin(A)∪{A},
defining sen(X) to be the set of formulas generated from a ∈ X and Y ⊆ X

according to

ϕ ::= ⊤ | ¬ϕ | ϕ ∧ ϕ′ | 〈a〉ϕ | 2Y ϕ.

We interpret these formulas over A-states q, treating ⊤, ¬ and ∧ as usual, and
setting

q |= 〈a〉ϕ ⇐⇒ a ∈ q and qa |= ϕ

which generalizes to strings s ∈ X∗

q |= 〈s〉ϕ ⇐⇒ s ∈ q and qs |= ϕ

(recalling that 〈a1〉 · · · 〈an〉ϕ is 〈a1〉 · · · 〈an〉ϕ). As for 2Y , we put

q |= 2Y ϕ ⇐⇒ (∀s ∈ q ∩ Y ∗) qs |= ϕ

relativizing 2 to Y for reasons that will become clear below. When 2 appears
with no subscript, it is understood to carry the subscript A; i.e., 2 is 2A. Also,
for s ∈ A

∗, we will often shorten the formula 〈s〉⊤ to s, writing, for example, ¬a
for ¬〈a〉⊤.

4.1 Labels refining partitions

For any Σ ∈ Fin(A) and Σ-state q, we can formulate the Myhill-Nerode equiv-
alence ≈q between strings s, s′ ∈ Σ∗ with the same extensions in q

s ≈q s
′ ⇐⇒ (∀w ∈ Σ∗) (sw ∈ q ⇐⇒ s′w ∈ q)

(e.g., Hopcroft & Ullman 1979) in terms of derivatives

s ≈q s
′ ⇐⇒ qs = qs′

from which it follows that q is regular iff its set

{qs | s ∈ Σ∗}

of derivatives is finite. There are strict bounds on what we can discern with Σ
and Σ-states. For example, the regular language

q′ = father
∗ + father

∗man

over Σ′ = {father,man} is a model of

man ∧ 2(man ⊃ 〈father〉man)

32



(i.e., q′ is a token of the record type man given by eq(man)= {(father,man)}),
with derivatives

q′s =







q′ if s ∈ father
∗

{ǫ} if s ∈ father
∗man

∅ otherwise

so that according to the definitions from the previous section (with δ given by
derivatives of q′), the Σ′-state {ǫ} is null, and the label man is terminal. The
Σ′-state q′ does not differentiate between distinct tokens of man, although it is
easy enough to introduce additional labels and formulas

2 (man ⊃ (John ∨ Peter ∨Otherman:John,Peter)) (8)

with
2 (John ⊃ ¬〈father〉John)

unless say, John could apply to more than one particular, as suggested by

2 (John ⊃ (John1 ∨ John2 ∨OtherJohn:1,2)).

Generalizing line (8) above, we can refine a label a to a finite partition from a
set Σ ∈ Fin(A), asserting

Partitiona(Σ) := 2 (a ⊃ Uniq(Σ))

where Uniq(Σ) picks out exactly one label in Σ

Uniq(Σ) :=
∨

a∈Σ

(a ∧
∧

a′∈Σ−{a}
¬a′)).

Co-occurrence restrictions on a set Σ of alternatives

Alt(Σ) := 2

∧

a∈Σ

∧

a′∈Σ−{a}
¬(a ∧ a′)

(declaring any pair to be incompatible) is equivalent to the conjunction

∧

a∈Σ

Partitiona(Σ).

And if the labels in Σ are understood to specify components, we might say a
label marks a Σ-atom if it rules out a′-components for a′ ∈ Σ

AtomΣ(a) := 2(a ⊃
∧

a′∈Σ

¬a′)

⇐⇒ Partitiona(Σ ∪ {a}).

That said, we arrived at Partitiona(Σ) from man above through the example
Σ = {John, Peter , Otherman:John,Peter} of labels that differentiate between

33



tokens of man rather than (as in the case of the record label father or agent
or theme) specifying components. We can extend the example

Partitionman({John,Peter , Otherman:John,Peter})

through a function f : T → Fin(A) from some finite set T of labels (representing
types) such that for a ∈ T , f(a) outlines a partition of a (just as {John, Peter ,
Otherman:John,Peter} does for man). An f -token is then an A-state q such that

q |=
∧

a∈T

Partitiona(f(a))

making (as it were) a choice from f(a), for each a ∈ T .

4.2 Reducts for satisfaction

Given a string s ∈ A
∗ and a set Σ ∈ Fin(A), the longest prefix of s that belongs

to Σ∗ is computed by the function πΣ : A∗ → Σ∗ defined by πΣ(ǫ) := ǫ and

πΣ(as) :=

{

a πΣ(s) if a ∈ Σ

ǫ otherwise.

The Σ-reduct of a language q ⊆ A
∗ is the image of q under πΣ

q ↾Σ := {πΣ(s) | s ∈ q} .

If q is an A-state, then its Σ-reduct, q ↾Σ, is a Σ-state and is just the intersection
q ∩Σ∗ with Σ∗. Σ-reducts are interesting because satisfaction |= of formulas in
sen(Σ) can be reduced to them.

Fact 4. For every Σ ∈ Fin(A), ϕ ∈ sen(Σ) and A-state q,

q |= ϕ ⇐⇒ q ↾Σ |= ϕ

and if, moreover, s ∈ q ↾Σ, then

q |= 〈s〉ϕ ⇐⇒ (q ↾Σ)s |= ϕ. (9)

Fact 4 is proved by a routine induction on ϕ ∈ sen(Σ). Were sen(Σ) closed
under 2 = 2A, Fact 4 would fail for infinite A; hence, the relativized operators
2Y for Y ⊆ Σ in sen(Σ).

There is structure lurking around Fact 4 that is most conveniently described
in category-theoretic terms. For Σ ∈ Fin(A), let Q(Σ) be the category with

– Σ-states q as objects
– pairs (q, s) such that s ∈ q as morphisms from q to qs, composing by con-

catenating strings

(q, s) ; (qs, s
′) := (q, ss′)

with identities (q, ǫ).

34



To turn Q into a functor from Fin(A)op (with morphisms (Σ′, Σ) such that
Σ ⊆ Σ′ ∈ Fin(A)) to the category Cat of small categories, we map a Fin(A)op-
morphism (Σ′, Σ) to the functor Q(Σ′, Σ) : Q(Σ′) → Q(Σ) sending a Σ′-state
q′ to the Σ-state q′ ↾Σ, and the Q(Σ′)-morphism (q′, s′) to the Q(Σ)-morphism
(q′ ↾Σ, πΣ(s′)). The Grothendieck construction for Q is the category

∫

Q where

– objects are pairs (Σ, q) such that Σ ∈ Fin(A) and q is a Σ-state
– morphisms from (Σ′, q′) to (Σ, q) are pairs ((Σ′, Σ), (q′′, s)) of Fin(A)op-

morphisms (Σ′, Σ) and Q(Σ)-morphisms (q′′, s) such that q′′ = q′ ↾Σ and
q = q′′s

(e.g., Tarlecki, Burstall & Goguen 1991).
∫

Q integrates the different categories
Q(Σ) (for Σ ∈ Fin(A)), lifting a Q(Σ)-morphism (q, s) to a (

∫

Q)-morphism
from (Σ′, q′) to (Σ, qs) whenever Σ ⊆ Σ′ and q′ ↾Σ = q.

Given a small category C, let us write |C| for the set of objects of C. Thus,
for Σ ∈ Fin(A), |Q(Σ)| is the set

|Q(Σ)| = {q ⊆ Σ∗ | q 6= ∅ and q is prefix-closed}

of Σ-states. Next, for (Σ, q) ∈ |
∫

Q|, let Mod(Σ, q) be the full subcategory of
Q(Σ) with objects required to have q as a subset

|Mod(Σ, q)| := {q′ ∈ |Q(Σ)| | q ⊆ q′}.

That is, |Mod(Σ, q)| is the set of Σ-states q′ such that for all s ∈ q, q′ |= 〈s〉⊤.
The intuition is that q is a form of record typing over Σ that allows us to simplify
clauses such as

q′ |= 〈s〉ϕ ⇐⇒ s ∈ q′ and q′s |= ϕ (10)

when s ∈ q ⊆ q′. The second conjunct in the righthand side of (10), q′s |= ϕ,
presupposes the first conjunct, s ∈ q′. We can lift that presupposition out of (10)
by asserting that whenever s ∈ q and q ⊆ q′,

q′ |= 〈s〉ϕ ⇐⇒ q′s |= ϕ.

This comes close to the equivalence (9) in Fact 4, except that Σ-reducts are
missing. These reducts appear once we vary Σ, and step from Q(Σ) to

∫

Q.
Taking this step, we turn the categories Mod(Σ, q) to a functor Mod from

∫

Q

to Cat, mapping a
∫

Q-morphism σ = ((Σ′, Σ), (q′ ↾Σ, s)) from (Σ′, q′) to (Σ, q)
to the functor

Mod(σ) : Mod(Σ′, q′) → Mod(Σ, q)

sending q′′ ∈ |Mod(Σ′, q′)| to the s-derivative of its Σ-reduct, (q′′ ↾Σ)s, and a
Mod(Σ′, q′)-morphism (q′′, s′) to the Mod(Σ, q)-morphism (q′′ ↾Σ, πΣ(s′)).

The syntactic counterpart of Q(Σ) is sen(Σ), which we turn into a func-
tor sen matching Mod . A basic insight from Goguen & Burstall 1992 informing
the present approach is the importance of a category Sign of signatures which

35



the functor sen maps to the category Set of sets (and functions) and which
Mod maps contravariantly to Cat. The definition of Mod above suggests that
Signop is

∫

Q.6 A
∫

Q-morphism from
∫

Q-objects (Σ′, q′) to (Σ, q) is deter-
mined uniquely by a string s ∈ q′ ↾Σ such that

q = (q′ ↾Σ)s and Σ ⊆ Σ′. (11)

Let (Σ, q)
s→ (Σ′, q′) abbreviate the conjunction (11), which holds precisely if

((Σ′, Σ), (q′ ↾Σ, s)) is a
∫

Q-morphism from (Σ′, q′) to (Σ, q). Now for (Σ, q) ∈
|
∫

Q|, let

sen(Σ, q) = sen(Σ)

(ignoring q), and when (Σ, q)
s→ (Σ′, q′), let

sen(σ) : sen(Σ) → sen(Σ′)

send ϕ ∈ sen(Σ) to 〈s〉ϕ ∈ sen(Σ′). To see that an institution arises from
restricting |= to |Mod(Σ, q)| × sen(Σ), for (Σ, q) ∈ |

∫

Q|, it remains to check
the satisfaction condition:

whenever (Σ, q)
s→ (Σ′, q′) and q′′ ∈ |Mod(Σ′, q′)| and ϕ ∈ sen(Σ),

q′′ |= 〈s〉ϕ ⇐⇒ (q′′ ↾Σ)s |= ϕ.

This follows from Fact 4 above, as s must be in q′ ↾Σ and thus also in q′′ ↾Σ.

5 Conclusion

A process perspective is presented in section 2 that positions frames to the left
of a satisfaction predicate |= for Hennessy-Milner logic over a set A of labels
(or, from the perspective of Blackburn 1993, attributes). A is allowed to be-
come arbitrarily large so that under identity of indiscernibles relative to A, a
frame can be identified with a non-empty prefix-closed language over A. This
identification is tried out in section 3 on frames as types and particulars. A han-
dle on A is provided by its finite subsets Σ, which are paired with languages
q ⊆ Σ∗ for signatures (Σ, q), along which to reduce satisfaction to Σ-reducts
and/or s-derivatives, for s ∈ q (Fact 4). This plays out themes (mentioned in the
introduction) of “semantics in flux” and “natural languages as collections of re-
sources” (from Cooper & Ranta) in that, oversimplifying somewhat, s-derivatives
specify transitions, while Σ-reducts pick out resources to use. The prominence of
transitions (labeled by A) here contrasts strikingly with a finite-state approach

6 That said, we might refine Sign, requiring of a signature (Σ, q) that q be a regular
language. For this, it suffices to replace

∫
Q by

∫
R where R : Fin(A)op → Cat is

the subfunctor of Q such that R(Σ) is the full subcategory of Q(Σ) with objects
regular languages. We can make this refinement without requiring that Σ-states in
Mod(Σ, q) be regular, forming Mod(Σ, q) from Q (not R).

36



to events (most recently described in Fernando 2015), where a single string (rep-
resenting a timeline) appears to the left of a satisfaction predicate.7 A Σ-state
q to the left of |= above offers a choice of strings, any number of which might be
combined with other strings from other Σ′-states over different alphabets Σ′. A
combination can be encoded as a string describing a timeline of resources used.
This type/token distinction between languages and strings to the left of satisfac-
tion has a twist; the languages are conceptually prior to the strings representing
timelines, as nonexistent computer programs cannot run. Indeed, a profusion of
alphabets Σ and Σ-states compete to make, in some form or other, a timeline
that has itself a bounded signature (of a different kind). The processes through
which a temporal realm is pieced together from bits of various frames call out
for investigation.

While much remains to be done, let us be clear about what is offered above.
A frame is structured according to strings of labels, allowing the set Σ of labels
to vary over finite sets. That variation is tracked by a signature (Σ, q) picking
out non-empty prefix-closed languages over Σ that contain the set q of strings
over Σ. For example, Cooper’s meaning function

(

λr :

[

agent : all
theme : all

]

)





p1 : smash(r)
p2 : animate(r.agent)
p3 : concrete(r.theme)





is approximated by the signature (Σ, q) as the language L, where

Σ = {agent, theme, smash, animate, concrete}
q = {agent, theme, ǫ}
L = q ∪ {smash, agent animate, theme concrete}.

Further constraints can be imposed through formulas built with Boolean con-
nectives and modal operators dependent on Σ — for instance, Nom(〈a〉⊤). The
possibility of expanding Σ to a larger set makes the notion of identity as Σ-
indiscernibility open-ended, and Σ a bounded but refinable level of granularity.
A measure of satisfaction is taken in a finite-state calculus with, as Conway 1971
puts it, Taylor series

L = o(L) +
∑

a∈Σ

aLa

(from derivatives La), and a Grothendieck signature

Sign =

∫

Q.

Acknowledgements. My thanks to Robin Cooper for discussions, to Glyn
Morrill for help with presenting this paper at Formal Grammar 2015, and to
two referees for comments and questions.

7 This is formulated as an institution in Fernando 2014.

37



References

1. L Barsalou. Perceptual symbol systems. Behavioral and Brain Sciences, 22:577–
660, 1999.

2. P. Blackburn. Modal logic and attribute value structures. In M. de Rijke, editor,
Diamonds and Defaults, pages 19–65. Kluwer, 1993.

3. J. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481–494, 1964.
4. J.H. Conway. Regular Algebra and Finite Machines. Chapman and Hall, 1971.
5. R. Cooper. Type theory and semantics in flux. In Philosophy of Linguistics, pages

271–323. North-Holland, 2012.
6. R. Cooper and A. Ranta. Natural languages as collections of resources. In Language

in Flux: Dialogue Coordination, Language Variation, Change and Evolution, pages
109–120. College Publications, 2008.

7. D. Davidson. The logical form of action sentences. In The Logic of Decision and

Action, pages 81–95. University of Pittsburgh Press, 1967.
8. T. Fernando. Incremental semantic scales by strings. In Proc EACL 2014 Workshop

on Type Theory and Natural Language Semantics, pages 63–71. ACL, 2014.
9. T. Fernando. The semantics of tense and aspect: a finite-state perspective. In

S. Lappin and C. Fox, editors, The Handbook of Contemporary Semantic Theory.
John Wiley and Sons, second edition, 2015.

10. C. Fillmore. Frame semantics. In Linguistics in the Morning Calm, pages 111–137.
Hanshin Publishing Co., Seoul, 1982.

11. J. Goguen and R. Burstall. Institutions: abstract model theory for specification
and programming. J. ACM, 39(1):95–146, 1992.

12. M. Hennessy and R. Milner. Algebraic laws for non-determinism and concurrency.
J. ACM, 32(1):137–161, 1985.

13. J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages and

Computation. Addison-Wesley, 1979.
14. L. Kallmeyer and R. Osswald. Syntax-driven semantic frame composition in lexi-

calized tree adjoining grammars. J. Language Modelling, 1(2):267–330, 2013.
15. S. Löbner. Evidence for frames from human language. In Frames and Concept

Types: Applications in Language and Philosophy, pages 23–67. Springer, 2014.
16. R. Muskens. Data semantics and linguistic semantics. In The dynamic, inquisitive,

and visionary life of φ, ?φ, and 3φ: A festschrift for Jeroen Groenendijk, Martin

Stokhof, and Frank Veltman, pages 175–183. Amsterdam, 2013.
17. R. Osswald. Semantics for attribute-value theories. In Proc Twelfth Amsterdam

Colloquium, pages 199–204. Amsterdam, 1999.
18. W. Petersen and T. Osswald. Concept composition in frames: Focusing on geni-

tive constructions. In Frames and Concept Types: Applications in Language and

Philosophy, pages 243–266. Springer, 2014.
19. J. Rutten. Automata and coinduction (an exercise in coalgebra). In Proc CONCUR

’98, pages 194–218. Springer LNCS 1266, 1998.
20. A. Tarlecki, R. Burstall, and J. Goguen. Some fundamental algebraic tools for

the semantics of computation: Part 3. indexed categories. Theoretical Computer

Science, 91:239–264, 1991.
21. F. Veltman. Logics for conditionals. PhD dissertation, University of Amsterdam,

1985.

38



Cyclic Multiplicative-Additive Proof Nets of

Linear Logic with an Application to

Language Parsing

Vito Michele Abrusci and Roberto Maieli

Department of Mathematics and Physics, Roma Tre University
Largo San Leonardo Murialdo, 1 – 00146 Rome, Italy

{abrusci,maieli}@uniroma3.it

Abstract. This paper concerns a logical approach to natural language
parsing based on proof nets (PNs), i.e. de-sequentialized proofs, of linear
logic (LL). It first provides a syntax for proof structures (PSs) of the
cyclic multiplicative and additive fragment of linear logic (CyMALL). A
PS is an oriented graph, weighted by boolean monomial weights, whose
conclusions Γ are endowed with a cyclic order σ. Roughly, a PS π with
conclusions σ(Γ ) is correct (so, it is a proof net), if any slice ϕ(π),
obtained by a boolean valuation ϕ of π, is a multiplicative (CyMLL) PN
with conclusions σ(Γr), where Γr is an additive resolution of Γ , i.e. a
choice of an additive subformula for each formula of Γ . The correctness
criterion for CyMLL PNs can be considered as the non-commutative
counterpart of the famous Danos-Regnier (DR) criterion for PNs of the
pure multiplicative fragment (MLL) of LL. The main intuition relies on
the fact that any DR-switching (i.e. any correction or test graph for a
given PN) can be naturally viewed as a seaweed, that is, a rootless planar
tree inducing a cyclic order on the conclusions of the given PN. Unlike
the most part of current syntaxes for non-commutative PNs, our syntax
allows a sequentialization for the full class of CyMALL PNs, without
requiring these latter to be cut-free.
One of the main contributions of this paper is to provide a characterization
of CyMALL PNs for the additive Lambek Calculus and thus a geometrical
(non inductive) way to parse sentences containing words with syntactical
ambiguity (i.e., with polymorphic type).

1 Introduction

Proof nets (PNs) are one of the most innovative inventions of linear logic (LL, [7]):
they are used to represent demonstrations in a geometric (i.e., non inductive)
way, abstracting away from the technical bureaucracy of sequential proofs. Proof
nets quotient classes of derivations that are equivalent up to some irrelevant
permutations of inference rules instances.

In this spirit, we present a syntax for PNs of the cyclic multiplicative and
additive fragment of linear logic (CyMALL, Sections 1.1). This syntax, like the
original one of Girard [8], is based on weighted (by boolean monomials) proof



structures with explicit binary contraction links (Section 2). The conclusions Γ
(i.e., a sequence of formula occurrences) of any PS are endowed with a cyclic
order σ on Γ . Naively, a CyMALL PS π with conclusions σ(Γ ) is correct if, for
any slice ϕ(π), obtained by a boolean valuation ϕ of π, there exists an additive
resolution (i.e., a multiplicative restriction of ϕ(π)) that is a CyMLL PN with
conclusion σ(Γr), where Γr is an additive resolution of Γ (i.e. a choice of an
additive sub-formula for each formula of Γ ). In turn, the correctness criterion
for CyMLL PNs can be considered as the non-commutative counterpart of the
famous Danos-Regnier (DR) criterion for proof nets of linear logic (see [5] and [6]).
The main intuition relies on the fact that any DR-switching for a PS (i.e. any
correction or test graph, obtained by mutilating one premise of each disjunction ▽-
link) can be naturally viewed as a rootless planar tree, called a seaweed, inducing
a cyclic ternary relation on the conclusions of the given proof structure.

Unlike some previous syntaxes for non-commutative logic, like e.g., [3] and [13],
this new syntax admits a sequentialization (i.e., a correspondence with sequential
proofs) for the full class of CyMLL PNs including those ones with cuts. Actually,
the presence of cut links is ”rather tricky” in the non-commutative case, since cut
links are not equivalent, from a topological point of view, to tensor links (like in
the commutative MLL case): indeed, tensor links make new conclusions appear
that may disrupt the original (i.e., in presence of cut links) order of conclusions.

CyMALL PNs satisfy a simple (lazy) convergent cut-elimination procedure
(Section 2.2) in Laurent-Maieli’s style ([12]): our strategy relies on the notion
of dependency graph of an eigen weight p (Definition 9), that is, the smallest
&p-box that must be duplicated in a commutative &p/C-cut reduction step ([14]).
Moreover, cut-reduction preserves PNs sequentialization (Section 2.3).

CyMALL can be considered as a conservative classical extension of Lambek
Calculus (LC, see [11], [1] and [17]) one of the ancestors of LL. The LC represents
the first attempt of the so called parsing as deduction, i.e., parsing of natural
language by means of a logical system. Following [4], in LC, parsing is interpreted
as type checking in the form of theorem proving of Gentzen sequents. Types
(i.e. propositional formulas) are associated to words in the lexicon; when a
string w1...wn is tested for grammaticality, the types t1, ..., tn associated with
the words are retrieved from the lexicon and then parsing reduces to proving
the derivability of a one-sided sequent of the form ⊢ t⊥n , ..., t

⊥

1 , s, where s is the
type associated with sentences. Moreover, forcing constraints on the Exchange
rule, by e.g. allowing only cyclic permutations over sequents of formulas, gives
the required computational control needed to view theorem proving as parsing in
Lambek Categorial Grammar style. Anyway, LC parsing presents some syntactical
ambiguity problems; actually, there may be:

1. (non canonical proofs) more than one cut-free proof for the same sequent;
2. (lexical polymorphism) more than one type associated with a single word.

Now, proof nets are commonly considered an elegant solution to the first problem
of representing canonical proofs; in this sense, in Section 3, we give an embedding
of extended MALL Lambek Calculus into Cyclic MALL PNs. Concerning the
second problem, in Section 4, we propose a parsing approach based on CyMALL

40



PNs that could be considered a step towards a proof-theoretical solution to
the problem of lexical polymorphism. Technically, CyMALL proof nets allow to
manage formulas superposition (types polymorphism) by means of the additive
&-links, or dually, ⊕-links. By means of Lambek CyMALL PNs, we propose the
parsing of some sentences, suggested by [18], which make use of polymorphic
words; naively, when a word has two possible formulas A and B assigned, then
we can combine (or super-pose) these into a single additive formula A&B.

1.1 The Cyclic MALL Fragment of Linear Logic

We briefly recall the necessary background of the Cyclic MALL fragment of
LL, denoted CyMALL, without units (see [1]). We arbitrarily assume literals
a, a⊥, b, b⊥, ... with a polarity: positive (+) for atoms, a, b, ... and negative (−)
for their duals a⊥, b⊥... . A formula is built from literals by means of the two
groups of connectives: negative, ▽ (”par”) and & (”with”) and positive, 4

(”tensor”) and ⊕ (”plus”). For these connectives we have the following De
Morgan laws: (A4B)⊥ = B⊥

▽A⊥, (A▽B)⊥ = B⊥
4A⊥, (A&B)⊥ = B⊥ ⊕A⊥,

(A⊕B)⊥ = B⊥&A⊥. A CyMALL (resp., CyMLL) proof is any derivation tree
built by the following (resp., by only identities and multiplicative) inference rules
where sequents Γ,∆ are sequences of formula occurrences endowed with a total
cyclic order (or cyclic permutation).

identities: axiom
⊢ A,A⊥

⊢ Γ,A A⊥∆
cut

⊢ Γ,∆

multiplicatives:
⊢ Γ,A ⊢ B,∆

4
⊢ Γ,A 4 B,∆

⊢ Γ,A,B
▽

⊢ Γ,A▽B

additives:
⊢ Γ,A ⊢ Γ,B

N
⊢ Γ,ANB

⊢ Γ,Ai ⊕i=1,2
⊢ Γ,A1 ⊕i A2

A total cyclic order can be thought as follows; consider a set of points of an
oriented circle; the orientation induces a total order on these points as follows: if
a, b and c are three distinct points, then b is either between a and c (a < b < c)
or between c and a (c < b < a). Moreover, a < b < c is equivalent to b < c < a
or c < a < b.

Definition 1 (total cyclic order). A total cyclic order is a pair (X,σ) where
X is a set and σ is a ternary relation over X satisfying the following properties:

1. ∀a, b, c ∈ X,σ(a, b, c) → σ(b, c, a) (cyclic),
2. ∀a, b ∈ X,¬σ(a, a, b) (anti-reflexive),
3. ∀a, b, c, d ∈ X,σ(a, b, c) ∧ σ(c, d, a) → σ(b, c, d) (transitive),
4. ∀a, b, c ∈ X,σ(a, b, c) ∨ σ(c, b, a) (total).

Negative (or asynchronous) connectives correspond to true determinism in the
way we apply bottom-up their corresponding inference rules. In particular, observe
that Γ must appear as the same context (with the same order) in both premises

41



of the &-rule. Positive (or synchronous) connectives correspond to true non-
determinism in the way we apply, bottom-up, their corresponding rules; there
is no deterministic way to split, bottom up, the context (Γ,∆) in the 4-rule;
similarly, there not exist a deterministic way to select, bottom up, ⊕1 or ⊕2-rule.

2 Cyclic MALL Proof Structures

Definition 2 (CyMALL proof structure). A CyMALL proof structure (PS)
is an oriented graph π whose edges (resp., nodes) are labeled by formulas (resp.,
by connectives) of CyMALL and built by juxtaposing the following special graphs,
called links, in which incident (resp., emergent) edges are called premises (resp.,
conclusions):

& C

A&B A

A B A A BB A B A AA A⊥

cutax

A A⊥

▽4 ⊕1 ⊕2

A⊕ B A⊕ BA▽BA 4 B

In a PS each premise (resp., conclusion) of a link must be conclusion (resp.,
premise) of exactly (resp., at most) one link. We call conclusion of a PS any
emergent edge that is not premises of any link. We call CyMLL proof structure,
any PS built by only means of axioms, cut and multiplicative links (4,▽).

Definition 3 (Girard CyMALL proof structure). A Girard proof structure
(GPS) is a PS with weights associated as follows (a weights assignment):

1. first we associate a boolean variable, called eigen weight p, to each &-node
(eigen weights are supposed to be different);

2. then we associate a weight, a product of (negation of) boolean variables
(p, p, q, q...) to each node, with the constraint that two nodes have the same
weight if they have a common edge, except when the edge is the premise of a
& or C-node; in these cases we do like below:

if p does not occur in w

w

w.pw.p

with w1.w2 = 0

w1 w2

w = w1 + w2C

v2 v1 v2v1

&p

3. a conclusion node has weight 1;
4. if w is the weight of a &-node, with eigen weight p, and w′ is a weight

depending on p and appearing in the proof structure then w′ ≤ w.

A weight w depends on the eigen weight p if p or p̄ occurs in w. A node L with
weight w depends on the eigen weight p if w depends on p or L is a C-node and
one of the weights just above it depends on p.

42



Remark 1. Observe that:

1. since weights associated to a PS are products (monomials) of the Boolean
algebra generated by the eigen weights associated to a proof structure, then,
for each weight w associated to a binary contraction node, there exists a
unique eigen weight p that splits w into w1 = wp and w2 = wp. We sometimes
index a C-link with its toggling variable p, see the next left hand side picture;

2. the graph π1 (the next r.h.s. picture) is not a GPS since it violates condition 4
of Definition 3; indeed, if w = q is the weight of the &p-link and w′ = p is a
weight depending on p and appearing in the proof-structure then p 6≤ q.

v1 v2

wp wp

Cp

w

w = wp+ wp̄

C

C

ax

ax

ax

ax

ax

C

qp

q

qp

&p

&q C

p

w′ = p

w = q

cut

π1

2.1 Correctness

Definition 4 (slices, switchings, resolutions). Let π be a CyMALL GPS.

– A valuation ϕ of π is a function from the set of all weights of π into {0, 1}.
– Fixed a valuation ϕ for π, the slice ϕ(π) is the graph obtained from π by

keeping only those nodes with weight 1 together with their incident edges.
– Fixed a slice ϕ(π) a multiplicative switching S for π is the non-oriented

graph Sm
ϕ (π) built on the nodes and edges of ϕ(π) with the modification that

for each ▽-node we take only one premise (left/right switch).
– Fixed a slice ϕ(π) an additive switching, denoted Sa

ϕ(π) is a multiplicative
switching Sm

ϕ (π) for π, in which for each &p-node we erase the (unique)
premise in ϕ(π) and we add an oriented edge, called jump, from the &p-node
to an link L whose weight depends on the eigen weight p.

– An additive resolution ϕr(π) for a slice ϕ(π) is the graph obtained by replacing
in ϕ(π) each unary link L (a link that, possibly, after the valuation has a single
premise) by a single edge that is the (unique) premise of L. In particular,
each conclusion of ϕr(π) will be labeled by a multiplicative (CyMLL) formula.

We call additive resolution of a CyMALL sequent Γ what remains of Γ after
deleting one of the two sub-formulas in each additive (sub)formula of Γ .

In the following we characterize, by a correctness criterion, those CyMALL
GPSs corresponding to proofs. This correctness criterion (Definition 7) is defined
in terms of the correctness of CyMLL PSs (Definition 6). There exist several
syntaxes for CyMLL proof nets; here we adopt the syntax of [2] inspired to [13].

43



Definition 5 (seaweeds). Assume π is a CyMLL PS with conclusions Γ and
assume S(π) is an acyclic and connected multiplicative switching for π; S(π) is
the rootless planar tree whose nodes are labeled by 4-nodes, and whose leaves
X1, ..., Xn (with Γ ⊆ X1, ..., Xn) are the terminal (pending) edges of S(π); S(π)
is a ternary relation, called a seaweed, with support X1, ..., Xn; an ordered triple
(Xi, Xj , Xk) belongs to the seaweed S(π) iff:

– the intersection of the three paths XiXj, XjXk and XkXi is the node 4l;
– the three paths Xi4l, Xj4l and Xk4l are in this cyclic order while moving

anti-clockwise around the 4l-node as below.

Xk

XjXi

4l

If A is an edge of the seaweed S(π), then Si(π) ↓
A is the restriction of the seaweed

S(π), that is, the sub-graph of S(π) obtained as follows:

1. disconnect the graph below (w.r.t. the orientation of π) the edge A.
2. delete the graph not containing A.

Fact 1 (seaweeds as cyclic orders) Any seaweed S(π) can be viewed as a
cyclic total order (Definition 1) on its support X1, ..., Xn; in other words, if a
triple (Xi, Xj , Xk) ∈ S(π), then Xi < Xj < Xk are in cyclic order. Intuitively,
we may contract a seaweed (by associating the 4-nodes) until it collapses into
single n-ary 4-node with n pending edges (its support), like in the example below.

c

d
a

b

e

4

4
4

→

c

d

a

b

e

4

4

→

c

b

ea

d

4

Definition 6 (CyMLL proof net). A CyMLL PS π is correct, i.e. it is a
CyMLL proof net (PN), iff:

1. π is a standard MLL PN, that is, any switching S(π) is a connected and
acyclic graph (therefore, S(π) is a seaweed);

2. for any ▽-link A B
A▽B

the triple (A,B,C) must occur in this cyclic order in

any seaweed S(π) restricted to A,B, i.e., (A,B,C) ∈ S(π) ↓(A,B), for all
pending leaves C (if any) in the support of the restricted seaweed.

44



Example 1 (CyMLL PSs). We give below an instance of CyMLL PN π1 with

its two restricted seaweeds, S1(π1) ↓
(B1,B

⊥

2
) and S2(π1) ↓

(B1,B
⊥

2
), both satisfying

condition 2 of Def. 6.

B1

ax

ax

cut

ax

▽ ▽

B⊥

2 B2

π1

B1▽B
⊥

2 B3▽B
⊥

3

B⊥

3B3B⊥

1

4

B2 4 B⊥

1

B1

ax

ax

cut

▽

B2

ax

B⊥

3

B3▽B
⊥

3

B3B⊥

1B⊥

2

S1(π1) ↓
(B1,B

⊥

2
)

B2 4 B⊥

1

4

B1

ax

ax

cut

▽

B2

ax

B3B⊥

1B⊥

2 B⊥

3

S2(π1) ↓
(B1,B

⊥

2
)

B2 4 B⊥

1

4

B3▽B
⊥

3

Mellies’s counter-example. Observe that, unlike what happens in the commutative
MLL case, the presence of cut links is “quite tricky” in the non-commutative
case, since cut links are not equivalent, from a topological point of view, to
tensor links: these latter make appear new conclusions that may disrupt the
original (i.e., in presence of cut links) order of conclusions. In particular, the
Mellies’s proof structure1 below (see page 224 of [17]) is not correct according to
our correctness criterion since there exists a A B

A▽B
link and a switching S(π) s.t.

¬∀C, (A,B,C) ∈ S(π) ↓(A,B), contradicting condition 2 of Definition 6: following
the crossing dotted lines in the next r.h.s. figure, you can easily verify ∃C pending
s.t. (A,C,B) ∈ S(π) ↓(A,B).

4 4

cut

ax ax

▽

ax

ax

ax
ax

▽▽

C

A B
▽ 4

4

▽

4 4

cut

ax ax

▽

ax

ax

ax
ax

▽

▽

▽

C

B
▽ 4

4

A

¬∀C, (A,B,C) ∈ S(π) ↓A.B

∃C, (A,C,B, ) ∈ S(π) ↓A.B

Definition 7 (CyMALL proof net). We call correct (or proof net, GPN)
any CyMALL GPS π s.t., its conclusions Γ are endowed with a cyclic order σ(Γ )
and for any valuation ϕ of π:

1. each additive switching Sϕ(π) is an acyclic and connected graph (ACC);
2. there exists an additive resolution ϕr(π) for ϕ(π) that is a CyMLL PN with

cyclic order conclusions σ(Γr), where Γr is an additive resolution of Γ .

Example 2 (CyMALL GPSs). Observe that the following proof structure π, on the
left hand side, is not correct: actually, fixed a valuation ϕ s.t. ϕ(p) = 1, there exists
an additive switching Sϕ(π) (with a jump) that is not ACC (see the center side
figure). Nevertheless, any slice ϕ(π) is ACC; for each slice ϕ(π) there exists indeed
an additive resolution ϕr(π) that is a CyMLL PN like that one, on the rightmost
hand side, with conclusions C4A,A⊥

▽C⊥. Observe, Γr = (C4A,A⊥
▽C⊥) is an

additive resolution of the conclusion of π, Γ = (B&C)4A, (A⊥
▽C⊥)⊕(A⊥

▽B⊥).

1 This PS is considered as “a measure of the satisfiability degree” of correctness criteria
of non-commutative logic: any “good” criterion should recognize this PS as uncorrect.

45



C

C

⊕ ⊕&p

ax

ax

ax

ax

p

p p

p

1 1

p

p

p

p

π4

▽ ▽

(A⊥
▽C⊥)⊕ (A⊥

▽B⊥)

11

(B&C) 4 A

C

C

⊕&p

ax

ax

p

p

1 1

p

4

▽

1

(B&C) 4 A

p

Sϕ(π)

(A⊥
▽C⊥)⊕ (A⊥

▽B⊥)

ax

ax

4

▽

A⊥
▽C⊥

C 4 A

ax

ax

ϕr(π)

Similarly, the proof structure below is not correct: you can easily get an
additive switching with a cycle like that one in (blue) dashed line.

C C&p &q

cut

a

ax

ax

ax

C C

ax

ax

p̄

pp

p̄ q̄

q

CC

ax

ax

q̄

q

4 4

Finally, the proof structure below is correct.

C

ax

ax

&p

cut

C

ax

ax

π &q

There currently exist other syntaxes for MALL PNs like the recent one by
Hughes-van Glabbeek ([10]). Unlike the Girard’s one, this new syntax only works
with “uniform proof structures“, i.e., proof structures with only η-expanded
axioms and with contraction links only immediately below the axiom links.

2.2 Cut Reduction

Definition 8 (ready cut reduction). Let L be a cut link in a proof net π
whose premises A and A⊥ are conclusions of, resp., links L′ and L′′ with both of
these different from contraction C. Then we define the result π′ (called, reductum)
of reducing a ready cut in π (called, redex), as follows:

Ax-cut: if L′ (resp., L′′) is an axiom link then π′ is obtained by removing in π
both formulas A,A⊥ (as well as L) and giving to L′′ (resp., to L′) the other
conclusion of L′ (resp., L′′) as new conclusion:

cut

ax

A  
wA L′

A

L′′L′′

46



(4/▽)-cut: if L′ is a 4-link with premises B and C and L′′ is a ▽-link with
premises C⊥ and B⊥, then π′ is obtained by removing in π both formulas A
and A⊥ as well as the cut link L together with L′ and L′′ and by adding two
new cut links with, resp., premises B, B⊥ and C,C⊥, as follows:

cut

B C

cut

w w

C⊥ B⊥

▽ cut

w

C⊥C

π  π′

B B⊥

4

(&/⊕)-cut: if L′ is a &p-link with premises B and C and L′′ is a ⊕2-link (resp.,
a ⊕1-link) with premise B⊥ (resp., C⊥), then π′ is obtained in three steps:
first remove in π both formulas A, A⊥ as well as the cut link L with L′ and
L′′, then replace the eigen weight p by 1 (resp., p by 0) and keep only those
links (vertexes and edges) that still have non-zero weight; finally we add a
cut between B and B⊥ (resp., between C and C⊥) as below.

cut

&p cut

B C B B⊥

w

wpwp w

π  π′[p/1]

B⊥

⊕2

Theorem 1 (stability of GPN under ready cut reduction). Assume π is
a GPN that reduces to π′ in one step of ready cut reduction, then π′ is a GPN.

Proof. Stability of condition 1 of Definition 6 and condition 1 of Definition 7,
under ready cut reduction, follows as a consequence of the next graph theoretical
property (see pages 250-251 of [9]):

Property 1 (Euler-Poicaré invariance). Given a graph G, then (♯CC − ♯Cy) =
(♯V − ♯E), where ♯CC, ♯Cy, ♯V and ♯E denotes the number of, respectively,
connected components, cycles, vertexes and edges of G.

Meanwhile, stability of condition 2 of Definition 6 (resp., condition 2 of Defini-
tion 7) follows simply by calculation.

The confluence problem - Reducing a cut involving a contraction link as (at
least) one of its premises may lead to different reductum, depending on which
sub-graph of the redex we decide to duplicate. For instance, as illustrated below,
reducing the commutative cut of the last proof net of Example 2 leads either to
π1 or to π2 (in the next picture), depending on which additive box, &q or &p, we
decide to duplicate. There is no a-priori way to make π1 and π2 “equal”. Girard,
in [8], did not give a solution for this problem which has been later provided by
Laurent and Maieli in [12]. Here we present an original lazy commutative cut
reduction that simplifies the latter: technically, our reduction relies on the notion
of dependency graph (Definition 9), i.e. the smallest &-box needed for duplication
(see [14]). This cut reduction procedure preserves the notion of GPN (Theorem 1
and Theorem 2) and it is strong normalizing (Theorem 3 and Theorem 4).

47



ax

ax

C &′

q

C

ax

ax

&′′

q

Cp

cut

cut
&p

ax

ax

π1

C

ax

ax

ax

ax

C

Cq

&p′

&p′′

cut

cut
&q

ax

π2

ax

Definition 9 (empire and spreading). Assume a proof structure π, an eigen
weight p and a weight w, then:

– the dependency graph of p (w.r.t. π), denoted Ep, is the (possibly disconnected)
subgraph of π made by all links depending on p;

– the spreading of w over π, denoted by w.[π], is the product of w for π, i.e.,
π where we replaced each weight v with the product of weights vw.

Definition 10 (commutative cut reduction). Let L be cut link in a proof
net π whose premises A and A⊥ are the respective conclusions of links L′ and
L′′ s. t. at least one of them is a contraction link C. Then we define the result π′

(reductum) of reducing this commutative cut L in π (redex), as follows:

(C/4)-cut: if L′ is a C-link and L′′ is a 4-link, then π reduces in one (C/4)
step to π′ (the (C/▽) step is analogous) as follows:

cut

C

w

w wwpwp

π:

L

4

B⊥C⊥B▽CB▽C

;

C C

cut

cut

cut

cut

ax

ax

ax

ax

wp w

wp w

π′:

4 4

C⊥ B⊥B▽C B▽C

(C/C)-cut: if both L′ and L′′ are C-links, then there are two cases:

1. either the weight w of both L′ and L′′ splits on the same p variable, then
π reduces in one (Cp/Cp) step to π′ as follows

cut

cutπ  π′

cut

A A A⊥ A⊥ AA A⊥ A⊥

wp

w wp

wp
wp

wpwp

Cp Cp

2. or the weight w of L′ (resp., w of L′′) splits on p (resp., on q) then π
reduces in one (Cp/Cq) step to π′ as follows

48



cut

w

wp wp wqwq

A A⊥ A⊥A

π:

Cp Cq

;

C C

cut

cut

cut

cut

ax

ax

ax

ax

C C

AA A⊥ A⊥

wpq

wpq

wpq

wpq

wp

wp

wq

wq

π′:

(C/⊕i)-cut: if L′ is a C-link and L′′ a ⊕i=1,2-link, then π reduces in one (C/⊕)
step to π′ as follows

cut

π  π′

w

wpwp

C

cut

ax

cut

⊕i

⊕i ⊕i

ax

C

cut

w

wp wp
B&C B&C

B&C B&C

B⊥

B⊥ B⊥

B B

B⊥

(C/&)-cut: if L′ is a C-link and L′′ a &p-link, then π reduces in one (C/&)
step to π′ as follows

cut

&p

B ⊕ C B ⊕ C

χ

wp wpwq

w

wq

A A⊥

Cq

π :

C⊥ B⊥

;

B ⊕ C

cut

B ⊕ C

&p′′ &p′

wq̄

C⊥ B⊥ C⊥ B⊥

cut

q̄.[E ′

p′] q.[E ′′

p′′]

CC

... ...

...

A1 An

χ′ wn

w1q̄ wnqwnq̄

w1

w1q

wq

with the assumptions that graphs q̄.[E ′

p′ ] and q.[E ′′

p′′ ] are obtained as follows:
1. we take two copies, E ′

p and E ′′

p , of the dependency graph Ep of p;
2. we replace in E ′

p (resp., in E ′′

p ) p with a new variable p′ (resp., p′′);
3. we spread q̄ (resp., q) over E ′

p′ (resp., over E ′′

p′′).

Technical details of proofs of Theorems 2, 3 and 4 can be found in [14].

Theorem 2 (stability). If π is a GPN that reduces to π′ in one step of com-
mutative cut reduction then π′ is a GPN too.

Theorem 3 (termination). We can always reduces a proof net π into a proof
net π′ that is cut-free, by iterating the reduction steps of Definitions 8 and 10.

Theorem 4 (confluence). Assume π is a proof net s.t. it reduces in one step
α to π′ (π ;α π′) and it reduces in an other step β to π′′ (π ;β π′′); then, there
exists a proof net σ such that both π′ reduces, in a certain number of steps, to σ
(π′

;
∗ σ) and π′′ reduces, in a certain number of steps, to σ (π′′

;
∗ σ).

49



2.3 Sequentialization

There exists a correspondence, called sequentialization (Theorem 5), between
PNs and sequential proofs.

Lemma 1 (splitting). Let π be a CyMLL PN with at least a 4-link or cut-link
and with conclusions Γ not containing any terminal ▽-link (so, we say π is
in splitting condition); then, there must exist a 4-link A B

A4B
(resp., a cut-link

A A⊥

) that splits π in two CyMLL PNs, πA and πB (resp., πA and πA⊥).

Proof. Consequence of the Splitting Lemma for commutative MLL PNs ([7]).

Lemma 2 (PN cyclic order conclusions). Let π be a CyMLL PN with con-
clusions Γ , then all seaweeds Si(π) ↓

Γ , restricted to Γ , induce the same cyclic
order σ on Γ , denoted σ(Γ ) and called the (cyclic) order of the conclusions of π.

Proof. By induction on the size 〈♯V, ♯E〉2 of π.

Corollary 1 (stability of PN order conclusions under cut reduction).
If π, with conclusions σ(Γ ), reduces in one step of cut reduction to π′, then also
π′ has conclusions σ(Γ ).

Theorem 5 (sequentialization of CyMLL PNs). Any CyMLL PN with
conclusions σ(Γ ) can be sequentialized into a CyMLL sequent proof with the
same cyclic order conclusions σ(Γ ).

Proof. by induction on the size of the given proof net π via Lemmas 1 and 2.

Theorem 6 (sequentialization of CyMALL PNs). A CyMALL GPN with
conclusions σ(Γ ) can be sequentialized into a CyMALL sequent proof with the
same cyclic conclusions σ(Γ ) and vice-versa (de-sequentialization).

Proof. There are two parts.
Sequentialization-part. Any CyMALL proof net π can be sequentialized into a

proofΠ , by induction on the number of &-links. The base of induction corresponds
to the sequentialization of the CyMLL proof nets (Theorem 5). The induction
step follows by the sequentialization of standard MALL PNs (see [8]) where the
only novelty is to show that: if a PN π contains a terminal &-link L, then π can
be toggled3 at L in two PNs preserving conditions 1 and 2 of Definition 7.

De-sequentialization-part. Any CyMALL proofΠ of σ(Γ ) can be de-sequentiali-
zed into a PN π of σ(Γ ), by induction of the height of Π derivation.

Unlike most part of correctness criteria for non-commutative proof nets,
like [3] and [13], our syntax enjoys a sequentialization for the full class of CyMLL
PNs (with possible cuts). Observe that, Mellies’s counter-example (Example 1)
represents a non-sequentializable proof structure that becomes correct (therefore,
sequentializable) after cut reduction.

2 Number of vertexes and number of edges.
3 We say that a terminal &p-link of a GPN π is toggling when the restriction of π w.r.t.
p and the restriction of π w.r.t. p̄ are both correct GPSs. We call the restriction of π

w.r.t. p (resp., w..r.t. p̄) what remains of π when we replace p with 1 (resp., p with
1) and keep only those vertexes and edges whose weights are still non-zero (see [8]).

50



3 Embedding Lambek Calculus into CyMALL PNs

Definition 11 (Lambek formulas and sequents of CyMALL). Assume A
and S are, respectively, a formula and a sequent of CyMALL.

1. A is a pure Lambek formula (pLF) if it is a CyMLL formula recursively built
according to this grammar: A := positive atoms | A 4 A | A⊥

▽A | A▽A⊥.
2. A is an additive Lambek formula (aLF or simply LF) if it is a CyMALL

formula recursively built according this grammar: A := pLF | A&A | A⊕A.
3. S is a Lambek sequent of CyMALL iff S = (Γ⊥, A), where A is a non-void

LF and Γ⊥ is a possibly empty finite sequence of negations of LFs (i.e., Γ is
a possibly empty sequence of LFs and Γ⊥ is obtained by taking the negation
of each formula in Γ ).

4. A Lambek proof is any derivation built by means of the CyMALL inference
rules whose premise(s) and conclusions are CyMALL Lambek sequents.

Definition 12 (Lambek proof net). We call Lambek CyMALL proof net
(resp., pure Lambek CyMLL proof net) any CyMALL PN (resp., CyMLL PN)
whose edges are labeled by LFs (resp. pLFs) or negation of LFs (resp., pLFs)
and whose conclusions form a Lambek sequent.

Corollary 2. Any Lambek CyMALL proof net π is stable under cut reduction,
i.e., if π reduces in one step to π′, then π′ is a Lambek CyMALL proof net too.

Proof. Consequence of Theorems 1 and 2. Trivially, each reduction step preserves
the property that each edge of the reductum is labeled by a Lambek formula or
the negation of a Lambek formula.

Theorem 7 (de-sequentialization of Lambek CyMALL proofs). Any
proof of a CyMALL Lambek sequent ⊢ σ(Γ⊥, A) can be de-sequentialized into a
Lambek CyMALL PN with conclusions σ(Γ⊥, A).

Proof. By induction on the height of the given sequent proof (similarly to the
de-sequentialization part of Theorem 6).

Theorem 8 (sequentialization of Lambek CyMALL PNs). Any Lambek
CyMALL PN of σ(Γ⊥, A) can be sequentialized into a Lambek CyMALL proof of
the sequent ⊢ σ(Γ⊥, A).

Proof. Sequentialization follows by induction on the number &-links of the given
PN. The base of induction is given by next Theorem 9. The induction step,
simply follows by Theorem 6.

Theorem 9 (sequentialization of pure Lambek CyMLL PNs). Any Lam-
bek CyMLL PN of σ(Γ⊥, A) can be sequentialized into a Lambek CyMLL proof
of ⊢ σ(Γ⊥, A).

Proof. See details in [2].

51



4 Language Parsing with Lambek CyMALL PNs

In order to show how powerful PNs are, in this section we adapt to our syn-
tax, some linguistics (typing) examples suggested by Richard Moot in his PhD
thesis [18]. We use s, np and n as the types expressing, respectively, a sentence,
a noun phrase and a common noun. According to the “parsing as deduction
style”, when a string w1...wn is tested for grammaticality, the types t1, ..., tn
associated with the words are retrieved from the lexicon and then parsing reduces
to proving the derivability of a two-sided sequent of the form t1, ..., tn ⊢ s. Recall
that proving a two sided Lambek derivation t1, ..., tn ⊢ s is equivalent to prove
the one-sided sequent ⊢ t⊥n , ...t

⊥

1 , s where t⊥i is the dual (i.e., the linear negation)
of each type ti. Therefore, any phrase or sentence should be written like in a
mirror (observing the opposite natural direction).

Assume the following lexicon, where linear implication −◦ (resp., ◦−) is
traditionally used for expressing types in two-sided sequent parsing style:

1. Vito = np;
2. Sollozzo = np;
3. him = (s◦−np)−◦s = (s▽np⊥)⊥▽s = (np 4 s⊥)▽s;
4. trusts = (np−◦s)◦−np = (np⊥▽s)▽np⊥.

Cases of lexical ambiguity follow to words with several possible formulas A and B
assigned it. For example, a verb like ”to believe” can express a relation between
two persons, np’s in our interpretation, or between a person and a statement,
interpreted as s, like in these examples:

(1) Sollozzo believes Vito; (2) Sollozzo believes Vito trusts him.

We can express this polymorphism by two lexical assignments as follows:

5. believes = (np−◦s)◦−np = (np⊥▽s)▽np⊥;
6. believes = (np−◦s)◦−s = (np⊥▽s)▽s⊥.

Typically, additives are used to capture cases of lexical ambiguity. When a word
has two possible formulas A and B assigned it, we can combine these into a single
additive formula A&B (resp., A⊕B). Thus, we can collapse assignments 5 and 6
into the following single additive assignment:

7. believes = ((np−◦s)◦−np)&((np−◦s)◦−s) = ((np⊥▽s)▽np⊥)&((np⊥▽s)▽s⊥).

Equivalently, via distributivity of negative connectives, we could also move the
additive ”inside” and generate a more compact lexical entry, in which the two
assignments share their identical initial parts (see also [19] on type polymorphism):

8. believes = ((np−◦s)◦−(s⊕ nps)) = ((np⊥▽s)▽(np⊥&s⊥)).

Using that, we can then move lexical ambiguity into proof nets. In the following
we give two equivalent Lambek PNs as parsing of the additive superposition of
sentences (1) and (2); the first (resp., the second) PN makes use of the lexical
entry 7 (resp., the lexical entry 8).

52



4

4

▽

np

trustshim Vito

s

s⊥

4

▽

np

4

C

believes

s⊥ np

np

np⊥ np⊥

C

Sollozzo s

s s

C&p

np⊥

(Vito) & (him trusts Vito)

4

4

⊕2⊕1

(1, p)

(2, p)

(3, p)

4

np▽

s

s⊥
np

(5, p̄)

(6, p̄)

(4, p̄)

(1, p̄)
(3, p̄)

np⊥

np⊥

(2, p̄) s⊥

4

▽

np

np⊥

trustshim

▽

np

np⊥ np⊥

C

Sollozzo s

s s

C

C

np

C

s⊥s⊥

4

&p

np⊥ nps

believes(Vito) & (him trusts Vito)

⊕1 C⊕2

4

(3, p)

Vito

(2, p)

4

▽ 4

np

s

s⊥

(2, p̄)
(3, p̄)

(4, p̄)
(5, p̄)

(6, p̄)

np⊥

(1, p̄)

(1, p)

s⊥

Observe that, for each slice of each proof net above, ϕp(π) and ϕp̄(π), there
exists an additive resolution that is a CyMLL PN with the same sequentialization:

ϕp(π) ⇒ Π1 : axp
1

np⊥, np

axp
2

s⊥, s
axp

3
np, np⊥

4
s⊥ 4 np, np⊥, s

4
np⊥, np 4 (s⊥ 4 np), np⊥, s

ϕp̄(π) ⇒ Π2 : axp̄
1s⊥, s

axp̄
2np⊥, np

axp̄
3s⊥, s

axp̄
4np, np⊥

4
s⊥ 4 np, np⊥, s

4
s, np⊥, np 4 (s⊥ 4 np), np⊥

▽

s▽np⊥, np 4 (s⊥ 4 np), np⊥
4

s⊥ 4 (s▽np⊥), np 4 (s⊥ 4 np), np⊥, s

axp̄
5s⊥, s

axp̄
6np, np⊥

4
s⊥ 4 np, np⊥, s

4
s⊥ 4 (s▽np⊥), np 4 (s⊥ 4 np), np⊥, s 4 (s⊥ 4 np), np⊥, s

▽
2

((s⊥ 4 (s▽np⊥))▽(np 4 (s⊥ 4 np)))▽np⊥, s 4 (s⊥ 4 np), np⊥, s

5 Conclusions

As future work we aim at investigating the how topological correctness criteria
based on graph rewriting (or retraction) of MALL proof structures ([6], [15]) may

53



be used for (linguistic) parsing. Naively, retraction criteria allow to switch from
the paradigm of “parsing as deduction” to the paradigm of “parsing as rewriting”
(see, e.g., [16]). Moreover, retraction could also be a useful computational tool
for studying the complexity class of the CyMALL correctness criterion.

Acknowledgements. We thank the anonymous reviewers, Michael Moortgat and
Richard Moot for their useful comments and suggestions. This work was partially
supported by the PRIN Project Logical Methods of Information Management.

References

1. Abrusci, V. M.. Classical conservative extensions of Lambek calculus Studia Logica
71 (3):277 - 314 (2002).

2. Abrusci, V. M. and Maieli, R.. Cyclic multiplicative proof nets of linear logic with
an application to language parsing. In: Proc. of WoLLIC 2015 Conference, July
20-23, 2015, Bloomington, USA. LNCS 9160, pp. 1-16, Springer-Verlag 2015.

3. Abrusci, V. M. and Ruet, P.. Non-commutative logic I: the multiplicative fragment.
Annals of Pure and Applied Logic 101(1): 29-64, 2000.

4. Andreoli J.-M. and Pareschi, R.. From Lambek Calculus to word-based parsing. In
Proc. of Substructural Logic and Categorial Grammar Workshop, Munchen, 1991.

5. Danos, V. and Regnier, L. The structure of multiplicatives. Archive for Mathematical

Logic, 28:181-203, 1989,
6. Danos, V.. La Logique Linéaire appliquée à l’étude de divers processus de normalisa-

tion (principalment du λ-calcul). PhD Thesis, Paris, 1990.
7. Girard, J-Y.. Linear Logic. Theoretical Computer Science, 50:1-102, 1987
8. Girard, J-Y.. Proof-nets: the parallel syntax for proof theory. Logic and Algebra.

Marcel Dekker, 1996.
9. Girard, J-Y.. Le point aveugle. Cours de Logique. Volume I, Vers la Perfection. Ed.

Hermann, 2006, Paris.
10. Hughes, D. and van Glabbeek, R.. Proof Nets for unit-free multiplicative-additive

linear logic. In Proc. of IEEE LICS 2003.
11. Lambek, J.. The mathematics of sentence structure. American Mathematical

Montly, 65, 1958.
12. Laurent, L. and Maieli, R.. Cut elimination for monomial MALL proof nets. In

Proc. of IEEE LICS 2008, pp 486-497, 2008. Pittsburgh, USA.
13. Maieli, R.. A new correctness criterion for multiplicative non-commutative proof-

nets. Archive for Mathematical Logic, vol.42, 205-220, Springer-Verlag, 2003.
14. Maieli, R.. Cut elimination for monomial proof nets of the purely multiplicative

and additive fragment of linear logic. IAC-CNR Report, n. 140 (2/2008). HAL Id:
hal-01153910; available at https://hal.archives-ouvertes.fr/hal-01153910.

15. Maieli, R.. Retractile proof nets of the purely multiplicative and additive fragment
of linear logic. In Proc. of the 14th LPAR 2007. Springer, LNAI 4790, pp. 363-377,
2007.

16. Maieli, R.. Construction of retractile proof structures. In: Proc. of Joint Conf.
RTA-TLCA, July 14-17, 2014, Vienna. LNCS 8560, pp. 319-333, 2014. Springer.

17. Moot, R. and Retoré Ch.. The logic of categorial grammars: a deductive account
of natural language syntax and semantics. Springer LNCS 6850, 2012.

18. Moot, R.. Proof nets for linguistic analysis. PhD thesis. Utrecht University, 2002.
19. Morrill, G.. Additive operators for polymorphism. In: Categorial Grammar: logical

syntax, semantics and processing. Oxford University Press, 2011.

54



Algebraic Governance and Symmetry in

Dependency Grammars

Carles Cardó

Universitat Politècnica de Catalunya
cardocarles@gmail.com

Abstract. We propose a purely algebraic approach to governance struc-
ture in dependency grammars aiming to capture all linguistic depen-
dencies (such as morphological, lexico-semantic, etc.) in monoidal pat-
terns. This provides a clear perspective and allows us to define grammars
declaratively through classical projective structures. Using algebraic con-
cepts the model is going to suggest some symmetries among languages.

Keywords: algebraic governance, dependency grammars, dependency
structure, governance, symmetry, projective structure.

1 Preliminaries: Dependency Structures

Our model is based on an algebraic characterization of dependency trees (§2) and
on an intuitive working hypothesis (§3). It consists in two objects: a manifold
and a linearization. For reasons of space we can only address in this paper the
construction of manifolds (§4). We show linearizations for specific cases but we
do not develop the general mechanism. Fortunately manifolds and linearization
are independent modules in our formalism. In §5 we implement some classical
formal languages which encode certain cross-serial phenomena. In §6 we sketch
how to build a manifold for a natural language. Using basic algebraic concepts,
the model is going to suggest some symmetries of languages (§7) which will help
us to understand our analysis. In the last section (§8) we show another equivalent
interpretation of the presented results.

To connect our approach with the literature we now define some basic con-
cepts in dependency grammars.

A dependency structure is a triplet (D,E,≤), where E and ≤ are partial
orders. The first relationship forms a tree (i.e. the Hasse diagram is a tree), the
second relation forms a chain (i.e. the relationship is a total order and its Hasse
diagram is a chain). The tree relation E is called governance; the total order
≤ is called precedence. To visualize a dependency structure we could draw both
Hasse diagrams over the same set D, but it is more convenient to picture the
Hasse diagram of the structures (D,E), (D,≤) separately and connect them with
dashed lines, as in Figures 1a) and 1b). These lines are usually called projection
lines.

The set D can be understood as a set of words, but since we frequently find
sentences with repeated words we remember that we are really dealing with word



tokens. A dependency structure with words is a structure (D,E,≤, f) such that
(D,E,≤) is a dependency structure and f is a mapping f : D −→ Σ, where Σ
is a finite vocabulary.1

A dependency grammar is a finite description of a set G of dependency
structures with words. The language of a dependency grammar is the same set
of dependency structures without the governance relation, i.e. only the chains.
If we want the language in Σ∗ we can define the set:

{f(x1) · · · f(xn) ∈ Σ∗ | {x1, . . . , xn} = D, x1 ≤ · · · ≤ xn and (D,E,≤, f) ∈ G}.

There are several frameworks providing such description, for example Lexical-
ized Grammars, Tree Adjoining Grammar, Regular Dependency Grammars or
eXtensible Dependency Grammar. See Debusmann and Kuhlmann, 2010[4] and
Debusmann, Duchier and Kruijff, 2004[3].

Literature in dependency grammars focuses its efforts on explaining the re-
lationship between governance and precedence. Since from the point of view of
natural languages there are a lot of inadequate dependency structures some con-
straints must be imposed. The main one is called projectivity. A dependency
structure is called projective iff each subtree of the governance structure is an
interval on the precedence structure, as in Figure 1a) and 1c). Graphically clas-
sical projective structures are planar graphs (trees of governance) that can be
embedded in the plane and be geometrically projected on a line (chain of prece-
dence) without crossing lines of projection, see Figure 1a). Figure 1b) shows a
non-projective structure. This is a geometrical characterization of projectivity,
although there are others.

It is thought that projective structures cover over 75-80% of sentences of
natural language (Debusmann and Kuhlman, 2010[4]). To explain the rest there
are two options. Either we must assume a less intuitive analysis of the sentences,
or we must loosen the sense of projectivity. For this reason other projections have
been proposed, such as weak non-projective structures or well-nested structures
(Kuhlman, 2013[6]).

2 Syntagmata and Manifolds

We make a few comments on notation. Given a finite set, A, we denote A∗ the
free monoid generated by A. The length of an x ∈ A∗ is denoted by |x|. We
are going to use free monoids ζ∗ and Σ∗. e is the identity of ζ∗ and 0, the
identity of Σ∗. We will use the product notation for both. Given two monoids
Γ, Γ ′, the Cartesian product Γ × Γ ′ is newly a monoid, called the direct sum,
with its operation defined componentwise. We abbreviate N

+ = N ∪ {0} and
Σ+ = Σ ∪{0}. We omit the brackets and write Σ+n = (Σ+)n = Σ+ × · · · ×Σ+

n times. Equally ζ∗n = (ζ∗)n. Given a set A ⊆ ζ∗n, we denote 〈A〉 the minimum

1 There are other definitions of dependency structures, such as those encoding struc-
ture as a graph or through Robinson’s axioms (Debusmann 2000[2]), but the above
is more concise.

56



submonoid in ζ∗n containing A. We say that a submonoid Γ is finitely generated
iff there exists a finite subset G ⊆ Γ , called a generator set, such that 〈G〉 = Γ .

Definition 1. Let ζ be a finite set of syntactic functions, and Σ a finite set of
words. We call a syntagma a mapping S : ζ∗ −→ Σ+ such that

i) S has finite order, i.e. |{x ∈ ζ∗ |S(x) 6= 0}| <∞.
ii) S is non-elliptic, i.e. S(x) = 0 =⇒ S(yx) = 0, ∀x, y ∈ ζ∗.2

We call the elements of ζ∗ loci. We call the support of S the non-null loci,
Spt(S) = {x ∈ ζ∗ |S(x) 6= 0}. We call the order the cardinality of the support,
|S| = |{x |S(x) 6= 0}|. A locus x is a leaf in S iff S(x) 6= 0, but S(yx) = 0 for
all y 6= e, y ∈ ζ∗. We call the depth of S the number d(S) = max{|x| | x ∈ ζ∗,
such that x is a leaf in S}.

Some of the syntactic functions that we are going to use are: Sb, Subject
function; Ob, Object; In, indirect object; At , Attribute; Dt , Determiner; Ad ,
Adjectival; Av , Adverbial; Pr , Prepositional; Cc, Circumstantial Complement
(traditional name in Romance grammars to indicate time, place, . . . ); Cr , verbal
regime complement (traditional name in Romance grammars to indicate a verb
which needs a second verb). Nevertheless the names are not important: syntactic
functions play roles only in relation to each other.

The locus Dt · Sb, say, can be read as the determiner of the subject. The set
of loci ζ∗ can be interpreted as a set of addresses. Words can be repeated in a
sentence but not loci, so invoking a word can be made unequivocally through

2 An ellipsis occurs when a locus is null but there is underneath a non-null locus;
otherwise the locus is definitively null. A class of elliptic syntagmata is also useful,
but in order to simplify things we are not using them except in the last example.

57



the loci. The main benefit of syntagmata is in translating linguistic descriptions
into algebraic descriptions.

Example 1. Let the syntactic functions be ζ = {Sb,Ob,Dt ,Ad} and let the
vocabulary be Σ = {the, soldier, hands, clapped, dirty}. Let S be the mapping
S : ζ∗ −→ Σ+ given by: S(e) = clapped, S(Sb) = soldier, S(Ob) = hands,
S(Dt · Sb) = the, S(Ad · Sb) = young, S(Dt · Ob) = the, S(Ad · Ob) = dirty,
and S(x) = 0, otherwise. Then S is a syntagma with order |S| = 8 and depth
d(S) = 2. The leaves are the loci Dt · Sb, Ad · Sb, Dt ·Ob and Ad ·Ob.

The next proposition connects syntagmata with governance structures.

Proposition 1. Given a syntagma S we call algebraic governance the relation-
ship (Spt(S),E) such that x E y ⇐⇒ ∃ϕ ∈ ζ∗ such that x = ϕ · y. Algebraic
governance is a governance relationship. So (Spt(S),E, S) is governance with
words.

Proof. On the one hand we see that E is a partial order as follows. Reflexivity:
we have x E x, ∀x ∈ Spt(S), because x = e · x. Antisymmetry: let x, y be in
Spt(S) such that xE y and yEx, iff x = x′ · y and y = y′ ·x for some x′, y′ ∈ ζ∗.
So x = x′ · (y′ · x) = (x′ · y′) · x. But free monoids enjoy the cancellation laws,
therefore e = x′ · y′, and then x′ = y′ = e. So x = y. Transitivity: let x, y, z be in
Spt(S) such that xE y and y E z, iff x = x′ · y and y = y′ · z, then we compose
both: x = x′ · (y′ · z) ⇐⇒ x = (x′ · y′) · z ⇐⇒ xE z.

On the other hand we must prove that its Hasse diagram is a tree. This
can be done by induction on the depth of adding new leaves to the syntagma.
Finally we see that the mapping S : ζ∗ −→ Σ+ can be restricted to the mapping
S : Spt(S) −→ Σ, because the elements in Spt(S) cannot be null, so we have
the governance structure with words: (Spt(S),E, S). �

To represent graphically a syntagma we can use the Cayley digraph of a bi-
nary operation. The Cayley digraph of a free monoid ζ∗ is the directed digraph
(V,E) with vertexes V = Spt(S) and edges E = {(x, λx) |x ∈ ζ∗, λ ∈ ζ}; since
the monoid is free the digraph is always tree-shaped. Then we label every edge
(x, λx) with the function λ. Finally we just have to label the vertexes according
the map S. See Figure 1d). Note that the Hasse diagram of the algebraic gov-
ernance coincides with the Cayley digraph without labels of edges, so a locus is
the labeling of a path from root to node.

Some frameworks in dependency grammars require another kind of underly-
ing non-tree-shaped structure, such as tree acyclic graphs or trees with repeated
syntactic functions in a same level like XDG (Debusmann, Duchier and Krui-
jff, 2004[3]), or Topological Grammar, (Duchier and Debusmann, 2001[5]). To
accommodate this there is a natural generalization of our syntagmata based on
the algebraic concept of action of a monoid on a set.3

3 We cannot show here all the details, but a very short sketch follows. Amultiple action

is relationship a ⊆ ζ∗ ×X ×X whose elements we notate x
ϕ
→ y, ϕ ∈ ζ∗, x, y ∈ X,

58



We notate Syntζ,Σ the set of all syntagmata with ζ andΣ fixed. A manifold is
a subset W ⊆ Syntζ,Σ . If we have a manifold and a procedure to assign a chain
to each syntagma, called linearization, then we will have a set of dependency
structures with words, i.e. a grammar and consequently a language. Thus our
grammars consist in a pair G = (W,Π), where W is a manifold and Π ⊆
W × Σ∗ is a relationship which relates syntagmata to strings. The language
of the grammar will be L(G) = Π(W ) = {x ∈ Σ | (S, x) ∈ Π,S ∈ W}. Now
there are two crucial questions. First, how can the manifolds be established?
Second, how can Π be established? This paper tries to answer the first question.
Regarding the second question we are going to define the chains through the
figures; but this should not create problems. In other words, we do not show a
general mechanism to establish Π, but we will do it for each specific case.

3 Grouping Concordances: Linguistic Basis

In order to understand the central proposal we are going to present some lin-
guistic cases and extract a heuristic conclusion.

3.1 Verb Inflection in English

We are interested in grouping the several agreement instances of the words
in a sentence. The most visible match is when two words are morphologically
matched. Some languages are more profuse in this respect, for example Romance
languages, however even English manifests some examples. In English when the
subject of a sentence is the third person singular and the main verb is present
tense and not modal, the verb goes with a -s at the end. For example:

(1) JohnSb often eatse meat.

We have underlined the morphologically matched words and subscripted the
loci. The analysis is given in Figure 2a); the agreeing words are linked by a
curve dashed line in this and the following examples.4 Since the main verb is
always allocated the locus e and the subject is in Sb we can represent this match
as an ordered pair (e, Sb). At the moment we are interested in the loci involved,
not in the rule or condition. Now we can take the new sentence:

and satisfying x
e
→ x and x

ϕ
→ y, y

ψ
→ z ⇒ x

ψϕ
→ z; also we ask that there be a

unique θ ∈ X such that ∀y∃ϕ θ
ϕ
→ y, which ensures a unique root. A generalized

syntagma is a multiple action a with a mapping S : X −→ Σ+. An action syntagma

is a generalized syntagma such that if x
ϕ
→ y, x

ϕ
→ z ⇒ y = z. This class does not

contain syntagmata with repeated functions in a same level. A free syntagma is a

generalized syntagma such that x
ϕ
→ y, x

ψ
→ y ⇒ ϕ = ψ. It can be proved that free

and action syntagmata are in fact ordinary syntagmata, up to isomorphism. There
are interesting algebraic relationships among these classes. All the definitions in this
paper can be easily adapted for generalized syntagmata.

4 Agreements (dashed lines) are not dependencies (arrows), but loci can be used to
describe them.

59



(2) Mary says JohnSb·Ob often eatsOb meat.

There are two matched pairs: a new pair (e,Sb) and the old which is now in
a deeper position (Ob,Sb · Ob). The sentence has an analysis as in Figure 2b).
The agreement phenomenon iterates in deeper sentences: Paul says Mary says
John often eats meat, Peter says Paul says Mary says John often eats meat,
. . . . In general we can describe the set of the loci of all these agreements as:
Agr = {(Obn,Sb ·Obn) |n ∈ N

+}.

3.2 Match of Subject and Attribute

We can consider other languages and other types of matching. In some romance
languages the number and gender of the attribute of the copula must be equal
to the subject.

(3) Mon
My

pareSb
father

està
is

cansatAt .
exhausted.

/
/
Les
the

meves
my

germanesSb

sisters

estan
are

cansadesAt .
exhausted.

‘My father is exhausted. / My sisters are exhausted.’

These examples are in Catalan, however the same occurs in Spanish, French
or Italian. The matched pair is (Sb,At). We also consider other examples in a
deeper position:

(4) a. El
The

Joan
John

diu
says

que
that

mon
my

pareSb·Ob

father
està
is

cansatAt·Ob .
exhausted.

‘John says my father is exhausted’.

60



b. Que
that

mon
my

pareSb·Sb
father

estigui
is

cansatAt·Sb

exhausted
em
me

preocupa.
worries.

‘The fact of my father being exhausted is worrying’.

The analyses are given in Figures 2c) and 2d). The first agreement is (Sb ·Ob,At ·
Ob), but the second is (Sb ·Sb,At ·Ob). This can be interpreted as that the set of
agreements is Agr = {(Sb · x,At · x) |x ∈ ζ∗}, in other words, this match would
hold everywhere.

3.3 Pied-piping in Some Romance Languages

We consider another phenomenon called pied-piping consisting in the embedding
of a filler such as a relative pronoun within accompanying material from the
extraction site. Recall that we are only interested in the morphological matches,
not in the semantical operation of the anaphora. In Catalan we must say:

(5) Aquesta
This

reinaSb ,
queen

el
the

pare
father

del
of-the

pare
father

. . .

. . .
del
of-the

pare
father

de
of

laDt·Prn
·Ad·Sb

the
qual
who

fou
was

destronat,
dethroned,

regnà
reigned

al
in

segle
century

XII.
XII

‘This queen the father of the father . . . of the father of whom was de-
throned reigned in XII century’.

The underlined words must agree in number and gender; see Figure 2e). In
English there is not any match and we cannot underline any word because the
pronoun is not preceded by any article. The proof of this agreement is that in
Catalan we cannot say: *Aquesta reina, el pare del pare . . . del pare de el qual
fou destronat, regnà al segle XII. Now the agreement set is Agr = {(Sb,Dt ·Prn ·
Ad · Sb) |n ∈ N

+}. This is structurally a distinct type of construction because
the monoid is growing right in the middle of certain loci. But this phenomenon
can occur anywhere, for example in the object:

(6) El
The

poble
populace

no
not

acceptà
accepted

mai
never

aquesta
this

reinaOb

queen
el
the

pare
father

del
of-the

pare
father

. . .

. . .
del
of-the

pare
father

de
of

laDt·Prn
·Ad·Ob

the
qual
who

fou
was

destronat.
dethroned.

‘The populace never accepted this queen the father of the father . . . of
the father of whom was dethroned’.

So the agreements are more general: Agr = (x,Dt ·Prn ·Ad ·x) |n ∈ N
+, x ∈ ζ∗}.

3.4 A Working Hypothesis

We can summarize all these agreements using submonoids of the monoid ζ∗×ζ∗.
In the first case we have: Agr = {(Obn,Sb · Obn) |n ∈ N

+} = ϕ · Γ , where
ϕ = (e,Sb) ∈ ζ∗ × ζ∗, Γ = 〈(Ob,Ob)〉 ⊂ ζ∗ × ζ∗. In the second case we also
have: Agr = {(Sb · x,At · x) |x ∈ ζ∗} = ϕ · Γ , where ϕ = (Sb,At) ∈ ζ∗ × ζ∗,

61



Γ = {(x, x) |x ∈ ζ∗} ⊂ ζ∗×ζ∗. Finally in the third case: Agr = {(x,Dt ·Prn ·Ad ·
x) |n ∈ N

+, x ∈ ζ∗} = ϕ ·Γ ·ψ ·Γ ′, where ϕ = (e,Dt), Γ = 〈(e,Pr)〉, ψ = (e,Ad)
and Γ ′ = {(x, x) |x ∈ ζ∗}. From the examples seen, and many others that could
be given, we can extract a hypothesis. Let ϕi ∈ ζ∗ and let Γi be submonoids of
the monoid ζ∗n:

monoidal hypothesis. For any natural language the set of the places where
agreements occur can be described as:

Agr =

n
∏

i=1

ϕi · Γi ⊆ ζ∗n.

Note that some submonoids Γi and constants ϕi can be trivial, thus we have a
lot of patterns like: ϕΓ , Γϕ, ΓΓ ′ϕ, ϕΓψΓ ′, . . . .

Even though the agreements shown were binary the monoidal hypothesis
supports several arities, but the most common are 1, 2 and 3. For example: that
the subject Sb is always a noun is itself an agreement of arity 1 which must hold
generally in all loci of a syntagma, therefore the pattern must be Sb · ζ∗.

We have been talking about morphological agreement but there is no reason
not to talk about other kinds. When a verb like to drink selects a “drinkable”
object it is producing a semantic “agreement” (e,Ob), and so forth.

4 Rules, Patterns and Syntactic Manifolds

4.1 Valuations, Rules and Satisfiability

We are going to formalize the concept of pattern, which goes preceded by the
concept of rule. A rule is a linking condition while a pattern tells us where the
rule must be complied with.

A valuation of arity n is a mapping B : Σ+n −→ {0, 1}, where 0, 1 are the
truth values. Some valuations that we will frequently use are the following: the
characteristic function defined as (∈ σ) : Σ+n −→ {0, 1}, (∈ σ)(x) = 1 ⇐⇒
x ∈ σ ⊆ Σ+n; the equality defined as (≈) : Σ+2 −→ {0, 1}, (≈)(x, y) = 1 ⇐⇒
x = y; or its curried restriction, (≈ a)(x) = (≈)(x, a). We will use the infix
notations: x ∈ σ, x ≈ y and x ≈ a.

Definition 2. Given (ϕ1, . . . , ϕn) ∈ ζ∗n and given a valuation B of arity n, we
call the ordered pair (B, (ϕ1, . . . , ϕn)) a rule. Given a syntagma S : ζ∗ −→ Σ+,
and a rule, R = (B, (ϕ1, . . . , ϕn)), we say that S satisfies R, and we write,
S sat R iff

B(S(ϕ1), . . . , S(ϕn)) = 1.

Example 2. Let Det ⊂ Σ be the set of all determiners in English and let Dt ∈ ζ

be a syntactic function. We want Dt to always take an element from Det. The
rule (x ∈ Det, (Dt)), or informally Dt ∈ Det, says exactly that.

62



Due to the boolean nature of valuations we can define new valuations from
others. Let a pair of valuations be B : Σ+n −→ {0, 1}, B′ : Σ+m −→ {0, 1};
then we can define:

B ∧B′ : Σ+(n+m) −→ {0, 1}

(x1, . . . , xn, y1, . . . , ym) 7−→ B(x1, . . . , xn) ∧B(y1, . . . , yn).

In the same way we can define: B∨B′, B → B′, ¬B, and so forth. If we have two
rules: R = (B,ϕ) and R′ = (B′, ϕ′) we can define: R∧R′ = (B∧B′, (ϕ,ϕ′)), R∨
R′ = (B ∨ B′, (ϕ,ϕ′)), R → R′ = (B → B′, (ϕ,ϕ′)), ¬R = (¬B,ϕ). Composing
new valuations and rules does not increase our descriptive power but it makes
reading easier.

Example 3. Let Trans ⊂ Σ be the set of transitive verbs and let Ob be a
syntactic function. The following rule asserts that the object cannot be null if a
verb is transitive in infix notation:

(

x ∈ Trans → y 6≈ 0, (e,Ob)
)

; or by a mild
abuse of notation: e ∈ Trans → Ob 6≈ 0.

4.2 Patterns and Manifolds

First of all we fix some easy set notation. As is usual in algebra, if x ∈ X and
Y, Y ′ ⊆ X, where X is a set with a binary operation · : X × X −→ X, then
x · Y = {x} · Y = {x · y | y ∈ Y } and Y · Y ′ = {y · y′ | y ∈ Y, y′ ∈ Y ′}.

Definition 3. We say Γ ⊆ ζ∗n is a (monoidal) pattern of arity n iff it can be
written as:

Γ =

k
∏

i=1

ϕi · Γi,

where ϕi ∈ ζ∗n and each Γi is a finitely generated submonoid of ζ∗n.5 We call
the number k the length of the pattern.

From the definition we see that every submonoid of ζ∗n is itself a monoidal
pattern. Some simple examples are:

Example 4. The set {(e, e, e)} is a monoidal pattern of arity 3. We call such a
pattern trivial. The set {(ϕ1, ϕ2)} is a monoidal pattern with arity 2 and of only
one element. We call such patterns constants. The set {(αβiγαj , γ2αi) | i, j ∈
N

+} is a monoidal pattern of arity 2 because it can be written as (α, γ2)·〈(β, α)〉·
(γ, e) · 〈(α, e)〉. However the set {(αiβj , βjαi) | i, j ∈ N

+} is not a monoidal
pattern because the set in itself is not a monoid nor a constant and it cannot be
decomposed into a succession of products of submonoids and constants. On the
other hand, the set {(αiβj , αiβj) | i, j ∈ N

+} can be written as: 〈(α, α)〉 ·〈(β, β)〉,
and this shows that it is a pattern.

5 Remember that some of the ϕi and Γi can be trivial.

63



We notate Hα1,...,αt
= 〈α1, . . . , αt〉, where α1, . . . , αt ∈ ζ. We also define,

given a pattern Γ , the nth homogeneous power as the set Γn) = {(x, . . . , x)n |x ∈
Γ}, where the subscript means there are n copies of x in the vector. We call

monoids such as H
n)
α1,...,αt

homogeneous submonoids. So the last pattern from

the example 4 can be written more comfortably as 〈(α, α)〉 · 〈(β, β)〉 = H
2)
α H

2)
β .

We say that a pattern is homogeneous iff all its submonoids are homogeneous.
Figure 3 depicts the Cayley graph of the free monoid ζ∗ = {α, β}∗. After

the constant patterns, the simplest patterns are those of the form ϕΓ , and they
can be understood as follows: we fix some loci defined by the components of the
constant ϕ, then we geometrically translate them around the syntagma according

to Γ as in Figure 3b) which is depicting a pattern of arity 3, (e, α, β)H
3)
β =

(e, α, β)〈(β, β, β)〉. If Γ = ζ∗n) then for each subsyntagma under ϕ we have
a copy of ϕ. However when we multiply on the left side, Γϕ, the constant is
reproduced in parallel as in Figure 3a) which is depicting a pattern of arity 2,

H
2)
α (e, β) = 〈(α, α)〉(e, β). More complex patterns composing these actions can

also be visualized.

Definition 4. Let Γ be a monoidal pattern and B a valuation, both with the
same arity. We call the pair (B,Γ ) a pattern rule which defines a set of rules
denoted by

(

B
Γ

)

= {(B,ϕ) |ϕ ∈ Γ}.

Definition 5. Given a pattern rule (B,Γ ) we define the simple syntactic man-
ifold SyntΣ,ζ

(

B
Γ

)

= {S ∈ SyntΣ,ζ | S satR ∀R ∈
(

B
Γ

)

}. Given a number of
pattern rules we define the syntactical manifold:

SyntΣ,ζ

(

B1 · · ·Bn

Γ1 · · ·Γn

)

= SyntΣ,ζ

(

B1

Γ1

)

∩ · · · ∩ SyntΣ,ζ

(

Bn

Γn

)

.

When the sets ζ, Σ are understood we just write: Synt. From the definitions
it immediately follows that if V,W are syntactic manifolds, then V ∩ W is a
syntactic manifold, so syntactic manifolds form a semilattice.

5 Five Classical Examples

We show five classical formal language examples, presented in two groups. The
monoidal patterns will highlight a symmetry between these languages.

64



5.1 Squares Language vs. Copy Language and Mirror Language

We fix a vocabulary, for instance Σ∗ = {a, b, c}. Let there be the languages
Lsqua = {x21 · · ·x

2
n |x1, . . . , xn ∈ Σ,n ∈ N}, and Lcopy = {xx |x ∈ Σ∗}. The

first is a context free, indeed regular, language. It is a mathematical idealization
of a chain of subordinate clauses in many languages such as English. E.g.:

(7) . . . that Johna sawa Peterb helpb Maryc readc.

The second is not context free and it represents the typical chain of subordinate
clauses of Dutch:6

(8) . . . dat
. . . that

Jana

Jan
Pietb

Piet
Mariec

Marie
zaga

saw
helpenb

help
lezenc.
read.

‘. . . that J. saw P. help M. read’.

Consider the squares language Lsqua. We take the syntactic manifold with
ζ = {α, β} and Σ = {a, b, c} as follows. Let there be the valuation x ≈ 0
(we abbreviate ≈ 0) and x ≈ y (we write simply ≈). Then we have the manifold:

Wsqua = Synt

(

≈ 0 ≈ 0

α2Hβ βαHβ

)

∩ Synt

(

≈

(e, α)H
2)
β

)

.

We separate this manifold in two parts because the second is giving important
information about the syntagmata. The first part can be considered superfluous;
it is just saying that all loci not invoked by the second part will be null.

If we take the projective linearization Πsqua as in Figure 4a) for the manifold
Wsqua, we will obtain the language Πsqua(Wsqua) = Lsqua.

For the copy language we define the manifold:7

Wcopy = Synt

(

≈ 0 ≈ 0

αHβα βHβα

)

∩ Synt

(

≈

H
2)
β (e, α)

)

.

If we take the projective the linearizationΠcopy as in Figure 4b) for the manifold
Wcopy, we will obtain the language Πcopy(Wcopy) = Lcopy.

Note that both nonsuperfluous parts are very similar; the valuations are equal

and the only difference lies on the laterality of patterns: (e, α)H
2)
β in the first

language and H
2)
β (e, α) in the second.

Closely related to both the above languages we consider the mirror language
defined as Lmirr = {xxR |x ∈ Σ∗}, where xR is the reversed word. This language
captures the nested dependencies in German, with sentences like:

(9) . . . dass
. . . that

Jana

Jan
Pietb

Piet
Mariec

Marie
lesenc

read
helfenb

help
saha.
saw.

‘. . . that J. saw P. help M. read’.

6 This also occurs in Swiss-German, (Shieber, 1987[7]).
7 Our analysis of Dutch dependencies uses a parallel arrangement of the functions β
which shares distant similarities with Bresnan, 1987[1], but there the framework was
constituency grammars.

65



Curiously these sentences can be projectively obtained from both manifolds
Wsqua and Wcopy as can be checked in Fig. 4c) and 4d): if we define Π1 as
in Figure 4c) and Π2 as in Figure 4d) we will have Π1(Wsqua) = Lmirror =
Π2(Wcopy).

5.2 Language of Multiple abc vs. Respectively abc

Now we are going to consider the languages Lmult = {(abc)n |n ∈ N
+} and

Lresp = {anbncn |n ∈ N
+}. The first is a context free, indeed regular language,

but not the second. The first corresponds to simple coordination, (10a), while
the second is a mathematical idealization of the respectively construction (10b):

(10) a. Jeana seems Germanb but he is Frenchc, Pietroa seems Russianb but
he is Italianc and Petera seems Belgianb, but he is Englishc.

b. Jeana, Pietroa and Petera seem respectively Germanb, Russianb and
Belgianb, but they are Frenchc, Italianc and Englishc.

Let there be the sets ζ = {α, β, γ}, Σ = {a, b, c}, and let there be the valuations:

B(x, y, z) = (x ∈ {0, a}) ∧ (y ∈ {0, b}) ∧ (z ∈ {0, c}),

B′(x, y, z) =
(

x ≈ 0 ∧ y ≈ 0 ∧ z ≈ 0
)

∨
(

x 6≈ 0 ∧ y 6≈ 0 ∧ z 6≈ 0
)

.

We take the manifold

Wmult = Synt

(

≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

ααHβ βαHβ γαHβ αγHβ βγHβ γγHβ

)

∩ Synt

(

B B′

(α, e, γ)H
3)
β (α, e, γ)H

3)
β

)

.

66



The projective linearizationΠmult as in Figure 5a) for the manifoldWmult yields
the language Πmult(Wmult) = Lmult.

Finally we take the manifold with exactly the same valuations B,B′ but with
some specific changes in the patterns:

Wresp = Synt

(

≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

αHβα αHβγ αHβ γHβ αHβγ γHβγ

)

∩ Synt

(

B B′

H
3)
β (α, e, γ) H

3)
β (α, e, γ)

)

.

The projective linearization Πresp as in Figure 5a) for the manifoldWresp yields
the language Πresp(Wresp) = Lresp. Again note that both nonsuperfluous parts
are very similar; the valuations are equal and the only difference lies in the

laterality: (α, e, γ)H
3)
β and H

3)
β (α, e, γ).

6 How to Build Natural Languages

Due to the boolean nature of valuations we are able to implement a wide variety
of rules. If we want to explain a natural language we can build a number of man-
ifolds capturing different phenomena. We can begin with a manifold to describe
for each word what kind of words or categories it can govern. For example, a
noun can govern a determiner and an adjective, but not an adverb or verb. With
another manifold we can define for each function what functions can follow, such

67



as the rule for transitive verbs in example 3.8 We can define still another mani-
fold to describe agreements. Then we have to think where these rules must hold,
i.e. we must think of the patterns. For all rules of this kind the pattern will have
the shape ϕΓ . In fact these kind of patterns seems to be related to context free
languages. Fortunately in order to add new phenomena, like pied-piping, cross-
serial dependencies or others, we can build other manifolds and intersect with
the existing ones. Possibly new phenomena demand new kinds of patterns. For
example we already saw that pied-piping in Catalan had a pattern like ϕΓϕ′Γ ′.

7 Symmetric Syntagmata, Manifolds and Languages

To analyze sentences with cross-serial dependencies from (8) and (10) we can
use the underlying logic of simplified languages Lcopy and Lresp. See Figures
6b) and 6d). Nevertheless, this solution could be considered inadequate by the
general reader for at least two reasons. First, it assumes different languages to
have the same analysis (equal syntagmata up to words). Second, intuitively it
is thought that governance must be coherent with semantical roles. We have
violated both principles. On the one hand, we would have supposed different
analyses for English and Dutch, or for respectively constructions and ordinary
coordination; see again all the analyses in 6a), 6b), 6c) and 6d). On the other
hand, in the Dutch analysis the function Cr should follow a verb, not a Noun.
We need to address these two points. Even though our analysis seems ex professo
chosen to be comfortably projective,9 there exists an easy and closer relationship
between both analysis: an algebraic permutation of syntactic functions. We now
look at this.

As is usual in algebra a morphism is a mapping preserving structures. In our
case a morphism between syntagmata S : ζ∗ −→ Σ+ and S : ζ ′∗ −→ Σ′+ is a
pair of mappings f : ζ∗ −→ ζ ′∗, g : Σ −→ Σ′ (which may be partial) such that
g(0) = 0 and they make commutative the diagram, S′ ◦ f = g ◦ S:

Spt(S)

S

��

f
// Spt(S′)

S′

��

Σ
g

// Σ′

Definition 6. Let ρ be a permutation of subscripts {1, . . . ,m}, and consider a
disjunctive decomposition ζ = ζ1∪· · ·∪ζm. We call a pair (f, g) a symmetry when
f is a permutation of submonoids, f : ζ∗1 · · · ζ

∗

m −→ ζ∗
ρ(1) · · · ζ

∗

ρ(m), f(x1 · · ·xm) =

xρ(1) · · ·xρ(m). By a mild abuse of notation we simply write ρ = (f, g).

Proposition 2. Using the same notation, given two manifolds W and W ′ we
have that for each syntagma S ∈ W , Spt(S) ⊆ ζ∗1 · · · ζ

∗

m ⊆ ζ∗, there exists a
unique syntagma S′ ∈W ′, Spt(S′) ⊆ ζ∗

ρ(1) · · · ζ
∗

ρ(m) ⊆ ζ∗, such that the symmetry
becomes a morphism of syntagmata.

8 Using the Tesnèrian denomination, this constitutes defining the valence of each word.
9 A similar strategy can be found in Topological Dependency Grammar, [5].

68



Proof. For (f, g) to be a morphism, we require that S′ ◦ f = g ◦ S. Note that
f is bijective and well defined since the decomposition of ζ∗ is disjunctive, so
given S we put S′ = g ◦ S ◦ f−1, and in this way S′ is uniquely defined. Clearly
if Spt(S) ⊆ ζ∗1 · · · ζ

∗

m then Spt(S′) ⊆ ζ∗
ρ(1) · · · ζ

∗

ρ(m). �

Automatically a symmetry induces a mapping of manifolds ρ̃ :W −→W ′, S 7→
S′. When this occurs we say that the languages L = Π(W ) and L′ = Π ′(W ′)
are symmetric, and we write L⊥L′.

Example 5. We consider the symmetry, f : {α}∗{β}∗ −→ {β}∗{α}∗; see Fig-
ure 5c). The pair ρ = (f, Id) defines a bijection between manifolds Wsqua −→
Wcopy. So we have two symmetric languages Lsqua⊥Lcopy. Similary if we con-
sider the symmetry, f ′ : {α, γ}∗{β}∗ −→ {β}∗{α, γ}∗, see Figure 5d), we will
have that Lmult⊥Lresp. Any language is symmetric with itself, because the pair
(Id , Id) is trivially a symmetry. However the mirror language enjoys nontrivial
selfsymmetry with the first pair (f, Id).

Symmetries seem to establish a close correspondence between context free lan-
guages and some non-context free languages. Regarding the question of the suit-
ability of analysis, the fact is that in our model we do not have equal syntagmata,
but isomorphic or symmetric syntagmata. Let us now see this effect in natural
languages:

Example 6. Following the Figures 6a) and 6b), we consider the symmetry from
English to Dutch: f : {Sb}∗ · {Cr}∗ · {Ob}∗ −→ {Cr}∗ · {Sb}∗ · {Ob}∗. Let
g be the vocabulary mapping defined as: g : Σ English −→ Σ Dutch, g(says) =

zegt, g(saw) = zag, g(help) = helpen, . . .. This suggests that English and Dutch
are symmetric languages.

Example 7. Finally let us show a slightly more complex situation where we need
elliptic syntagmata. Consider the ordinary coordination and the respectively
construction:

69



(11) a. The young boy is English, the fat man German, and the blond woman
Dutch.

b. The young boy, the fat man and the blond woman are respectively
English, German and Dutch.

See the dashed lines linking Figures 6c) and 6d). Now the symmetry follows
by commutation of the coordination function Co to the subject and object:
f : {Dt ,Ad}∗ · {Sb,Ob}∗ · {Co}∗ −→ {Dt ,Ad}∗ · {Co}∗ · {Sb,Ob}∗, while the
vocabulary does not change anything except g(is) = are.

8 Conclusions

Initially in §1 we commented that there are some situations that seem not to
accept projective structures. In such a circumstance we have two options: either
we change the governance structure or we loosen the sense of projectivity. It is
usually thought that changing the governance structure is more difficult than
trying other projections. However patterns and symmetries allow us to explore
the former solution.

Notwithstanding, there is another interpretation of the above results. If we
want to insist on the usual analyses of dependencies, then we will have to linearize
non-projectively some trees, say ΠNo-Pr. However then the symmetries tell us
that the relationship ΠNo-Pr in some cases can be factorized as ΠNo-Pr =
ΠPr ◦ ρ̃, where ΠPr is a projective linearization, as in Fig 7. That is:

Non-projectivity = Symmetry + Projectivity.

References

1. Joan Bresnan, Ronald M Kaplan, Stanley Peters, and Annie Zaenen. Cross-serial
dependencies in dutch. In The formal complexity of natural language, pages 286–319.
Springer, 1987.

70



2. Ralph Debusmann. An introduction to dependency grammar. Hausarbeit fur das

Hauptseminar Dependenzgrammatik SoSe, 99:1–16, 2000.
3. Ralph Debusmann, Denys Duchier, and Geert-Jan M Kruijff. Extensible dependency

grammar: A new methodology. In Proceedings of the COLING 2004 Workshop on

Recent Advances in Dependency Grammar, pages 70–76, 2004.
4. Ralph Debusmann and Marco Kuhlmann. Dependency grammar: Classification and

exploration. In Resource-adaptive cognitive processes, pages 365–388. Springer, 2010.
5. Denys Duchier and Ralph Debusmann. Topological dependency trees: A constraint-

based account of linear precedence. In Proceedings of the 39th Annual Meeting on

Association for Computational Linguistics, pages 180–187. Association for Compu-
tational Linguistics, 2001.

6. Marco Kuhlmann. Mildly non-projective dependency grammar. Computational

Linguistics, 39(2):355–387, 2013.
7. Stuart M Shieber. Evidence against the context-freeness of natural language.

Springer, 1987.

71



On the mild context-sensitivity of

k-Tree Wrapping Grammar

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf, Germany
kallmeyer@phil.hhu.de

Abstract. Tree Wrapping Grammar (TWG) has been proposed in the
context of formalizing the syntactic inventory of Role and Reference
Grammar (RRG). It is close to Tree Adjoining Grammar (TAG) while
capturing predicate-argument dependencies in a more appropriate way
and being able to deal with discontinuous constituents in a more general
way. This paper is concerned with the formal properties of TWG. More
particularly, it considers k-TWG, a constrained form of TWG. We show
that for every k-TWG, a simple Context-Free Tree Grammar (CFTG) of
rank k can be constructed, which is in turn equivalent to a well-nested
Linear Context-Free Rewriting System (LCFRS) of fan-out k + 1. This
shows that, when formalizing a grammar theory such as RRG, which is
based on thorough and broad empirical research, we obtain a grammar
formalism that is mildly context-sensitive.

Keywords: tree rewriting grammars, Role and Reference Grammar, simple
context-free tree grammar, mild context-sensitivity

1 Introduction

Tree Wrapping Grammar (TWG) [6] has been introduced in the context of for-
malizing the syntactic inventory of Role and Reference Grammar (RRG) [15, 14].
A TWG consists of elementary trees, very much in the spirit of Tree Adjoining
Grammar (TAG) [5], and from these elementary trees, larger trees are obtained
by the operations of (wrapping) substitution and sister adjunction. (Wrapping)
substitutions are supposed to add syntactic arguments while sister adjunction
is used to add modifiers and functional operators. A discontinuous argument
can be split via the wrapping substitution operation: the argument tree has a
specific split node v. When adding such an argument to a predicate tree, the
lower part (rooted in v) fills an argument slot via substitution while the upper
ends up above the root of the target predicate tree.

[6] adopts the rather flat syntactic structure from RRG with categories
CORE, CLAUSE and SENTENCE. A sample RRG-inspired TWG derivation
is shown in Fig. 1. This example involves substitutions of the arguments John
and Mary into the hates tree and of Bill into claims, sister adjunction of defi-
nitely into hates (sister adjunction simply adds a new daughter to a node where



73

SENTENCE

CLAUSE

PrCS
CORE

CORE

NP NP NUC

CORE PRED

NP NP ADV V

John Mary definitely hates

CORE

NP NUC CORE

PRED

NP V

Bill claims

derived tree:
SENTENCE

CLAUSE

PrCS CORE

NP NP NUC CORE

John Bill PRED NP ADV NUC

V Mary definitely PRED

claims V

hates

Fig. 1. RRG-style TWG derivation for John Bill claims Mary definitely hates

the root of the adjoining tree has to match the target node), and wrapping
substitution of the hates tree around the claims tree.

It was shown in [6] that, in contrast to TAG, the TWG operations enable us to
add even sentential arguments with long-distance extractions by a substitution
operation. In this, TWG is close to other formalisms in the context of TAG-
related grammar research that have been proposed in order to obtain derivation
structures that reflect dependencies in a more appropriate way than it is done
by TAG [10, 11, 1].

The focus of this paper is on the formal properties of TWG. After an intro-
duction to TWG and in particular to k-TWG, a restricted form of TWG, we
show how to construct an equivalent simple context-free tree grammar (CFTG)
for a given k-TWG.

2 Tree Wrapping Grammar

The following introduction to TWG is largely taken from [6], except for the
declarative definition of the notion of k-TWG, based on properties of the deriva-
tion trees decorated with wrapping substitution markings.

Borrowing from the TAG terminology, trees that can be added by substi-
tution are called initial trees. In addition, we need adjunct trees for modeling



74

modifiers and functional elements in RRG. These trees are added by sister ad-
junction. We distinguish left-adjoining, right-adjoining and unrestricted adjunct
trees, resp. called l-adjunct, r-adjunct and d-adjunct trees. (The latter can add
a daughter at any position.)

Definition 1 (Tree Wrapping Grammar). A TreeWrapping Grammar (TWG)
is a tuple G = 〈N,T, I, AD, AL, AR, C〉 where

a) N,T are disjoint alphabets of non-terminal and terminal symbols.

b) I, AD, AL and AR are disjoint finite sets of ordered labeled trees such that

– each non-leaf in a tree is labeled by some element from N ∪N2,

– there is at most one node with a label from N2,

– leaves have labels from N ∪ T , and

– the root of each tree in AD ∪ AL ∪ AR has exactly one daughter.

c) C ⊆ N .

A non-terminal leaf is called a substitution node, and the labels from N2 are
called split categories.

Every tree in I is called an initial tree, every tree in AD∪AL∪AR an adjunct
tree and every tree in I ∪AD ∪ AL ∪ AR an elementary tree.

As we will see later, C is the set of non-terminals that can occur on a wrapping
spine (i.e., between root and substitution site of the target tree of a wrapping
substitution).

There are two TWG composition operations (see Fig. 2):

1. Standard/Wrapping substitution: a substitution node v in a tree γ gets re-
placed with a subtree α′ of an initial tree α. If α′ %= α, then the root node
v′ of α′ must be labeled with a split category 〈X,Y 〉 such that the root of
γ is labeled X and v is labeled Y . α is then split at v′ and wraps around
γ, i.e., the upper part of α ends up above the root of γ while α′ fills the
substitution slot. In this case, we call the operation a wrapping substitution.
Otherwise (α = α′), we have a standard substitution and the root of α (i.e.,
v′) must have the same label as v.

2. Sister adjunction: an adjunct tree β with root category X is added to a node
v of γ with label X . The root rβ of β is identified with v and the (unique)
daughter of rβ is added as a new daughter to v. Furthermore, if β ∈ AL

(resp. β ∈ AR), then the new daughter must be a leftmost (resp. rightmost)
daughter.

A slightly different form of tree wrapping is proposed in [9] for RRG, leading
to a flatter structure. One can consider a split node as a very special dominance
edge (with specific constraints on how to fill it). In our definition, we would then
have for a split node with categories X,Y a dominance edge between a node
labeled X and a node labeled Y such that the X-node does not have any other
daughters. In the flatter version of wrapping ([9]), the X-node can have other
daughters that end up being sisters of the target tree of the wrapping that fills
this dominance edge (see Fig. 3).



75

Wrapping
substitution:

γ X

Y

α

X

Y
!

X

Y

Sister
adjunction:

γ

X
β X

Y

!

X

Y

Fig. 2. Operations in TWG

γ X

Y

α

X

Y

!

X

Y

Fig. 3. Wrapping from [9]

It is easy to see that this form of wrapping can be transformed into the one
used in this paper, simply by replacing the dominance edge with an immediate
dominance edge and splitting the lower node with top and bottom categories
X and Y respecitvely. As a result, we obtain trees that are slightly less flat
than the ones from [9] and that, if we keep track of which edges have been
added in this transformation, can be easily transformed back to the original
flatter form. Therefore, without losing anything concerning the desired linguistic
structures, for formal properties and parsing considerations we can work with
the tree wrapping definition presented here.

Every elementary tree in a TWG G is a derived tree wrt. G, and every
tree we can obtain with our composition operations from derived trees in G is
again a derived tree. Wrapping substitutions require that, in the target tree,
all categories on the path from the root to the substitution node (the wrapping
spine) are in C. A further constraint is that wrapping substitution can target
only initial trees, i.e., we cannot wrap a tree around an adjunct tree. Note that, in
contrast to [6], we do not impose a limit on the number of wrapping substitutions
stretching across a node in our definition of a TWG derived trees. This constraint
comes later with the definition of k-TWG.

So far, wrapping can occur several times at the same elementary tree. Or, to
put it differently, a node can be on several wrapping spines that are not nested.



76

Derivation of w = cbbc Derivation of w = bcbc

α X

X1 X2

β1
X

b
X

X1

b

β2
X

c
X

X2

c

α X

X1 X2

β2
X

c
X

X2

c

β1
X

b
X

X1

b

Fig. 4. Sample derivations: wrapping substitutions at sister nodes

γd X ← v1

c X ← v2

b X ← v3

X1 ← v4 X2 ← v5

b c

W (γd) =
{〈v2, v5〉, 〈v3, v4〉}

Fig. 5. Decorated derived tree arising from the first derivation in Fig. 4

See Fig. 4 for an example. In the two derivations, the root node of α is part
of the two wrapping spines. In other words, both wrappings stretch across the
root node of α. This has implications for the generative capacity and also for
the parsing complexity.

We now want to restrict the wrapping substitutions in a derivation concerning
the number of times a node can be part of a wrapping spine. To this end, we
first introduce some decoration for the derived trees in the TWG given a specific
derivation: Let γd be a tree derived in a TWG with a fixed derivation (there can
be several derivations per derived tree and, consequently, several decorations).
We define the wrapping decoration of γd as the following set of node pairsW (γd):
In every wrapping substitution step of the derivation in question with r and v

being the root node r and the substitution node v of the target of the wrapping
substitution, 〈r, v〉 ∈ W (γd). Nothing else is in W (γd). We call every v⊥ such
that there exists a v# with 〈v#, v⊥〉 ∈ W (γd) a ⊥ node in γd. We call a derived
tree with such a decoration a decorated derived tree. An example is given in
Fig. 5.

Once we have that, we can identify for a node v in such a decorated derived
tree γ all wrapping substitution sites (⊥ nodes) where the wrapping substitution
stretches across v.

Definition 2 (Gap set, wrapping degree). Let γ = 〈V,E,≺, r, l〉 be a deco-
rated TWG derived tree with decoration W (γ), and let v ∈ V .

1. A set V⊥ ⊂ V of ⊥ nodes is a gap set with respect to v if

a) for every pair 〈v#, v⊥〉 ∈ W (γ) with v⊥ ∈ V⊥, it holds that v# dominates
v and v strictly dominates v⊥, and

b) for every pair 〈v#, v⊥〉 ∈ W (γ) with v⊥ ∈ V⊥, there is no pair 〈v′#, v
′
⊥〉 ∈

W (γ), 〈v′#, v
′
⊥〉 %= 〈v#, v⊥〉 with v# dominating v′#, v

′
# dominating v, v

strictly dominating v′⊥, and v′⊥ dominating v⊥.



77

2. We then define the wrapping degree of v as the cardinality of its gap set.

3. The wrapping degree of a decorated derived tree is the maximal wrapping
degree of its nodes, and the wrapping degree of a derived tree γd in the TWG
G is the minimal wrapping degree of any decorated derived tree with respect
to G that yields γd.

In the example in Fig. 5, we have for instance a gap set {v4, v5} for the node
v3. The wrapping degree of this derived tree is 2.

Now we can define the tree language for a TWG in general and in the case
where wrapping degrees are limited by a k ≥ 0:

Definition 3 (Language of a TWG). Let G be a TWG.

• A saturated derived tree is a derived tree without substitution nodes and with-
out split categories.

• The tree language of G is LT (G) = {γ | γ is a saturated derived initial tree in
G}.

• The string language of G is the set of yields of trees in LT (G).

• The k-tree language of G is Lk
T (G) = {γ | γ is a saturated derived initial tree

in G with a wrapping degree ≤ k}.

• The k-string language of G is the set of yields of trees in Lk
T (G).

Some TWGs are such that the maximal wrapping degree is limited, given the
form of the elementary trees. But this is not always the case. In the following,
we call a TWG a k-TWG if we impose k as a limit for the wrapping degree of
derived trees, i.e., for a k-TWG, we consider the k-tree language of the grammar
as its tree language.

As an example, Fig. 6 gives a TWG for the copy language. Here, all substi-
tution nodes must be filled by wrapping substitutions since there are no trees
with root label A, and the nodes with the split categories are always the middle
nodes. The grammar is such that only derived trees with a wrapping degree 1
are possible.

In order to facilitate the construction of an equivalent simple CFTG for a
given k-TWG, we show the following normal form lemma:

Lemma 1. For every k-TWG G = 〈N,T, I, AD, AL, AR, C〉, there is exists a
weakly equivalent k-TWG G′ = 〈N ′, T, I ′, ∅, ∅, ∅, C〉, i.e., a k-TWG without ad-
junct trees.

The construction idea is again rather simple. For every daughter position, we
precompile the possibility to add something by sister adjunction in the following
way: We start with Itemp = I and I ′ = ∅ and we set Al = AL ∪ AD and
Ar = AR ∪ AD.

1. For every adjunct tree β, we add a subscript l (r or d respectively) to the
root label of β if β is in Al (resp. in Ar or in AD). The resulting tree is added
to Itemp .



78

G = 〈{S, A}, {a, b}, I, ∅, ∅, {S, A}〉 with I =






















S

a A

A a

S

b A

A b

S

a A

a

S

b A

b

S

a
S

A

A a

S

b
S

A

A b

S

a
S

A

a

S

b
S

A

b























Sample derivation of baabaa:

S

b
S

A

b

S

a
S

A

A a

S

a A

A a

Fig. 6. TWG for the copy language {ww |w ∈ {a, b}+}

2. For every γ ∈ Itemp : For every node v in γ that is not the root of a former
adjunct tree: If v has i daughters, then we pick one combination i1, . . . , ik
(k ≥ 0) with 0 ≤ i1 < . . . < ik ≤ i of positions between daughters. We then
add new daughters to v at all these positions, labeled with the non-terminal
of v and a subscript l for position 0, r for position i and d otherwise. The
result is added to I ′. This is repeated until I ′ does not change any more, i.e.,
all possible combinations of daughter positions for the nodes in γ have been
taken into account.

3. For every γ ∈ I ′ that is a former adjunct tree: Add

• a tree γl to I ′ that consists of γ with an additional leftmost daughter of
the root having the same label as the root and a subscript l in case the
subscript of the root is l, d otherwise.

• a tree γr to I ′ that consists of γ with an additional rightmost daughter of
the root having the same label as the root and a subscript r in case the
subscript of the root is r, d otherwise.

• a tree γlr to I ′ that consists of γ with two additional daughters of the root,
one leftmost and one rightmost daughter such that these daughters have
the same label as the root and the following subscripts: the leftmost has a
subscript l in case the subscript of the root is l, d otherwise. The rightmost
has a subscript r in case the subscript of the root is r, d otherwise.

An example of this construction can be found in Fig. 7.

The equivalence of the original grammar and the constructed one is obvious.
The latter requires the same number of wrapping substitutions as the original
one and has the same string language for the same k. But it generates different
derived trees since in cases of multiple adjunctions between two nodes we obtain
a binary structure.



79

I :
S

d d
AL :

S

a
AD :

S

b
AR :

S

c

Equivalent TWG without adjunct trees:
S

d d

Sl

a

Sl/d/r

b

Sr

c

S

Sl d d

S

d Sd d

S

d d Sr

S

Sl d Sd d

S

Sl d d Sr

S

d Sd d Sr

S

Sl d Sd d Sr

Sl

Sl a

Sl

a Sd

Sl

Sl a Sd

Sl

Sl b

Sl

b Sd

Sl

Sl b Sd

Sd

Sd b

Sd

b Sd

Sd

Sd b Sd

Sr

Sd b

Sr

b Sr

Sr

Sd b Sr

Sr

Sd c

Sr

c Sr

Sr

Sd c Sr

Fig. 7. Sample elimination of adjunct trees

3 Relation to context-free tree gramamrs

We now show that for every k-TWG one can construct an equivalent simple
context-free tree grammar of rank k. This, in turn, is weakly equivalent to well-
nested (k + 1)-LCFRS (see [16, 13] for the definition of LCFRS and [7, 3] for
well-nested LCFRS).

Without loss of generality, we assume the k-TWG to be without adjunct
trees.

3.1 Context-free tree grammars

The following introduction to context-free tree grammars is taken from [8].
A ranked alphabet is a union ∆ =

⋃
r∈N

∆(r) of disjoint sets of symbols. If

f ∈ ∆(r), r is the rank of f .
A tree over a ranked alphabet ∆ is a labeled ordered tree where each node

with n daughters is labeled by some f ∈ ∆(n). We use the term representation
of trees. The set T∆ of trees over ∆ is defined as follows: 1. If f ∈ ∆(0), then
f ∈ T∆. 2. If f ∈ ∆(n) and t1, . . . , tn ∈ T∆(n ≥ 1), then (ft1 . . . tn) ∈ T∆.

If Σ is an (unranked) alphabet and ∆ a ranked alphabet (Σ ∩ ∆ = ∅), let
TΣ,∆ be the set of trees such that whenever a node is labeled by some f ∈ ∆,
then the number of its children is equal to the rank of f .

For a set X = {x1, . . . , xn} of variables, T∆(X) denotes the set of trees over
∆∪X where members of X all have rank 0. Such a tree t containing the variables
X is often written t[x1, . . . , xn]. If t[x1, . . . , xn] ∈ T∆(X) and t1, . . . , tn ∈ T∆,



80

then t[t1, . . . , tn] denotes the result of substituting t1, . . . , tn for x1, . . . , xn, re-
spectively, in t[x1, . . . , xn]. An element t[x1, . . . , xn] ∈ T∆(X) is an n-context
over ∆ if for each i = 1, . . . , n, xi occurs exactly once in t[x1, . . . , xn].

Definition 4 (Context-free tree grammar). A context-free tree grammar
(CFTG) [12, 2] is a quadruple G = 〈N,Σ, P, S〉, where

1. N is a ranked alphabet of non-terminals,

2. Σ an unranked alphabet of terminals,

3. S ∈ N is of rank 0, and

4. P is a finite set of productions of the form

Ax1 . . . xn → t[x1, . . . , xn]

where A ∈ N (n) and t[x1, . . . , xn] ∈ TΣ,N({x1, . . . , xn}).

The rank of G is max{r |N (r) %= ∅}.

For every s, s′ ∈ TΣ,N , s ⇒G s′ is defined to hold if and only if there is a
1-context c[x1] ∈ TΣ,N({x1}), a production Bx1...xn → t[x1, ..., xn] in P , and
trees t1, ..., tn ∈ TΣ,N such that s = c[Bt1 . . . tn], s

′ = c[t[t1, . . . , tn]].
The relation ⇒∗

G is defined as the reflexive transitive closure of⇒G. The tree
language L(G) generated by a CFTG G is defined as {t ∈ TΣ |S ⇒∗

G t}. The
string language is the set of yields of the trees in L(G).

A CFTG is said to be simple if all right-hand sides of productions in the
grammar are n-contexts, in other words, they contain exactly one occurrence of
each of their n variables.

CFTG for {w3 |w ∈ {a, b}+}:

N0 = {S}, N (3) = {X}, Σ = {a, b, A}, S the start symbol.
P contains the following productions:

S → Xaaa |Xbbb

Xx1x2x2 → X(Aax1)(Aa2)(Aax3) |X(Abx1)(Abx2)(Abx3) |Ax1x2x3

Sample derivation for the string abaabaaba:

S ⇒ Xaaa ⇒ X(Aba)(Aba)(Aba)

⇒ X(Aa(Aba))(Aa(Aba))(Aa(Aba))
⇒ A(Aa(Aba))(Aa(Aba))(Aa(Aba))

Fig. 8. Simple CFTG for the double copy language

3.2 k-TWG and simple CFTG

In the following, we will show that for each k-TWG, an equivalent simple context-
free tree grammar of rank k can be constructed.

Let us explain the construction while going through the simple example in
Fig. 9. The CFTG non-terminals have the form [A,A1A2 . . . An] with n ≤ k,



81

TWG for {(bc)n |n ≥ 1} ∪ {c}:

γ1 AB

BB
ε

γ2
Aε

A

B
B
ε

bε Cε

γ′

2
AB

A

B
B
B

bε CB

γ3
CB

cε BB
ε

γ4
Cε

cε

Equivalent simple CFTG:
N (0) = {S, [A], [C]}, N (1) = {[A,B], [C,B]}, start symbol S, productions:

S → [A], S → [C]
γ1: [A,B]x1 → Ax1

γ2: [A] → A([A,B](Bb[C]))
γ′

2: [A,B]x1 → A([A,B](Bb([C,B]x1)))
γ3: [C,B]x1 → Ccx1

γ4: [C] → Cc

Fig. 9. Sample TWG and equivalent simple CFTG

A ∈ N and Ai ∈ N for 1 ≤ i ≤ n where the intuition is the A is the root category
of the tree this nonterminal expands to and A1A2 . . . An are the categories of
pending gaps from wrappings that stretch across this tree. In other words, in
the final decorated derived tree, they are the categories of the gap set nodes of
this root, in linear order. Note that, since we assume a k-TWG, there cannot be
more than k such categories. The gap trees that are to be inserted in the gap
nodes (which are substitution nodes) are the arguments of this non-terminal. In
other words, such a non-terminal tells us that we have to find an A-tree and
there are pending lower parts of split trees with categories A1, . . . , An, which
have to be inserted into that A-tree. For instance, the category [A,B] in our
example expands to A-trees that need a B-substitution node at some point
(maybe after some further substitution), in order to insert the B-gap tree to
which this category applies. The γ1-rule in the TWG for instance encodes that
one way to find such a tree is to create an A-node with a single daughter, where
this daughter is the pending B-tree.

The construction does not go directly from an elementary TWG tree to a
single production. Instead, it yields a single production for each possible deco-
ration of the TWG tree with category sequences corresponding to possible gap
set node labels in linear order that can arise within a derivation. An example
where we have more than one possibility for a single TWG tree is the tree γ2
in Fig. 9 where the γ2 and γ′

2 indicate the two cases. Accordingly, there are
two productions. One [A]-production where [A] is of rank 0. This is the case
where nothing else is wrapped around γ2 and, consequently, there is no pending
gap at its root node. The second production (the γ′

2 case) is the possibility to
have something wrapped around the γ2 tree. In this case, the gap category of
the outer tree is B, and this gap must be placed somewhere below the C node,
hence the non-terminal [C,B] with the pending gap as argument for this node.



82

In order to keep track of these sequences of gap labels, we first define possible
mappings f1, f2 for every elementary tree γ that assign to every node x in γ

either a single sequence f1(x) = f2(x) of non-terminals (= gap node labels) or,
if the node is a split node or a substitution node that is used for a wrapping
substitution, a pair of two possibly different such subsequences 〈f1(x), f2(x)〉.
Intuitively, a split node starts a new gap, which is then filled by the lower part
of the split node. Any gaps in the tree below the gap are accessible at the mother
node of the split node.

Fig. 9 gives the assignments f1 and f2 for each node as a super- and a
subscript. In cases where f1 = f2, there is just one subscript, while for f1 %= f2
(split nodes and wrapping substitution nodes), we have both. For γ2, we have
two possible assignments. The mapping of γ1 tells us that this tree is used in a
wrapping configuration where a split tree with some lower categoryB is wrapped
around it. Furthermore, according to the B-node annotation, this leaf is filled
by the wrapping substitution (f2 = ε). The first assignment for γ2 tells us that
this tree is used without wrapping anything around it. At its split node, we
wrap it around something that has to contain a B-gap (f1 = B), which will be
filled by the lower part of the split tree, therefore at that point, no more gaps
are pending (f2 = ε). In contrast to this, the second γ2 is used in a wrapping
configuration where a split tree with some lower category B is wrapped around
it (f1 = f2 = B at the root). The B gap arising from the split node in the
middle is filled by the lower B node. However, the overall B gap is still pending,
therefore we have f2 = B at the split node. This pending gap is not inserted at
the substitution node (category C), instead, the information about the B-gap
is passed (f1 = f2 = B). It can be inserted in γ3. There the substitution node
has f1 = B (which means that we need a B-substitution node to be filled with
some pending B-tree) and f2 = ε (signifying that this is the substitution node
we were looking for, no more pending gaps below).

The definition of these assignments is such that we guess the pending gap
categories for the leaves, we guess whether a substitution node is used for wrap-
ping, and for split nodes, we guess the pending gap categories that arise out of
the tree that this node is wrapped around. The rest is calculated in a bottom-up
way as follows:

– For a substitution node v with categoryA: either v is not used for a wrapping
substitution and we have f1(v) = f2(v) = A1 . . . Ai (0 ≤ i) or v is used for a
wrapping substitution and we have f1(v) = A and f2(v) = ε.

– f2(v0) = f1(v1) . . . f1(vj) for every node v0 with v1, . . . vj being all daughters
of v0 in linear precedence order such that none of the daughters is a split
node.

– For every split node v0 with top label X and bottom label Y with v1, . . . vk
being all daughters of v0 in linear precedence order, n being the mother of
v0 and vl1, . . . , v

l
j and vrj+1, . . . , v

r
n being the sisters of v0 to the left and right

in linear precedence order:



83

n

vl1 . . . vlj v0 vrj+1 . . . vrn

v1 . . . vk
f2(v0) = f1(v1) . . . f1(vk) and there are B1, . . . , Bj ∈ N such that
f1(v0) = B1 . . . BiY Bi+1 . . . Bj and
f2(n) = f1(v

l
1) . . . f1(v

l
j)B1 . . . Bif2(v0)Bi+1 . . . Bjf1(v

r
j+1) . . . f1(v

r
n).

We call the Y in this step the split category.
– For every node v that is neither a split node nor a non-terminal leaf, we have
f1(v) = f2(v).

– For every leaf v with a terminal label, we have f1(v) = f2(v) = ε.
– The length of the assigned sequences is limited to k.
– For every node v with a non-terminal label from N \ C (C is the set of
categories allowed on wrapping spines), it holds that f1 = f2 = ε.

Instead of using the original TWG, we can also use the trees with annota-
tions f1, f2 in TWG derivations. For these derivations, let us make the following
assumptions: The conditions for wrapping are that the f1 value of the split node
must be the f1 value of the root of the target tree while the bottom category
of the split node must be the f1 of the target substitution node and the f2 of
this substitution node must be ε. The annotation of the root of the target tree
remains while the annotation of the substitution node is the f2 value of the
split node. Furthermore, annotations of substitution nodes that are not used for
wrapping have to be equal to the ones of the root of the tree that substitutes in.

An example of such a TWG derivation can be found in Fig. 10.

Sample derivations of w = bcbc:
TWG:

AB
B

BB
ε

AB
B

A

B
B
B

bεε CB
B

CB
B

cεε BB
ε

Aε
ε

A

B
B
ε

b Cε
ε

Cε
ε

cεε

!

Aε
ε

AB
B

AB
B

BB
B

bε
ε CB

B

cεε Bε
ε

bε
ε Cε

ε

cεε
Corresponding CFTG derivation:
S ⇒ [A] ⇒ A([A,B](Bb[C])) ⇒ A([A,B](Bb(Cc)))
⇒ A(A([A,B](Bb[C,B](Bb(Cc))))) ⇒ A(A(A(Bb[C,B](Bb(Cc)))))
⇒ A(A(A(Bb(Cc(Bb(Cc))))))

Fig. 10. Sample derivations in the grammars from Fig. 9



84

For these TWG derivations, the following lemma holds:

Lemma 2. With this annotated TWG we obtain exactly the set of derived trees
of the original TWG including for each node in a derived tree, obtained with a
specific derivation, a decoration with the labels of the nodes from its gap set in
linear precedence order.

This lemma holds since all possible combinations of pending gaps below sub-
stitution nodes and to the left and right of split nodes are considered in the
f1, f2 annotations. Furthermore, gaps are passed upwards. The only way to get
rid of a gap in the f1, f2 value of a root node is to wrap a tree filling this gap
around it.

Given the gap assignment definition, we can now specify the set of produc-
tions in our CFTG that we obtain for each elementary tree.

1. For every non-terminal category X in our TWG, we add a production

S → [X ]

which is used for derived trees with root category X .

2. For every tree γ in the k-TWG with root r and root category A and for
every assignment f = 〈f1, f2〉 for γ as defined above, we have productions

[A, f1(r)]y1 . . . y|f1(r)| → τ(γ, f)

where τ(β, f) for any subtree β of a TWG tree with gap assignment f is
defined as follows:

– If β has only a single node v with non-terminal category B and f1(v) =
f2(v), then τ(β, f) = [B, f1(v)]x1 . . . x|f1(v)|.

1

– If β has only a single node v with non-terminal category B and f1(v) =
A ∈ N , f2 = ε, then τ(β, f) = x1.

– If the root v of β is not a split node, its root category is A, and if
β1 . . . , βn are the daughter trees of v, then

τ(β, f) = (Aτ(β1, f) . . . τ(βn, f)).

– If the root v of β is a split node with top category A and bottom category
B, and if β1 . . . , βn are the daughter trees of v, then

τ(β, f) = ([A, f1(v)]x1 . . . xi(Bτ(β1, f) . . . τ(βn, f))xi+1 . . . xj).

where f1(v) = A1 . . . AiBAi+1 . . . Aj and B is the split category from
the construction of f .

The variables y1, . . . , y|f1(r)| in the lefthand side of the production are exactly
the ones from the righthand side in linear precedence order.

3. These are all the productions in the CFTG.

1 We assume that fresh variables are used each time a new variable is needed.



85

TWG for the double copy language {w3 |w ∈ {a, b}+}:

α X

X1 X2 X3

γa
1
A2

X

X1

a X1

γa
2
A3

A2

X2

a X2

γa
3
X

A3

X3

a X3

γa
4
A4

X

X1

a

γa
5
A5

A4

X2

a

γa
6

X

A5

X3

a

(same for b and B2, B3) (same for b and B4, B5)

Equivalent simple CFTG:
Start symbol S, productions:

S → [X]
γa
6 : [X] → X([A5, X3](X3a))

γa
5 : [A5, X3]x1 → A5([A4, X2X3](X2a)x1)

γa
4 : [A4, X2X3]x1x2 → A4([X,X1X2X3](X1a)x1x2)

γa
3 : [X,X1X2X3]x1x2x3 → X([A3, X1X2X3]x1x2(X3ax3))

γa
2 : [A3, X1X2X3]x1x2x3 → A3([A2, X1X2X3]x1(X2ax2)x3)

γa
1 : [A2, X1X2X3]x1x2x3 → A2([X,X1X2X3](X1ax1)x2x3)

(same with b and B2, B3, B4, B5)
α: [X,X1X2X3]x1x2x3 → Xx1x2x3

Fig. 11. Sample 3-TWG and equivalent simple CFTG

An example of this construction can be found in Fig. 9, and a sample deriva-
tion in the TWG and the corresponding CFTG is given in Fig. 10. The TWG
derivation involves two wrappings of γ2 around γ1, the first (inner one) with
an additional substitution of γ3 into the C substitution node, the second, outer
one with a substitution of γ4 into this slot. The corresponding CFTG derivation
starts by expanding [A] to the tree corresponding to the outer wrapping of γ2,
with a non-terminal [C] for γ4. Inside the resulting tree, we have a non-terminal
[A,B] of rank 1 whose argument is the tree Bb(Cc)) which has to fill a B-gap.
This is then expanded to a γ2 tree that assumes that there is a B-gap below
its C-substitution node. This second use of γ2 creates again the request for an
A-tree with a B-gap (non-terminal [A,B]), which is now filled by γ1, and, below
its substitution node, it needs a C-tree with a B-substitution node (non-terminal
[C,B]) which can then be filled by the pending B-tree Bb(Cc)) from the outer
use of γ2. Such a tree is provided by γ3.

As a further example consider the TWG and corresponding CFTG in Fig.11.

The crucial part of the construction is actually the definition of the f1, f2
gap category annotations. Once we have this, the following holds:

Lemma 3. There is a derived tree γ in the TWG with pending gap category
sequence annotations f = 〈f1, f2〉 (written 〈γ, f〉) as described above iff there is
a corresponding derivation in the CFTG.

Here, “corresponding derivation” means the following: if γ has gap sequence
annotations f1, f2 and a root node v with node label A, then the correponding



86

derivation is of the form [A, f1(v)]y1 . . . y|f1(v)| ⇒
∗
G τ(γ, f) where τ(γ, f) is as

defined above in the construction for the case of elementary trees.
We can show this by an induction over the derivation structure, proving that

• The claim holds for elementary trees. This follows immediately from the
construction.

• We assume that the claim holds for 〈γ, f〉 and 〈α, fα〉 with correspond-
ing CFTG derivations [Aγ , gapsγ ]xγ ⇒∗

G τ(γ, f) and [Aα, gapsα]xα ⇒∗
G

τ(α, fα).
Then:
〈γ′, f ′〉 can be derived from 〈γ, f〉 in the TWG via substitution of 〈α, fα〉
into one of the non-termial leaves
⇔ this non-terminal leaf in 〈γ′, f ′〉 has category Aα and gap sequence gapsα
⇔ there is a corresponding non-terminal [Aα, gapsα] in τ(γ, f) that can be
expanded using the derivation [Aα, gapsα]x ⇒∗

G τ(α, fα) (induction assump-
tion)
⇔ [Aγ , gapsγ ]x ⇒∗

G τ(γ′, f ′) where, in this derivation, we have one part
[Aγ , gapsγ ]xγ ⇒∗

G τ(γ, f) and a second part consisting of an application of
[Aα, gapsα]xα ⇒∗

G τ(α, fα).
• We assume that the claim holds for 〈γ, f〉 and 〈β, fβ〉 with correspond-
ing CFTG derivations [Aγ , gapsγ ]xγ ⇒∗

G τ(γ, f) and [Aβ , gapsβ ]xβ ⇒∗
G

τ(β, fβ).
Then:
〈γ′, f ′〉 is derived from 〈γ, fγ〉 in the TWG by wrapping 〈β, fβ〉 around 〈γ, fγ〉
⇔ there is a split node in τ(β, fβ) with category 〈Aγ , Y 〉 and with an f1
value gapsγ and there is a non-terminal leaf in 〈γ, fγ〉 with category Y and
with f1 = Y and f2 = ε
⇔ there is a non-terminal [Aγ , gapsγ ] corresponding to the split node in
τ(β, fβ) that can be expanded by the derivation [Aγ , gapsγ ]xγ ⇒∗

G τ(γ, f)
⇔ there is a derivation [Aβ , gapsβ ]xβ ⇒∗

G τ(γ′, f ′) in the CFTG consisting
of [Aβ , gapsβ ]xβ ⇒∗

G τ(β, fβ) and then an application of [Aγ , gapsγ ]xγ ⇒∗
G

τ(γ, f).

With this lemma, we obtain the following theorem:

Theorem 1. For every k-TWG there is an equivalent simple CFTG of rank k.

As a consequence, we obtain that the languages of k-TWGs are in the class of
well-nested linear context-free rewriting languages2 and therefore mildly context-
sensitive [16]. This term, introduced by [4], characterizes formalisms beyond CFG
that can describe cross-serial dependencies, that are polynomially parsable and
that generate languages of constant growth. Joshi’s conjecture is that mildly
context-sensitive grammar formalisms describe the appropriate grammar class
for dealing with natural languages.

2 Note that the fact that we can construct an equivalent well-nested LCFRS for a
k-TWG does not mean that k-TWG (for some fixed k) cannot deal with ill-nested
dependencies. The structures described by the LCFRS do not correspond to the
dependency structures obtained from TWG derivations. The latter are determined
only by the fillings of substitution slots.



87

4 Conclusion

We have shown that k-TWG is a mildly context-sensitive grammar formalism,
more particular, it falls into the class of simple context-free tree languages of
rank k/well-nested (k+1)-LCFRS. This is an interesting result, considering that
TWG arose out of an attempt to formalize the syntactic inventory of RRG, a
grammar theory that emerged from broad empirical linguistic studies. Therefore
the formal results in this paper support in a convincing way Joshi’s conjecture
about the mild context-sensitivity of natural languages.

References

1. Chiang, D., Scheffler, T.: Flexible composition and delayed tree-locality. In:
TAG+9 Proceedings of the Ninth International Workshop on Tree-Adjoining
Grammar and Related Formalisms (TAG+9). pp. 17–24. Tübingen (June 2008)

2. Engelfriet, J., Schmidt, E.M.: IO and OI. Journal of Computer and System Sciences
(15), 328–353 (1977)

3. Gómez-Rodŕıguez, C., Kuhlmann, M., Satta, G.: Efficient parsing of well-nested
linear context-free rewriting systems. In: Human Language Technologies: The 2010
Annual Conference of the North American Chapter of the Association for Compu-
tational Linguistics. pp. 276–284. Association for Computational Linguistics, Los
Angeles, California (June 2010), http://www.aclweb.org/anthology/N10-1035

4. Joshi, A.K.: Tree adjoining grammars: How much context-sensitivity is required to
provide reasonable structural descriptions? In: Dowty, D., Karttunen, L., Zwicky,
A. (eds.) Natural Language Parsing, pp. 206–250. Cambridge University Press
(1985)

5. Joshi, A.K., Schabes, Y.: Tree-Adjoning Grammars. In: Rozenberg, G., Salomaa,
A. (eds.) Handbook of Formal Languages, pp. 69–123. Springer, Berlin (1997)

6. Kallmeyer, L., Osswald, R., Van Valin, Jr., R.D.: Tree wrapping for Role and Refer-
ence Grammar. In: Morrill, G., Nederhof, M.J. (eds.) Formal Grammar 2012/2013.
Lecture Notes in Computer Science, vol. 8036, pp. 175–190. Springer, Berlin, Hei-
delberg (2013)

7. Kanazawa, M.: The pumping lemma for well-nested Multiple Context-Free Lan-
guages. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 312–
325. Springer, Berlin Heidelberg (2009)

8. Kanazawa, M.: Multidimensional trees and a Chomsky-Schützenberger-Weir rep-
resentation theorem for simple context-free tree grammars. Journal of Logic and
Computation (Published online June 30, 2014)

9. Osswald, R., Kallmeyer, L.: Towards a formalization of Role and Reference Gram-
mar. In: Proceedings of the 2013 Conference on Role and Reference Grammar (to
appear)

10. Rambow, O., Vijay-Shanker, K., Weir, D.: D-Tree Grammars. In: Proceedings of
ACL (1995)

11. Rambow, O., Vijay-Shanker, K., Weir, D.: D-Tree Substitution Grammars. Com-
putational Linguistics (2001)

12. Rounds, W.C.: Mappings and grammars on trees. Mathematical Systems Theory
(4), 257–287 (1970)

13. Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars.
Theoretical Computer Science 88(2), 191–229 (1991)



88

14. Van Valin, Jr., R.D.: Exploring the Syntax-Semantics Interface. Cambridge Uni-
versity Press (2005)

15. Van Valin, Jr., R.D., Foley, W.A.: Role and reference grammar. In: Moravcsik,
E.A., Wirth, J.R. (eds.) Current approaches to syntax, Syntax and semantics,
vol. 13, pp. 329–352. Academic Press, New York (1980)

16. Vijay-Shanker, K., Weir, D.J., Joshi, A.K.: Characterizing structural descriptions
produced by various grammatical formalisms. In: Proceedings of ACL. Stanford
(1987)



Distributional Learning and
Context/Substructure Enumerability in

Nonlinear Tree Grammars

Makoto Kanazawa1 and Ryo Yoshinaka2

1 National Institute of Informatics and SOKENDAI
2 Graduate University of Informatics, Kyoto University

Abstract. We study tree-generating almost linear second-order ACGs
that admit bounded nonlinearity either on the context side or on the
substructure side, and give distributional learning algorithms for them.

1 Introduction

Originally developed for efficient learning of context-free languages [3, 13], the
method of distributional learning under the paradigm of identification in the

limit from positive data and membership queries has been successfully applied to
a number of more complex grammatical formalisms that derive objects (strings,
trees, λ-terms, etc.) through local sets of derivation trees [9, 12, 14]. In these
formalisms, a subtree s of a complete derivation tree t = c[s] contributes a
certain “substructure” S = φ(s) which is contained in the whole derived object
T = φ(t), and the remaining part c[ ] of the derivation tree contributes a function
C = φ(c[ ]) that maps S to T = C(S). We can think of C as a “context” that
surrounds S in T . Fixing a class G of grammars fixes the set S of possible
substructures and the set C of possible contexts that may be contributed by
parts of possible derivation trees. Each language L generated by a grammar in
G acts as an arbiter that decides which context C ∈ C should “accept” which
substructure S ∈ S (i.e., whether C(S) ∈ L).

Distributional learning algorithms come in two broad varieties. In the primal

approach, the learner first extracts all substructures and all contexts that are
contained in the input data, which is a finite set of elements of the target language
L∗. The learner then collects all subsets of the extracted substructures whose
cardinality does not exceed a certain fixed bound m. These subsets are used as
nonterminal symbols of the hypothesized grammar. Out of all possible grammar
rules that can be written using these nonterminals, the learner lists those that
use operations that may be involved in the generation of the objects in the
input data. In the final step of the algorithm, the learner tries to validate each
of these rules with the membership oracle, which answers a query “C(S) ∈ L∗?”
in constant time. If a rule has a set S of substructures on the left-hand side and
sets S1, . . . ,Sr on the right-hand side, and the grammatical operation associated
with the rule is f , then the learner determines whether the following implication



holds for all contexts C extracted from the input data:

C(S) ∈ L∗ for all S ∈ S implies

C(f(S1, . . . , Sn)) ∈ L∗ for all S1 ∈ S1, . . . , Sn ∈ Sn. (1)

The grammar conjectured by the learner includes only those rules that pass this
test.

The idea of the rule validation is the following: It is dictated that the elements
of the nonterminal S together characterize the set of all substructures that can
be derived from S by the hypothesized grammar in the sense that every context
C ∈ C that accepts all elements of S must accept all substructures derived from
S. Thus, only those rules that are consistent with this requirement are allowed
in the hypothesized grammar. A remarkable property of the algorithm is that it
successfully learns the language of every grammar in the given class G that has
the m-finite kernel property in the sense that each nonterminal is characterized
by a set of substructures of cardinality up to m.

In the dual approach to distributional learning, the role of contexts and sub-
structures is switched. The learner uses as nonterminals subsets of the contexts
extracted from the input data with cardinality ≤ m, and uses the extracted
substructures to validate candidate rules. The algorithm learns those languages
that have a grammar with the m-finite context property in the sense that each
nonterminal is characterized by a set of contexts of cardinality ≤ m.

Whether each of these algorithms runs in polynomial time in the size of the
input data D depends on several factors that are all determined by the grammar
class G. The foremost among them is the enumeration of the two sets

S|D = {S ∈ S | C(S) ∈ D for some C ∈ C },

C|D = {C ∈ C | C(S) ∈ D for some S ∈ S }.

There are two possible difficulties in enumerating each of these sets in polynomial
time. First, the sheer number of elements of the set may be super-polynomial,
in which case explicit enumeration of the set is not possible in polynomial time.
Second, recognizing which substructure/context belongs to the set may be com-
putationally costly. The second problem, even when it arises, can often be dealt
with by replacing the set in question by a more easily recognizable superset
without disrupting the working of the algorithm. The first problem is the more
pressing one.

With all linear grammar formalisms to which distributional learning has been
applied, neither of these two difficulties arise. When these formalisms are ex-
tended to allow nonlinearity in grammatical operations, however, the problem of
super-polynomial cardinality hits hard. Thus, with parallel multiple context-free

grammars, the nonlinear extension of multiple context-free grammars (success-
fully dealt with in [12]), the set C becomes a much larger set, even though S
stays exactly the same. As a result, the cardinality of C|D is no longer bounded
by a polynomial. The situation with IO context-free grammars, the nonlinear ex-
tension of the simple context-free tree grammars (treated in [9]), is even worse.
Both of the sets S|D and C|D become super-polynomial in cardinality.

90



When only one of the two sets S|D and C|D is of super-polynomial cardinality,
as is the case with PMCFGs, however, there is a way out of this plight [4]. The
solution is to restrict the offending set by a certain property, parametrized by
a natural number, so that its cardinality will be polynomial. The parametrized
restriction leads to an increasing chain of subsets inside S or C. In the case of
PMCFGs, we get C1 ⊂ C2 ⊂ C3 ⊂ · · · ⊂ C =

⋃

k Ck, where Ck is the set of
all possible contexts that satisfy the property with respect to the parameter k.
The actual property used by [4] was a measure of nonlinearity of the context
(“k-copying”), but this specific choice is not crucial for the correct working of
the algorithm, as long as Ck|D can be enumerated in polynomial time. The
learning algorithm now has two parameters, m and k: the former is a bound
on the cardinality of sets of contexts the learner uses as nonterminals as before,
and the latter is a restriction on the kind of context allowed in these sets. The
class of languages successfully learned by the algorithm includes the languages
of all grammars in the target class that have the (k,m)-finite context-property in
the sense that each nonterminal is characterized by a subset of Ck of cardinality
≤ m.

This algorithm does not learn the class of all grammars with the m-finite
context property, but a proper subset of it. Nevertheless, the parametrized re-
striction has a certain sense of naturalness, and the resulting learnable class
properly extends the corresponding linear class, so the weaker result is interest-
ing in its own right.

In this paper, we explore the connection between distributional learning
and context/substructure enumerability in the general setting of almost linear

second-order abstract categorial grammars generating trees [5–7] (“almost lin-
ear ACGs” for short). This class of grammars properly extends IO context-free
tree grammars and is equivalent in tree generating power to tree-valued attribute

grammars [1]. In fact, the expressive power of typed lambda calculus makes it
possible to faithfully encode most known tree grammars within almost linear
ACGs.

Like IO context-free tree grammars and unlike PMCFGs, almost linear ACGs
in general do not allow polynomial-time enumerability either on the context side
or on the substructure side. Only very special grammars do, and an interesting
subclass of them consists of those grammars that allow only a bounded degree
of nonlinearity in the contexts (or in the substructures). It is easily decidable
whether a given ACG satisfies each of these properties. We show that both of
the resulting classes of grammars indeed allow a kind of efficient distributional
learning similar to that for PMCFGs.

2 Typed Lambda Terms and Almost Linear ACGs

2.1 Types and Typed Lambda Terms

We assume familiarity with the notion of a simply typed λ-term (à la Church)
over a higher-order signature Σ = (AΣ , CΣ , τΣ), where AΣ is the set of atomic

91



types, CΣ is the set of constants, and τΣ is a function from CΣ to types over AΣ .
We use standard abbreviations: α1→· · ·→αn→pmeans α1→(· · ·→(αn→p) . . . ),
and λxα1

1 . . . xαn
n .MN1 . . . Nm is short for λxα1

1 . . . . .λxαn
n .((. . . (MN1) . . . )Nm).

The arity of α = α1 → · · · → αn → p with p ∈ AΣ is arity(α) = n. We write
βn → p for the type β → · · · → β → p of arity n.

We take for granted such notions as β- and η-reduction, β-normal form, and
linear λ-terms. We write ։β and ։η for the relations of β- and η-reduction be-
tween λ-terms. Every typed λ-term has a β-normal form, unique up to renaming
of bound variables, which we write as |M |β .

The set LNFα
X(Σ) of λ-terms of type α in η-long β-normal form (with free

variables from X) is defined inductively as follows:

– If xα1→···→αn→p ∈ X, M1 ∈ LNFα1

X (Σ), . . . ,Mn ∈ LNFαn

X (Σ), and p ∈ AΣ ,
then xα1→···→αn→pM1 . . .Mn ∈ LNFp

X(Σ).
– If c ∈ CΣ , τΣ(c) = α1 → · · · → αn → p, p ∈ AΣ , and M1 ∈ LNFα1

X (Σ), . . . ,
Mn ∈ LNFαn

X (Σ), then cM1 . . .Mn ∈ LNFp
X(Σ).

– If M ∈ LNFβ

X∪{xα}(Σ), then λxα.M ∈ LNFα→β
X (Σ).

We often suppress the superscript and/or subscript in LNFα
X(Σ). Note that

LNFα
∅
(Σ) denotes the set of closed λ-terms of type α in η-long β-normal form.

We note that if M ∈ LNFα→β(Σ) and N ∈ LNFα(Σ), then |MN |β ∈ LNFα(Σ).
Henceforth, we often suppress the type superscript on variables. This is just

for brevity; each variable in a typed λ-term comes with a fixed type.
We use strings over {0, 1} to refer to positions inside a λ-term or a type. We

write ε for the empty string, and write u ≤ v to mean u is a prefix of v. When
u = u′0i, we refer to u′ as u0−i.

The shape of a type α, written [α], is defined by

[p] = {ε} if p is atomic, [α→ β] = {ε} ∪ { 1u | u ∈ [α] } ∪ { 0u | u ∈ [β] }.

The elements of [α] are the positions of α. A position u is positive if its parity
(i.e., the number of 1s in u modulo 2) is 0, and negative if its parity is 1. We write
[α]+ and [α]− for the set of positive and negative positions of α, respectively.
A position u of α is a subpremise if u = u′1 for some u′. Such an occurrence is
a positive (resp. negative) subpremise if it is positive (resp. negative). We write
[α]+sp (resp. [α]−sp) for the set of positive (resp. negative) subpremises of [α].

If u ∈ [α], the subtype of α occurring at u, written α/u, is defined by

α/ε = α, (α→ β)/0u = β/u, (α→ β)/1u = α/u.

If α/u = β, we say that β occurs at position u in α.
Given a λ-term M , the shape of M , written [M ], is defined by

[M ] = {ε} if M is a variable or a constant,

[MN ] = {ε} ∪ { 0u | u ∈ [M ] } ∪ { 1u | u ∈ [N ] },

[λx.M ] = {ε} ∪ { 0u | u ∈ [M ] }.

92



The elements of [M ] are the positions of M .
If u ∈ [M ], the subterm of M occurring at u, written M/u, is defined by

M/ε = M, (MN)/0u = M/u, (MN)/1u = N/u, (λx.M)/0u = M/u.

When N = M/u, we sometimes call u an occurrence of N (in M).
When v ∈ [M ] but v0 6∈ [M ], M/v is a variable or a constant. For each

u ∈ [M ], we refer to the unique occurrence of a variable or constant in [M ]
of the form u0k as the head of u (in M); we also call the variable or constant
occurring at the head of u the head of M/u.

A position v ∈ [M ] binds a position u ∈ [M ] if M/u is a variable x and v is
the longest prefix of u such that M/v is a λ-abstract of the form λx.N . When v
binds u in M , we write v = bM (u). When every occurrence in M of a λ-abstract
is the binder of some position, M is called a λI-term.

Let M ∈ LNFα
∅
(Σ). Note that an occurrence v ∈ [M ] of a variable or a

constant of type β with arity(β) = n is always accompanied by n arguments, so
that v0−i is defined for all i ≤ n. The set of replaceable occurrences [2] of bound
variables in M and the negative subpremise nspM (u) of α associated with such
an occurrence u, are defined as follows:3

(i) If bM (u) = 0j−1 for some j ≥ 1 (i.e., bM (u) is the jth of the leading λs of
M), then u is replaceable and nspM (u) = 0j−11.

(ii) If bM (u) = v0−i10j−1 for some replaceable v and i, j ≥ 1 (i.e., bM (u) is the
jth of the leading λs of the ith argument of v), then u is replaceable and
nspM (u) = nspM (v)0i−110j−11.

It is easy to see that the following conditions always hold:

– If u is a replaceable occurrence of a bound variable xβ , then β = α/nspM (u).
– If M is a λI-term (in addition to belonging to LNFα

∅
(Σ)), then for every

v ∈ [α]−sp, there exists a u ∈ [M ] such that nspM (u) = v.

Example 1. Let

M = λyo1y
o→(o→(o→o)→o)→o
2 .y2(fy1a)(λy

o
3y

o→o
4 .f(y4(fy3y1))(y4(fy3y1))).

Then M ∈ LNFα
∅
(∆), where ∆ contains constants f, a of type o→ o→ o and o,

respectively, and

α =
1
o → (o→ (

01011
o → (o→ o

︸ ︷︷ ︸

010101

)→ o

︸ ︷︷ ︸

0101

)→ o

︸ ︷︷ ︸

01

)→ o.

3 A definition equivalent to nspM (u) for untyped λ-terms is in [2] (access path). The
correspondence between these paths and negative subpremises for typed linear λ-
terms is in [10].

93



– The bound variable yo1 occurs in M at three positions, 000101, 001000111,
00100111, whose binder is ε. These positions are associated with the negative
subpremise 1 in α.

– The bound variable y
o→(o→(o→o)→o)→o
2 occurs in M at one position, 0000,

whose binder is 0. This position is associated with the subpremise 01 in α.
– The bound variable y3 occurs in M at two positions, 0010001101 and

001001101, whose binder is 001. These positions are associated with the
negative subpremise 0101.

– The bound variable y4 occurs in M at two positions, 00100010 and 0010010,
whose binder is 0010. These positions are associated with the negative sub-
premise 010101.

2.2 Almost Linear Lambda Terms over a Tree Signature

Now we are going to assume that ∆ is a tree signature; i.e., every constant of
∆ is of type or → o for some r ≥ 0, where o is the only atomic type of ∆. For a
closed M ∈ LNFα

∅
(∆), every occurrence of a bound variable in M is replaceable.

A tree is an element of LNFo
∅
(∆). A closed λ-term M ∈ LNFor→o

∅
(∆) is

called a tree context. We say that a tree context M = λx1 . . . xr.N matches a
tree T if there are trees T1, . . . , Tr such that (λx1 . . . xr.N)T1 . . . Tr ։β T . We
say that M is contained in T if it matches a subtree of T .

The notion of an almost linear λ-term was introduced by Kanazawa [5, 7].
Briefly, a closed typed λ-term is almost linear if every occurrence of a λ-abstract
λxα.N in it binds a unique occurrence of xα, unless α is atomic, in which case
it may bind more than one occurrence of xα. Almost linear λ-terms share many
of the properties of linear λ-terms; see [5–8] for details.

Almost linear λ-terms are typically not β-normal. For instance,
λyo→o.(λxo.fxx)(yc), where f and c are constants of type o → o → o and o,
respectively, is almost linear, but its β-normal form, λyo→o.f(yc)(yc), is not. In
this paper, we choose to deal with the η-long β-normal forms of almost linear
λ-terms directly, rather than through their almost linear β-expanded forms.

We write ALα(∆) for the set of closed λ-terms in LNFα
∅
(∆) that β-expand

to an almost linear λ-term. (The superscript is often omitted.) The following
lemma, which we do not prove here, may be taken as the definition of ALα(∆)
(see [7, 8] for relevant properties of almost linear λ-terms):

Lemma 1. Let M be a closed λI-term in LNFα
∅
(∆). Then M ∈ ALα(∆) if and

only if the following conditions hold for all bound variable occurrences u, v ∈ [M ]
such that nspM (u) = nspM (v), where n = arity(α/nspM (u)):

(i) {w | u0−nw ∈ [M ] } = {w | v0−nw ∈ [M ] }.
(ii) If M/u0−nw is a constant, then M/u0−nw = M/v0−nw.
(iii) If M/u0−nw is a variable, then M/v0−nw is also a variable and

nspM (u0−nw) = nspM (v0−nw).

We call M ∈ ALα(∆) a canonical writing if for all bound variable oc-
currences u, v of M , nspM (u) = nspM (v) implies M/u = M/v and vice

94



versa. For example, λy
(o→o)→o
1 y

(o→o)→o
2 .f(y1(λz

o
1 .z1))(y1(λz1.z1))(y2(λz2.z2)) is

a canonical writing, whereas neither λy1y2.f(y1(λz1.z1))(y1(λz2.z2))(y2(λz3.z3))
nor λy1y2.f(y1(λz1.z1))(y1(λz1.z1))(y2(λz1.z1)) is.

Lemma 2. For every M ∈ ALα(∆), there exists a canonical writing M ′ ∈
ALα(∆) such that M ′ ≡α M .

A pure λ-term is a λ-term that contains no constant. We write ALα for the
subset of ALα(∆) consisting of pure λ-terms. An important property of ALα(∆)
that we heavily rely on in what follows is that every M ∈ ALα(∆) can be
expressed in a unique way as an application M◦M•

1 . . .M•
l of a pure λ-term M◦

to a list of tree contexts M•
1 , . . . ,M

•
l . We call the former the container of M and

the latter its stored tree contexts. These λ-terms satisfy the following conditions:

1. l ≤ |[α]+sp|+ 1,

2. M•
i ∈ ALori→o(∆) for some ri ≤ |[α]−sp| for each i = 1, . . . , l,

3. M◦ ∈ AL(or1→o)→···→(orl→o)→α,

4. M◦M•
1 . . .M•

l ։β M .

The formal definition of this separation ofM ∈ ALα(∆) into its container and
stored tree contexts is rather complex, but the intuitive idea is quite simple. The
stored tree contexts of M are the maximal tree contexts that can be discerned
in the input λ-term.

Example 2. Consider the λ-termM of type α = o→(o→(o→(o→o)→o)→o)→o
in Example 1. This λ-term belongs to ALα(∆). Its container and stored tree
contexts are:

M◦ = λzo→o
1 zo→o

2 zo→o→o
3 yo1y

o→(o→(o→o)→o)→o
2 .y2(z1y1)(λy

o
3y

o→o
4 .z2(y4(z3y3y1)),

M•
1 = λx1.fx1a, M•

2 = λx1.fx1x1, M•
3 = λx1x2.fx1x2.

Here is the formal definition. Let M ∈ ALα(∆). We assume that M is canon-
ical. Then |[α]−sp| is exactly the number of distinct bound variables in M . Let
s1, . . . , sk list the elements of [α]−sp in lexicographic order. Let y1, . . . , yk be the
corresponding list of bound variables in M , and let ni = arity(α/si) for each
i = 1, . . . , k. Note that

k∑

i=1

ni ≤ |[α]+sp|.

The canonicity of M implies that every occurrence of yi in M is accompanied by
the exact same list of arguments Ni,1, . . . , Ni,ni

. The type of Ni,j is α/si0
j−11.

Let x1, . . . , xk be fresh variables of type o. For each subterm N of M of type
o, define NN by

(cT1 . . . Tn)
N = cTN

1 . . . TN

n , (yiNi,1 . . . Ni,ni
)N = xi.

95



Let M ′ be the maximal subterm of M of atomic type; in other words, M ′

is the result of stripping M of its leading λs. Likewise, let N ′
i,j be the maximal

subterm of Ni,j of atomic type. Let (M1, . . . ,Ml) be the sublist of

(M ′, N ′
1,1, . . . , N

′
1,n1

, . . . , N ′
k,1, . . . , N

′
k,nk

)

consisting of the λ-terms whose head is a constant. (This list will contain dupli-
cates if there exist i1, j1, i2, j2 such that (i1, j1) 6= (i2, j2), N

′
i1,j1

= N ′
i2,j2

, and
the head of this λ-term is a constant.) For each i = 1, . . . , l, let xmi,1

, . . . , xmi,ri

list the variables in MN

i , in the order of their first appearances in MN

i . Define

M•
i = λxmi,1

. . . xmi,ri
.MN

i ,
−→
M• = (M•

1 , . . . ,M
•
l ).

These are the stored tree contexts of M .
In order to define the container M◦, we first define N△ by induction for each

subterm N of M that is either (i) some Mi, (ii) a λ-term of atomic type whose
head is a variable, or (iii) a λ-abstract. Let z1, . . . , zl be fresh variables of type
or1 → o, . . . , orl → o, respectively.4

M△

i = zi(ymi,1
Nmi,1,1 . . . Nmi,1,nmi,1

)△ . . . (ymi,ri
Nmi,ri

,1 . . . Nmi,ri
,nmi,ri

)△,

(yiNi,1 . . . Ni,ni
)△ = yiN

△

i,1 . . . N
△

i,ni
,

(λyi.N)△ = λyi.N
△.

Finally, define
M◦ = λz1 . . . zl.M

△.

Lemma 3. M◦,
−→
M• satisfy the required conditions.

Lemma 4. Let N ∈ ALα1→···→αn→β(∆),Mi ∈ ALαi(∆) (i = 1, . . . , n), and

P = |NM1 . . .Mn|β ∈ ALβ(∆). Suppose

−→
M•

i = ((Mi)
•
1, . . . , (Mi)

•
li
), (Mi)

•
j ∈ ALo

ri,j→o(∆),
−→
P • = (P •

1 , . . . , P
•
m).

For i = 1, . . . , n and j = 1, . . . , li, let ci,j be a fresh constant of type ori,j → o.
Let ∆′ be the tree signature that extends ∆ with the ci,j, and let

Q = |N((M1)
◦
c1,1 . . . c1,l1) . . . ((Mn)

◦
cn,1 . . . cn,ln)|β .

We can compute the container and stored tree contexts of Q ∈ ALβ(∆′) with

respect to ∆′. Then we have

P ◦ = Q◦, P •
i = |(Q•

i )[ci,j := (Mi)
•
j ]|β ,

where [ci,j := (Mi)
•
j ] denotes the substitution of (Mi)

•
j for each ci,j.

4 When Mi = Mj for some distinct i, j, the definition of M△

i in fact depends on the
subscript i.

96



Definition 1. Let M ∈ ALα(∆).

(i) The unlimited profile of M is prof∞(M) = (M◦, w1, . . . , wl), where l is the

length of
−→
M• = (M•

1 , . . . ,M
•
l ) and for each i, wi is the ri-tuple of positive

integers whose jth component is the number of occurrences of the jth bound
variable in M•

i .
(ii) For k ≥ 1, the k-threshold profile of M , written profk(M), is just like its

unlimited profile except that any number greater than k is replaced by ∞.

The type of the (unlimited or k-threshold) profile of M is α.

Example 3. The unlimited profile of the λ-termM from Example 1 is prof(M) =
(M◦, (1), (2), (1, 1)). Its 1-threshold profile is prof1(M) = (M◦, (1), (∞), (1, 1)),
and its k-threshold profile for k ≥ 2 is the same as its unlimited profile.

Lemma 5. For each k ≥ 1 and type α, there are only finitely many k-threshold
profiles of type α.

We say that a k-threshold profile (M◦, w1, . . . , wl) is k-bounded if wi ∈
{1, . . . , k}ri for i = 1, . . . , l. A λ-term M ∈ AL(∆) that has a k-bounded profile
is called k-bounded. We write ALα

k (∆) for the set of all k-bounded λ-terms in
ALα(∆).

Note that M ∈ AL(∆) is linear if and only if it is 1-bounded and has a linear
container.

Lemma 6. Let N ∈ ALα1→···→αn→β(∆), and Mi,M
′
i ∈ ALαi(∆) for each i =

1, . . . , n. Suppose that for each i = 1, . . . , n, profk(Mi) = profk(M
′
i). Then

profk(|NM1 . . .Mn|β) = profk(|NM ′
1 . . .M

′
n|β).

The above lemma justifies the notation Nπ1 . . . πn for profk(|NM1 . . .Mn|β)
with profk(Mi) = πi, when k is understood from context. When N =
λx1 . . . xn.Q, we may also write Q[x1 := π1, . . . , xn := πn] for Nπ1 . . . πn. In
this way, we can freely write profiles in expressions that look like λ-terms, like
λx.π1(Mxπ2).

Lemma 7. Given a λ-term N ∈ ALα1→···→αn→β(∆) and k-threshold profiles

π1, . . . , πn of type α1, . . . , αn, respectively, the k-threshold profile Nπ1 . . . πn can

be computed in polynomial time.

In what follows, we often speak of “profiles” to mean k-threshold profiles,
letting the context determine the value of k.

2.3 Almost Linear Second-Order ACGs on Trees

A (tree-generating) almost linear second-order ACG G = (Σ,∆,H,I ) con-
sists of a second-order signature Σ (abstract vocabulary), a tree signature
∆ (object vocabulary), a set I ⊆ AΣ of distinguished types, and a higher-

order homomorphism H that maps each atomic type p ∈ AΣ to a type
H(p) over A∆ and each constant c ∈ CΣ to its object realization H(c) ∈

97



ALH(τ∆(c))(∆). It is required that the image of I under H is {o}. That
Σ is second-order means that for every c ∈ CΣ , its type τΣ(c) is of the
form p1 → · · · → pn → q; thus, any λ-term in LNFp

∅
(Σ) for p ∈ AΣ has

the form of a tree. A closed abstract term P ∈ LNFα
∅
(Σ) is homomor-

phically mapped by H to its object realization |H(P )|β ∈ ALH(α)(∆). For
p ∈ AΣ , we write S(G , p) for { |H(P )|β | P ∈ LNFp

∅
(Σ) } and C(G , p) for

{ |H(Q)|β | Q is a closed linear λ-term in LNFp→s
∅

(Σ) for some s ∈ I }. The el-
ements of these sets are substructures and contexts of G , respectively. The tree
language generated by G is O(G ) =

⋃

s∈I
S(G , s).

An abstract constant c ∈ CΣ together with its type τ(c) and its object
realization H(c) corresponds to a rule in more traditional grammar formalisms.
An abstract atomic type p ∈ AΣ corresponds to a nonterminal. We say that G
is rule-k-bounded if H(c) is k-bounded for every abstract constant c ∈ CΣ .

Definition 2. Let G = (Σ,∆,H,I ) be a tree-generating almost linear second-
order ACG.

(i) We say that G is substructure-k-bounded if S(G , p) ⊆ AL
H(p)
k (∆) for all

atomic types p ∈ AΣ .

(ii) We say that G is context-k-bounded if C(G , p) ⊆ AL
H(p)→o

k (∆) for all atomic
types p ∈ AΣ .

The set of possible k-threshold profiles of elements of S(G , p) or C(G , p) can
easily be computed thanks to Lemmas 5 and 6, so substructure-k-boundedness
and context-k-boundedness are both decidable properties of almost linear
second-order ACGs. Conversely, one can design a substructure-k-bounded al-
most linear ACG by first assigning to each p ∈ AΣ a possible profile set Πp

consisting of profiles of type H(p); then, as the realization H(c) of a constant

c of type p1 → · · · → pn → q, we admit only λ-terms in AL
H(p1→···→pn→q)
k (∆)

that satisfy

H(c)Πp1
. . . Πpn

⊆ Πq , (2)

where MΠ1 . . . Πn = {Mπ1 . . . πn | πi ∈ Πi (i = 1, . . . , n) }. To construct a
context-k-bounded almost linear ACG, we need to assign a possible context
profile set Ξp in addition to Πp to each p ∈ AΣ . The realization H(c) must
satisfy

λx.Ξq(H(c)Πp1
. . . Πpi−1

xΠpi+1
. . . Πpn

) ⊆ Ξpi
(3)

for all i = 1, . . . , n in addition to (2). Note that (2) and (3) are “local” properties
of rules of ACGs. Instead of Definition 2, one may take this local constraint as
a definition of substrucure/context-k-bounded almost linear ACGs.

Example 4. Let G = (Σ,∆,H,I ), where AΣ = {p1, p2, s}, CΣ = {a, b, c1, c2, d1,
d2}, τΣ(a) = p1 → s, τΣ(b) = p2 → p1, τΣ(ci) = pi → pi, τΣ(di) = pi, A∆ = {o},
C∆ = {e, f}, τ∆(f) = o→ o→ o, τ∆(e) = o, I = {s}, H(pi) = (o→ o)→ o→ o,

98



H(s) = o and

H(a) = λx(o→o)→o→o.x(λzo.z)e,

H(b) = λx(o→o)→o→oyo→ozo.x(λwo.y(fww))z,

H(ci) = λx(o→o)→o→oyo→ozo.x(λwo.yw)(fzz),

H(di) = λyo→ozo.y(fzz) .

This grammar is rule-2-bounded and generates the set of perfect binary
trees of height ≥ 1. We have, for example, H(b(c2d2)) ∈ S(G , p1) and
H(λxp2 .a(c1(b(c2x)))) ∈ C(G , p2), and

|H(b(c2d2))|β = λyo→ozo.y(f(f(fzz)(fzz))(f(fzz)(fzz))),

|H(λxp.a(c1(b(c2x))))|β = λx(o→o)→o→o.x(λz.fzz)(f(fee)(fee)).

One can see

prof∞(S(G , p1)) = prof∞(S(G , p2)) = { (λz1yw.y(z1w), (2
n)) | n ≥ 1 } ,

and

prof∞(C(G , p1)) = {(λz1x.x(λw.w)z1, ())} ,

prof∞(C(G , p2)) = {(λz1x.x(λw.w)z1, ()), (λz1z2x.x(λw.z1w)z2, (2), ())} .

The grammar is context-2-bounded, but not substructure-k-bounded for any k.
If a new constant a′ of type p1 → s with H(a′) = λx.x(λz.fzz)e is added to
G , the grammar is not context-2-bounded any more, since |H(λx.a′(bx))|β =
λx(o→o)→o→o.x(λz.f(fzz)(fzz))e ∈ C(G , p2).

3 Extraction of Tree Contexts from Trees

We say that M ∈ ALα(∆) is contained in a tree T if there is an N ∈ ALα→o(∆)
such that NM ։β T . The problem of extracting λ-terms in ALα(∆) contained
in a given tree reduces to the problem of extracting tree contexts from trees.

Explicitly enumerating all tree contexts of type or → o is clearly intractable.
A perfect binary tree with n leaves (labeled by the same constant) contains more
than 2n tree contexts of type o→ o.

It is easy to explicitly enumerate all tree contexts of type or → o that are
k-copying in the sense that each bound variable occurs at most k times. (Just
pick at most rk+ 1 nodes to determine such a tree context.) Hence it is easy to
explicitly enumerate all M ∈ ALα

k (∆) whose stored tree contexts (which are all
k-copying) are contained in a given tree. (Recall that there is a fixed finite set of
candidate containers for each α.) Not all these λ-terms are themselves contained
in T , but it is harmless and simpler to list them all than to enumerate exactly
those λ-terms M ∈ ALα

k (∆) for which there is an N ∈ ALα→o(∆) (which may
not be k-bounded) such that MN ։β T .

99



We consider distributional learners for tree-generating almost linear second-
order ACGs who are capable of extracting k-copying tree contexts from trees.
Such a learner conjectures rule-k-bounded almost linear ACGs, and use only
k-bounded substructures and k-bounded contexts in order to form hypotheses.

4 Distributional Learning of One-Side k-bounded ACGs

We present two distributional learning algorithms, a primal one for the context-
k-bounded almost linear ACGs, and a dual one for the substructure-k-bounded
almost linear ACGs.

In distributional learning, we often have to fix certain parameters that restrict
the class G of grammars available to the learner as possible hypotheses, in order
to make the universal membership problem solvable in polynomial time. This
is necessary since the learner needs to check whether the previous conjecture
generates all the positive examples received so far, including the current one.
In the case of almost linear ACGs, the parameters are the maximal arity n
of the type of abstract constants and the finite set Ω of the possible object
images of abstract atomic types. When these parameters are fixed, the universal
membership problem “T ∈ O(G )?” is in P [7].

In addition to these two parameters, we also fix a positive integer k so that
any hypothesized grammar is rule-k-bounded, for the reason explained in the
previous section. The hypothesis space for our learners is thus determined by
three parameters, Ω,n, k. We write G(Ω,n, k) for the class of grammars deter-
mined by these parameters.

In what follows, we often use sets of profiles or λ-terms inside expressions
that look like λ-terms, as we did in (2) and (3) in Section 2.3.

4.1 Learning Context-k-bounded ACGs with the Finite Kernel

Property

For T ⊆ LNFo
∅
(∆) and R ⊆ ALα(∆), we define the k-bounded context set of R

with respect to T by

Conk(T|R) = {Q ∈ ALα→o
k (∆) | |QR|β ∈ T for all R ∈ R } .

Definition 3. A context-k-bounded ACG G = (Σ,∆,H,I ) is said to have the
profile-insensitive (k,m)-finite kernel property if for every abstract atomic type

p ∈ AΣ , there is a nonempty set Sp ⊆ S(G , p) ∩AL
H(p)
k (∆) such that |Sp| ≤ m

and

Conk(O(G )|Sp) = Conk(O(G )|S(G , p)).

This may be thought of as a primal analogue of the notion of (k,m)-FCP
in [4] for the present case. It turns out, however, designing a distributional learn-
ing algorithm targeting grammars satisfying this definition is neither elegant nor
quite as straightforward as existing distributional algorithms. One reason is that

100



simply validating hypothesized rules against k-bounded contexts (see (1) in Sec-
tion 1) does not produce a context-k-bounded grammar. Recall that to construct
a context-k-bounded grammar, we must fix an assignment of an admissible sub-
structure profile set Πp and an admissible context profile set Ξp to each atomic
type p which restricts the object realizations of abstract constants of each type.
We let our learning algorithm use such an assignment together with finite sets of
k-bounded substructures in constructing grammar rules, and make the valida-
tion of rules sensitive to the context profile set assigned to the “left-hand side”
nonterminal. This naturally leads to the following definition:

Definition 4. A context-k-bounded ACG G = (Σ,∆,H,I ) is said to have
the profile-sensitive (k,m)-finite kernel property ((k,m)-FKPprof) if for every

abstract atomic type p ∈ AΣ , there is a nonempty set Sp ⊆ S(G , p)∩AL
H(p)
k (∆)

such that |Sp| ≤ m and

Conk(O(G )|Sp) ∩ prof−1
k (Ξ) = Conk(O(G )|S(G , p)) ∩ prof−1

k (Ξ) , (4)

where Ξ = profk(C(G , p)). Such a set Sp is called a characterizing substructure

set of p.

Clearly, if a context-k-bounded grammar satisfies Definition 3, then it satis-
fies the (k,m)-FKPprof , so the class of grammars with (k,m)-FKPprof is broader
than the class given by Definition 3. The notion of (k,m)-FKPprof is also mono-
tone in k in the sense that (4) implies

Conk+1(O(G )|Sp) ∩ prof−1
k+1(Ξ

′) = Conk+1(O(G )|S(G , p)) ∩ prof−1
k+1(Ξ

′) ,

where Ξ ′ = profk+1(C(G , p)) = profk(C(G , p)), as long as G is context-k-
bounded. This means that as we increase the parameter k, the class of grammars
satisfying (k,m)-FKPprof monotonically increases. This is another advantage of
Definition 4 over Definition 3.

The polynomial enumerability of the k-bounded λ-terms makes an efficient
primal distributional learner possible for the class of context-k-bounded gram-
mars in G(Ω,n, k) with the (k,m)-FKPprof .

Algorithm Hereafter we fix a learning target T∗ ⊆ LNFo
∅
(∆) which is gen-

erated by G∗ = (Σ,∆,H,I ) ∈ G(Ω,n, k) with the (k,m)-FKPprof . We write
S[Ξ] = Conk(T∗|S) ∩ prof−1

k (Ξ) for a k-bounded profile set Ξ.

For a tree T ∈ LNFo
∅
(∆), let Extαk (T ) = {M ∈ ALα

k (∆) |
−→
M• are contained

in T }. Define

SubΩk (D) =
⋃

{Extαk (T ) | T ∈ D, α ∈ Ω },

GlueΩ,n
k (D) =

⋃

{Ext
α1→···→αj→α0

k (T ) | T ∈ D, αi ∈ Ω for i = 1, . . . , j

and j ≤ n },

ConΩk (D) =
⋃

{Extα→o
k (T ) | T ∈ D, α ∈ Ω }.

101



Algorithm 1 Learning ACGs in G(Ω,n, k) with the (k,m)-FKPprof .

Data: A positive presentation T1, T2, . . . of T∗; membership oracle on T∗;
Result: A sequence of ACGs G1,G2, . . . ;
let D := K := B := F := ∅; Ĝ := G(K,B,F);
for i = 1, 2, . . . do

let D := D ∪ {Ti}; F := ConΩ
k (D);

if D * O(Ĝ ) then

let B := GlueΩ,n

k (D);
let K := SubΩ

k (D);
end if

output Ĝ = G(K,B,F) as Gi;
end for

It is easy to see that H(c) ∈ GlueΩ,n
k (T∗) for all c ∈ CΣ .

Our learner (Algorithm 1) constructs a context-k-bounded ACG Ĝ =

G(K,B,F) = (Γ,∆,J ,J ) from three sets K ⊆ SubΩk (D), B ⊆ GlueΩ,n
k (D)

and F ⊆ ConΩk (D), where D is a finite set of positive examples given to the
learner. As with previous primal learning algorithms, whenever we get a positive
example that is not generated by our current conjecture, we expand K and B,
while in order to suppress incorrect rules, we keep expanding F.

Each abstract atomic type of our grammar is a triple of a subset of K, a
k-threshold profile set, and a k-bounded profile set:

AΓ = { [[S, Π,Ξ]] | S ⊆ K ∩ prof−1
k (Π) with 1 ≤ |S| ≤ m, where for some α ∈ Ω,

Π is a set of k-threshold profiles of type α and

Ξ is a set of k-bounded profiles of type α → o } .

We have |AΓ | ≤ 22ℓ|K|m, where ℓ is the total number of profiles of relevant
types, which is a constant.

The set of distinguished types is defined as

J = { [[S, {(λzo.z)}, {(λyo.y)} ]] ∈ AΓ | S ⊆ T∗ } ,

which is determined by membership queries. Define J ([[S, Π,Ξ]]) to be the type
of the profiles in Π.

We have an abstract constant d ∈ CΓ such that

τΓ (d) = [[S1, Π1, Ξ1]] → · · · → [[Sj , Πj , Ξj ]] → [[S0, Π0, Ξ0]] with j ≤ n ,

J (d) = R ∈ B ,

if

– RΠ1 . . . Πj ⊆ Π0,
– λx.Ξ0(RΠ1 . . . Πi−1xΠi+1 . . . Πj) ⊆ Ξi for i = 1, . . . , j,

– |Q(RS1 . . . Sj)|β ∈ T∗ for all Q ∈ S
[Ξ0]
0 ∩ F and Si ∈ Si for i = 1, . . . , j.

102



The last condition is checked with the aid of the membership oracle.

Lemma 8. We have profk(N) ∈ Π for all N ∈ S(G , [[S, Π,Ξ]]), and

profk(M) ∈ Ξ for all M ∈ C(G , [[S, Π,Ξ]]). The grammar G(K,B,F) is context-
k-bounded.

Lemma 9.

If K ⊆ K′, then O(G(K,B,F)) ⊆ O(G(K′,B,F)).
If B ⊆ B′, then O(G(K,B,F)) ⊆ O(G(K,B′,F)).
If F ⊆ F′, then O(G(K,B,F)) ⊇ O(G(K,B,F′)).

Lemma 10. Let Sp be a characterizing set of each atomic type p ∈ AΣ of the

target grammar G∗. Then Sp ⊆ SubΩk (T∗). Moreover, if Sp ⊆ K for all p ∈ AΣ

and H(c) ∈ B for all c ∈ CΣ, then T∗ ⊆ O(G(K,B,F)) for any F.

We say that an abstract constant d of type [[S1, Π1, Ξ1]] → · · · →
[[Sj , Πj , Ξj ]] → [[S0, Π0, Ξ0]] is invalid if |Q(J (c)S1 . . . Sj)|β /∈ T∗ for some

Q ∈ S
[Ξ0]
0 and Si ∈ Si.

Lemma 11. For every K and B, there is a finite set F ⊆ ConΩk (T∗) of cardi-
nality |B||AΓ |

n+1 such that G(K,B,F) has no invalid constant.

Lemma 12. If G(K,B,F) has no invalid constant, then O(G(K,B,F)) ⊆ T∗.

Theorem 1. Algorithm 1 successfully learns all grammars in G(Ω,n, k) with

the (k,m)-FKPprof .

We remark on the efficiency of our algorithm. It is easy to see that the
description sizes of K and B are polynomially bounded by that of D, and so
is that of Γ . We need at most a polynomial number of membership queries to
construct a grammar. Thus Algorithm 1 updates its conjecture in polynomial
time in ‖D‖. Moreover, we do not need too much data. To make K and B satisfy
the condition of Lemma 10,m|AΣ |+|CΣ | examples are enough. To remove invalid
constants, polynomially many contexts are enough by Lemma 11.

4.2 Learning Substructure-k-bounded ACGs with the Finite

Context Property

For sets T ⊆ LNFo
∅
(∆) and Q ⊆ ALα→o

k (∆), we define the k-bounded substruc-

ture set of Q with respect to T by

Subk(T|Q) = {R ∈ ALα
k (∆) | |QR|β ∈ T for all Q ∈ Q } .

Again, we target grammars that satisfy a property sensitive to profile sets as-
signed to nonterminals:

Definition 5. A substructure-k-bounded ACG G = (Σ,∆,H,I ) is said to
have the profile-sensitive (k,m)-finite context property ((k,m)-FCPprof) if for
every abstract atomic type p ∈ AΣ , there is a nonempty set Qp ⊆ C(G , p) ∩

AL
H(p)→o

k (∆) of k-bounded λ-terms such that |Qp| ≤ m and

Subk(O(G )|Qp) ∩ prof−1
k (Π) = S(G , p) ,

where Π = prof(S(G , p)). We call Qp a characterizing context set of p.

103



Algorithm Our dual learner turns out to be considerably simpler than its
primal cousin. While the primal learner uses two profile sets, the dual learner
assigns just a single profile to each nonterminal. This corresponds to the fact that
the context-profiles play no role in constructing a structure-k-bounded grammar
and that the (k,m)-FCPprof is preserved under the normalization which converts
a grammar into an equivalent one G ′ where profk(S(G

′, p)) is a singleton for
all abstract atomic types p of G ′, where it is not necessarily the case for the
(k,m)-FKPprof .

Hereafter we fix a learning target T∗ ⊆ LNFo
∅
(∆) which is generated by

G∗ = (Σ,∆,H,I ) ∈ G(Ω,n, k) with the (k,m)-FCPprof . We write Q[π] =
Subk(T∗|Q) ∩ prof−1

k (π) for a k-bounded profile π.

Our learner (Algorithm 2) constructs a context-k-bounded ACG Ĝ =

G(F,B,K) = (Γ,∆,J ,J ) from three sets F ⊆ ConΩk (D), B ⊆ GlueΩ,n
k (D),

and K ⊆ SubΩk (D), where D is a finite set of positive examples.

Algorithm 2 Learning ACGs in G(Ω,n, k) with (k,m)-FCPprof

Data: A positive presentation T1, T2, . . . of T∗; membership oracle on T∗;
Result: A sequence of acgs G1,G2, . . . ;
let D := F := B := K := ∅; Ĝ := G(F,B,K);
for i = 1, 2, . . . do

let D := D ∪ {Ti}; K := SubΩ
k (D);

if D * O(Ĝ ) then

let B := GlueΩ,n

k (D);
let F := ConΩ

k (D);
end if

output Ĝ = G(F,B,K) as Gi;
end for

Each abstract atomic type of our grammar is a pair of a finite subset of
F ∩ALα

k (∆) of cardinality at most m and a profile π whose type is α:

AΓ = { [[Q, π]] | π is a k-bounded profile of type α ∈ Ω,

Q ⊆ F ∩ALα→o
k (∆) and 1 ≤ |Q| ≤ m } .

We have |AΓ | ≤ |F|mℓ for ℓ the number of possible profiles. We have only one
distinguished type:

J = { [[{λy.y}, (λzo.z) ]] } .

We define J ([[Q, π]]) to be the type of π.
We have an abstract constant c ∈ CΓ such that

τΓ (c) = [[Q1, π1]] → · · · → [[Qj , πj ]] → [[Q0, π0]] with j ≤ n , J (c) = P ∈ B ,

if

– π0 = Pπ1 . . . πj ,

104



– |Q(PS1 . . . Sj)|β ∈ T∗ for all Q ∈ Q0 and Si ∈ Q
[πi]
i ∩K.

The second clause is checked with the aid of the membership oracle. By the con-

struction, prof(|J (M)|β) ∈ π for every M ∈ LNF
[[Q,π]]
∅

(Γ ). Thus the grammar

Ĝ is substructure-k-bounded.

Lemma 13.

If F ⊆ F′, then O(G(F,B,K)) ⊆ O(G(F′,B,K)).
If B ⊆ B′, then O(G(F,B,K)) ⊆ O(G(F,B′,K)).
If K ⊆ K′, then O(G(F,B,K)) ⊇ O(G(F,B,K′)).

Lemma 14. Let Qp be a characterizing set of each atomic type p ∈ AΣ of the

target grammar G∗. Then Qp ⊆ ConΩk (T∗). Moreover, if Qp ⊆ F for all p ∈ AΣ

and H(c) ∈ B for all c ∈ CΣ, then T∗ ⊆ O(G(F,B,K)) for any K.

We say that an abstract constant c of type [[Q1, π1]] → · · · → [[Qj , πj ]] →

[[Q0, π0]] is invalid if |Q(J (c)S1 . . . Sj)|β /∈ T∗ for some Si ∈ Q
[πi]
i and Q ∈ Q0.

Lemma 15. For every F and B, there is a finite set K ⊆ SubΩk (T∗) of cardi-

nality n|B||AΓ |
n+1 such that G(F,B,K) has no invalid constant.

Lemma 16. If G(F,B,K) has no invalid constant, then O(G(F,B,K)) ⊆ T∗.

Theorem 2. Algorithm 2 successfully learns all grammars in G(Ω,n, k) with

the (k,m)-FCPprof .

A remark similar to the one on the efficiency of Algorithm 1 applies to Algo-
rithm 2.

Acknowledgement

This work was supported in part by MEXT/JSPS Kakenhi (24106010,
26330013) and NII joint research project “Algorithmic Learning of Nonlinear
Formalisms Based on Distributional Learning”.

References

1. Bloem, R., Engelfriet, J.: A comparison of tree transductions defined by monadic
second order logic and by attribute grammars. Journal of Computer and System
Sciences 61, 1–50 (2000)

2. Böhm, C., Coppo, M., Dezani-Ciancaglini, M.: Termination tests inside λ-calculus.
In: Salomaa, A., Steinby, M. (eds.) Automata, Languages and Programming, Lec-
ture Notes in Computer Science, vol. 52, pp. 95–110. Springer Berlin Heidelberg
(1977)

3. Clark, A.: Learning context free grammars with the syntactic concept lattice. In:
Sempere and Garćıa [11], pp. 38–51

4. Clark, A., Yoshinaka, R.: Distributional learning of parallel multiple context-free
grammars. Machine Learning 96(1-2), 5–31 (2014),
http://dx.doi.org/10.1007/s10994-013-5403-2

105



5. Kanazawa, M.: Parsing and generation as Datalog queries. In: Proceedings of the
45th Annual Meeting of the Association for Computational Linguistics. pp. 176–
183. Prague, Czech Republic (2007)

6. Kanazawa, M.: A lambda calculus characterization of MSO definable tree trans-
ductions (abstract). Bulletin of Symbolic Logic 15(2), 250–251 (2009)

7. Kanazawa, M.: Parsing and generation as Datalog query evaluation (2011),
http://research.nii.ac.jp/%7Ekanazawa/publications/pagadqe.pdf

8. Kanazawa, M.: Almost affine lambda terms. In: Indrzejczak, A., Kaczmarek, J.,
Zawidzki, M. (eds.) Trends in Logic XIII. pp. 131–148.  Lódź University Press,  Lódź
(2014)

9. Kasprzik, A., Yoshinaka, R.: Distributional learning of simple context-free tree
grammars. In: Kivinen, J., Szepesvári, C., Ukkonen, E., Zeugmann, T. (eds.) Al-
gorithmic Learning Theory. Lecture Notes in Computer Science, vol. 6925, pp.
398–412. Springer (2011)

10. Salvati, S.: Encoding second order string ACG with deterministic tree walking
transducers. In: Wintner, S. (ed.) Proceedings of FG 2006: The 11th conference
on Formal Grammar. pp. 143–156. FG Online Proceedings, CSLI Publications,
Stanford, CA (2007)

11. Sempere, J.M., Garćıa, P. (eds.): Grammatical Inference: Theoretical Results and
Applications, 10th International Colloquium, ICGI 2010, Valencia, Spain, Septem-
ber 13-16, 2010. Proceedings, Lecture Notes in Computer Science, vol. 6339.
Springer (2010)

12. Yoshinaka, R.: Polynomial-time identification of multiple context-free languages
from positive data and membership queries. In: Sempere and Garćıa [11], pp. 230–
244

13. Yoshinaka, R.: Towards dual approaches for learning context-free grammars based
on syntactic concept lattices. In: Mauri, G., Leporati, A. (eds.) Developments in
Language Theory. Lecture Notes in Computer Science, vol. 6795, pp. 429–440.
Springer (2011)

14. Yoshinaka, R., Kanazawa, M.: Distributional learning of abstract categorial gram-
mars. In: Pogodalla, S., Prost, J.P. (eds.) LACL. Lecture Notes in Computer Sci-
ence, vol. 6736, pp. 251–266. Springer (2011)

106



Between the Event Calculus and Finite State Temporality

Derek Kelleher, Tim Fernando, and Carl Vogel

Trinity College Dublin

Dublin 2, Ireland

kellehdt@tcd.ie

Tim.Fernando@cs.tcd.ie

vogel@cs.tcd.ie

Abstract. Event Calculus formulas dealing with instantaneous and continuous change are translated

into regular languages interpreted relative to finite models. It is shown that a model over the real line

for a restricted class of these Event Calculus formulas (relevant for natural language semantics) can

be transformed into a finite partition of the real line, satisfying the regular languages. Van Lambalgen

and Hamm’s treatment of type coercion is reduced to changes in the alphabet from which the strings

are formed.

Keywords: Event Calculus, Finite State Temporality, Type Coercion

1 Introduction

An important application of the Event Calculus (EC), originally developed by Kowalski and Sergot[14],

has been Lambalgen and Hamm’s treatment of Event Semantics[15](hereafter referred to as VLH). The

EC concentrates on change in time-dependent properties, known as fluents, formalizing both instanta-

neous change (due to punctual events), and continuous change (under some force). The underlying model

is taken to be a continuum, the real line, with a predicate (HoldsAt) interpreting fluents relative to points

(real numbers). This is in contrast to the common practice since Bennett and Partee [3] of evaluating

temporal propositions over intervals.

Another approach to event semantics, which uses finite-state methods, is Finite State Temporality

(FST). In recent years FST has been shown to be applicable to a diverse range of linguistic phenomena,

such as Dowty’s Aktionsart[9]. Strings are taken from an alphabet made up of subsets of a finite set of

fluents (Σ), shown visually as boxes containing the fluents. Intuitively, fluents in the same box hold at

the same time, and fluents in subsequent boxes hold of subsequent times. For example, the event of John

going from his home to the library could be represented as the string:

at(john,home) at(john,library) (1)

the empty box above symbolising that there is an interval of time between John being at home, and being

at the library, with no commitment made to what occurred during this interval. A fuller representation

could add to that box fluents representing John’s journey to the library, and split it into various boxes

representing various stages of this journey.

It should be noted that while both the EC and FST talk of “fluents”, there are some crucial differences

between the two formalisms in their interpretation of this notion. In the EC, a fluent is a “time-dependent

property” in that a fluent holding of an instant indicates that property holds of that instant. For example, if

the fluent “building” holds of time t, then there is some building going on at time t. Events have a different

status, being the entities that initiate or terminate the fluents (cause them to become true or false), and

temporal instants form another ontological category. In FST, “fluents” correspond to EC-fluents, events,

temporal instants, and complex entities built from these. These entities are differentiated by their various



properties. For example, FST-fluents corresponding to events are not homogeneous, they hold only of

particular intervals, and not any subintervals of that interval, whereas FST-fluents corresponding to EC-

fluents are homogeneous.

Arising from the differences between these two formalisms is the question of whether the whole

continuum is needed, or whether some finite representation will suffice for natural language semantics.

Specifically, is anything lost by translating models for EC predicates that deal with instantaneous and con-

tinuous change,with the real line as the domain, into models for FST representations of these predicates,

where the domain is a finite partition of the real line. The FST representations of EC predicates will be

languages whose various strings represent different temporal granularities consistent with the EC pred-

icates. A major advantage of this approach is that entailment can be expressed in terms of set-theoretic

inclusions between languages[7], which is a decidable question for regular languages. Restricting our

representations to regular languages ensures the computability of these entailments.

One application of the EC to event semantics is representing type coercion. Since Vendler[19], it is

common to assign verb phrases or eventualities to certain categories such as “achievement” (punctual with

consequent state), or “activity” (protracted with no associated end point). Under certain circumstances,

however, eventualities typically associated with one category can behave as if in another category. For

example, “sneeze” is usually considered to be a “point” (punctual with no consequent state). However,

when it occurs with the progressive (“John was sneezing”), it can no longer be viewed as a punctual

occurrence and is coerced into an activity (becoming a process of multiple sneezes by iteration).

Taking the concepts of instantaneous and continuous change from the EC, the possibility of repre-

senting type coercion in FST will be explored. The main idea is to associate coercion with a “change in

perspective”, implemented through a change in the alphabet from which strings are drawn.

Section 2 gives a brief introduction to Finite State Temporality. Section 3 will show how models for the

EC-predicates can be translated into models for the FST-languages, and vice-versa. It also will show that if

an EC-model satisfies an EC-predicate, the translated FST-model will satisfy the translated FST-language,

and vice-versa. Section 4 will address type coercion, and will show how this can be implemented in FST

as changes in Σ.

2 Finite State Temporality

Fix a finite set Φ of fluents. The alphabet from which strings are drawn is made up of subsets of Φ:

Σ = 2Φ (2)

For example, if Φ = {f,g}, then Σ = {{}, {f}, {g}, {f, g}}. To emphasise that the elements of this

alphabet are being used as symbols, and to improve readability, the traditional curly brackets are replaced

with boxes enclosing the fluents, with the empty set becoming .

A typical string over this alphabet might be f,g f (instead of {f,g}{}{f}), while a typical lan-

guage might look something like f,g
∗
, consisting of the strings ǫ, f,g , f,g f,g , f,g f,g f,g , etc.

Fernando[9] shows how a set of temporal points can be partitioned into a finite set of intervals, with a

satisfaction relation holding between intervals and fluents. Since the EC takes the positive real line (R+)

as its domain, for the purposes of this paper it is natural to take this as the set of temporal points to be

partitioned. A model for FST consists of a segmentation of R+, and an interpretation function, JKFST ,

mapping a fluent to the set of intervals which satisfy it.

A segmentation is a sequence I = I1 . . . In of intervals such that:

Ii m Ii+1 for 1 ≤ i < n (3)

108



Here, “m” is the relation “meets”, defined by Allen[1] as: A meets B if and only if A precedes B, there

is no point between A and B, and A and B do not overlap. I is a segmentation of I (in symbols: I ր I) if

and only if I =
⋃n

i=1
Ii.

While there are various ways to partition the real line, one particular form of segmentation is espe-

cially useful where the EC is concerned:

[0, b1](a2, b2] . . . (an−1, bn−1](an,∞), where ∀i ai+1 = bi (4)

So [0,b1] includes every point between 0 and b1, including both 0 and b1 (closed at both ends), whereas

(ai,bi] includes every point between ai and bi, including bi, but not ai (open at the beginning, closed at

the end).

The reason for choosing this form of segmentation (where I1 is closed at both ends, but I2, . . ., In
are open at the beginning and closed at the end) is as follows: In FST, one use of fluents is to represent

states (though they can also represent events or “times”, see section 2.1). The interpretation of these stative

fluents will be a set of intervals from the segmentation. Intuitively, if an interval I is in the interpretation of

a fluent f, then f holds across the interval I. Many temporal reasoning problems specify initial conditions:

states or properties which hold at the beginning of time (EC’s Initially predicate). These fluents hold from

time-point 0 onwards, which requires an interval which includes 0 in their interpretation. This interval

will have the form [0,s] for some s ∈ R+.

Other states are “brought into being” by events. The assumption in EC (and common in the literature

[2][11]) is that these states hold after the event, not during it. So, if an event happens at time point ai and

brings a state f into being, then an interval in the interpretation of f will not include ai, but will include

the points after it, giving an interval that is open at the beginning.

If an event at bi causes state f to cease holding, the effect will be seen after bi, meaning that f still

holds at bi but not at any point after. So bi will be in an interval that is in the interpretation of f, and this

interval will be closed at the end. Any fluent caused to hold by an event, and subsequently caused to stop

holding by another event will therefore have an interval that is open at the beginning and closed at the

end in its interpretation (with inertia causing it to hold at all points within the interval).

A satisfaction relation |=FST is defined between fluents and intervals:

I |=FST f ⇐⇒ I ∈ JfKFST (5)

This can be extended to a relation holding between segmentations and strings:

I1 . . . In |=FST α1 . . . αn ⇐⇒ (∀f ∈ αi) Ii |=FST f, for 1 ≤ i ≤ n (6)

and further extended to a relation holding between segmentations and languages:

I1 . . . In |=FST L ⇐⇒ (∃s ∈ L) I1 . . . In |=FST s (7)

2.1 States, Events, and Times

As noted in the introduction, the EC formalises two notions of change, instantaneous change due to

punctual events, and continuous change due to some force. These distinctions may seem more at home in

the field of physics than linguistics but, as will be seen later, linguistic “eventualities” can be represented

as complex sequences of change, both instantaneous and continuous.

Before continuing, some comments must be made on differences between the EC’s and FST’s on-

tologies, and how they are related. In the EC, a distinction is drawn between “fluents”, which are time-

dependent properties that “hold” of time-points, and events, which are punctual entities that “happen” at

109



time-points, causing an instantaneous change by “initiating” (causing to hold), or “terminating” (caus-

ing to cease to hold) fluents. Temporal points make up a third category, represented by the positive real

numbers (and 0).

In FST, the word “fluent” encompasses these three categories, though their fluents have different

properties. Stative fluents represent states/properties. They are homogeneous. A fluent is homogeneous if

for all intervals I and I′ such that I ∪ I′ is an interval:

I |=FST f and I′ |=FST f ⇐⇒ I ∪ I′ |=FST f (8)

Essentially, if a stative fluent holds over an interval, and that interval is split into two intervals, the fluent

will hold over both intervals. If John slept from 2pm to 4pm, then John slept from 2pm to 3pm, and John

slept from 3pm to 4pm (and vice-versa).

Event fluents represent events. Depending on the event they may be homogeneous or “whole”. Fernando[9]

defines a fluent as being whole if for all intervals I and I′ such that I ∪ I′ is an interval:

I |=FST f and I′ |=FST f implies I = I′ (9)

The EC makes use of an explicit timeline, necessitating the use of “temporal fluents” in FST to

represent this timeline. For every possible interval (including points), there is a “temporal fluent” which

marks this interval, i.e. every interval has a fluent whose interpretation is that interval. For simplicity

of presentation, we use the same symbol for the fluent as we use for the interval or the point that it

marks. It should be noted that the interval (a,b] is a complex symbol built from brackets, a comma,

and numbers/variables, while the fluent “(a,b]” is an atomic symbol. This allows statements of the form

{t} |= t to be used.

3 Translating language and models

VLH (p.41) sketch an “intuitively appealing class of models of EC” with domain R+. The interpretation

of fluents is given by the model, and is taken to be a set of intervals of the form (a,b] (a,b ∈ R+), or [0,a]

(a ∈ R+). The intervals are, in a sense, “maximal”. They are the longest contiguous stretches for which f

holds. If an interval is in the interpretation of a fluent f, f will hold for time-point in that interval, but the

time-point itself will not be in the interpretation of f.

It cannot be assumed that all models of the EC give rise to finite segmentations of the real line. VLH

give the example of an initiating event for a fluent f happening a a time t iff t ∈ Q, with terminating events

happening at a time t′ iff t′ ∈ R−Q. This will lead to a fluent varying infinitely between holding and not

holding over any interval, a situation which rules out a finite segmentation.

One necessary condition for there to be a finite segmentation is that each fluent is “alternation bounded”

[8]. Intuitively this rules out the above case of a fluent varying infinitely between holding and not holding

over some interval. We say a fluent is alternation bounded if the set of points or intervals in its extension

(U) is alternation bounded. To define when a set of points U taken from a linear order (T,<) is alternation

bounded, the following notions are useful.

Given a subset U of T , a segmentation of U is a sequence I = I1 · · · In of intervals such that U =⋃n

i=1
Ii and Ii < Ii+1 for 1 ≤ i < n.

A subset I of T is U -homogeneous if

(∃t ∈ I) t ∈ U ⇐⇒ (∀t ∈ I) t ∈ U

— i.e.,

I ⊆ U or I ∩ U = ∅.

110



A U -segmentation is a segmentation I1 · · · In of T such that for all i between 1 and n, Ii is U -homogeneous

and when i < n,

Ii ⊆ U ⇐⇒ Ii+1 ∩ U = ∅.

Given a subset U of T and a positive integer n > 0, an (n,U)-alternation is a string t1t2 · · · tn ∈ T

of length n such that for 1 ≤ i < n, ti < ti+1 and

ti ∈ U ⇐⇒ ti+1 6∈ U.

U is alternation bounded (a.b.) if for some positive integer n, there is no (n,U)-alternation. It will also

be useful to define the equivalence relation

t ∼U t′ ⇐⇒ there is an (n,U)-alternation with both t and t′ only if t = t′

⇐⇒ [t, t′] ∪ [t′, t] is U -homogeneous

Lemma For any subset U of T ,

there is a U -segmentation ⇐⇒ U is a.b.

For ⇒, a U -segmentation of length n implies there can be no (n+1, U)-alternation. Conversely, let n be

the largest positive integer for which there is an (n,U)-alternation. Let t1 · · · tn be an (n,U)-alternation,

and define I1 · · · In by

Ii := {t ∈ T | ti ∼U t}

Then I1 · · · In is a U -segmentation.

As well as the traditional axioms of the EC, VLH include formulas in the EC, together known as a

scenario, which further constrain the possible models. A formula in the scenario with the following form:

S(t) =⇒ Happens(e, t) (10)

where S(t) is a first-order formula built from:

1. literals of the form(¬)HoldsAt(f,t)

2. equalities between fluent terms, and between event terms

3. formulas in the language of the structure (R, <; +,×, 0, 1)

can cause a fluent to vary infinitely, as can be seen in the below example:

HoldsAt(f, t) =⇒ Happens(e1, t+ 1)

¬HoldsAt(f, t) =⇒ Happens(e2, t+ 1)

Initiates(e2, f, t)

Terminates(e1, f, t)

HoldsAt(f, 0)

(11)

Of course, in this particular example, the fluent can only vary infinitely over an interval stretching

to infinity, and while arguments can be made that this is an unrealistic condition for natural language

semantics, the formulation of the EC does allow it.

Due to the inertial axioms, when a fluent is initiated, it holds until it is terminated. An initiating event

has no effect on a fluent that already holds, and similarly, a terminating event has no effect on a fluent that

111



does not hold. It follows that an infinite variation of the holding of a fluent over an interval can only arise

if there is an infinite sequence of alternating initiating and terminating events.

A further necessary condition for there to exist a finite segmentation of an EC-model is that we are

dealing with only a finite number of these alternation bounded fluents. Each of these fluents defines a finite

segmentation, and taking a finite number of these fluents together and intersecting the intervals in their

segmentations gives a finite segmentation. It will be seen in section 4 on type coercion that eventualities

are defined using a finite number of fluents, and type coercion involves adding or removing a finite number

of fluents, allowing us to only deal with finite segmentations. Hereafter, when we refer to an “EC-model”

it is understood we are discussing models consistent with these conditions:

1. The inferences of interest involve only a finite number of fluents.

2. Each fluent is alternation bounded.

An FST-model can be formed from an EC-model as follows:

1. For each fluent f in EC, form JfKEC→FST : I ∈ JfKEC implies (∀I ′ ⊆ I)I ′ ∈ JfKEC→FST

2. Choose a segmentation I of R+

3. Form JfKFST by relativizing JfKEC→FST to I = I1 . . . In : Ii ∈ JfKFST iff Ii ∈ JfKEC→FST .

Only those intervals that are part of the segmentation, I, can be in JfKFST .

An EC-model can be formed from an FST-model as follows:

1. Suppose I ր R+. Find a sequence Ii . . . Ij in I such that for all (i ≤ q ≤ j) Iq ∈ JfKFST , Ii−1 6∈
JfKFST and Ij+1 6∈ JfKFST . This sequence will be the longest unbroken stretch for which f holds.

2. Put I =
⋃j

r=i Ir in JfKEC .

3.1 Initially

In the EC, Initially(f) signifies that the fluent f “was true at the beginning of time” (VLH p.38). It can be

translated as follows:

LInitially(f) = 〈�〉 f
∗

(12)

Every string in this language includes the fluent f in its first box/symbol. Understanding the above

equation requires two definitions:

s ∈ 〈R〉L ⇐⇒ (∃s′ ∈ L) s R s′ (13)

where R is some relation between strings. Every string in 〈R〉L bears the relation R to some string in

L.

� is the relation “subsumes”. If s and s′ are strings, where s = α1 . . . αn and s′ = β1 . . . βk then:

s � s′iff n = k, and for every i, αi ⊇ βi (14)

So every symbol of s contains all the fluents (information) of the corresponding symbol of s′, and

possibly more. Fernando[6] shows that this relation can be computed using finite-state methods.

According to VLH (p.42), a model for Initially(f) will have, in its interpretation of f, an interval that

begins at 0:

Initially := {f |(∃s > 0)[0, s] ∈ JfKEC} (15)

In FST, a model for LInitially(f) is a segmentation of R+, where the first interval is in the interpretation

of f:

112



I1 . . . In ր R+ and I1 ∈ JfKFST (16)

EC→ FST: If there is an EC-model for Initially(f) then, by (15), there is some s∈ R where [0,s]∈
JfKEC . By construction of an FST-model, [0,s] and all its subintervals are in JfKEC→FST . Any segmen-

tation where I1 = [0,r], with r≤s, will have I1 ∈ JfKFST , satisfying (16).

FST→ EC: For an FST-model of LInitially(f) where I1 . . . In ր R+ and I1 ∈ JfKFST there exists some j

with 1<j≤n such that Ij 6∈ JfKFST . By construction of an EC-model, I =
⋃j−1

r=1
Ir ∈ JfKEC . Since I1

is included in I, I begins at 0 and therefore is of the form [0,s] (s ∈ R), which fulfills condition (15).

3.2 Instantaneous Change: Happens and Initiates

When dealing with events and their effects on fluents, some new fluents will prove helpful:

I |=FST )e ⇐⇒ (∀J such that I m J)I 6|=FST f and J |=FST f (17)

(a, b] |=FST 〈end〉t ⇐⇒ {b} |=FST t (18)

(a, b] |=FST 〈start〉t ⇐⇒ {a} |=FST t (19)

The fluent )e is used to mark the end of events. In the EC, events are punctual: they occur at points

(interpreted as real numbers). In FST, events are allowed to occur over intervals. The reason for this will

become clear when type coercion is dealt with. If 〈end〉t holds of an interval, then that interval ends at

the time point t. If 〈start〉t holds of an interval, then that interval starts after the time point t.

The EC treats change due to an event as instantaneous. A fluent initiated by a punctual event holds

AFTER, but not AT, the time at which the event occurs. When moving from punctual events to events that

happen over intervals, a choice must be made as to when the change occurs. In keeping with the EC, FST

formalizes the change as happening after the event ends. Only initiating events are dealt with below, the

definitions for terminating events are broadly similar. Note that the fluents f and )e are linked in that this

particular event initiates the fluent f, other events initiate other fluents.

Happens(e,t), which signifies that event e occurs at time t, can be translated as follows:

LHappens(e,t) = 〈⊒〉 (e
∗

〈end〉t, )e (20)

If s = α1 . . . αn, s ⊒ s′ iff there is some substring r of s, αi . . . αj , and r � s′. (e represents the

start of the event. It cannot be translated from the EC as the EC treats events as punctual. Its purpose in

FST is to allow punctual events to be “stretched” and given an internal structure. It causes no problem in

translations as )e is the necessary fluent to represent instantaneous change.

VLH (p.42) define the extension of Happens as follows:

Happens := {(e, t)|(∃f)(f, t) ∈ e} (21)

In an EC-model, the event e will either initiate or terminate some fluent f. If it is an initiating event

then there must be some s∈ R for which (t,s]∈ JfKEC .

In FST, a model for LHappens(e,t) will be a segmentation I1 . . . In ր R+ with the following conditions:

(∃Ii, Ij)Ii < Ij and Ii |=FST (e and Ij |=FST )e and Ij |=FST 〈end〉t (22)

Note that < is the relation “precedes”. For intervals I and J, I precedes J if its end point is before J’s

start point.

113



Using the convention {t} |=FST t, and the definition of 〈end〉t, then Ij = (aj ,t] for some aj ∈ R.

From the definition of )e, (aj ,t]6|=FST f and (t,bj+1]|=FST f for some bj+1 ∈ R.

EC→ FST: From above (∃ s) (t,s]∈ JfKEC . Because the intervals in the interpretation of fluents are

maximal, there must be an interval (at least a point) that meets (t,s] which is not in the interpretation

of f. Therefore, (r,t] 6∈ JfKEC for some r ∈ R. Constructing an FST-model from this, (t,s] and all its

subintervals are in JfKEC→FST , and there is some q ∈ R for which (q,t] and all its subintervals are not in

JfKEC→FST . An example segmentation would be [0,b1]. . .(q,t](t,s]. . .(an,∞). JfKEC→FST relativized

to this will have (q,t] 6∈ JfKFST , (t, s] ∈ JfKFST satisfying the conditions above with aj = q, and bj+1 =
s. (Again there will be many segmentations of R+ that satisfy this language).

FST→ EC: For an FST-model of LHappens(e,t) where I1 . . . In ր R+ and Ij 6∈ JfKFST and Ij+1 ∈
JfKFST , there exists some r with j+1<r≤n such that Ir 6∈ JfKFST . By construction of an EC-model

I =
⋃r−1

d=j+1
Id ∈ JfKEC . Since Ij+1 is the first interval in I, I is of the form (t,s], satisfying the condition

above for an EC-model.

Initiates(e,f,t) can be translated as follows:

LInitiates(e,f,t) = 〈end〉t, )e =⇒ f (23)

This is encoded as a constraint on strings. The constraint L =⇒ L′ is the set of strings s, such that

every stretch of s that subsumes L also subsumes L′. The notion of “stretched” is formalized as follows:

s′ is a factor of s if s = us′v for some (possibly empty) strings u and v.

s ∈ L =⇒ L′ ⇐⇒ for every factor s′ of s, s′ � L implies s′ � L′ (24)

The constraint for LInitiates(e,f,t) says that every string in this language that has a box containing 〈end〉t
and )e, must contain f in the following box.

An EC-model for Initiates(e,f,t) must have the following condition: (∃s ∈ R)(t, s] ∈ JfKEC .

In FST, a model for LInitiates(e,f,t) will be a segmentation I1 . . . In ր R+ with the following conditions:

(∀Ii, Ij)[Ii m Ij and Ii |=FST )e and Ii |=FST 〈end〉t] −→ Ij |=FST f (25)

EC→ FST: From above (∃ s) (t,s]∈ JfKEC . For the same reason as above for the Happens predicate,

(t,s] and all its subintervals are in JfKEC→FST , and there is some q ∈ R for which (q,t] and all its

subintervals are not in JfKEC→FST . Taking as an example segmentation, [0,b1]. . .(q,t](t,s]. . .(an,∞), the

interval (q,t] meets (t,s], it satisfies 〈end〉t, it also satisfies )e (by definition of )e). Therefore it meets the

conditions of the antecedent of (25), and since it is given that (t,s] ∈ JfKEC , and therefore in JfKFST , the

consequent is also true, fulfilling the conditions for an FST-model.

FST→ EC: Take an FST-model of LInitiates(e,f,t) where I1 . . . In ր R+ and (25) holds. Given that there is

only one interval Ii in this segmentation which satisfies 〈end〉t, and only one interval Ij that it meets, we

can reduce (25) to:

(ai, t] |=FST )e −→ (t, bj ] |=FST f (26)

By definition of )e, (ai,t]6|=FST f. (26) then becomes:

(ai, t] 6|=FST f −→ (t, bj ] |=FST f (27)

114



there exists some r with j+1<r≤n such that Ir 6∈ JfKFST . By construction of an EC-model, I =
⋃r−1

d=j Id ∈ JfKEC . Since Ij+1 is the first interval in I, I is of the form (t,s], satisfying the condition above

for an EC-model.

3.3 Continuous change: Trajectory

Trajectory(f1, t, f2, t+d) signifies that if fluent f1 holds between t and t+d, then fluent f2 will hold at t+d.

In VLH, f2 is generally a real-valued function describing continuous change, so the Trajectory predicate

describes continuous change as long as fluent f1 holds. It can be translated as follows:

LTrajectory(f1,t,f2,t+d) = 〈start〉t, f1 f1
∗

〈end〉t+ d, f1 =⇒
∗
〈end〉f2 (28)

While VLH does not give a model for Trajectory, it is not hard to construct an intuitive model consis-

tent with the other predicates:

Trajectory := {(f1, t, f2, t+d)|(∃a, b ∈ R+)a ≤ t ≤ t+d ≤ b and (a, b] ∈ Jf1KEC −→ (∃I ∈ Jf2KEC)t+d ∈ I}
(29)

A FST-model for LTrajectory(f1,t,f2,t+d) will be a segmentation of R+ with the following conditions:

(∃Ii = (t, bi], Ij = (aj , t+ d])(∀i ≤ p ≤ j)Ip |=FST f1 −→ {t+ d} |=FST f2 (30)

EC→ FST: If the antecedent of (30) is true, then the sequence I1 . . . Ij is part of an unbroken stretch

over which f holds. Let the start and end points of this stretch be a and b from (29). Therefore, (a,b]

∈ JfKEC , fulfilling the antecedent of the conditional contained in (29). Now from the consequent of

(29), there is an interval I ∈ Jf2KEC , so all its subintervals, notably {t+d}, are in Jf2KEC→FST . By

definition of 〈end〉t + d, (aj ,t+d] ∈ J〈end〉f2KEC→FST . Relativized to the segmentation given, (aj ,t+d]

∈ J〈end〉f2KFST . Therefore {t+d}|=FST f2.

FST→ EC: For an FST-model of LTrajectory(f1,t,f2,t+d) where I1 . . . In ր R+ and, supposing the antecedent

contained in (29) is true, (t,bi],(aj ,t+d] and all the intervals between them are in Jf1KFST (by construction

of an FST-model. Therefore, the consequent of (30) is true, so {t+d}|= f2, so {t+d} ∈ Jf2KFST . {t+d} is

either a maximal interval for which f2 holds or is a subinterval of that maximal interval. Either way, there

is some I ∈ Jf2KEC with t+d ∈ I.

While VLH (p.45) require a real-valued function of time in place of f2, and while this can be imple-

mented in FST as long as only a finite number of values from this function are used as fluents, it is not

clear that natural language semantics needs the precision of this real-valued function to address contin-

uous change. As will be seen in the next section, when dealing with type coercions that involve adding

elements to an event structure, it is not always clear in advance what form these elements will have. An

alternative in FST to the above representation of continuous change is as follows:

f1 =⇒ f2↑ (31)

The above essentially says that if f1 is in a box, then f2↑ is in the same box, or as long as f1 holds, f2
is increasing, or moving along some trajectory. For type coercion, it will be useful to have a fluent that

holds when the end of the trajectory is reached, f2,MAX .

These fluents can be interpreted model-theoretically, relative to an underlying function, representing

trajectory or path taken, in the model. This is in line with the approach of Kennedy[13], who propose

115



that the semantics of degree achievements (such as “the soup cooled”) rely on a “difference function”, a

function that measures the amount an object changes along a scalar dimension as a result of participating

in an event. Certain functions describing change will have an end-point or maximum. This may be con-

textualy given, as Fernando[10] assumes, or may be a natural feature of the scale against which change

is measured. Closed scales (such as “smooth”) have a natural maximum, complete smoothness in this

case[18].

3.4 Scenarios

The EC relates instantaneous and continuous change to natural language semantics through scenarios,

which “state the specific causal relationships holding in a given situation” (VLH, p.43). Only the elements

of the a scenario dealing with change will be dealt with here.

A scenario is a conjunct of statements of the form:

1. Initially(f)

2. S(t) → Initiates(e,f,t)

3. S(t) → Terminates(e,f,t)

4. S(t) → Happens(e,t)

5. S(f1,f2,t,d) → Trajectory(f1,t,f2,d)

where S(t) is a conjunction of statements of the form HoldsAt(f,t). Element 5 is referred to as the

“dynamics”, relating fluent f1 (viewed as a force), to the change in f2 (viewed as a changing, partial

object).

As with EC-predicates, each element of an EC-scenario can be translated into FST. If S(t) is not

a part of an element (for instance if one element of the scenario is Initiates(e,f,t), as opposed to S(t) →
Initiates(e,f,t)), then the equivalent element of the FST-scenario is the language given above as equivalent.

If S(t) is part of an element then the equivalent will be a constraint relating fluents holding at a certain time

to the language given above as equivalent. For example, HoldsAt(f,t) → Happens(e,t) can be translated

as follows:

∗

〈end〉 t,〈end〉 f =⇒
∗

(e
∗

)e (32)

For the temporal fluents occurring in a string to have the correct ordering, one further set of constraints

is needed. In an FST-model, every interval is ordered relative to every other interval by the “precedes”

relation (<). A scenario will contain the set of constraints:

∀I, I ′ in an FST-model such that I < I ′ : I’
∗

I =⇒ ∅ (33)

The above constraint says that if, in an FST-model, an interval I precedes an interval I′, then any string

with the fluent I′ preceding I will not be in the language.

4 Type Coercion

Having developed the tools necessary to represent instantaneous and continuous change in FST, these are

now applied to the natural language semantics problem of type coercion.

116



4.1 Eventualities vs. Events

The EC treats “events” as punctual occurrences that cause an instantaneous change (a fluent becomes

initiated or terminated). However, most occurrences described as events have a more complex structure.

Moens and Steedman[16] (hereafter referred to as M&S) have proposed a three-part event structure, called

a “nucleus”, which consists of a preparatory process, a culmination, and a consequent state. They note

that all of these elements can be compound. The culmination “reaching the top of Mt. Everest” may have

a number of processes such as climbing, eating lunch, etc. as part of its preparatory process, and there

may be many consequent states.

Due to this, it is important to note that the discussion of coercion must have a quite general character.

If adding a consequent state to an event structure, the question arises: what or which consequent state?

For this reason, non-specific fluents such as f3, g1 etc. will often be used to describe “sailent’ states or

activities that have been added to an event structure.

The EC implements a similar event structure to that of M&S which they call “eventualities”, having

the following form: (f1,f2,e,f3) where f1 is an activity, f2 is a fluent representing a partial object which

changes under the influence of the activity, e is a culminating event, and f3 is a consequent state.

Different approaches have used different terminologies for what are, essentially, the same categories.

What Vendler[19] called activities, achievements, and accomplishments, M&S call processes, culmina-

tions, and culminated processes respectively.

4.2 Activity ; Accomplishments

VLH (p.171) discuss the case of “additive coercion”, where a scenario is elaborated or added to. Alterna-

tive views of this type of coercion are given by Pulman[17] and M&S. Pulman sees this as supplementing

a process with a consequent state (Pulman does not include culminating events in his ontology). The

activity of “swimming” would have a salient consequent state added, perhaps as general as “has swum”.

M&S propose that the process is bundled into a point, with a new preparatory process and consequent

state added. They cite the example “has John worked in the garden?” as only making sense if John work-

ing in the garden was part of some plan, with the preparatory process being whatever preparation was

involved to work in the garden, the culmination being the working in the garden viewed as a point, and

the consequent state perhaps being “has worked in the garden”.

Both these views can be accounted for in FST. In the first, the activity f1 is augmented with a fluent

representing the change in the partial object (swimming augmented with the trajectory of the swim), a

culminating event (finishing the swim), and a consequent state (has swum). In alphabet terms:

Σ ; Σ′ = Σ ∪ {f2↑, f2,MAX , (e, )e, f3} (34)

The scenario will also have to be augmented with general constraints of the form:

f1 =⇒ f2↑ (35)

f2,MAX =⇒ )e (36)

)e =⇒ f3 (37)

For M&S’s coercion to be implemented, f1, the original activity and internal structure of some event,

is deleted, and fluents representing its start and end points are added, turning it into a point with no internal

structure. A new preparatory process, g1 is added, and a new consequent state, g3. In alphabet terms:

Σ ; Σ′ = Σ ∪ {g1, g2↑, g2,MAX , (e, )e, g3} − {f1} (38)

117



The scenario will be elaborated as follows:

g1 =⇒ g2↑ (39)

g2,MAX =⇒ )e (40)

)e =⇒ g3 (41)

4.3 Achievements ; Accomplishments

As pointed out in M&S, the progressive needs a process (activity), or culminated process (accomplish-

ment) as “input”, so what to make of the following:

John was reaching the top (42)

“Reach the top” is usually seen as a culmination (achievement), punctual with an associated conse-

quent state. The progressive coerces this culmination into a culminated process by adding a preparatory

process, and focussing on this.

For VLH (p.172), the achievement (-,-,e1,f3), where e1 would be the culmination (reaching the top),

and f3 would be the consequent state of this (perhaps being at the top), would be coerced into an ac-

complishment (g1,g2,e2,g3), where g1 and g2 are “unknown parameters”, depending on what preparatory

process is being associated with the culmination. Presumably the culminations and consequent states of

“reach the top” viewed as an achievement and as an accomplishment are the same. The addition of the

fluents representing the preparatory process and changing partial object means a dynamics must be added

to the scenario to relate these fluents.

To account for the addition of a preparatory process, and changing object in FST, the fluents marking

the beginning and ending of events (e and )e are associated with a fluent proge which signifies that the

event in question is ongoing:

I |= proge ⇐⇒ I |= (e or I |=)e or [(∃Ii, Ij)Ii < I < Ij andIi |= (e and Ij |=)e]

This fluent corresponds to g1 from the EC. Its addition to the alphabet of FST will lead to a finer-

grained segmentation, effectively giving the event, previously viewed as punctual, an internal structure.

In alphabetic terms:

Σ ; Σ′ = Σ ∪ {proge, g2↑, g2,MAX , (d, )d, g3} − {f3} (43)

4.4 Accomplishments ; Activities

M&S discuss the case of a culminated process being coerced into a process in the presence of the pro-

gressive:

Roger was running a mile (44)

For this to happen, the culmination and consequent state must be “stripped off”, leaving the prepara-

tory process.

In VLH (p.172), this process is described as subtractive coercion, essentially removing the last two

elements from the event-nucleus, and removing statements relating to the culmination and consequent

118



state from the scenario. The same can be achieved in FST by removing those constraints from the scenario

that “cause” the culminating event to happen at the maximum point in the trajectory of the run, and relate

the consequent state to the occurrence of the culminating event. In alphabetic terms:

Σ ; Σ′ = Σ − {(e, )e, f3} (45)

Another way for this coercion to occur is if the direct object is a mass noun. This would lead to a lack

of end point in the trajectory, perhaps even a lack of trajectory at all.

4.5 Points ; Activities

As noted in M&S, the progressive requires a process as “input”, yet interpretations can be given for:

Harry was sneezing (46)

M&S see this as being coerced by iteration, referring to a number of sneezes, rather than one sneeze.

Both Comrie[4] and Pulman[17] provide another interpretation for this coercion, where what was

viewed as a point is stretched into a process, having internal structure.

VLH (p.175) deal with the first type, viewing it as a change from (-,-,e,-) to (f1,-,-,-) or (f1,f2,-,-).

While the EC needs to coerce an event into an activity fluent (a method for this is provided in [12]), FST

does not face this ontological problem.

Events in FST can be represented by a multitude of fluents, provideing different “perspectives” on

events. Up to now (e)e have been used to mark the start and end points of events, where we were not

concerned with their internal or overall structure. Not representing the internal structure leads to the

events being viewed as points. A fluent representing internal structure can be introduced, and as a fluent

with a model-theoretic definition, there are no ontological obstacles to doing this.

To represent a point-like event being “stretched’ the fluent proge, defined above, is added. This repre-

sents the event in progress as a homogeneous, stative fluent.

To represent iteration, a fluent itere is defined, which holds of any interval if two or more events

happen within that interval. It can be thought of as a homogeneous process. While a particular subinterval

may not contain a sneeze, it is considered part of the process of iteratively sneezing.

I |=FST itere ⇐⇒ (∃Ii < Ij < Ik < Il) Ii |=FST (e and Ij |=FST )e and Ik |=FST (e and Il |=FST )e
(47)

This coercion can be achieved by adding either proge or itere to the alphabet:

Σ ; Σ′ = Σ ∪ {proge} (48)

Σ ; Σ′ = Σ ∪ {itere} (49)

4.6 States ; Activities

Croft[5] gives the following example of a state being coerced into a process:

She is resembling her mother more and more every day (50)

Though the acceptability of this type of coercion varies, VLH (p.173) give an account where a fluent

representing the state “resembles her mother” is coerced into an activity fluent. They argue against co-

ercing the state into the changing partial object, as might be expected given that increasing resemblance

over time could be viewed as a trajectory.

119



Since a state is homogeneous, there are no problems treating it as an activity in FST. Activities and

states are both represented by homogeneous fluents.

The activity fluent, which previously represented a state, must be related to a changing, partial object

(represented by f2) by some constraint set, leading to the crucial difference between “resembles” and “is

resembling more and more”.

5 Conclusion

The Event Calculus differs from other temporal representations by directly formalizing change, both

instantaneous change as a result of events, and continuous change as a result of some constant force.

Section 3 described how EC-predicates can be implemented as regular languages in FST. Furthermore,

it was shown how a model, with a finite segmentation of the real number line as domain, for these FST-

languages, could be formed from a model (with certain conditions excluding those models for which no

finite segmentation exists), with the real number line as domain, for the equivalent EC-predicates. This

shows that if a natural language semantics problem can be described in terms of change (or at least the

kind of change that the EC formalizes), then the full real number line is not needed to model this problem.

Section 4 discusses type coercion, which the EC has been applied to. It is shown how various types

of coercion, implemented in the EC as changes in scenario, or transformations of type (from fluents to

events), can be implemented in FST. Type coercions in FST can be viewed as changes in “focus” or

“perspective”, formalized as changes in the alphabet from which strings are drawn.

120



Bibliography

[1] Allen, J.F.: An interval-based representation of temporal knowledge. In: IJCAI. vol. 1, pp. 221–226

(1981)

[2] Allen, J.F., Ferguson, G.: Actions and events in interval temporal logic. In: Spatial and temporal

Reasoning, pp. 205–245. Springer (1997)

[3] Bennett, M., Partee, B.H.: Toward the logic of tense and aspect in English. Wiley Online Library

(1978)

[4] Comrie, B.: Aspect: An introduction to the study of verbal aspect and related problems. Cambridge

University Press (1976)

[5] Croft, W.: The structure of events. In: Tomasello, M. (ed.) The new psychology of language, chap. 3.

Lawrence Erlbaum Associates (1998)

[6] Fernando, T.: Finite-state temporal projection. In: Implementation and Application of Automata,

pp. 230–241. Springer (2006)

[7] Fernando, T.: Temporal propositions as regular languages. In: Finite-State Methods and Natural

Language Processing, 6th International Workshop. pp. 132–48 (2008)

[8] Fernando, T.: Partitions representing chnage homogeneously. In: Aloni, M., Franke, M., Roelofsen,

F. (eds.) A festschrift for Jeroen Groenendijk, Martin Stokhof, and Frank Veltman, pp. 91–95 (2013)

[9] Fernando, T.: Segmenting temporal intervals for tense and aspect. In: The 13th Meeting on the

Mathematics of Language. p. 30 (2013)

[10] Fernando, T.: Incremental semantic scales by strings. EACL 2014 p. 63 (2014)

[11] Halpern, J.Y., Shoham, Y.: A propositional modal logic of time intervals. Journal of the ACM

(JACM) 38(4), 935–962 (1991)

[12] Hamm, F., van Lambalgen, M.: Nominalization, the progressive and event calculus. Linguistics and

Philosophy 26, 381–458 (2003)

[13] Kennedy, C., Levin, B.: Measure of change: The adjectival core of degree achievements. Adjectives

and adverbs: Syntax, semantics and discourse pp. 156–182 (2008)

[14] Kowalski, R., Sergot, M.: A logic-based calculus of events. In: Foundations of knowledge base

management, pp. 23–55. Springer (1989)

[15] van Lambalgen, M., Hamm, F.: The proper treatment of events. John Wiley & Sons (2005)

[16] Moens, M., Steedman, M.: Temporal ontology and temporal reference. Computational linguistics

14(2), 15–28 (1988)

[17] Pulman, S.G.: Aspectual shift as type coercion. Transactions of the Philological Society 95(2),

279–317 (1997)

[18] Solt, S.: Scales in natural language (2013)

[19] Vendler, Z.: Verbs and times. The philosophical review 66, 143–160 (1957)



A Modal Representation of

Graded Medical Statements

Hans-Ulrich Krieger1 and Stefan Schulz2

1 German Research Center for Artificial Intelligence (DFKI) krieger@dfki.de
2 Institute of Medical Informatics, Medical University of Graz

stefan.schulz@medunigraz.at

Abstract. Medical natural language statements uttered by physicians
are usually graded , i.e., are associated with a degree of uncertainty about
the validity of a medical assessment. This uncertainty is often expressed
through specific verbs, adverbs, or adjectives in natural language. In this
paper, we look into a representation of such graded statements by pre-
senting a simple non-normal modal logic which comes with a set of modal
operators, directly associated with the words indicating the uncertainty
and interpreted through confidence intervals in the model theory. We
complement the model theory by a set of RDFS-/OWL 2 RL-like entail-
ment (if-then) rules, acting on the syntactic representation of modalized
statements. Our interest in such a formalization is related to the use
of OWL as the de facto standard in (medical) ontologies today and its
weakness to represent and reason about assertional knowledge that is
uncertain or that changes over time. The approach is not restricted to
medical statements, but is applicable to other graded statements as well.

1 Introduction & Background

Medical natural language statements uttered by physicians or other health pro-
fessionals and found in medical examination letters are usually graded , i.e., are
associated with a degree of uncertainty about the validity of a medical assess-
ment. This uncertainty is often expressed through specific verbs, adverbs, or
adjectives in natural language (which we will call gradation words). E.g., Dr. X
suspects that Y suffers from Hepatitis or The patient probably has Hepatitis or
(The diagnosis of) Hepatitis is confirmed.
In this paper, we look into a representation of such graded statements by pre-
senting a simple non-standard modal logic which comes with a small set of
partially-ordered modal operators, directly associated with the words indicating
the uncertainty and interpreted through confidence intervals in the model the-
ory. The approach currently only addresses modalized propositional formulae in
negation normal form which can be seen as a canonical representation of natural
language sentences of the above form (a kind of a controlled natural language).
Our interest in such a formalization is related to the use of OWL in our projects
as the de facto standard for (medical) ontologies today and its weakness to rep-
resent and reason about assertional knowledge that is uncertain [15] or that



changes over time [12]. There are two principled ways to address such a restric-
tion: either by sticking with the existing formalism (viz., OWL) and trying to
find an encoding that still enables some useful forms of reasoning [15]; or by
deviating from a defined standard in order to arrive at an easier, intuitive, and
less error-prone representation [12].
Here, we follow the latter avenue, but employ and extend the standard entail-
ment rules from [6] and [18] for positive binary relation instances in RDFS and
OWL towards modalized n-ary relation instances, including negation. These en-
tailment rules talk about, e.g., subsumption, class membership, or transitivity,
and have been found useful in many applications. The proposed solution has
been implemented in HFC [13], a forward chaining engine that builds Herbrand
models which are compatible with the open-world view underlying OWL. The
approach presented in this paper is clearly not restricted to medical statements,
but is applicable to other graded statements as well (including trust), e.g., tech-
nical diagnosis (The engine is probably overheated) or more general in everyday
conversation (I’m pretty sure that X has signed a contract with Y ) which can be
seen as the common case (contrary to true universal statements).

2 Graded Medical Statements: OWL vs. Modalized

Representation

We note here that our initial modal operators were inspired by the qualitative
information parts of diagnostic statements from [15] shown in Figure 1, but
we might have chosen other operators, capturing the meaning of the gradation
words used in the examples at the beginning of Section 1 (e.g., probably).

Fig. 1. Vague schematic mappings of the qualitative information parts excluded (E),
unlikely (U), not excluded (N), likely (L), and confirmed (C) to confidence intervals,
as used in this paper. Figure taken from [15].

These qualitative parts were used in statements about, e.g., liver inflammation
with varying levels of detail. From this, we want to infer that, e.g., if Hepatitis
is confirmed then Hepatitis is likely but not Hepatitis is unlikely . And if Viral
Hepatitis B is confirmed , then both Viral Hepatitis is confirmed and Hepatitis
is confirmed (generalization). Things “turn around” when we look at the adjec-
tival modifiers excluded and unlikely : if Hepatitis is excluded then Hepatitis is
unlikely , but not Hepatitis is not excluded . Furthermore, if Hepatitis is excluded ,

123



then both Viral Hepatitis is excluded and Viral Hepatitis B is excluded (spe-
cialization). The set of plausible entailments for this kind of graded reasoning is
depicted in Figure 2.

Fig. 2. Statements about liver inflammation with varying levels of detail: Viral Hep-

atitis B (vHB) implies Viral Hepatitis (vH) which implies Hepatitis (H). The ma-
trix depicts entailments considered plausible, based on the inferences that follow from
Figure 1. Hepatitis and its subclasses can be easily replaced by other medical situa-
tions/diseases. Figure taken from [15].

[15] consider five encodings (one outside the expressivity of OWL), from which
only two were able to fully reproduce the inferences from Figure 2. Let us quickly
look on approach 1, called existential restriction, before we informally present
its modal counterpart (we will use abstract description logic syntax here [2]):

HepatitisSituation ≡ ClinicalSituation ⊓ ∃hasCondition.Hepatitis

% Hepatitis subclass hierarchy
ViralHepatitisB ⊑ ViralHepatitis ⊑ Hepatitis

% vagueness via two subclass hierarchies
IsConfirmed ⊑ IsLikely ⊑ IsNotExcluded IsExcluded ⊑ IsUnlikely

% a diagnostic statement about Hepatitis
BeingSaidToHaveHepatitisIsConfirmed ≡ DiagnosticStatement ⊓

∀hasCertainty.IsConfirmed ⊓ ∃isAboutSituation.HepatitisSituation

Standard OWL reasoning under this representation then ensures that, for in-
stance,

BeingSaidToHaveHepatitsIsConfirmed ⊑ BeingSaidToHaveHepatitisIsLikely

is the case, exactly one of the plausible inferences from Figure 2.
The encodings in [15] were quite cumbersome as the primary interest was to
stay within the limits of the underlying calculus (OWL). Besides coming up
with complex encodings, only minor forms of reasoning were possible, viz., sub-
sumption reasoning. These disadvantages are a result of two conscious decisions:

124



OWL only provides unary and binary relations (concepts and roles) and comes
up with a (mostly) fixed set of entailment/tableaux rules.
In our approach, however, the qualitative information parts from Figure 1 are
first class citizens of the object language (the modal operators) and diagnos-
tic statements from the Hepatitis use case are expressed through the binary
property suffersForm between p (patients, people) and d (diseases, diagnoses).
The plausible inferences are then simply a byproduct of the instantiation of the
entailment rule schemas (G) from Section 5.1, and (S1) and (S0) from Section
5.2 for property suffersForm (the rule variables are universally quantified; ⊤ =
universal truth; C = confirmed ; L = likely), e.g.,

(S1)⊤ViralHepatitisB(d)∧ViralHepatitisB ⊑ ViralHepatitis → ⊤ViralHepatitis(d)
(G) CsuffersFrom(p, d) → LsuffersFrom(p, d)

Two things are worth to be mentioned here. Firstly , not only OWL-like prop-
erties (binary relations) can be graded, such as CsuffersFrom(p, d) (= it is con-
firmed that p suffers from d), but also class membership (unary relations), e.g.,
CViralHepatitisB(d) (= it is confirmed that d is Viral Hepatitis B). However,
as the original OWL example above is unable to make use of any modals, we
employ a special modal ⊤ here:⊤ViralHepatitisB(d). Secondly , modal operators
are only applied to assertional knowledge, involving individuals (the ABox in
OWL)—neither axioms about classes (TBox) nor properties (RBox) are being
affected by modals, as they are supposed to express universal truth.

3 Confidence of Statements and Confidence Intervals

We address the confidence of an asserted medical statement [15] through graded
modalities applied to propositional formulae: E (excluded), U (unlikely), N (not
excluded), L (likely), and C (confirmed). For various (technical) reasons, we add
a wildcard modality ? (unknown), a complementary failure modality ! (error),
plus two further modalities to syntactically state definite truth and falsity: ⊤
(true) and ⊥ (false). Let △ now denotes the set of all modalities:

△ = {?, !,⊤,⊥, E, U,N,L,C}

A measure function

µ : △ 7→ [0, 1]× [0, 1]

is a mapping which returns the associated confidence interval [l, h] for a modality
from △ (l ≤ h). We presuppose that

• µ(?) = [0, 1] • µ(!) = ∅3 • µ(⊤) = [1, 1] • µ(⊥) = [0, 0]

In addition, we define two disjoint subsets of △, called

• 1 = {⊤, C, L,N} • 0 = {⊥, E, U}

3 Recall that an interval is a set of real numbers, together with a total ordering relation
(e.g., ≤) over the elements, thus ∅ is a perfect, although degraded interval.

125



and again make a presupposition: the confidence intervals for modals from 1 end
in 1, whereas the confidence intervals for 0 modals always start with 0. It is
worth noting that we do not make use of µ in the syntax of the modal language
(for which we employ the modalities from △), but in the semantics when dealing
with the satisfaction relation of the model theory (see Section 4).
We have talked about confidence intervals now several times without saying what
we actually mean by this. Suppose that a physician says that it is confirmed (=
C) that patient p suffers from disease d, given a set of recognized symptoms
S = {s1, . . . , sk}: CsuffersFrom(p, d).
Assuming that a different patient p′ shows the same symptoms S (and only S,
and perhaps further symptoms which are, however, independent from S), we
would assume that the same doctor would diagnose CsuffersFrom(p′, d).
Even an other, but similar trained physician is supposed to grade the two pa-
tients similarly . This similarity which originates from patients showing the same
symptoms and from physicians being taught at the same medical school is ad-
dressed by confidence intervals and not through a single (posterior) probability,
as there are still variations in diagnostic capacity and daily mental state of the
physician. By using intervals (instead of single values), we can usually reach a
consensus among people upon the meaning of gradation words, even though the
low/high values of the confidence interval for, e.g., confirmed might depend on
the context.
Being a bit more theoretic, we define a confidence interval as follows. Assume
a Bernoulli experiment [11] that involves a large set of n patients P sharing
the same symptoms S. W.r.t. our example, we would like to know whether
suffersFrom(p, d) or ¬suffersFrom(p, d) is the case for every patient p ∈ P , shar-
ing S. Given a Bernoulli trials sequence X = 〈x1, . . . , xn〉 with indicator random
variables xi ∈ {0, 1} for a patient sequence 〈p1, . . . , pn〉, we can approximate the
expected value E for suffersFrom being true, given disease d and background
symptoms S by the arithmetic mean A:

E[X] ≈ A[X] =

∑n

i=1 xi

n

Due to the law of large numbers, we expect that if the number of elements in
a trials sequence goes to infinity, the arithmetic mean will coincide with the
expected value:

E[X] = lim
n→∞

∑n

i=1 xi

n

Clearly, the arithmetic mean for each new finite trials sequence is different, but
we can try to locate the expected value within an interval around the arithmetic
mean:

E[X] ∈ [A[X]− ǫ1,A[X] + ǫ2]

For the moment, we assume ǫ1 = ǫ2, so that A[X] is in the center of this interval
which we will call from now on confidence interval .
Coming back to our example and assuming µ(C) = [0.9, 1], CsuffersFrom(p, d)
can be read as being true in 95% of all cases known to the physician, involving

126



patients p potentially having disease d and sharing the same prior symptoms
(evidence) s1, . . . , sk:∑

p∈P Prob(suffersFrom(p, d)|s1, . . . , sk)

n
≈ 0.95

The variance of ±5% is related to varying diagnostic capabilities between (com-
parative) physicians, daily mental form, undiscovered important symptoms or
examinations which have not been carried out (e.g., lab values), or perhaps even
the physical stature of the patient which unconsciously affects the final diagno-
sis, etc, as elaborated above. Thus the individual modals from △ express (via
µ) different forms of the physician’s confidence, depending on the set of already
acquired symptoms as (potential) explanations for a specific disease.

4 Model Theory and Negation Normal Form

Let C denote the set of constants that serve as the arguments of a relation in-
stance. In order to define basic n-ary propositional formulae (ground atoms,
propositional letters), let p(c) abbreviates p(c1, . . . , cn), for some c1, . . . , cn ∈ C,
given length(c) = n. In case the number of arguments do not matter, we some-
times simply write p, instead of, e.g., p(c, d) or p(c). As before, we assume
△ = {?, !,⊤,⊥, E, U,N,L,C}. We inductively define the set of well-formed for-
mulae φ of our modal language as follows:

φ ::= p(c) | ¬φ | φ ∧ φ′ | φ ∨ φ′ | △φ

4.1 Simplification and Normal Form

We now syntactically simplify the set of well-formed formulae φ by restricting
the uses of negation and modalities to the level of propositional letters p and
call the resulting language Λ:

π ::= p(c) | ¬p(c)

φ ::= π | △π | φ ∧ φ′ | φ ∨ φ′ |

To do so, we need the notion of a complement modal δC for every δ ∈ △, where

µ(δC) := µ(δ)
C
= µ(?) \ µ(δ) = [0, 1] \ µ(δ)

I.e., µ(δC) is defined as the complementary interval of µ(δ) (within the bounds
of [0, 1], of course). For example, E and N (excluded, not excluded) or ? and !
(unknown, error) are already existing complementary modals. We also require
mirror modals δM for every δ ∈ △ whose confidence interval µ(δM) is derived
by “mirroring” µ(δ) to the opposite site of the confidence interval, either to the
left or to the right:

if µ(δ) = [l, h] then µ(δM) := [1− h, 1− l]

For example, E and C (excluded, confirmed) or ⊤ and ⊥ (top, bottom) are
mirror modals. In order to transform φ into its negation normal form, we need
to apply simplification rules a finite number of times (until rules are no longer
applicable). We depict those rules by using the ⊢ relation, read as formula ⊢
simplified formula:

127



1. ?φ ⊢ ǫ % ?φ is not informative at all, but its existence should alarm us

2. ¬¬φ ⊢ φ

3. ¬(φ ∧ φ′) ⊢ ¬φ ∨ ¬φ′

4. ¬(φ ∨ φ′) ⊢ ¬φ ∧ ¬φ′

5. ¬△φ ⊢ △Cφ (example: ¬Eφ = Nφ)

6. △¬φ ⊢ △Mφ (example: E¬φ = Cφ)

Clearly, the mirror modals δM are not necessary as long as we explicitly allow
for negated statements, and thus case 6 can, in principle, be dropped.
What is the result of simplifying △(φ ∧ φ′) and △(φ ∨ φ′)? Let us start with
the former case and consider as an example the statement about an engine that
a mechanical failure m and an electrical failure e is confirmed: C(m ∧ e). It
seems plausible to simplify this expression to Cm ∧ Ce. Commonsense tells us
furthermore that neither Em nor Ee is compatible with this description.
Now consider the “opposite” statement E(m ∧ e) which must not be rewritten
to Em ∧Ee, as either Cm or Ce is well compatible with E(m ∧ e). Instead, we
rewrite this kind of “negated” statement as Em ∨ Ee, and this works fine with
either Cm or Ce.
In order to address the other modal operators, we generalize these plausible
inferences by making a distinction between 0 and 1 modals (see Section 3):

7a. 0(φ ∧ φ′) ⊢ 0φ ∨ 0φ′

7b. 1(φ ∧ φ′) ⊢ 1φ ∧ 1φ′

Now let us consider disjunction inside the scope of a modal operator. As we do
allow for the full set of Boolean operators, we are allowed to deduce

8. △(φ ∨ φ′) ⊢ △(¬(¬(φ ∨ φ′))) ⊢ △(¬(¬φ ∧ ¬φ′)) ⊢ △M(¬φ ∧ ¬φ′)

This is, again, a conjunction, so we apply schemas 7a and 7b, giving us

8a. 0(φ∨φ′) ⊢ 0M(¬φ∧¬φ′) ⊢ 1(¬φ∧¬φ′) ⊢ 1¬φ∧1¬φ′ ⊢ 1Mφ∧1Mφ′ ⊢ 0φ∧0φ′

8b. 1(φ∨φ′) ⊢ 1M(¬φ∧¬φ′) ⊢ 0(¬φ∧¬φ′) ⊢ 0¬φ∨0¬φ′ ⊢ 0Mφ∨0Mφ′ ⊢ 1φ∨1φ′

Note how the modals from 0 in 7a and 8a act as a kind of negation to turn the
logical operators into their counterparts, similar to de Morgan’s law.

4.2 Model Theory

In the following, we extend the standard definition of modal (Kripke) frames and
models [3] for the graded modal operators from △ by employing the measure
function µ and focussing on the minimal definition for φ in Λ. A frame F for
the probabilistic modal language Λ is a pair

F = 〈W,△〉

where W is a non-empty set of worlds (or situations, states, points, vertices) and
△ a family of binary relations over W ×W, called accessibility relations. Note
that we have overloaded △ (and each δ ∈ △) in that it refers to the modals used
in the syntax of Λ, but also to depict the binary relations, connecting worlds.

128



A model M for the probabilistic modal language Λ is a triple

M = 〈F ,V, µ〉

such that F is a frame, V a valuation, assigning each proposition φ a subset
of W, viz., the set of worlds in which φ holds, and µ a mapping, returning the
confidence interval for a given modality from △. Note that we only require a
definition for µ in M (the model, but not in the frame), as F represent the
relational structure without interpreting the edge labeling (the modal names) of
the graph.

The satisfaction relation |=, given a model M and a specific world w is induc-
tively defined over the set of well-formed formulae of Λ in negation normal form
(remember π ::= p(c) | ¬p(c)):

1. M, w |= p(c) iff w ∈ V(p(c)) and w 6∈ V(¬p(c))

2. M, w |= ¬p(c) iff w ∈ V(¬p(c)) and w 6∈ V(p(c))

3. M, w |= φ ∧ φ′ iff M, w |= φ and M, w |= φ′

4. M, w |= φ ∨ φ′ iff M, w |= φ or M, w |= φ′

5. for all δ ∈ △: M, w |= δπ iff
#{u|(w,u)∈δ and M,u|=π}

#{u|(w,u)∈δ′ and δ′∈△}
∈ µ(δ)

The last case of the satisfaction relation addresses the modals: for a world w,
we look for the successor states u that are directly reachable via δ and in which
π holds, and divide the number of such states by the number of all worlds that
are directly reachable from w. This number between 0 and 1 must lie in the
confidence interval µ(δ) of δ in order to satisfy δπ, given M, w.

It is worth noting that the satisfaction relation above differs in its handling
of M, w |= ¬p(c), as negation is not interpreted through the absence of p(c)
(M, w 6|= p(c)), but through the existence of ¬p(c). This treatment addresses
the open-world nature in OWL and the evolvement of a (medical) domain over
time.

We also note that the definition of the satisfaction relation for modalities (last
clause) is related to the possibility operators Mk· (= ♦≥k·; k ∈ N) [4] and counting
modalities · ≥ n [1], used in modal logic characterizations of description logics
with cardinality restrictions.

4.3 Well-Behaved Frames

As we will see later, it is handy to assume that the graded modals are arranged
in a kind of hierarchy—the more we move “upwards” in the hierarchy, the more
a statement in the scope of a modal becomes uncertain. In order to address this,
we slightly extend the notion of a frame by a third component � ⊆ △ × △, a
partial order between modalities:

F = 〈W,△,�〉

Let us consider the following modal hierarchy that we build from the set △ of
already introduced modals:

129



!

⊤

⊥

C

E

L

U

N

?

This graphical representation is just a compact way to specify a set of 33 binary
relation instances over △, such as, e.g., ⊤ � ⊤, ⊤ � N , C � N , ⊥ � ?, or ! � ?.
The above mentioned form of uncertainty is expressed by the measure function
µ in that the associated confidence intervals become larger:

if δ � δ′ then µ(δ) ⊆ µ(δ′)

In order to arrive at a proper and intuitive model-theoretic semantics which
mirrors intuitions such as if φ is confirmed (Cφ) then φ is likely (Lφ), we will
focus here on well-behaved frames F which enforce the existence of edges in W,
given � and δ, δ↑ ∈ △:

if (w, u) ∈ δ and δ � δ↑ then (w, u) ∈ δ↑

However, by imposing this constraint, we also need to adapt the last case of the
satisfiability relation:

5. for all δ ∈ △: M, w |= δπ iff
#{u|(w,u)∈δ↑,δ�δ↑, and M,u|=π}

#{u|(w,u)∈δ′ and δ′∈△}
∈ µ(δ)

Not only are we scanning for edges (w, u) labeled with δ and for successor states u
of w in which π holds in the denominator (original definition), but also take into
account edges marked with more general modals δ↑, s.t. δ↑ � δ. This mechanism
implements a kind of built-in model completion that is not necessary in ordinary
modal logics as they deal with only a single relation (viz., unlabeled arcs) that
connects elements from W and the two modals ♦ and � are defined in the usual
dual way: �φ ≡ ¬♦¬φ.

5 Entailment Rules

This section addresses a restricted subset of entailment rules which will unveil
new (or implicit) knowledge from graded medical statements. Recall that these
kind of statements (in negation normal form) are a consequence of the applica-
tion of simplification rules as depicted in Section 4.1. Thus, we assume a pre-
processing step here that “massages” more complex statements that arise from
a representation of graded (medical) statements in natural language. The entail-
ments which we will present in a moment can either be directly implemented
in a tuple-based reasoner, such as HFC, or in triple-based engines (e.g., Jena,
OWLIM) which need to reify the medical statements in order to be compliant
with the RDF triple model.

5.1 Modal Entailments

The entailments presented in this section deal with plausible inference centered
around modals δ, δ′ ∈ △, some of them partly addressed in [15] in a pure OWL
setting. We use the implication sign → to depict the entailment rules

130



lhs → rhs
which act as completion (or materialization) rules the way as described in, e.g.,
[6] and [18], and used in today’s semantic repositories. We sometimes even use
the bi-conditional ↔ to address that the LHS and the RHS are semantically
equivalent, but will indicate the direction that should be used in a practical
setting. As before, we define π ::= p(c) | ¬p(c).
We furthermore assume that for every modal δ ∈ △, a complement modal δC

and a mirror modal δM exist (see Section 4.1).

Lift

(L) π ↔ ⊤π

This rule interprets propositional statements as special modal formulae. It might
be dropped and can be seen as a pre-processing step. We have used it in the
Hepatitis example above. Usage: left-to-right direction.

Generalize

(G) δπ ∧ δ � δ′ → δ′π

This rule schema can be instantiated in various ways, using the modal hierarchy
from Section 4.3; e.g., ⊤π → Cπ, Cπ → Lπ, or Eπ → Uπ. It has been used in
the Hepatitis example.

Complement

(C) ¬δπ ↔ δCπ

In principle, (C) is not needed in case the statement is already in negation
normal form. This schema might be useful for natural language paraphrasing
(explanation). Given △, there are two possible instantiations, viz., Eπ ↔ ¬Nπ

and Nπ ↔ ¬Eπ (note: µ(E) ∪ µ(N) = [0, 1]).

Mirror

(M) δ¬π ↔ δMπ

Again, (M) is in principle not needed as long as the modal proposition is in
negation normal form, since we do allow for negated propositional statements
¬p(c). This schema might be useful for natural language paraphrasing (explana-
tion). For △, there are six possible instantiations, viz., Eπ ↔ C¬π, Cπ ↔ E¬π,
Lπ ↔ U¬π, Uπ ↔ L¬π, ⊤π ↔ ⊥¬π, and ⊥π ↔ ⊤¬π.

Uncertainty

(U) δπ ∧ ¬δπ ↔ δπ ∧ δCπ ↔?π

The co-occurrence of δπ and ¬δπ does not imply logical inconsistency (proposi-
tional case: π ∧ ¬π), but leads to complete uncertainty about the validity of π.
Remember that µ(?) = µ(δ) ∪ µ(δC) = [0, 1] (usage: left-to-right direction):

0 1

µ : |—δC—|——δ——|
π π

131



Negation

(N) δ(π ∧ ¬π) ↔ δπ ∧ δ¬π ↔ δπ ∧ δMπ ↔ δM¬π ∧ δMπ ↔ δM(π ∧ ¬π)

(N) shows that δ(π∧¬π) can be formulated equivalently using the mirror modal:
0 1

µ : |—δM—|——|— δ—|
π ∧ ¬π π ∧ ¬π

In general, (N) is not the modal counterpart of the law of non-contradiction, as
π ∧ ¬π is usually afflicted by vagueness, meaning that from δ(π ∧ ¬π), we can
not infer that π ∧ ¬π is the case for the concrete example in question (recall
the intention behind the confidence intervals; see Section 3). There is one no-
table exception, involving the ⊤ and ⊥ modals. This is formulated by the next
entailment rule.

Error

(E) ⊤(π ∧ ¬π) ↔ ⊥(π ∧ ¬π) → !(π ∧ ¬π)

(E) is the modal counterpart of the law of non-contradiction (recall: ⊤ = ⊥M

and ⊥ = ⊤M). For this reason and by definition, the error (or failure) modal !
from Section 3 comes into play here. The modal ! can serve as a hint to either
stop a computation the first time it occurs or to continue reasoning, but to
syntactically memorize the ground atoms (viz., π and ¬π) which have led to an
inconsistency. Usage: left-to-right direction.

5.2 Subsumption Entailments

As before, we define two subsets of△, called 1 = {⊤, C, L,N} and 0 = {⊥, E, U},
thus 1 and 0 effectively become

1 = {⊤, C, L,N,UC} 0 = {⊥, U,E,CC, LC, NM}

due to the use of complement modals δC and mirror modals δM for every base
modal δ ∈ △ and by assuming that E = NC, E = CM, U = LM, and ⊥ = ⊤M,
together with the four “opposite” cases.
Now let ⊑ abbreviate relation subsumption as known from description log-
ics and realized in OWL through rdfs:subClassOf (class subsumption) and
rdfs:subPropertyOf (property subsumption). Given these remarks, we define
two further very practical and plausible modal entailments which can be seen as
the modal extension of the entailment rules (rdfs9) (for classes) and (rdfs7) (for
properties) in RDFS; see [6].

(S1) 1p(c) ∧ p ⊑ q → 1q(c) (S0) 0q(c) ∧ p ⊑ q → 0p(c)

Note how the use of p and q switches in the antecedent and the consequent, even
though p ⊑ q holds in both cases. Note further that propositional statements
π are restricted to the positive case p(c) and q(c), as their negation in the
antecedent will not lead to any valid entailments. Here are four instantiations of
(S0) and (S1) (remember, C ∈ 1 and E ∈ 0):

132



CViralHepatitisB(x) ∧ ViralHepatitisB ⊑ ViralHepatitis → CViralHepatitis(x)
EHepatitis(x) ∧ ViralHepatitis ⊑ Hepatitis → EViralHepatitis(x)

CdeeplyEnclosedIn(x, y)∧deeplyEnclosedIn ⊑ containedIn → CcontainedIn(x, y)
EcontainedIn(x, y) ∧ superficiallyLocatedIn ⊑ containedIn
→ EsuperficiallyLocatedIn(x, y)

5.3 Extended RDFS & OWL Entailments

In this section, we will consider some of the entailment rules for RDFS [6] and
a restricted subset of OWL [18]. Remember that modals only head literals π,
neither TBox nor RBox axioms. Concerning the original entailment rules, we will
distinguish four principal cases to which the extended rules belong (we will only
consider the unary and binary case here as used in description logics/OWL):

1. TBox and RBox axiom schemas will not undergo a modal extension;
2. rules get extended in the antecedent;
3. rules take over the modal from the antecedent to the consequent;
4. rules aggregate several modals from the antecedent in the consequent.

We will illustrate the individual cases in the following subsections with exam-
ples by using a kind of description logic syntax. Clearly, the set of extended
entailments depicted here is not complete.

Case-1 Rules: No Modals Entailment rule rdfs11 from [6] deals with class
subsumption: C ⊑ D ∧ D ⊑ E → C ⊑ E. As this is a terminological axiom schema,
the rule stays constant in the modal domain. Example:

ViralHepatitisB ⊑ ViralHepatitis ∧ ViralHepatitis ⊑ Hepatitis
→ ViralHepatitisB ⊑ Hepatitis

Case-2 Rules: Modals on LHS, No or ⊤ Modals on RHS The following
original rule rdfs3 from [6] imposes a range restriction on objects of binary ABox
relation instances: ∀P.C ∧ P(x, y) → C(y).
The extended version (which we call Mrdfs3) needs to address the proposition
in the antecedent, but must not change the consequent (even though we always
use the ⊤ modality here for typing; see Section 2):

(Mrdfs3) ∀P.C ∧ δP(x, y) → ⊤C(y)

Example: ∀suffersFrom.Disease ∧ LsuffersFrom(x, y) → ⊤Disease(y)

Case-3 Rules: Keeping LHS Modals on RHS Inverse properties switch
their arguments [18]: P ≡ Q− ∧ P(x, y) → Q(y, x).
The extended version of rdfp8 simply keeps the modal operator:

(Mrdfp8) P ≡ Q− ∧ δP(x, y) → δQ(y, x)

Example: containedIn ≡ contains− ∧ CcontainedIn(x, y) → Ccontains(y, x)

133



Case-4 Rules: Aggregating LHS Modals on RHS Now comes the most
interesting case of modalized RDFS/OWL entailment rules that offers several
possibilities on a varying scale between skeptical and credulous entailments, de-
pending on the degree of uncertainty, as expressed by the measuring function µ

of the modal operator. Consider the original rule rdfp4 from [18] for transitive
properties P: P+ ⊑ P ∧ P(x, y) ∧ P(y, z) → P(x, z).
How does the modal on the RHS of the extended rule look like, depending on
the two LHS modals? There are several possibilities. By operating directly on
the modal hierarchy , we are allowed to talk about, e.g., the least upper bound
or the greatest lower bound of δ and δ′. When taking the associated confidence
intervals into account, we might even play with the low and high number of
the intervals, say, by applying the arithmetic mean or simply by multiplying the
corresponding numbers.
Let us first consider the general rule from which more specialized versions can
be derived, simply by instantiating the combination operator ⊙:

(Mrdfp4) P+ ⊑ P ∧ δP(x, y) ∧ δ′P(y, z) → (δ ⊙ δ′)P(x, z)

Here is an instantiation of Mrdfp4 dealing with the transitive relation contains
from above: Ccontains(x, y) ∧ Lcontains(y, z) → (C ⊙ L)contains(x, z)

What is the result of C ⊙ L here? It depends. Probably both on the applica-
tion domain and the epistemic commitment one is willing to accept about the
“meaning” of gradation words/modal operators. To enforce that ⊙ is at least
both commutative and associative is probably a good idea, making the sequence
of modal clauses order-independent.

5.4 Custom Entailments

Custom entailments are inference rules that are not derived from universal non-
modalized RDFS and OWL entailment rules (Section 5.3), but have been for-
mulated to capture the domain knowledge of experts (e.g., physicians). Here is
an example. Consider that Hepatitis B is an infectious disease

ViralHepatitisB ⊑ InfectiousDisease ⊑ Disease

and note that there exist vaccines against it. Assume that the liver l of patient p
quite hurts (modal C), but p has been definitely vaccinated (modal ⊤) against
Hepatitis B before:

ChasPain(p, l) ∧ ⊤vaccinatedAgainst(p,ViralHepatitisB)

Given that p received a vaccination, the following custom rule will not fire (x
and y below are now universally-quantified variables; z an existentially-quantified
RHS-only variable):

⊤Patient(x) ∧ ⊤Liver(y) ∧ ChasPain(x, y) ∧ UvaccinatedAgainst(x,ViralHepatitisB)
→ NViralHepatitisB(z) ∧ NsuffersFrom(x, z)

Now assume another person p′ that is pretty sure (s)he was never vaccinated:

EvaccinatedAgainst(p′,ViralHepatitisB)

Given the above custom rule, we are allowed to infer that (h instantiation of z)

134



NViralHepatitisB(h) ∧ NsuffersFrom(p′, h)

The subclass axiom from above thus assigns

N InfectiousDisease(h)

so that we can query for patients for whom an infectious disease is not unlikely ,
in order to initiate appropriate methods (e.g., further medical investigations).

6 Related Approaches and Remarks

It is worth noting to state that this paper is interested in the representation of
and reasoning with uncertain assertional knowledge, and neither in dealing with
vagueness found in natural language (very small), nor in handling defaults and
exceptions in terminological knowledge (penguins can’t fly).
To the best of our knowledge, the modal logic presented in this paper uses
for the first time modal operators for expressing the degree of (un)certainty of
propositions. These modal operators are interpreted in the model theory through
confidence intervals, by using a measure function µ. From a model point of view,
our modal operators are related to counting modalities ♦≥k [4, 1]—however, we
do not require a fixed number k ∈ N of reachable successor states (absolute
frequency), but instead divide the number of worlds v reached through label
δ ∈ △ by the number of all reachable worlds, given current state w, yielding
0 ≤ p ≤ 1. This fraction then is further constrained by requiring p ∈ µ(δ)
(relative frequency), as defined in case 5. of the satisfaction relation in Sections
4.2 and 4.3.

As [20] precisely put it: “... what axioms and rules must be added to the proposi-
tional calculus to create a usable system of modal logic is a matter of philosoph-
ical opinion, often driven by the theorems one wishes to prove ...”. Clearly, the
logic Λ is no exception and its design is driven by commonsense knowledge and
plausible inferences, we try to capture.
Our modal logic can be regarded as an instance of the normal modal logic
K := (N) + (K) when identifying the basic modal operator � with the modal
⊤ (and only with ⊤) and by enforcing the well-behaved frame condition from
Section 4.3. Given � ≡ ⊤, Λ then includes the necessitation rule (N) p → ⊤p

and the distribution axiom (K) ⊤(p → q) → (⊤p → ⊤q) where p, q being special
theorems in Λ, viz., positive and negative propositional letters.
(N) can be seen as a special case of (L), the Lift modal entailment (left-to-
right direction) from Section 5.1. (K) can be proven in Λ by choosing ⊤ ∈ 1
in simplification rule 8b (Section 4.1) and by instantiating (G), the Generalize
modal entailment (Section 5.1), together with the application of the tautology
(p → q) ⇔ (¬p ∨ q):

⊤(p → q) → (⊤p → ⊤q)

⊤(¬p ∨ q) → (¬⊤p ∨ ⊤q)

(⊤¬p ∨ ⊤q) → (¬⊤p ∨ ⊤q)

⊤¬p → ¬⊤p

⊥p → ⊤Cp

135



The final simplification at which we arrive is valid, since ⊥ � ⊤C:

µ(⊥) = [0, 0] ⊆ [0, 1) = µ(⊤C)

Again, through (L) (right-to-left direction), Λ also incorporates the reflexivity
axiom (T ) ⊤p → p making Λ (at least) an instance of the system T. However,
this investigation is in a certain sense useless as it does not address the other
modals: almost always, neither (N), (K), nor (T ) hold for modals from △. Thus,
we can not view Λ as an instance of a poly-modal logic.

Several approaches to representing and reasoning with uncertainty have been in-
vestigated in Artificial Intelligence (see [14, 5] for two comprehensive overviews).
Very less so has been researched in the Description Logic community, and lit-
tle or nothing of this research has find its way into implemented systems. [7]
and [8] consider uncertainty in ALC concept hierarchies, plus concept typing of
individuals (unary relations) in different ways (probability values vs. intervals;
conditional probabilities in TBox vs. ABox). They do not address uncertain
binary (or even n-ary) relations. [19] investigates vagueness in ALC concept
descriptions to address statements, such as the patient’s temperature is high,
but also for determining membership degree (38.5 ℃ ). This is achieved through
membership manipulators which are functions, returning a truth value between
0 and 1, thus deviating from a two-valued logic. [17] defines a fuzzy extension
of ALC, based on Zadeh’s fuzzy logic. As in [19], the truth value of an asser-
tion is replaced by a membership value from [0, 1]. ALC assertions α in [17] are
made fuzzy by writing, e.g., 〈α ≥ n〉, thus taking a single truth value from [0, 1].
An even more expressive description logic, Fuzzy OWL, based on OWL DL, is
investigated in [16].
Our work might be viewed as a modalized version of a restricted fragment of
Subjective Logic [9, 10], a probabilistic logic that can be seen as an extension of
Dempster-Shafer belief theory. Subjective Logic addresses subjective believes by
requiring numerical values for believe b, disbelieve d, and uncertainty u, called
(subjective) opinions. For each proposition, it is required that b + d + u = 1.
The translation from modals δ to 〈b, d, u〉 is determined by the length of the
confidence interval µ(δ) = [l, h] and its starting/ending numbers, viz., u := h− l,
b := l, and d := 1− h.

Acknowledgements

The research described in this paper has been co-funded by the Horizon 2020
Framework Programme of the European Union within the project PAL (Personal
Assistant for healthy Lifestyle) under Grant agreement no. 643783. The authors
have profited from discussions with our colleagues Miroslav Jańıček and Bernd
Kiefer and would like to thank the three reviewers for their suggestions.

References

1. Areces, C., Hoffmann, G., Denis, A.: Modal logics with counting. In: Proceedings of
the 17th Workshop on Logic, Language, Information and Computation (WoLLIC).
pp. 98–109 (2010)

136



2. Baader, F.: Description logic terminology. In: Baader, F., Calvanese, D., McGuin-
ness, D., Nardi, D., Patel-Schneider, P. (eds.) The Description Logic Handbook,
pp. 495–505. Cambridge University Press, Cambridge (2003)

3. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in The-
oretical Computer Science, Cambridge University Press, Cambridge (2001)

4. Fine, K.: In so many possible worlds. Notre Dame Journal of Formal Logic 13(4),
516–520 (1972)

5. Halpern, J.Y.: Reasoning About Uncertainty. MIT Press, Cambridge, MA (2003)
6. Hayes, P.: RDF semantics. Tech. rep., W3C (2004)
7. Heinsohn, J.: ALCP – Ein hybrider Ansatz zur Modellierung von Unsicherheit in

terminologischen Logiken. Ph.D. thesis, Universität des Saarlandes (Jun 1993), in
German

8. Jaeger, M.: Probabilistic reasoning in terminological logics. In: Proceedings of the
4th International Conference on Principles of Knowledge Representation and Rea-
soning (KR). pp. 305–316 (1994)

9. Jøsang, A.: Artificial reasoning with subjective logic. In: Proceedings of the 2nd
Australian Workshop on Commonsense Reasoning (1997)

10. Jøsang, A.: A logic for uncertain probabilities. International Journal of Uncertainty,
Fuzzyness and Knowledge-Based Systems 9(3), 279–311 (2001)

11. Krengel, U.: Einführung in die Wahrscheinlichkeitstheorie und Statistik. Vieweg,
7th edn. (2003), in German

12. Krieger, H.U.: A temporal extension of the Hayes/ter Horst entailment rules and an
alternative to W3C’s n-ary relations. In: Proceedings of the 7th International Con-
ference on Formal Ontology in Information Systems (FOIS). pp. 323–336 (2012)

13. Krieger, H.U.: An efficient implementation of equivalence relations in OWL via rule
and query rewriting. In: Proceedings of the 7th IEEE International Conference on
Semantic Computing (ICSC). pp. 260–263 (2013)

14. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Francisco, CA, MA (1988)

15. Schulz, S., Mart́ınez-Costa, C., Karlsson, D., Cornet, R., Brochhausen, M., Rector,
A.: An ontological analysis of reference in health record statements. In: Proceedings
of the 8th International Conference on Formal Ontology in Information Systems
(FOIS 2014) (2014)

16. Stoilos, G., Stamou, G.B., Tzouvaras, V., Pan, J.Z., Horrocks, I.: Fuzzy OWL:
uncertainty and the semantic web. In: Proceedings of the OWLED ’05 Workshop
on OWL: Experiences and Directions (2005)

17. Straccia, U.: Reasoning within fuzzy description logics. Journal of Artificial Intel-
ligence Research 14, 147–176 (2001)

18. ter Horst, H.J.: Completeness, decidability and complexity of entailment for RDF
Schema and a semantic extension involving the OWL vocabulary. Journal of Web
Semantics 3, 79–115 (2005)

19. Tresp, C.B., Molitor, R.: A description logic for vague knowledge. In: Proceedings
of the 13th European Conference on Artificial Intelligence (ECAI). pp. 361–365
(1998)

20. Wikipedia: Modal logic — Wikipedia, The Free Encyclopedia (2015),
https://en.wikipedia.org/wiki/Modal logic, [Online; accessed 19-June-2015]

137



Bias in Japanese Polar Questions from

Constraints on Commitment Spaces

Lukas Rieser

Kyoto University

Abstract. Since Ladd’s [9] observations on inner and outer readings of
negation in polar questions, two kinds of bias arising from (negative) po-
lar questions have been distinguished: first, a polar question can convey a
previous assumption of the speaker; second, the felicity of polar questions
depends on the presence or absence of evidence for or against its propo-
sition. To account for bias, outer negation has been analyzed as scoping
over verum-focus [12] and as speech-act negation triggering a request-
reading [8]. In this paper, we focus on Japanese polar questions and argue
for a finer-grained classification than in previous research, taking their
intonation [7] and structure into account. We argue that no-attachment
(similar to English rising declaratives [3]) as well as speech-act negation
give rise to a request-reading from which we attempt to derive observed
bias patterns.

The paper is organized as follows: section one gives an overview of the negation
and bias patterns of English polar questions. Section two gives an overview of
Japanese polar questions including the role of accented and unaccented negation,
proposing a finer-grained classification than in previous research, and arguing for
two distinct positions at which outer negation enters the derivation. In section
three, we lay out a proposal for analyzing some Japanese polar questions as
request-speech acts, similar to rising declaratives and English polar questions
with preposed negation. From this analysis, we attempt to derive their bias
conditions in section four.

1 English polar questions

1.1 Negation patterns

In the literature on English polar questions, inner and outer or negation have
been distinguished in at least two ways. First, negation can be interpreted inside
or outside the predicate, which can be tested for by addition of polarity items.
Second, negation can be realized on the main verb or on the auxiliary (preposed
negation).

Three types of English polar questions have been distinguished: positive polar
questions (PPQs), inner negation polar questions (INPQs), and outer negation
polar questions (ONPQs). The latter two are distinguished by whether or not



negation is interpreted inside or outside the predicate, the first criterion. INPQs
can be further divided into such with and without preposed negation, the second
criterion which is not considered by all authors.

1.2 Bias patterns

C-bias The contextual bias (C-bias) pattern of an utterance of a proposition
ϕ is determined by its felicity in utterance contexts which are positively bi-
ased, negatively biased, and neutral relative to ϕ. A context is biased relative
to a proposition when there is evidence for ϕ or ¬ϕ. Büring and Gunlogson
[1], from where the following examples and judgments have been adapted, de-
fine whether a context is biased or neutral based on “compelling contextual
evidence”, i.e. information which has just become available in the utterance sit-
uation and from which, considered in isolation, one can be conclude that ϕ or ¬ϕ
holds. It is important to note that this is different from one of the alternatives
being more salient, as there are cases where there is no compelling contextual
evidence, but where the speaker is e.g. for some reason more interested in the
negated proposition then the non-negated proposition. We will illustrate such a
case with examples (8) and (9) below.

For the bias patterns of English polar questions, consider A’s utterances
(1) to (3), which set up neutral, negative, and positive contexts relative to the
proposition “there is a vegetarian restaurant around here”. The results of judging
the acceptability of the PPQ in (4), the ONPQ in (5), and the INPQ1 in (6)
against the three contexts are summarized in (7).

(1) A: Where do you want to go for dinner? (Neutral context)

(2) A: I bet we can find any type of restaurant in this city! (Positive context)

(3) A: Since you are vegetarians, we can’t go out in this town.(Negative context)

(4) S: Is there a vegetarian restaurant around here? (PPQ)

(5) S: Isn’t there some vegetarian restaurant around here? (ONPQ)

(6) S: Isn’t there any vegetarian restaurant around here? (INPQ)

(7)

Context:
neutral positive negative S-bias

PPQ X X # no
ONPQ X # X yes
INPQ # # X yes

According to these results, English PPQs are good in all but negative contexts,
ONPQs in all but positive contexts, and INPQs in negative contexts only. How-
ever, as example (8) below demonstrates, INPQs can be good in neutral contexts
if the negative alternative is more salient2, which differs from a negative context

1 Changed to preposed negation from the original example, where negation is in situ,
in order to focus on high vs. low negation as disambiguated by the polarity items.

2 In a footnote, Büring and Gunlogson [1] note that the more marked morphological
form of negation could be the cause of a preference for PPQs in neutral contexts.

139



in the narrow sense, as there is no direct evidence for the truth of the ¬ϕ. In
any case, there is a clear divide when looking at biased contexts: INPQs and
ONPQs are good in negative contexts, PPQs in positive ones.

S-bias An utterance of a proposition ϕ has S-bias when it conveys a previous
belief of the speaker that ϕ holds. This can be determined by testing whether
or not the utterance is felicitous in a scenario which supposes that the speaker
is neutral,i.e. has no previous assumptions regarding the truth of ϕ. In English
polar questions, the former arises from negation preposing, as this example from
Romero and Han [12] shows:

[S hates Pat and Jane. As far as S knows, either of them may or may not be coming.]

A: Pat is not coming.

(8) S: Great! Is Jane not coming either?

(9) S: #Great! Isn’t Jane coming either?

(8) and (9) are both polar questions with inner negation as evidenced by the
NPI either. The difference is that negation in (8) is in situ, while negation in
(9) is preposed, i.e., realized on the auxiliary instead of the main verb, thus
syntactically outside the predicate. In the given scenario, which has it that S is
neutral in the sense of having no previous assumptions relative to the proposition
“Jane is coming”, (9) is bad, but (8) is good. From this, Romero and Han
conclude that only preposed negation gives rise to obligatory S-bias.

However, in a scenario without A’s preceding utterance or the information
that S hates Jane, (8) can also give rise to S-bias, as the negative alternative
is not made salient. We call this “circumstantial”, as opposed to “obligatory”
S-bias, as it is a pragmatic effect of using a negative question when the positive
alternative is more salient (which is the default case).

Next, ONPQs always have obligatory S-bias due to preposed negation,3 while
PPQs do not as they have no negation in the first place. Summarizing, INPQs
with in situ-negation have only circumstantial, INPQs with preposed negation
and ONPQs obligatory, and PPQs no S-bias.

2 Japanese polar questions

2.1 Negation patterns

Negation patterns of Japanese polar questions differ slightly from English ones;
in addition to the distinction of inner vs. outer negation testable by the addition
of polarity items to the predicate, a distinction of inner vs. outer negation is pos-
sible by prosody. In this section, we summarize Sudo’s [13] observations on bias

3 This predicts that examples with syntactically inner, high negation like ?“Is Jane
not coming, too?”, if they are possible at all, do not have obligatory S-bias.

140



patterns of Japanese polar question and their interaction with no-attachment,
followed by Ito and Oshima [7]’s observations on the connection between into-
nation and bias patterns. Combining both of them will allow for a finer-grained
classification of Japanese polar questions.

2.2 Bias patterns and no-attachment

C-bias The C-bias patterns of the Japanese polar questions according to Sudo
[13] are summarized in (12). Examples of an ONPQ and an INPQ are shown
in (10) and (11), respectively. Note that in both examples, negation is in situ.
The PPI dareka (“someone”) disambiguates towards outer, the NPI daremo
(“anyone”) towards inner negation.

(10) Dareka hokani konai?
someone else come.neg
“Isn’t someone else coming?”

(11) Daremo hokani konai?
anyone else come.neg
“Isn’t anyone else coming?”

(12)

Context:
neutral positive negative S-bias

PPQ X # # no
ONPQ X X # yes
INPQ # # X no

PPQ-no # X # no
ONPQ-no X X X yes
INPQ-no # # X yes

(12) shows the bias pattern of polar questions without and with sentence-final
attachment of a particle no4 According to these results, no-attachment influences
acceptability as follows:

– No is required for PPQs to be acceptable in positive contexts.
– No is required for ONPQs to be acceptable in negative contexts.
– No has no apparent effect on the C-bias pattern of INPQs.

Regarding the last point, we will argue, similar to the observations by Romero
and Han [12] about English INPQs, that Japanese INPQs without no-attachment
can also be good in neutral contexts given that the negative alternative is made
sufficiently salient, based on example (15) due to Ito and Oshima [7].

4 This particle no is structurally distinct form the previously mentioned morpheme
no separating negation and the predicate in that it serves no such purpose. It has
been analyzed as an evidential marker, which we will briefly discuss later.

141



S-bias Sudo reports S-bias of Japanese polar questions to be similar to that
of English ones, i.e.PPQs do not have S-bias and ONPQs have obligatory S-
bias. The only difference is that Japanese INPQs only show S-bias when no
is attached. We will argue that outer negation gives rise to S-bias in Japanese
polar questions, and that, again similar to English INPQs, S-bias in Japanese
no-INPQs is likely circumstantial.

2.3 Bias patterns and prosody

In this section, we discuss two distinct prosodic realizations of negation in po-
lar questions which we will show are associated with high and low negation.
The negation morpheme nai has lexical accent, that is an H*+L pitch accent
(cf.Venditti [14]) with an f0 peak during the first mora na and a fall in f0 on the
second mora i. When negation is realized on the main verb, the lexical accent
of negation is incorporated into the main verb. We will conclude that negation
can only be accented when interpreted inside of the predicate, while outside of
the predicate, both accented and unaccented negation occur.

Prosody of inner and outer negation Ito and Oshima [7] observe that in
negative polar questions from adjectival predicates, lexical accent of negation
can be suppressed, resulting in two prosodic patterns: accented and unaccented
negation. They label these the NN (neutral/negative) and the P (positive) pat-
tern, respectively, in terms of “epistemic bias”, while not explicitly differentiating
between bias due to contextual evidence (C-bias) and previous assumptions by
the speaker (S-bias).5

(13) and (14) show a minimal pair of a negative polar question from a pred-
icate amai (“be sweet”) with and without lexical accent on negation, adapted
from Ito and Oshima [7]. We indicate the pitch accent on nai as “H*+L” for the
accented, as “0” for the unaccented version.

[Scenario: S has heard oranges are sweet this year, A is eating one.]

(13) S: amaku- [0 nai]?
sweet- neg

“Isn’t it sweet?”

[Scenario: S sees A, who is eating an orange, make a grimace.]

(14) S: amaku- [H*+L nai]?
sweet- neg

“Is it not sweet?”

5 In Hwang and Ito [6], experimental results are shown where positive S-bias, with or
without positive evidence, is associated with unaccented negation, and neutral and
negative contexts with accented negation.

142



The bias patterns of the negative polar questions (13) and (14) correspond
to INPQs and ONPQs, respectively. In (14), the context is negatively biased as
evidence in form of A’s grimace has just come to the speaker’s attention. Thus,
considering Sudo’s observations summarized above, (14) has the bias pattern of
an INPQ which are good in negative contexts, in contrast to ONPQs (without
no-attachment). Conversely, the context for (13) is neutral and the speaker has
a previous expectation that oranges are sweet. As ONPQs, but not INPQs, are
good in neutral contexts and ONPQs, but not INPQs have S-bias without no-
attachment, (13) has the bias pattern of an ONPQ.

Unaccented negation in neutral contexts Parallel to the observations on
English INPQs by Romero and Han [12], accented negation can occur in certain
neutral contexts, given a scenario which makes the negated alternative more
salient without providing contextual evidence for it, as in this example, again
from Ito and Oshima [7]:

[S is looking for non-sweet Sake, A is helping.]

A: Kore to kore-wa amakunai.

(15) S: Kore-wa? Amaku- [H*+L nai]?
this-top sweet- neg

“And this one? Is it not sweet [either]?”

This example illustrates a similar point for the C-bias pattern of Japanese po-
lar questions as (8) does for English ones: given the right utterance situation,
Japanese INPQs can be good in neutral contexts.

2.4 Prosody and outer negation

So far, we have observed that inner negation is associated with accented negation,
outer negation with unaccented negation. However, as we will discuss in the next
section, outer negation can occur with both accented and unaccented negation.
In order to keep the prosodic distinction distinct from the structural one, we will
also refer to unaccented negation as 11high”, and to accented negation as “low”
negation, while referring to negation interpreted inside the predicate as “inner”,
outside the predicate as “outer” negation.

Syntactically outer negation Negation in Japanese polar questions can occur
on a copula separated from the predicate by a morpheme n(o), akin to English
“...isn’t it?” tag-questions, but also similar to preposed negation in that there is
no prosodic break between the main verb and the copula on which negation is
realized. We will refer to this as “syntactically outer negation”. Ito and Oshima
[7] report that in such constructions, accented (thus low) negation is degraded,
i.e., a high negation reading is strongly preferred. (16) shows a version with
syntactically outer negation of Sudo’s example for an ONPQ in (10).

143



(16) Dareka hokani kuru n ja- [{0/#H*+L} nai?]
someone else come no cop neg

“Isn’t someone else coming?”

There are significant differences in usage between polar questions with syntacti-
cally outer negation and OPNQs with main verb negation. For instance, (16) can
be uttered with final falling intonation, in which case it does not have interrog-
ative force,6 which is not possible with (10). However, we assume that negation
is interpreted in the same structural position in both kinds of questions. This
is supported by the facts that there is a PPI dareka within the predicate and
that accented negation is degraded in both, which points to high, outer nega-
tion. Furthermore, they have the same C-bias conditions, both being degraded
in negatively biased contexts.

No-attachment and accented negation Ito and Oshima [7] further observe
that when no attaches to an ONPQ with syntactically outer negation, accented
negation becomes possible as in (17), a version of (16) with no-attachment.

(17) Dareka hokani kuru n ja[{0/H*+L}nai] no?
someone else come no cop.neg no
“Isn’t someone else coming?”

The availability of accented negation in (17) poses a problem for the dual split
into high and outer vs. low and inner negation, as the PPI and negation being
realized outside the predicate point towards outer negation, but negation can
be accented, which is associated with low negation. We will claim that there are
two structual positions for outer negation, of which accented negation in (17) is
the lower, unaccented negation the higher one.

2.5 Additional types of polar questions

The accent pattern observed in (17) carries over to ONPQs with main verb
negation and no-attachment:

(18) S: Dareka hokani [{0/H*+L} konai] no?
someone else come.neg no

“Isn’t someone else coming?”

With accented negation, the question in (18) is good in negative contexts, such
as the one set up by the A’s utterance in (19), given that A knows who will be
coming to the meeting.

(19) A: We are all here now. Shall we begin the meeting?

6 (16) with a final fall is an assertion with an additional expressive meaning that is
outside the scope of this paper to discuss.

144



Conversely, in positive and neutral contexts, unaccented negation is preferred.
We conclude that negative contexts require accented negation in Japanese po-
lar questions, and propose the following, more fine-grained categorization of
Japanese polar questions given alongside their C-bias patterns:

(20)

neg Context:
accented neutral positive negative

PPQ n/a X # #
PPQ-no n/a # X #
ONPQ(-no) no X X #
ONPQ-no yes # # X

INPQ(-no) yes ∼ # X

Table (20) reflects the observation that negative polar questions can be good in
neutral contexts as well, but only in a limited number of scenarios (symbolized
by “∼”) in which the negative alternative is made more salient. It also shows
the two types of ONPQs with unnacented (high) and accented (low) negation,
respectively.

2.6 Structural positions for negation

In the previous section, we have shown that when no-attaches to an ONPQ,
negation can be accented, but outside of the predicate. In order to explain this
data point, we will argue that:

– Accented (low) negation is propositional negation,
unaccentend (high) negation is non-propositional negation.

– There are two structural positions for outer negation in Japanese:
Accented negation above FocP and unaccented negation above ForceP.

Low outer negation Based on a split CP in the spirit of Rizzi [11], we assume
a simplified structure of the Japanese phrase as in (21)7, where (¬)ϕ indicates
the position of the (negated) proposition.

(21) [ForceP [FocP [FinP [TP (¬)ϕ ] fin] foc] force]

Building on the analysis focus-constructions in Hiraiwa and Ishihara [5], we
assume that no separating negation from the main verb in syntactically outer
negation is a fin-head followed by a copulaWhich they claim functions as a focus-
particle. in foc, thus outer negation on a copula following n(o) is interpreted
outside of FocP. In fact, when syntactically outer negation in a polar question
is accented, as it can be in (17), both structure and intonation are very similar
to focus constructions like the one shown in (22).

(22) Kyoo-wa [F Takashi-ga] kuru n ja[H*+L nai].
today-top pn-nom come no cop.neg

“Not Takashi is coming today.”

7 Similar to what Krifka [8] proposes for English polar questions.

145



The focus construction in (22) is an assertion with syntactically outer negation,
and narrow focus on the constituent “Takashi”. Comparing this construction to
an OPNQ with syntactically outer, accented negation as in (17), the only differ-
ence except for final falling vs. rising intonation is whether or not a constituent
is singled out for negation. Given this parallel, we assume that the structural po-
sition in which accented negation is realized in ONPQs with syntactically outer
oas well as with main verb negation is the same as that of negation in focus
constructions, i.e. above FocP.

High outer negation As for the other structural position for outer negation
in Japanese polar questions, that for unaccented outer negation, we assume that
it is higher than that of accented negation based on the observation that it does
not share any properties with low, propositional negation, neither in intonation
(recall that accented negation is obligatory in INPQs), nor in bias patterns (as
it is bad in negative contexts). Thus, it must select a phrase higher than FocP,
which we will argue to be ForceP in the following section.

3 Request speech-acts and spech-act negation

3.1 Constraining the commitment space

In order to explain the interpretation of unaccented high negation, we adopt
Krifka’s [8] idea that negation can be interpreted in a position higher than For-
ceP, thus “denegating” a speech-act. In order to illustrate this for Japanese polar
questions, we make use of these three concepts, given here in a highly simplified
form:

– Commitment:
When a speaker asserts a proposition ϕ, she is committed to the truth of ϕ.

– Commitment states are the sets of all commitments that have been made in
the course of the discourse.

– The Commitment space is the set of commitment states which are connected
by speech-acts.

When a speech act is performed, this updates the commitment space. For exam-
ple, when the speaker asserts ϕ, it will be added to the speakers commitments
and thus update the current commitment state. We make use of the following
three speech acts:

– requestS,A, a speech act performed by the speaker, which takes another
speech act as its argument and restricts the future development of the com-
mitment space to such in which the addresse performs, or, in the case of a
denegation request, does not perform this speech act

– assert(ϕ) updates the commitment space by adding a commitment by a
discourse participant that ϕ or ¬ϕ holds.

– ∼assert(ϕ) (denegation, written as “∼”, of assertion) excludes the assertion
of ϕ from future developments of the commitment space.

146



The idea we want to implement is that each type of polar question restricts the
addressee’s discourse moves in a specific way, which can be represented using
the three speech-act operators above. Facing a constrained commitment space,
the addressee can either comply or reject the speaker’s move.

3.2 No-attachment, request-readings, and rising declaratives

Before moving on to speech-act negation, we will argue that no-attachment, to-
gether with a final rise, makes a request-speech act. In the case of PPQs and
INPQs, which we will discuss first, this is effectively the same as considering them
rising declaratives. [3] proposes that declaratives are context change potentials
which publicly commit one of the discourse participants to their proposition, and
that falling intonation resolves the discourse participant to the speaker, rising
intonation to the addressee.8 Publicly committing the addressee to a proposi-
tion and requesting that they commit to a proposition are effectively the same.
However, denegation requests, which we will discuss below, can not be explained
by rising declaratives. In this section, we make the following claims:

– No in polar questions attaches to the force-head.
– No-attachment and a final rise result in a request speech-act.
– No-attachment in PPQs and in NPQs with accented negation

are equivalent to rising declaratives.

PPQs and INPQs Our claims about no-attachment can explain that Japanese
PPQs are degraded without no in positively biased contexts. Consider for ex-
ample the PPQ in (23), modified from Sudo [13], which is good in the positive
context in (24), but degraded in the neutral context in (25).

(23) S: Ima ame futteru no?
now rain fall.prog no
“Is it raining now?”

(24) [S to A, who has entered the windowless room wearing a wet raincoat.]

(25) [S to A, over the phone.]

With a very similar example, Gunlogson [3] reports the same felicity conditions
for rising declaratives as for no-PPQs.

As for INPQs, we have proposed that they are essentially the mirror image
of PPQs, and are good in neutral contexts if they are constructed to make the
negated proposition more salient for reasons beyond contextual evidence. This
claim predicts that in neutral contexts, no-INPQs should be degraded, which we
can confirm as in (15), this is the case9, and assume the structures in (26) and
(27) for Japanese PPQs/INPQs with and without no-attachment, respectively.

8 The existence of such an intonational morpheme in Japanese has also been suggested
by Davis [2] in his analysis of the particle yo.

9 With the caveat that this may be because of the speakers neutrality and a lack of
S-bias in bare INPQs, but see the comments on the circumstantial nature of bias in
no-INPQs further below.

147



(26) [ForceP [FinP [TP (¬)ϕ ] fin] int]

(27) [ForceP [ForceP [FinP [TP (¬)ϕ ] fin] ass] req-no]

While (26) is an unbiased question, which limits the addressee’s admissible moves
to committing to either ϕ or ¬ϕ, (27) is interpreted as in (28), leaving the
addressee the option to commit to (¬)ϕ, or to reject the speakers’s move.

(28) requestS,A(assert((¬)ϕ))

As argued above, this is effectively the same as publicly committing the speaker
to the truth of (¬)ϕ.

Accented ONPQs Next, recall that accented outer negation is degraded with-
out no-attachment. We propose that the structural similarities between focus
negation and accented ONPQs can be explained by no attaching to sentential
force just as in PPQs and INPQs, resulting a request- or rising declarative-
reading. Following our assumptions made about the position of accented outer
negation, the structure we propose for low outer negation such as the ONPQ in
(18) with accented negation, repeated here as (29), is given in (30).

(29) S: Dareka hokani [H*+L konai] no?
someone else come.neg no

“Isn’t someone else coming?”

(30) [ForceP [ForceP [NegP [FocP [FinP [TP ϕ] fin] foc] neg] ass] req-no]

While negation is not interpreted within TP allowing PPIs, it is not higher than
Force, resulting in the same interpretation as for INPQs, i.e. ,(28) with a negated
proposition, which is compatible with the C-bias patterns we have observed. We
will discuss the possible differences between INPQs and low ONPQs in terms of
S-bias at the end of the next section.

No as an evidential marker An alternative account of the contribution of
no which does not appeal to structural positions is taking it to be an evidential
particle. For example, Davis [2] proposes that no adds an evidence presupposition
to a question without making any other contribution. This is possibly a simpler
alternative for PPQs and INPQs, and possibly for accented ONPQs. However, if
we assume that no marks that there is evidence for the proposition it attaches
to, the question arises what it does in ONPQs with unaccented negation, which
are good in both neutral and positive contexts. Also, no should be obligatory
in INPQs when there is evidence for ¬ϕ, which is not the case, as example (14)
shows. Furthermore, while no has uses which can be interpreted as evidential
in assertions,10 it has a large number of other uses which are not related to
evidentiality (cf.Noda [10]).

10 For example, daroo utterances expressing speaker inferences in which evidence the
inference is based on has to be obligatorily marked with no (cf.Hara [4])

148



3.3 Unaccented outer negation in denegation requests

We have proposed structures and interpretations for positive polar questions and
such with accented negation. What is left are ONPQs with unaccented negation,
as the one in (31) (repeated from (10) and (18) for versions without and with
no-attachment).

(31) S: Dareka hokani [0 konai] (no)?
someone else come.neg no

Out of the two positions for negation outside of the TP, unaccented negation
takes the higher one. In parallel to Krifka’s proposal that outer negation in
English polar questions takes scope over assertion we propose the structure in
(32). Our claim is that, similar to what Krifka proposes for English, negation
scoping over assertive force triggers a request-reading.

(32) [ForceP [NegP [ForceP [FinP [TP ϕ] fin] ass] neg] req]

This is interpreted as the denegation request in (33).

(33) requestS,A(∼assert(ϕ))

This constrains the commitment space in a way that the possible moves for
the addressee are: to reject the speaker’s request (and, for example, assert ϕ or
claim ignorance), or to accept the denegation of this speech act,i.e., to exclude
all future moves which depend on the addressee asserting ϕ, thus committing to
it.

Furthermore, no can attach to ONPQs with high negation. If the proposal
that unaccented negation triggers a request-reading is on the right track, no-
attachment is not necessary to license it in high ONPQs. It seems an attractive
possibility to assume that no-attachment is the preferred strategy in positive
contexts, in parallel to PPQs, but we could not get clear judgments on this
(which is actually expected if unaccented no-ONPQs are “double-marked” as
requests).

4 Deriving the bias patterns

In this section, we will claim that: C-bias arises from assertion-request readings
due to no-marking of (negated) propositions, S-bias arises from outer negation
(both propositional and speech-act negation), discussing the different types of
polar questions as alternatives to each other in a given context or utterance
situation.

4.1 C-bias from no-marking and negation

Our claims regarding C-bias are:

– Negative C-bias arises from request-utterances with accented negation.
– Positive C-bias arises from request-utterances without negation.
– Linguistic marking of biased contexts is mandatory in Japanese.

149



Accented negation We have observed that in negatively biased context, ac-
cented negation is mandatory. Also, no-attachment to both PPQs and INPQs is
degraded in neutral contexts, cf. table (20), while INPQs without no-attachment
can be good in neutral contexts as well. We claim that biased contexts need to
be marked, which can be achieved by no-attachment, which forces a request-
reading. Here, a commitment space update requestS,A(assert(¬ϕ)) and a ris-
ing declarative are equivalent, as both require a reaction to a commitment to ¬ϕ

from the addressee. As for INPQs, without no-attachment, we hypothesize that
chosing an INPQ over a PPQ is already signaling that the negative alternative
is more salient, which, if the context is not set up in such a way, can conceivably
substitue a request-utterance in terms of marking the biased context.11

In summary, we claim that accented negation in conjunction with no gives
rise to negative C-bias. ONPQs with accented negation result in the same speech-
act as request-INPQs, so they are the same in terms of C-bias (see below for
differences in terms of S-bias).

PPQs The requirement that positively biased contexts be marked is satisfied by
PPQs, in which no-attachment gives rise to a request-reading and thus C-bias
when occurring in positive contexts.

Unaccented negation Finally, the case of ONPQs with unaccented negation
and C-bias is more intricate. We can exclude them from our considerations on
C-bias if we assume that they, as denegation requests rather than requests for
assertions, do not give rise to C-bias at all. Their badness in negative contexts can
be explained by the condition that biased contexts be marked and the availability
of the alternative ONPQ with accented negation. A remaining puzzle is no-
attachment: if unaccented negation is sufficient to give rise to a (denegation)
request-reading no appears superfluous. The possibility that no-attachment
somehow can serve to somehow pragmatically strengthen the denegation request
is left for further research.

4.2 S-bias from outer and from accented negation

ONPQs have obligatory S-bias in Japanese, no-INPQs have been reported to
have S-bias as well. Furthermore, there appears to be a difference in the strength
of S-bias in different types of ONPQs. We claim that:

– S-bias arises from outer negation, more strongly from stressed negation.
– S-bias can arise from negative request-utterances.

From the observed bias patterns, we conclude that outer negation, i.e. negation
outside of TP, is a source of obligatory S-bias.

11 Another conceivable possiblity is that there are two versions of plain INPQs, one
request-reading and one plain reading, as Krifka [8] proposes for English INPQs.
However, since there is no such thing as preposed negation in Japanese INPQs, this
seems less likely.

150



Unaccented ONPQs As for the communicative effect of OPNQs with high
negation which we have argued to be denegation requests, Krifka [8] proposes
that denegation requests can be used to check whether ϕ is “an option to be
considered”. This effect presumably arises in contrast with a request for assertion
of (¬)ϕ on one hand, which would be stronger and thus preferred when there
are clear reasons for the speaker to to assume that (¬)ϕ holds, and in contrast
with a plain polar question on the other. Plain questions do not convey that the
speaker has a specific interest in ϕ, which denegation requests do — this is a
possible source for the conveyed speaker assumption, in the form of S-bias, that
ϕ holds. In other words, OPNQs are oriented towards the positive option but do
not force the addressee to react to a commitment to its truth.

Accented ONPQs Accented ONPQs have a similar communicative effect, but
it appears to be stronger: in (13), for example, a rather general expectation of the
speaker suffices to license the unaccented ONPQ, which would arguably not be
sufficient for an accented ONPQ. Furthermore, if the positions we have proposed
for outer negation and our considerations on S-bias in unaccented ONPQs are
on the right track, the source of S-bias in accented ONPQs is different from
unaccented ones, as they are not denegation requests. Here, a connection can be
made with Romero and Han’s [12] proposal of preposed negation scoping over
verum-focus giving rise to S-bias in English polar questions: it is conceivable
that in accented ONPQs, negation taking scope over FocP gives rise to the
conveyed speaker assumption that ϕ holds.

No-INPQs Finally, INPQs with no-attachment are also reported to show S-
bias, which is not compatible with the claim that S-bias arises from outer nega-
tion. If the proposal that INPQs are the mirror image of PPQs, but marked when
the context is not manipulated to make the negative alternative more salient,
the apparent S-bias from no-INPQs could be an effect similar to the apparent
badness of plain INPQs in neutral contexts. If this is the case, no-INPQs should
be good in negative contexts even when the speaker has no previous assump-
tions. This is similar to negative rising declaratives in English, which require a
negative context, but do not necessarily give rise to S-bias. If this is on the right
track, no-INPQs have but circumstantial S-bias.

151



5 Conclusion

We have proposed that prosody has to be considered alongside the interpretation
of negation inside or outside the predicate in order to derive the bias patterns of
Japanese polar questions, and to split the category of Japanese ONPQs into such
with high and unaccented, and such with low and accented negation. We also
argued that, given a context in which the negative alternative is more salient, it
is plausible that in Japanese (as it is possibly the case in English), INPQs are
essentially the mirror image of PPQs, their differences in terms of bias patterns
not arising in all contexts.

Three possible positions for negation in Japanese polar questions were identi-
fied: within TP (main verb negation), taking scope over FocP (accented negation)
and taking scope over ForceP / assertion (unaccented negation). We proposed
that the particle no attaches to force resulting in request speech-acts, and that
denegation-requests arise from high outer negation.

We have attempted to derive bias in Japanese polar questions from their
properties as summarized above, arguing that C-bias arises from request speech-
acts selecting accented negation or non-negated propositions, while (obligatory)
S-bias arises from outer negation in the form of speech-act negation and and fo-
cus negation, while (circumstantial) S-bias can arise from propositional negation
in request speech-acts. The proposed properties of Japanese polar questions
are summarized in (34).

(34)

neg Context:
accented neutral positive negative S-bias req

PPQ – X # # no no
PPQ-no – # X # no yes
ONPQ(-no) no X X # yes yes
ONPQ-no yes # # X yes yes
INPQ yes ∼ # X no no
INPQ-no yes # # X yes* yes

*circumstantial S-bias

Open questions remain, among others, the contribution of no to ONPQs with
unaccented negation, and why English, but not Japanese ONPQs, are good in
positive contexts. Also, a more detailed investigation of the claim that INPQs
are the mirror image of PPQs, which predicts a preference for no-attachment
to INPQs in negatively biased contexts and circumstantial S-bias from INPQs,
and of the claim that there are two different sources of C-bias in Japanse ON-
PQs, possibly in comparison with English polar questions, seems necessary in
order to confirm whether they are tenable. In addition to this, an investigation
of the interaction of polar question and their bias pattern with the question and
disjunctive particle ka (as well as other sentence-final elements) and its implica-
tions for analyzing structure and interpretation of Japanese polar questions has
potential to deepen our understanding of them.

152



Bibliography

[1] Büring, D., Gunlogson, C.: Aren’t Positive and Negative Polar Questions
the Same? (2000), ms. UCSC/UCLA, semanticsarchive.com

[2] Davis, C.: Constraining Interpretation: Sentence Final Particles in Japanese.
Ph.D. thesis, University of Massachusets - Amherst (2011)

[3] Gunlogson, C.: True to Form: Rising and Falling Declaratives as Questions
in English. Ph.D. thesis, UCSC (2003)

[4] Hara, Y.: Grammar of Knowledge Representation: Japanese Discourse Items
at Interfaces. Ph.D. thesis, University of Delaware (2006)

[5] Hiraiwa, K., Ishihara, S.: Missing Links: Cleft, Sluicing, and “No da” Con-
struction in Japanese. MIT working papers in linguistics 43, 35–54 (2002)

[6] Hwang, H.K., Ito, S.: Correlations between prosody and epistemic bias in
negative polar interrogatives in japanese. pp. 925–928 (2014)

[7] Ito, S., Oshima, D.Y.: On two Varieties of Negative Polar Interrogatives in
Japanese. Japanese/Korean Linguistics 23, forthcoming (2014)

[8] Krifka, M.: Negated polarity questions as denegations of assertions. In: Lee,
C., Kiefer, F., Krifka, M. (eds.) Contrastiveness in Information Structure,
Alternatives and Scalar Implicatures. Springer, Berlin (2015)

[9] Ladd, D.R.: A First Look at the Semantics and Pragmatics of Negative
Questions and Tag Questions. In: Proceedings of Chicago Linguistic Society.
vol. 17, pp. 164–171 (1981)

[10] Noda, H.: “No(da)” no kinoo [The functions of no(da). Kuroshio Shuppan,
Tokyo (1997)

[11] Rizzi, L.: The fine structure of the left periphery. Elements of Grammar:
Handbooks in Generative Syntax 1, 281–337 (1997)

[12] Romero, M., Han, C.H.: On negative Yes/No-questions. Linguistics and
Philosophy 27, 609–658 (2004)

[13] Sudo, Y.: Biased Polar Questions in English and Japanese. In: Gutz-
mann, D., Gärtner, H.M. (eds.) Beyond Expressives: Explorations in Use-
Conditional Meaning, pp. 275–296. Brill, Leiden (2013)

[14] Venditti, J.J.: The j tobi model of japanese intonation. In: Jun, S.A. (ed.)
Prosodic typology: The phonology of intonation and phrasing, pp. 172–200.
Oxford University Press, Oxford (2005)



Models for the Displacement Calculus

Oriol Valent́ın⋆

Universitat Politècnica de Catalunya,

Abstract. The displacement calculus D is a conservative extension of
the Lambek calculus L∗ (with empty antecedent allowed in sequents).
L∗ can be said to be the logic of concatenation, while D can be said to
be the logic of concatenation and intercalation. In many senses, it can
be claimed that D mimics L∗, namely that the proof theory, generative
capacity and complexity of the former calculus are natural extensions of
the latter calculus. In this paper, we strengthen this claim. We present the
appropriate classes of models for D and prove its completeness results,
and strikingly, we see that these results and proofs are natural extensions
of the corresponding ones for L∗.

1 Introduction

The displacement calculus D is a quite well-studied extension of the Lambek
calculus (with empty antecedent allowed in sequents) L∗. In many papers (see
[6], [9] and [8]), D has proved to provide elegant accounts of a variety of linguistic
phenomena of English, and of Dutch, namely a processing interpretation of the
so-called Dutch cross-serial dependencies.

The hypersequent calculus hD1 is a pure sequent calculus free of structural
rules, which subsumes the sequent calculus for L∗. The Cut elimination algorithm
for hD provided in [9] mimics the one of Lambek’s syntactic calculus (with some
minor differences concerning the possibility of empty antecedents). Like L∗, D
enjoys some nice properties such as the subformula property, decidablity, the
finite reading property and the focalisation property ([4]).

Like L∗,D is known to be NP-complete [3]. Concerning the (weak) generative
capacity, D recognises the class of well-nested multiple context-free languages
([10]). In this sense, this result on generative capacity generalises the result
that states that L∗ recognises the class of context-free languages. One point of
divergence in terms of generative capacity is that D recognises the class of the
permutation closure of context-free languages ([7]). Finally, it is important to
note that a Pentus-like upper bound theorem for D is not known.

In this paper we present natural classes of models for D. Several strong com-
pleteness results are proved, in particular strong completeness w.r.t. the class of
residuated displacement algebras (a natural extension of residuated monoids).

⋆ Research partially supported by SGR2014-890 (MACDA) of the Generalitat de
Catalunya, and MINECO project APCOM (TIN2014-57226-P).

1 Not to be confused with the hypersequents of Avron ([1]).



Powerset frames for L∗ are considered of interest from the linguistic point of view.
Here, again powerset residuated displacement algebras over displacement alge-
bras are given, which generalise the powerset residuated monoids over monoids
as well as free monoids. Strong completeness result for the so-called implica-
tive fragment of D, which is very relevant linguistically, is proved in the style
of Buszkowski ([2]). Moreover, full completeness with respect powerset residu-
ated displacement algebras over displacement algebras is given following again
Buszkowski’s methods.

The structure of the paper is as follows. In Section 2 we present the basic
proof-theoretic tools (useful for the construction of canonical models) for the
study of D from a semantic point of view. In Section 3 we provide the proof of
strong completeness of the implicative fragment w.r.t. L-models. In Section 4, the
proof of strong completeness of full D w.r.t. powerset residuated displacement
algebras over displacement algebras is outlined. Finally, we conclude in the last
section.

2 The Hypersequent Calculus hD and the Categorical

calculus cD

D is model-theoretically motivated, and the key to its conception is the class of
standard displacement algebras. Some definitions are needed. Let M = (|M|,+,
0, 1) be a free monoid where 1 is a distinguished element of the set of generators
X of M. We call such an algebra a separated monoid. Given an element a ∈ |M|,
we can associate to it a number, called its sort as follows:

(1)
s(1) = 1
s(a) = 0 if a ∈ X and a 6= 1
s(w1 + w2) = s(w1) + s(w2)

This induction is well-defined, for M is free, and 1 is a (distinguished) genera-
tor. The sort function s(·) in a separated monoid simply counts the number of
separators an element contains.

Definition 1. (Sort Domains)
Where M = (|M|,+, 0, 1) is a separated monoid, the sort domains |M|i of sort
i are defined as follows:

|M|i = {a ∈ |M| : s(a) = i}, i ≥ 0

It is readily seen that for every i, j ≥ 0, |M|i ∩ |M|j = ∅ iff i 6= j.

Definition 2. (Standard Displacement Algebra)
The standard displacement algebra (or standard DA) defined by a separated
monoid (|M|,+, 0, 1) is the N-sorted algebra with the N-sorted signature ΣD =
(+, {×i}i>0, 0, 1}) with sort functionality ((i, j → i + j)i,j≥0, (i, j → i + j −
1)i>0,j≥0, 0, 1):

({|M|i}i≥0,+, {×i}i>0, 0, 1)

155



where:

operation is such that

+ : |M|i × |M|j → |M|i+j as in the separated monoid

×k : |M|i × |M|j → |M|i+j−1
×k(s, t) is the result of replacing the k-th
separator in s by t

We will usually write standard DA instead of standard displacement algebra. The
sorted types of D, which we will define residuating w.r.t the sorted operations in
definition 2, are defined by mutual recursion in Figure 1. We let Tp =

⋃

i≥0 Tpi.
A subset B of |M| is called a same-sort subset iff there exists an i ∈ N such
that for every a ∈ B, s(a) = i. D types are to be interpreted as same-sort
subsets of |M|. I.e. every inhabitant of JAK has the same sort. The semantic

Tpi ::= Pri where Pri is the set of atomic types of sort i

Tp0 ::= I Continuous unit
Tp1 ::= J Discontinuous unit

Tpi+j ::= Tpi•Tpj continuous product
Tpj ::= Tpi\Tpi+j under
Tpi ::= Tpi+j/Tpj over

Tpi+j ::= Tpi+1⊙kTpj discontinuous product
Tpj ::= Tpi+1↓kTpi+j extract

Tpi+1 ::= Tpi+j↑kTpj infix

Fig. 1. The sorted types of D

interpretations of the connectives are shown in Figure 2. This interpretation is
called the standard interpretation. We observe that for any type A ∈ Tp, the
interpretation of A, i.e. JAK, is contained in Ms(A), where the sort map s(·) for
the set Tp, is such that ():

(2)

s(p) = i for p ∈ Pri
s(I) = 0
s(J) = 1
s(A•B) = s(A) + s(B)
s(B/A) = s(A\B) = s(B)− s(A)
s(A⊙k B) = s(A) + s(B)− 1
s(A↓kB) = s(B↑kA) = s(B)− s(A) + 1

156



JpK ⊆ |M|i for i ≥ 0 p ∈ Pri

JIK = {0} continuous unit
JJK = {1} discontinuous unit

JA•BK = {s1 + s2| s1 ∈ JAK & s2 ∈ JBK} product
JA\CK = {s2| ∀s1 ∈ JAK, s1 + s2 ∈ JCK} under
JC/BK = {s1| ∀s2 ∈ JBK, s1 + s2 ∈ JCK} over

JA⊙kBK = {×k(s1, s2)| s1 ∈ JAK & s2 ∈ JBK} k > 0 discontinuous product
JA↓kCK = {s2| ∀s1 ∈ JAK,×k(s1, s2) ∈ JCK} k > 0 infix
JC↑kBK = {s1| ∀s2 ∈ JBK,×k(s1, s2) ∈ JCK} k > 0 extract

Fig. 2. Standard semantic interpretation of D types

2.1 The Hypersequent Calculus hD

We will now consider the string-based hypersequent syntax from [5].2 The reason
for using the prefix hyper in the term sequent is that the data-structure used
in hypersequent antecedents is quite nonstandard. Type segments are defined as
follows

(3)
TypSeg0 ::= A for a ∈ Tp0

TypSegn ::= ⌈A⌉i for 0 ≤ i ≤ n := s(A)

Type segments of sort 0 are types. But, type segments of sort greater than 0 are
no longer types. Strings of type segments can form meaningful logical material
like the set of hyperconfigurations, which we now define. The hyperconfigurations
HConfig are defined unambiguously by mutual recursion as follows, where Λ is
the empty string and 1 is the metalinguistic separator::

(4)

HConfig ::= Λ
HConfig ::= A,HConfig for s(A) = 0
HConfig ::= 1,HConfig

HConfig ::= ⌈A⌉0,HConfig, ⌈A⌉1, · · · , ⌈A⌉s(A)−1,HConfig, ⌈A⌉s(A),HConfig

for s(A) > 0

The semantic interpretation of the last clause from (4) consists of elements
α0+β1+α1+ · · ·+ αn−1+βn+αn where α0+1+α1+ · · ·+αn−1+1+αn∈ JAK
and β1, · · · , βn are the interpretations of the intercalated hyperconfigurations.
The syntax in which HConfig has been defined is called string-based hyperse-
quent syntax. An equivalent syntax forHConfig is called tree-based hypersequent
syntax which was defined in [6], [9]. For proof-search and human readability, the
tree-based notation is more convenient than the string-based notation, but for
semantic purposes, the string-based notation turns out to be very useful, for

2 Term which must not be confused with Avron’s hypersequents ([1]).

157



the canonical model construction considered in Section 3 which relies on the set
TypSeg =

⋃

n≥0 TypSegn.

In string-based notation the figure
−→
A of a type A is defined as follows:

(5)
−→
A =

{
A if s(A) = 0
⌈A⌉0, 1, ⌈A⌉1, · · · , ⌈A⌉s(A)−1, 1, ⌈A⌉s(A) if s(A) > 0

The sort of a hyperconfiguration is the number of metalinguistic separators it
contains. We have HConfig =

⋃

i≥0 HConfigi, where HConfigi is the set of
hyperconfigurations of sort i. Where Γ and Φ are hyperconfigurations and the
sort of Γ is at least 1, Γ |kΦ (k > 0) signifies the hyperconfiguration which is the
result of replacing the k-th separator in Γ by Φ. Where Γ is a hyperconfiguration
of sort i and Φ1, · · · , Φi are hyperconfigurations, the fold Γ ⊗〈Φ1, · · · , Φi〉 is the
result of simultaneously replacing the successive separators in Γ by Φ1, · · · , Φi

respectively. ∆〈Γ 〉 abbreviates ∆0(Γ ⊗ 〈∆1, · · · , ∆i〉). When a type-occurrence
A in a hyperconfiguration is written without vectorial notation, that means that
the sort of A is 0. However, when one writes the metanotation for hyperconfigu-

rations ∆〈
−→
A 〉, this does not mean that the sort of A is necessarily greater than

0.
A hypersequent Γ ⇒ A comprises an antecedent hyperconfiguration in string-

based notation of sort i and a succedent type A of sort i. The hypersequent
calculus for D is as shown in Figure 3. The following lemma is useful for the
strong completeness results of section 3:

Lemma 1. The set of HConfig is a subset of (TypSeg∪{1})∗. We have that:

i) HConfig is closed by concatenation and intercalation.
ii) If ∆ ∈ (TypSeg ∪ {1})∗, Γ ∈ HConfig, and ∆,Γ ∈ HConfig, then

∆ ∈ HConfig. Similarly, if we have Γ,∆ ∈ HConfig instead of ∆,Γ ∈
HConfig. Finally, If ∆ ∈ (TypSeg ∪ {1})∗, Γ ∈ HConfig, and ∆|iΓ ∈
HConfig, then ∆ ∈ HConfig.

2.2 D and its Categorical Presentation cD

In [11] it is proved that the identities (or equations) true of standard DAs has
as equational theory the so-called class of (general) displacement algebras (DA)
(see Figure 4).

The categorical calculus cD for D is as follows:

(6)

A•B → iff A → C/B iff B → A\C
A⊙i B → iff A → C↑iB iff B → A↓iC

We add as postulates the ones corresponding
to the set of equations defining DA

The set of postulates of cD would be in the case of the categorical calculus with
unit for L∗, the postulates corresponding to the equations defining the class of
monoids. Let RD be the class of residuated DAs. Again, in [11], it is proved the
following embedding translation:

158



−→
A ⇒ A if A is primitive

∆〈Λ〉 ⇒ A
IL

∆〈I〉 ⇒ A
IR

Λ ⇒ I

∆〈1〉 ⇒ A
JL

∆〈
−→
J 〉 ⇒ A

JR
1 ⇒ J

Γ ⇒ A ∆〈
−→
B 〉 ⇒ C

/L
∆〈

−−→
B/A, Γ 〉 ⇒ C

∆,
−→
A ⇒ B

/R
∆ ⇒ B/A

Γ ⇒ A ∆〈
−→
B 〉 ⇒ C

\L
∆〈Γ,

−−→
A\B〉 ⇒ C

−→
A,∆ ⇒ B

\R
∆ ⇒ A\B

∆〈
−→
A,

−→
B 〉 ⇒ C

•L
∆〈

−−−→
A •B〉 ⇒ C

∆ ⇒ A Γ ⇒ B
•R

∆,Γ ⇒ A •B

Γ ⇒ A ∆〈
−→
B 〉 ⇒ C

↑iL
∆〈

−−−→
B↑iA|iΓ 〉 ⇒ C

∆|i
−→
A ⇒ B

↑iR
∆ ⇒ B↑iA

Γ ⇒ A ∆〈
−→
B 〉 ⇒ C

↓iL
∆〈Γ |i

−−−→
A↓iB〉 ⇒ C

−→
A |i∆ ⇒ B

↓iR
∆ ⇒ A↓iB

∆〈
−→
A |i

−→
B 〉 ⇒ C

⊙iL
∆〈

−−−−→
A⊙i B〉 ⇒ C

∆ ⇒ A Γ ⇒ B
⊙iR

∆|iΓ ⇒ A⊙i B

Fig. 3. Hypersequent Calculus for D

(7) For any type A,B ∈, cD ⊢ A → B iff
−→
A ⇒ B

We can define the well-known Lindenbaum-Tarski construction to see that cD

is strongly complete w.r.t. RD. The canonical model (L, v) where L is (Tp/θ, ◦,
(◦i)i>0, \\, //, (�i)i>0(⇈i)i>0;≤). θ is the equivalence relation on Tp defined as
follows: AθB iff R ⊢cD A → B and R ⊢cD B → A, where R is a set of non-
logical axioms. Using the classical tonicity properties for the connectives of Tp,
one proves that θ is a congruence. Where A is a type, A is an element of Tp/θ
modulo θ. We define A ≤ B iff R ⊢cD A → B. We define the valuation v as

v(p) = p (p is a primitive type). We have that for every type A, JAK
L
v = A.

Finally, one has that (L, v) |= A → B iff R ⊢cD A → B. From this, we infer the
following theorem:

Theorem 1. cD is strongly complete w.r.t. RD.

Using the embedding translation (7), we see that hD is strongly complete w.r.t.
RD. Since DA is an equational class (see Figure 4), it is closed by subalgebras,

159



Continuous associativity

x+ (y + z) ≈ (x+ y) + z

Discontinuous associativity

x×i (y ×j z) ≈ (x×i y)×i+j−1 z
(x×i y)×j z ≈ x×i (y ×j−i+1 z) if i ≤ j ≤ 1 + s(y)− 1

Mixed permutation

(x×i y)×j z ≈ (x×j−S(y) +1 z)×i y if j > i+ s(y)− 1
(x×i z)×j y ≈ (x×j y)×i+S(y)−1 z if j < i

Mixed associativity

(x+ y)×i z ≈ (x×i y) + z if 1 ≤ i ≤ s(x)
(x+ y)×i z ≈ x+ (y ×i−s(x) z) if x+ 1 ≤ i ≤ s(x) + s(y)

Continuous unit and discontinuous unit

0 + x ≈ x ≈ x+ 0 and 1×1 x ≈ x ≈ x×i 1

Fig. 4. Equational theory for DA

direct products and homomorphic images. We have other interesting examples of
DAs, namely the powerset DA over A = (|A|,+, {×i}i>0, 0, 1), which we denote
P(A). We have:

(8) P(A) = (|P(A)|, ◦, {◦i}i>0, I, J)

A subset B of |A| is called a same-sort subset iff:

(9) There exists an i ∈ N such that for every a ∈ B, s(a) = i

The notation of the carrier set of P(A) presupposes that its members are same-
sort subsets. Where A, B and C denote same-sort subsets of |A|, the operations
I, J, ◦ and ◦i are defined as follows:

(10)

I , {0}
J , {1}
A◦B , {a+ b : a ∈ A and b ∈ B}
A◦iB , {a×i b : a ∈ A and b ∈ B}

It is readily seen that for every A, P(A) is in fact a DA. A residuated powerset
displacement algebra over a displacement algebra P(A) is the following:

(11) P(A) = (|P(A)|, ◦, \\, //, {◦i}i>0, , {⇈i}i>0, {�i}i>0, I, J;⊆)

160



\\, //, ⇈i and �i are defined as follows:

(12)

A\\B , {d : for every a ∈ A, a+ d ∈ B}
A//B , {d : for every a ∈ A, a+ d ∈ B}
B⇈iB , {d : for every a ∈ A, d×i b ∈ B}
A�iB , {d : for every a ∈ A, a×i d ∈ B}

The class of powerset residuated DAs over a DA is denoted PRDD. The class
of powerset residuated DAs over a standard DA is denoted PRSD. Finally, the
subclass of powerset residuated algebras over finitely-generated standard DA,
is denoted PRSDfg. Models over residuated DAs of this subclass, are called
L-models. Every standard DA A has two remarkable properties, namely the
property that sort domains |A|i (for i > 0) can be defined in terms of |A|0, and
the property that every element a of a sort domain |A|i is decomposed uniquely
around the separator 1:

(13)

a) For i > 0, |A|i = |A|0◦{1} · · · {1}◦|A|0
︸ ︷︷ ︸

(i− 1) 1′s

(1)

b) For i > 0, If a0 + 1 + · · ·+ 1 + ai = b0 + 1 + · · ·+ 1 + bi then
ak = bk for 0 ≤ k ≤ i

We say that the sort domains of |A| are separated by 1. The single Property (13
a) is called weakly separtion, and both properties of (13) constitute what we call
strong separation.

Standard DAs, as suggests its denomination, are effectively general DAs:

Lemma 2. SD ⊆ DA.3

Proof. We define a useful notation which will help us to prove the lemma. Where
A = (|A|,+, (×i)i>0, 0, 1) is a standard DA, let a be an arbitrary element of sort
s(a). We associate to every a ∈ |A| a sequence of elements a0, · · · , as(A). We
have the following vectorial notation:

(14) −→a j
i =

{
ai, if i = j
−→a j−1

i + 1 + aj , if j − i > 0

Since A is standard DA, the ai associated to a given −→a are unique (by freeness

of the underlying monoid). We have that a = −→a
s(A)
0 , and we write −→a in place

of −→a
s(A)
0 . Consider arbitrary elements of |A|, −→a ,

−→
b and −→c :

• Continuous associativity is obvious.

• Discontinuous associativity. Let i, j be such that i ≤ j ≤ i+ s(−→a )− 1:

(15)

−→
b ×j

−→c =
−→
b i−1

0 +−→c +
−→
b

s(b)
i , therefore:

−→a ×i(
−→
b ×j

−→c ) = −→a i−1
0 +

−→
b j−1

0 +−→c +
−→
b

s(b)
j +−→a

s(a)
i

3 Later we see that the inclusion is proper, i.e. SD ( DA

161



On the other hand, we have that:

−→a ×i

−→
b = −→a i−1

0 +
−→
b+−→a

s(−→a)
i = −→a i−1

0 +
−→
b j−1

0 + 1
︸︷︷︸

(i+j−1)-th separator

+
−→
b

s(
−→
b)

j +−→a
s(−→a)
i

It follows that:

(16) (−→a×i

−→
b )×i+j−1

−→c = −→a i−1
0 +

−→
b j−1

0 +−→c+
−→
b

s(
−→
b)

j +−→a
s(−→a)
i

By comparing the rhs of (15) and (16), we have therefore:

−→a ×i(
−→
b ×j

−→c ) = (−→a×i

−→
b )×i+j−1

−→c

• Mixed Permutation. Consider (−→a×i

−→
b )×j

−→c and suppose that i+s(
−→
b )−1 < j:

−→a×i

−→
b = −→a i−1

0 +
−→
b+−→a

j−s(
−→
b )

i
︸ ︷︷ ︸

j−s(
−→
b )+s(

−→
b )−1=j−1 separators

+1+−→a
s(−→a)

j−s(
−→
b +1)

It follows that:

(17) (−→a×i

−→
b )×j

−→c = −→a i−1
0 +

−→
b+−→a

j−s(
−→
b )

i +−→c+−→a
s(−→a )

j−s(
−→
b )+1

Since i+ s(
−→
b )− 1 < j, then i < j − s(

−→
b ) + 1. Then we have that:

−→a×
j−s(

−→
b )+1

−→c = −→a i−1
0 +1+−→a

j−s(
−→
b )

i +−→c+−→a
s(−→a )

j−s(
−→
b )+1

It follows that:

(18) (−→a×
j−s(

−→
b )+1

−→c )×i

−→
b = −→a i−1

0 +
−→
b+−→a

j−s(
−→
b )

i +−→c+−→a
s(−→a )

j−s(
−→
b )+1

By comparing the rhs of (17) and (18), we have therefore:

(−→a×i

−→
b )×j

−→c = (−→a×
j−s(

−→
b )+1

−→c )×i

−→
b

• Mixed associativity. There are two cases: i ≤ s(−→a ) or i > s(−→a ). Considering
the first one, this is true for:

(−→a+
−→
b )×−→c = (−→a i−1

0 +1+−→a
s(−→a )
i )×i

−→c = −→a i−1
0 +−→c +−→a

s(−→a )
i +

−→
b = (−→a×i

−→c )+
−→
b

The other case corresponding to i > s(−→a ) is completely similar.

• The case corresponding to the units is completely trivial.

⊓⊔

162



2.3 Some special DAs

The standard DA S, induced by the separated monoid with generator setTypSeg∗∪
{1}, plays an inportant role. The interpretation of the signature ΣD in |S| is:

(19) S = ((TypSeg∗ ∪ {1})∗, (, ), {|i}i>0, Λ, 1)

We have seen in section 2 that HConfig is closed by concatenation (, ) and
intercalation |i, i > 0, i.e. C = (HConfig, (, ), (|i)i>0, Λ, 1) is a ΣD-algebra.4

Since DA is an equational class, it is closed by (ΣD)-subalgebras. Since C is a
subalgebra of S, hence C is a (general) DA, concretely a nonstandard DA. To see
that C cannot be standard we notice that the sort domains of C are not separated

by {1}. Recall that |C| =
⋃

i≥0

HConfigi (|C|i = HConfigi, for every i ≥ 0). We

have that:

(20) For i > 0,|C|i 6= HConfig0◦ · · · ◦HConfig0
︸ ︷︷ ︸

i times

For, for example let us take
−−→
p↑1p = ⌈p↑1p⌉0, 1, ⌈p↑1p⌉1, where p ∈ Pr. Type p↑1p

has sort 1, but clearly neither ⌈p↑1p⌉0 nor ⌈p↑1p⌉1 are members of HConfig0.
In fact, we have the proper inclusion:

(21) For i > 0,HConfig0◦ · · · ◦HConfig0
︸ ︷︷ ︸

i times

( |C|i

It follows that the class of standard DAs is a proper subclass of the class of
general DAs:

(22) SD ( DA

The Lindenbaum algebra L defined in the previous Subsection is a nonstandard
DA, because again, the sort domains are not separated by {1}. The initial ΣD-
algebra N in DA is the standard displacement algebra induced by the singleton
generator set {1}, where N = (N,+N , {×N

i }i>0, 0
N , 1N ). The elements of the

signature are interpreted as follows:

(23)

0N , 0

1N , 1

+N (n,m) , n+m, where n,m ∈ N

Where i > 0, ×N
i (n,m) , n+m− 1, where n > 0 and m ≥ 0

4 Observe that the sort functionalities of (, ) and |i (i > 0) are respectively (i, j →
i+ j)i,j≥0, and (i, j → i+ j − 1)i>0,j≥0, where s(0) = 0, and , s(1) = 1.

163



Synthetic Connectives and the Implicative fragment

From a logical point of view, synthetic connectives abbreviate derivations mainly
in sequent systems. They form new connectives with left and right sequent rules.
Using a linear logic slogan, synthetic connectives help to eliminate some bureau-
cracy in cut-free proofs and in the (syntactic) Cut elimination algorithms. We
consider a set of synthetic connectives which are of linguistic interest (Figure 5
corresponds to their semantic interpretation, Figure 6 and Figure 7 correspond
to their hypersequent rules). By these definition it is readily seen that the unary
synthetic connectives form residuated pairs, and the binary synthetic connec-
tives form residuated triples. We define what we call the implicative fragment of
D which contains all the continuous and discontinous implicative rules, as well
as the synthetic connectives defined here, which are considered implicative in
the sense that their semantic interpretations in Figure 5 are defined in terms
of implicational subset connectives such as \\, //,�i and ⇈i. We have the fol-
lowing notations: where Tp∗ is the set of unit-free types, Tp∗[→] is the set of
Tp∗-types restricted to the implicative fragment. Similarly, we have hD∗[→],
TypSeg∗[→], and HSeq∗[→] (where HSeq∗ is the set of hypersequents over
unit-free types).5

J⊳−1AK , JAK//J left projection

J⊲−1AK , J\\JAK right projection

JˇiAK , JAK↑iI i-th split

B⇑A , B↑1A& · · · &B↑s(B)−s(A)+1A nondeterministic extract

A⇓B , A↓1B& · · · &A↓s(B)−s(A)+1B nondeterministic infix

Fig. 5. Semantic interpretation in standard DAs for the set of synthetic connectives

3 Strong Completeness of the implicative fragment w.r.t.

L-models

In this section we prove theorem 3, which states that D∗[→] is strongly complete
w.r.t. language models. More concretely, the theorem establishes the strong com-
pleteness w.r.t. the hypersequent calculus HSeq∗[→]. In order to prove it, we
demonstrate first strong completeness of HSeq∗[→] w.r.t. powerset residuated
DAs over standard DAs with a countable set of generators. Let V = TypSeg∗[→
]∪{1}. Clearly, V is countably infinite since TypSeg∗[→] is the countable union
⋃

i

TypSeg∗[→]i (see (3)), where each TypSeg∗[→]i is also countably infinite.

5 The unary connectives are definable in terms of (full) Tp (using the units, e.g.
ˇkA,A↑kI), but the nondeterministic ⇓ and ⇑ are no longer definable only in terms
of Tp, (see [11]).

164



Γ 〈
−→
A 〉 ⇒ B

⊳−1L

Γ 〈
−−−→
⊳−1A, 1〉 ⇒ B

Γ, 1 ⇒ A
⊳−1R

Γ ⇒ ⊳−1A

Γ 〈
−→
A 〉 ⇒ B

⊲−1L

Γ 〈1,
−−−→
⊲−1A〉 ⇒ B

1, Γ ⇒ A
⊲−1R

Γ ⇒ ⊲−1A

∆〈
−→
B 〉 ⇒ C

ˇiL
∆〈

−−→
ˇiB|iΛ〉 ⇒ C

∆|iΛ ⇒ BB
ˇR

∆ ⇒ ˇiB

Fig. 6. Hypersequent rules for synthetic unary implicative connectives

∆ ⇒ A Γ 〈
−→
B 〉 ⇒ C

⇑L
Γ 〈

−−−→
B⇑A|iΓ 〉 ⇒ C

∆|1
−→
A ⇒ B · · · ∆|d

−→
A ⇒ B

⇑R
∆ ⇒ B⇑A

∆ ⇒ A Γ 〈
−→
B 〉 ⇒ C

⇓L
Γ 〈Γ |i

−−−→
A⇓B〉 ⇒ C

−→
A |1∆ ⇒ B · · ·

−→
A |a∆ ⇒ B

⇓R
∆ ⇒ A⇓B

Fig. 7. Hypersequent calculus rules for nondeterministic synthetic connectives

Let us consider the standard DA S (from (19)), induced by the (countably)
infinite set of generators V :

S = (V ∗, (, ), {|i}i>0, Λ, 1)

In order to prove completeness of HSeq∗[→] w.r.t. the class of powerset DAs
over (countable) standard DAs (PRSD), we define some useful notation:

Definition 3. For any type C ∈ Tp∗[→], and a set of sequents R of HSeq:

[C]R , {∆ : ∆ ∈ HConfig and R ⊢ ∆ ⇒ C}

In practice, when the set R of hypersequents is clear by the context, we simply
write [C] instead of [C]R. Let us fix some set of hypersequents R:

Lemma 3. (Truth Lemma)
Let P(S) be the powerset residuated DA over the standard DA S from (19) .
Let v be the following valuation on the powerset P(S):

For every p ∈ Pr, v(p) , [p]R

LetM = (P(S), v) be called as usual the canonical model. The following equality
holds:

For every C ∈ Tp∗[→], JCK
P(A)
v = [C]

165



Proof. We proceed by induction on the structure of type C. Let us write J · K

instead of JCK
P(A)
v , and [·] instead of [·]R. We will say that an element ∆ ∈ JAK

is correct iff ∆ ∈ HConfig.

• C is primitive. True by definition.

• C = B↑iA. Let us see:

[B↑iA] ⊆ JB↑iAK

Let ∆ be such that R ⊢ ∆ ⇒ B↑iA. Let ΓA ∈ JAK. By induction hypothesis
(i.h.), JAK = [A]. Hence, R ⊢ ΓA ⇒ A We have:

∆ ⇒ B↑iA
−−−→
B↑iA|iΓA ⇒ B

Cut
∆|iΓA ⇒ B

By (i.h.), JBK = [B]. It follows that ∆|iΓA ∈ JBK, hence ∆ ∈ JB↑iAK.
Whence, [B↑iA] ⊆ JB↑iAK.
Conversely, let us see:

JB↑iAK ⊆ [B↑iA]

Let ∆ ∈ JB↑iAK. By i.h. JAK = [A]. For any type A, we have eta-expansion,

i.e.
−→
A ⇒ A. Hence,

−→
A ∈ JAK. We have that∆|i

−→
A ∈ JBK. By i.h.,∆|i

−→
A ⇒ B.

Since
−→
A is correct, and by i.h. ∆|i

−→
A is correct, by lemma 1, ∆ is correct. By

applying the ↑i right rule to the provable hypersequent ∆|i
−→
A ⇒ B we get:

∆ ⇒ B↑iA

This ends the case of B↑iA.

• C = A↓iB. Completely similar to case B↑iA.

• C = B/A. Let us see:

[B/A] ⊆ JB/AK

Let ∆ be such that R ⊢ ∆ ⇒ B/A. Let ΓA ∈ JAK. By induction hypothesis
(i.h.), JAK = [A]. Hence, R ⊢ ΓA ⇒ A We have:

∆ ⇒ B↑iA
−−→
B/A, ΓA ⇒ B

Cut
∆, ΓA ⇒ B

By (i.h.), JBK = [B]. It follows that ∆,ΓA ∈ JBK. Whence, [B/A] ⊆ JB/AK.
Conversely, let us see:

JB/AK ⊆ [B/A]

Let ∆ ∈ JB/AK. By i.h. JAK = [A]. For any type A, we have eta-expansion,

i.e.
−→
A ⇒ A. Hence,

−→
A ∈ JAK. We have that∆,

−→
A ∈ JBK. By i.h.,∆,

−→
A ⇒ B.

166



Since
−→
A is correct, and by i.h. ∆,

−→
A is correct, by lemma 1 ∆ is correct. By

applying the / right rule to the provable hypersequent ∆,
−→
A ⇒ B we get:

∆ ⇒ B/A

This ends the case of B/A.

• C = A\B. Completely similar to the case C = B/A.

• Nondeterministic connectives. Consider the case C = B ⇑i A.

[B ⇑ A] ⊆ JB ⇑ AK

Let ΓA ∈ JAK. By i.h, ΓA ⇒ A. Let ∆ ⇒ B ⇑ A. By s(B) − s(A) + 1
applications of ⇑ left rule, we have

ΓA ⇒ A
−→
B ⇒ B, by eta-expansion

⇑ L−−−−→
B ⇑ A|iΓA ⇒ B, for i = 1, · · · , s(B)− s(A) + 1

By s(B)− s(A) + 1 Cut applications with ∆ ⇒ B ⇑ A, we get:

∆|iΓA ⇒ B

Hence, for i = 1, · · · s(B)−s(A)+1, by i.h.∆,ΓA ∈ JBK. Hence,∆ ∈ JB ⇑ AK.
Conversely, let us see:

JB ⇑ AK ⊆ [B ⇑ A]

By i.h, we see that
−→
A ∈ JAK. Let ∆ ∈ JB ⇑ AK. This means that for every

i = 1, · · · , s(B) − s(A) + 1 ∆|i
−→
A ∈ JBK. By i.h., ∆|i

−→
A ⇒ B. By a similar

reasoning to the deterministic case C = B↑iA, we see that ∆ is correct. We
have that:

∆|1
−→
A ⇒ B · · · ∆|s(B)−s(A)+1

−→
A ⇒ B

⇑ R
∆ ⇒ B ⇑ A

• The case C = A ⇓ B is completely similar to the previous one.
Let us see the cases corresponding to the unary (implicative) connectives.

• Left projection case: C = ⊳−1A. Let us see:

[⊳−1A] ⊆ J⊳−1AK

Let ∆ ∈ [⊳−1A]. Hence, ∆ ⇒ ⊳−1A. We have that:

∆ ⇒ ⊳−1A

−→
A ⇒ A

⊳−1L−−−→
⊳−1A, 1 ⇒ A

Cut
∆, 1 ⇒ A

167



By i.h., ∆, 1 ∈ JAK. Hence, ∆ ∈ J⊳−1AK.
Conversely, let us see:

J⊳−1AK ⊆ [⊳−1A]

Let ∆ ∈ J⊳−1AK. By definition, ∆, 1 ∈ JAK. By i.h., ∆, 1 ⇒ A, and by
lemma 1, ∆ is correct. By application of ⊳−1 right rule, we get:

∆ ⇒ ⊳−1A

This proves the converse.

• Case C = ⊲−1A is completely similar to the previous one.

• Case C = ˇkA. Let us see:

[ˇkA] ⊆ JˇkAK

Let ∆ ⇒ ˇkA. We have that:

∆ ⇒ ˇiA

−→
A ⇒ A

ˇkL−−→
ˇiA|kΛ ⇒ A

Cut
∆|kΛ ⇒ A

By i.h., ∆ ∈ JˇkAK.
Conversely, let us see that:

JˇkAK ⊆ [ˇkA]

Let ∆ ∈ JˇkAK. By definition, ∆|kΛ ∈ JAK. By i.h. and lemma 1, ∆ is correct
and ∆|kΛ ⇒ A. By application of the ˇk right rule:

∆ ⇒ ˇkA

Hence, ∆ ∈ [ˇkA].

We have seen all the cases of the so-called implicative fragment. We are done. ⊓⊔

By induction on the structure of HConfig (see (4)) one proves the following
lemma:

Lemma 4. (Identity lemma)

For any ∆ ∈ HConfig, ∆ ∈ J∆K
M
.

Let (Ai)i=1,··· ,n be the sequence of type-occurrences in a hyperconfiguration ∆.

Let ∆

(
Γ1 · · ·Γn

A1 · · ·An

)

be the result of replacing every type-occurrence Ai with Γi.

Recall that we have fixed a set of hypersequents R. We have the lemma:

Lemma 5. M = (P(S), v) |= R

168



Proof. Let (∆ ⇒ A) ∈ R. For every type-occurrence Ai in ∆ (we suppose that

the sequence of type occurrences in ∆ is (Ai)i=1,··· ,n), we have that JAiK
M
v =

[Ai]R. For any Γi ∈ JAiK
M
v , we have by the truth lemma 3 that R ⊢ Γi ⇒ Ai.

Since (∆ ⇒ A) ∈ R, we have then that R ⊢ ∆ ⇒ A. By n applications of the Cut

rule with the premises Γi we get from R ⊢ ∆ ⇒ A that R ⊢ ∆

(
Γ1 · · ·Γn

A1 · · ·An

)

⇒ A.

We have that J∆K
M
v = {∆

(
Γ1 · · ·Γn

A1 · · ·An

)

: Γi ∈ JAiK
M
v }. Since, we have R ⊢

∆

(
Γ1 · · ·Γn

A1 · · ·An

)

⇒ A, again, by the truth lemma, ∆

(
Γ1 · · ·Γn

A1 · · ·An

)

∈ JAK
M
v . We

have then that J∆K
M
v ⊆ JAK

M
v . We are done. ⊓⊔

Theorem 2. D∗[→] is strongly complete w.r.t. the class PRSD.

Proof. Suppose PRSD(R) |= ∆ ⇒ A. Hence, in particular this is true of the

canonical model M. Since ∆ ∈ J∆K
M
, it follows that ∆ ∈ JAK

M
. By the truth

lemma, JAK
M

= [A]R. Hence, R ⊢ ∆ ⇒ A. We are done. ⊓⊔

Let A and B be respectively standard DAs over separated monoids with a count-
able set of generators V1 = (ai)i>0 ∪ {1}, and a finitely generated standard DA,
concretely a standard DA with a set of three generators V2 = {a, b, 1}. We have
that |A| = V ∗

1 , and |B| = V ∗
2 . Let ρ̄ be the following injective mapping from V1

into V ∗
2 :

(24)
ρ̄(1) = 1
ρ̄(ai) = a+ bi + a

ρ extends recursively to the morphism of standard DAs ρ̄:

(25)
ρ̄ : A −→ B

0 7→ 0
1 7→ 1
ρ̄(w1 + w2) 7→ ρ̄(w1) + ρ̄(w2)
ρ̄(w1 ×i w2) 7→ ρ̄(w1)×i ρ̄(w2)

Since for every i > 0, ρ̄(ai) is prefix-free (and hence ρ̄),6 ρ̄ is a monomorphism.
ρ̄ induces then a monomorphism of standard DAs. Let A, B and C range over
subsets of |A|. Since ρ̄ is a monomorphism of DAs and the underlying monoids
of A and B are free, one proves:

(26)

ρ̄(A◦B) = ρ̄(A)◦ρ̄(B) ρ̄(A◦iB) = ρ̄(A)◦iρ̄(B)
ρ̄(A\\B) = ρ̄(A)\\ρ̄(B) ρ̄(B//A) = ρ̄(B)//ρ̄(A)
ρ̄(A�iB) = ρ̄(A)�iρ̄(B) ρ̄(B⇈iA) = ρ̄(B)⇈iρ̄(A)
ρ̄(B⇈iI) = ρ̄(B)⇈iI ρ̄(A//J) = ρ̄(A)//ρ̄(J)
ρ̄(J\\A) = J\\ρ̄(A)

6 If w is a non-empty proper prefix of ρ̄(ai), then w /∈ Im(ρ̄).

169



Moreover, one proves also

(27)

ρ̄(

s(B)−s(A)+1
⋂

i=1

B⇈iA) =

s(B)−s(A)+1
⋂

i=1

ρ̄(B)⇈iρ̄(A)

ρ̄(

s(B)−s(A)+1
⋂

i=1

A�iB) =

s(B)−s(A)+1
⋂

i=1

ρ̄(A)�iρ̄(A)

Now, let (P(A), v) be the powerset residuated displacement model over the stan-
dard DA A. For every A ∈ Tp∗[→], and ∆ ∈ HConfig, one has the following
facts:

(28) JAK
P(A)
v = JAK

P(B)
ρ̄ ◦ v and JAK

P(A)
v = JAK

P(B)
ρ̄ ◦ v

By properties (28), (26), and (27) and the fact that ρ̄ is a monomorphism, we
have therefore the following equivalence:

(29) J∆K
P(A)
v ⊆ JAK

P(A)
v iff J∆K

P(B)
ρ̄ ◦ v ⊆ JAK

P(B)
ρ̄ ◦ v

Where K is a subclass of RD, the notation K(R) |= ∆ ⇒ A (where R is a set of
hypersequents) means that K |= R and K |= ∆ ⇒ A.

Theorem 3. D∗[→] is strongly complete w.r.t. L-models.

Proof. Let R be a set of sequents. By way of contradiction, consider a hyper-
sequent ∆ ⇒ A such that D∗[→] + R 6⊢ ∆ ⇒ A but PRSDfg(R) |= ∆ ⇒ A.
Since D∗[→] is strongly complete w.r.t. PRSD (theorem 2), there exists a model
(A, v) |= R but (A, v) 6|= ∆ ⇒ A. Let ρ̄ the coding morphism from (25). Let
B be the finitely generated standard displacement algebra with 3 generators
a, b and 1. Since PRSDfg(R) |= ∆ ⇒ A, we have that for every valuation v′,

J∆K
B
v′ ⊆ JAK

B
v′ , in particular for the valuation ρ̄ ◦ v. By (29) we have that:

J∆K
A
v ⊆ JAK

A
v iff J∆K

B
ρ̄ ◦ v ⊆ JAK

B
ρ̄ ◦ v

But, by assumption, J∆K
A
v 6⊆ JAK

A
v . Contradiction. ⊓⊔

Corollary 1. HSeq∗[→] is strongly complete w.r.t. powerset residuated DAs
overs standard DAs with 3 generators.

4 Towards Strong Completeness of full D w.r.t. PRDD

We sketch7 in this section strong completeness of full D w.r.t. PRDD. We
get this result by proving a representation theorem between RD and PRDD.
In order to get this representation theorem we need to consider D∗ (unit-free
D), and consequently, Tp∗ (unit-free Tp), and HConfig∗ (unit-free HConfig).
This is a step to prove strong completeness for full D (without restrictions on
the units). We give the mutually recursive definition of the set T of hypertrees,
and the set of atomic terms:
7 We do not have enough space to justify the main claims. But, we believe that this
sketch is quite illuminating.

170



(30)

Λ, 1 ∈ T
If A ∈ Tp∗, then A is an atomic term
If T ∈ T , A,B ∈ Tp∗, then (T ;A•B; f) is an atomic term
If T ∈ T , A,B ∈ Tp∗, then (T ;A•B; s) is an atomic term
If T ∈ T , A,B ∈ Tp∗, then (T ;A⊙iB; f) is an atomic term
If T ∈ T , A,B ∈ Tp∗, then (T ;A⊙iB; s) is an atomic term
s((T ;A•B; f)) = s(A) and s((T ;A•B; s)) = s(B)
s((T ;A⊙iB; f)) = s(A) and s((T ;A⊙iB; s)) = s(B)
Λ ∈ T , and 1 ∈ T

If L atomic, then
−→
L,L{1 : · · · : 1

︸ ︷︷ ︸

s(L) 1’s

} ∈ T

If T, S ∈ T , then T, S ∈ T
If T, S ∈ T , then T |iS ∈ T

Like HConfig, T is sorted, and for every T ∈ T , s(T ) is simply the number
of separators T contains. We put T i = {T : T ∈ T and s(T ) = i} for i ≥ 0.
We have then that T =

⋃

i≥0 T i. Notice that T includes the set HConfig.
We define now a notion of reduction ⊲ in T . Where A,B ∈ Tp∗, and Ti, Sj ,
(i = 1, · · · , s(A), and , j = 1, · · · , s(B)) are hypertreees, we have:

(31)

{−−−−−−−−→
(T ;A•B; f){T1 : · · · : Ts(A)},

−−−−−−−−→
(T ;A•B; s){R1 : · · · : Rs(B)}

⊲T ⊗ 〈T1 : · · · : Ts(A) : R1 : · · · : Rs(B)〉

{−−−−−−−−−→
(T ;A⊙iB; f){T1 : · · · :

−−−−−−−−−→
(T ;A⊙iB; f){R1 : · · · : Rs(B)} : · · · : Ts(A)}

⊲T ⊗ 〈T1 : · · · : R1 : · · · : Rs(B) : · · · : Ts(A)〉

By a simple primitive type counting argument, one sees that the transitive clo-
sure of ⊲ ⊲∗ , is always terminating, i.e. ⊲∗ is strongly normalising. Again, by
primitive type counting arguments, one sees that ⊲∗ is weakly Church-Rosser,
and hence, by Newman’s lemma, ⊲∗ is Church-Rosser. This allows for every
element of T ∈ T to define its normal form irr(T ). We put Irr = irr(T ).
Since T is sorted, Irr is also sorted. We have that Irr =

⋃

i≥0 Irri, where
Irri = {T : T ∈ Irr and s(T ) = i}. Let us consider the ΣD-algebra:

(32) Irr = (Irr, +̃, (×̃i)i≥0, Λ, 1)

Where +̃, and (×̃i)i≥0, are defined as follows::

(33)
T +̃S , irr(T, S)

T ×̃iS , irr(T, S)

By Church-Rosser, Irr is easily seen to be a (nonstandard) DA. For, given the
arbitrary hypertrees T1, T2 and T3, for example discontinuous associativity is
proved as follows:

(34)

T1×̃i(T2×̃jT3) = irr(T1|iirr(T2|jT3))
= Irr(T1|i(T2|jT3)) = Irr((T1|iT2)|i+j−1T3)
= Irr(Irr(T1|iT2)|i+j−1T3)
= (T1×̃iT2)×̃i+j−1T3

171



Irr induces the powerset residuated DA over the DA Irr, which we denote
P(Irr).

Following Buszkowski’s technics on labelled deductive systems ([2]), we can
now introduce in Figure 8 a natural deduction system nD∗ for a conservative
extension of D∗. R is a given set of D∗-hypersequents. The axiom rule has as

−→
A։A for every A ∈ Tp∗

T։B/A S։A
/E

T, S։B

T,
−→
A։B

/I
T։B/A

S։A T։A\B
\E

T, S։B

−→
A, T։B

\I
T։A\B

T։A•B
•E1−−−−−−−−→

(T ;A•B; f)։A

T։A•B
•E2−−−−−−−−→

(T ;A•B; s)։B

T։A S։B
•I

T, S։A•B

T։B↑iA S։A
↑iE

T |iS։B

T |i
−→
A։B

↑iI
T։B↑iA

S։A↓iT։A\B
↓iE

S|iT։B

−→
A |iT։B

\I
T։A↓iB

T։A⊙iB
⊙iE1−−−−−−−−−→

(T ;A⊙iB; f)։A

T։A⊙iB
⊙iE2−−−−−−−−−→

(T ;A⊙iB; s)։B

T։A S։B
⊙iI

T |iS։A⊙iB

T։A
Red If T⊲∗ S

S։A

Ti։Ai where i = 1, · · · , n
AxiomR, (∆ ⇒ A) ∈ R

∆

(
T1 · · ·Tn

A1 · · ·An

)

։A

Fig. 8. nD∗ rules

premises Ti։Ai where (Ai)i=1,··· ,n is the sequence of type-occurrences of ∆. We
can prove that for R ⊢ ∆ ⇒ A iff R ⊢ ∆։A.

172



One considers the following canonical modelM = (P(Irr), αR), where αR(p) =

[p]R,{T : R ⊢ T։p}. Writing J · K instead of J · KMαR
, one proves that for every

type A ∈ Tp∗, JAK = [A]R. By rule AxiomR of nD∗, it is readily seen that
M |= R. The product rules of elimination help to straightforwardly prove that
JA ⋆ BK = [A ⋆ B]R, where ⋆ ∈ {•,⊙i : i > 0}. To prove that for every resid-
uated DA algebra A is isomorphically embeddable into a powerset rediduated
DA over a DA, one defines a bijection between the carrier set of A and the set
of primitive types Pr = (pa)a∈|A|. We define the valuation µ(pa) = a, and the

set of hypersequents which hold in (A, µ), i.e. R = {∆ ⇒ A : µ(∆) ≤ µ(A)}.
We consider the canonical model M = (P(Irr), αR), and we define the faithful
monomorphism h : |A| → |P(Irr)| such that h(a) := αR(pa), and h(0) = Λ, and
h(1) = 1. Finally, in order to obtain full strong completeness w.r.t. PRDD, one
uses the representation theorem and the fact that hD is strongly complete with
respect residuated DAs (see Subsection 2.2).

5 Conclusions

The strong completeness theorems we have proved are quite analogous to the
ones of L∗. The semantics are quite natural as in the case of L∗. We think that
these results constitute a big step towards the study of the model theory of hD.

It is known that L∗ is not weakly complete w.r.t. free monoids (see [11]).
Hence, weak completeness of full D (with units) w.r.t. L-models is not possible.
It remains open whether D∗ is weakly complete w.r.t. L-models.

References

1. A. Avron. Hypersequents, Logical Consequence and Intermediate Logic form Con-
currency. Annals of Mathematics and Artificial Intelligence, 4:225–248, 1991.

2. W. Buszkowski. Completeness results for Lambek syntactic calculus. Zeitschrift

für mathematische Logik und Grundlagen der Mathematik, 32:13–28, 1986.
3. Richard Moot. Extended Lambek calculi and first-order linear logic. In Claudia

Casadio, Bob Coecke, Michael Moortgat, and Philip Scott, editors, Categories and
Types in Logic, Language, and Physics, volume 8222 of Lecture Notes in Computer

Science, pages 297–330. Springer Berlin Heidelberg, 2014.
4. G. Morrill and O. Valent́ın. Spurious ambiguity and focalisation. Manuscript,

Submitted.
5. Glyn Morrill, Mario Fadda, and Oriol Valent́ın. Nondeterministic Discontinuous

Lambek Calculus. In Jeroen Geertzen, Elias Thijsse, Harry Bunt, and Amanda
Schiffrin, editors, Proceedings of the Seventh International Workshop on Compu-

tational Semantics, IWCS-7, pages 129–141. Tilburg University, 2007.
6. Glyn Morrill and Oriol Valent́ın. Displacement Calculus. Linguistic Anal-

ysis, 36(1–4):167–192, 2010. Special issue Festschrift for Joachim Lambek,
http://arxiv.org/abs/1004.4181.

7. Glyn Morrill and Oriol Valent́ın. On Calculus of Displacement. In Srinivas Banga-
lore, Robert Frank, and Maribel Romero, editors, TAG+10: Proceedings of the 10th

International Workshop on Tree Adjoining Grammars and Related Formalisms,
pages 45–52, New Haven, 2010. Linguistics Department, Yale University.

173



8. Glyn Morrill, Oriol Valent́ın, and Mario Fadda. Dutch Grammar and Processing:
A Case Study in TLG. In Peter Bosch, David Gabelaia, and Jérôme Lang, editors,
Logic, Language, and Computation: 7th International Tbilisi Symposium, Revised

Selected Papers, number 5422 in Lecture Notes in Artificial Intelligence, pages
272–286, Berlin, 2009. Springer.

9. Glyn Morrill, Oriol Valent́ın, and Mario Fadda. The Displacement Calculus. Jour-
nal of Logic, Language and Information, 20(1):1–48, 2011. Doi 10.1007/s10849-
010-9129-2.

10. Alexey Sorokin. Normal forms for multiple context-free languages and displacement
lambek grammars. In Sergei Artemov and Anil Nerode, editors, Logical Founda-
tions of Computer Science, volume 7734 of Lecture Notes in Computer Science,
pages 319–334. Springer Berlin Heidelberg, 2013.

11. Oriol Valent́ın. Theory of Discontinuous Lambek Calculus. PhD thesis, Universitat
Autònoma de Barcelona, Barcelona, 2012.

174



On some Extensions of Syntactic Concept

Lattices: Completeness and Finiteness Results

Christian Wurm
cwurm@phil.hhu.de

Universität Düsseldorf

Abstract. We provide some additional completeness results for the full
Lambek calculus and syntactic concept lattices, where the underlying
structure is extended to tuples of arbitrary finite and infinite size. Whereas
this answers an open question for finite tuples, infinite tuples have not
been considered yet. Nonetheless, they have a number of interesting prop-
erties which we establish in this paper, such as a particular class of lan-
guages which results in a finite lattice.

1 Introduction

Syntactic concept lattices arise from the distributional structure of languages.
Their main advantage is that they can be constructed on distributional relations
which are weaker than strict equivalence. [3] has shown how these lattices can be
enriched with a monoid structure to form residuated lattices. [19] has shown that
the resulting class of syntactic concept lattices for arbitrary languages forms a
complete class of models for the logics FL⊥, i.e. the full Lambek calculus, and
its reducts FL, L1, for which it is a conservative extension.

In this paper, we will consider syntactic concept lattices over extended monoids:
these will no longer consist of (sets of) strings, but rather of (sets of) tuples of
strings, first of arbitrary finite, then of infinite size. The monoid operation has
to be modified accordingly, of course. We show that the completeness results can
be extended to this case for FL⊥ and its reducts; our proof will be constructed
on top of the completeness results in [19] by means of isomorphic embeddings.

Finite tuples have been considered in formal language theory in a huge num-
ber of different contexts; the most relevant for us are [5],[15]. The use of infinite
tuples has not been considered yet (to our knowledge). We show that it comes
with some interesting gain in expressive power, while still being well-behaved;
we also establish the largest class of language which results in a finite lattice
over infinite tuples.

2 Residuated Syntactic Concept Lattices and Extensions

2.1 Equivalences on Strings and Tuples

Syntactic concept lattices originally arose in the structuralist approach to syntax,
back when syntacticians tried to capture syntactic structures purely in terms of



distributions of strings1 (see, e.g. [10]). An obvious way to do so is by partition-
ing strings/substrings into equivalence classes: we say that two strings w, v are
equivalent in a language L ⊆ Σ∗, in symbols

(1) w ∼1
L v, iff for all x, y ∈ Σ∗, xwy ∈ L ⇔ xvy ∈ L.

This can be extended to tuples of strings of arbitrary size:

(2) (w1, v1) ∼
2
L (w2, v2), iff for all x, y, z ∈ Σ∗, xw1yv1z ∈ L ⇔ xw2yv2z, etc.

The problem with equivalence classes is that they are too restrictive for many
purposes: assume we want to induce our grammar on the basis of a given dataset;
then it is quite improbable that we get the equivalence classes we would usually
desire. And even if we have an unlimited supply of examples, it seems unrealistic
to describe our grammar on the basis of equivalence classes only: there might
be constructions, collocations, idioms which ruin equivalences which we would
intuitively consider to be adequate. Another drawback of equivalence classes is
that for context-free languages, there is no general way to relate them to the
non-terminals of some grammar generating the language, whereas for syntactic
concepts, there are some interesting connections (see [6]).

Syntactic concepts provide a somewhat less rigid notion of equivalence, which
can be conceived of as equivalence restricted to a given set of contexts. This at
least partly overcomes the difficulties we have mentioned here.

2.2 Syntactic Concepts and Polar Maps

For a general introduction to lattices, see [7]; for background on residuated lat-
tices, see [9]. Syntactic concept lattices form a particular case of what is well-
known as formal concept lattice (or formal concept analysis) in computer science.
In linguistics, they have been introduced in [18]. They were brought back to at-
tention and enriched with residuation in [3], [4], as they turn out to be useful
representations for language learning.

Given a language L ⊆ Σ∗, we define two maps: a map ⊲ : ℘((Σ∗)n) →
℘((Σ∗)n+1), and ⊳ : ℘((Σ∗)n+1) → ℘((Σ∗)n), which are defined as follows:

(3) forM ⊆ (Σ∗)n,M⊲ := {(x1, ..., xn+1 : ∀(w1, ..., wn) ∈ M,x1w1...wnxn+1 ∈
L};

and dually

(4) for C ⊆ (Σ∗)n+1, C⊳ := {(w1, ..., wn) : ∀(x1, ..., xn+1) ∈ C, x1w1...wnxn+1 ∈
L}.

That is, a set of tuples of strings is mapped to the set of tuples of contexts in
which all of its elements can occur. The dual function maps a set of contexts to
the set of strings, which can occur in all of them. Usually, the case where n = 1

1 Or words, respectively, depending on whether we think of our language as a set of
words or a set of strings of words; we will choose the former option.

176



has been in the focus, as in [3],[19]. The more general cases have been considered
in one form or other by [5],[15]). Obviously, ⊳ and ⊲ are only defined with respect
to a given language L and a given tuple size, otherwise they are meaningless.
As long as it is clear of which language (if any particular language) and tuple
size (if any particular) we are speaking, we will omit however any reference to
it, to keep notation perspicuous. For a set of contexts C, C⊳ can be thought of
as an equivalence class with respect to the contexts in C; but there might be
elements in C⊳ which can occur in a context (v, w) /∈ C (and conversely). There
is one more extension we will consider which is not entirely trivial, namely the
one from tuples of arbitrary size to tuples of infinite size.

(5) for M ⊆ (Σ∗)ω, M⊲ := {(x1, x2, ...) : ∀(w1, w2, ...) ∈ M,x1w1w2x2... ∈
L}.

One might consider this meaningless, as L consists of finite words, M of infinite
tuples. But this is unjustified: it only entails that for any infinite tuple w ∈ M or
w ∈ M⊲, in order to be “meaningful”, all but finitely many components must be
ǫ. So for each “meaningful” (w1, w2, ...), there is a k ∈ N such that for all j ≥ k,
wj = ǫ. We gladly accept this restriction and remain with tuples where almost
all components are empty. This is still a proper generalization of any tuple size
n, because there is no finite upper bound for non-empty components in sets of
tuples.

We define · on (finite or infinite) tuples by componentwise concatenation, that
is, (w1, w2, ...) · (v1, v2, ...) = (w1v1, w2v2, ...). This choice is not unquestionable:
some authors seem to prefer concatenation of the type ⊕, where (w, v)⊕(x, y) =
(wx, yv). In the context of multiple context-free grammars this is referred to
as well-nestedness and has attracted great interest (see e.g. [12]). The problem
with this type of concatenation is that it is not easily extended beyond tuples
of size two. What is interesting in this context is that we can use the ω-tuples
to simulate ⊕-style concatenation with ·-style concatenation. To briefly sketch
what this means, we define the forgetful map fo by fo(w1, w2, ...) = w1w2...,
for arbitrary finite/infinite tuple size. We can now for all sequences of tuples
(x1, y1), ..., (xi, yi) devise ω-tuples w1, ..., wi such that for all 1 ≤ j, j′ ≤ i, we
have

fo((xj , yj)⊕ ...⊕ (xj′ , yj′)) = fo(wj · ... · wj′)

This is not generally possible with any finite tuple size, and this is what makes
infinite tuples interesting for us. Note that we can now also simplify things for
ω-tuples, as we have v ∈ {w}⊲ iff fo(v · w) ∈ L.

Regardless of the underlying objects, the two compositions of the maps, ⊳⊲
and ⊲⊳, are closure operators, that is:

1. M ⊆ M⊲⊳,
2. M⊲⊳ = M⊲⊳⊲⊳,
3. M ⊆ N ⇒ M⊲⊳ ⊆ N⊲⊳,

for M,N ⊆ Σ∗. The same holds for contexts and ⊳⊲. A set M is closed, if
M⊲⊳ = M etc. The closure operator ⊲⊳ gives rise to a lattice 〈Bn

L,≤〉, where the

177



elements of Bn
L are the sets M ⊆ (Σ∗)n such that M = M⊲⊳, and ≤ is interpreted

as ⊆. The same can be done with the set of closed contexts. Given these two
lattices, ⊲ and ⊳ establish a Galois connection between the two:

1. M ≤ N ⇔ M⊳ ≥ N⊳, and
2. C ≤ D ⇔ C⊲ ≥ D⊲.

A syntactic concept A is usually defined to be an ordered pair, consisting of
a closed set of strings, and a closed set of contexts, so it has the form 〈S,C〉,
such that S⊲ = C and C⊳ = S. For our purposes, we only need to consider the
left component, so we suppress the contexts and only consider the stringsets of
the form M⊲⊳. For all operations we define below, it can be easily seen that
the resulting structures are isomorphic. So when we refer to a concept, we only
mean a [−]⊲⊳ closed set of strings, the concept in the classical sense being easily
reconstructible.

Definition 1 The set of concepts of a language L forms a lattice denoted by
SCLn(L) := 〈Bn

L,∧,∨,⊤,⊥〉, where ⊤ = (Σ∗)n, ⊥= ∅⊲⊳, and for M,N ∈ Bn
L,

M ∧N = M ∩N , M ∨N = (M ∪N)⊲⊳.

It is easy to see that this defines an order in the usual fashion which coincides
with ⊆ on closed sets of strings. It is easy to verify that this forms a complete
lattice, as infinite joins are defined by (closure of) infinite unions, infinite meets
by infinite intersections. Note also that for any set of (tuples of) strings S and
contexts C, S⊲ = S⊲⊳⊲ and C⊳ = C⊳⊲⊳. SCLω(L) denotes the according structure
with infinite tuple size. To see that things are properly different in the infinite
case, we present the following result:

Lemma 2 1. For any n ∈ N, SCLn(L) is finite iff L ∈ Reg.
2. There are L ∈ Reg such that SCLω(L) is infinite.

Let [Σ]∗
∼1

L

denote the set of ∼1
L-congruence classes over Σ∗.

Proof. 1. SCL1(L) is finite iff [Σ]∗
∼1

L

is finite iff L is regular (both are well-

known). Moreover, |[Σ∗]∼n+1

L

| ≤ |[Σ∗]∼n

L
| · |[Σ∗]∼1

L

|, as ∼1
L-equivalent strings are

equivalent in all contexts. From this the claim easily follows.

2. Take the language L = a∗b∗, and all tuples of the form (a,

n times
︷ ︸︸ ︷
ǫ, ..., ǫ , a, ǫ, ǫ, ...)

for n ∈ N. For everym,m′ ∈ N,m < m′, we take the tuple (

m+1 times
︷ ︸︸ ︷
a, ..., a ,

m+3 times
︷ ︸︸ ︷

b, ..., b , ǫ, ǫ, ...);

it is easy to see that fo((

m+1 times
︷ ︸︸ ︷
a, ..., a ,

m+3 times
︷ ︸︸ ︷

b, ..., b , ǫ, ǫ, ...) · (a,

m times
︷ ︸︸ ︷
ǫ, ..., ǫ , a, ǫ, ǫ, ...)) ∈ L,

whereas if we substitute m with m′, the result is not in L.
Consequently, there are infinitely concepts, namely for each n ∈ N at least

one which contains (a,

n times
︷ ︸︸ ︷
ǫ, ..., ǫ , a, ǫ, ǫ, ...) but no (a,

n′ times
︷ ︸︸ ︷
ǫ, ..., ǫ , a, ǫ, ǫ, ...) for n′ > n.

⊣
This raises the question: what is the class C of languages such that L ∈ C

if and only if SCLω(L) is finite? We will give a concise characterization of this
class later on.

178



2.3 Monoid Structure and Residuation

As we have seen, the set of concepts of a language forms a lattice. In addition, we
can also give it the structure of a monoid: for concepts M,N , we define M ◦N :=
(M ·N)⊲⊳, where M ·N = {w ·v : w ∈ M, v ∈ N}. We often write MN for M ·N .
‘◦’ is associative on concepts: For M,N,O ∈ BL

n , M ◦(N ◦O) = (M ◦N)◦O. This
follows from the fact that [−]⊲⊳ is a nucleus, that is, it is a closure operator and
in addition it satisfies S⊲⊳T ⊲⊳ ⊆ (ST )⊲⊳, and the associativity of ·-concatenation
(no matter on which tuple size).

Furthermore, it is easy to see that the neutral element of ‘◦’ is {ǫ}⊲⊳. The
monoid operation respects the partial order of the lattice, that is, forX,Y, Z,W ∈
BL
n , if X ≤ Y , then W ◦X ◦Z ≤ W ◦Y ◦Z. We enrich this with residuals, using

the following definition:

Definition 3 Let X,Y be concepts. We define the right residual X/Y :=
∨
{Z :

Z ◦ Y ≤ X}, the left residual Y \X :=
∨
{Z : Y ◦ Z ≤ X}.

Note that this is an entirely abstract definition which does not make reference
to any underlying structure. That it works is ensured by the following lemma.

Lemma 4 Let L be a complete lattice with a monoid operation respecting the
order. Then for X,Y, Z ∈ L, residuals defined as above, we have Y ≤ X\Z iff
X ◦ Y ≤ Z iff X ≤ Z/Y .

Proof. We only prove the first bi-implication.
If : assume X ◦Y ≤ Z. Then Y ∈ {W : X ◦W ≤ Z}; so Y ≤

∨
{W : X ◦W ≤

Z} = X\Z.
Only if : This uses the fact that infinite joins distribute over ◦, that is,

M ◦
∨
N =

∨
{M ◦ N : N ∈ N} (see [9] for this and many similar results).

Consequently, we have X ◦ X\Z = X ◦
∨
{W : X ◦ W ≤ Z} =

∨
{X ◦ W :

X ◦W ≤ Z} ≤ Z; as Y ≤ X\Z, we have X ◦ Y ≤ X ◦X\Z ≤ Z. ⊣
So every complete lattice with a monoid operation respecting the order can

be extended to a residuated lattice.

Definition 5 The syntactic concept lattice of a language L is defined as
SCLn(L) := 〈Bn

L,∧,∨,⊤,⊥, 1, ◦, /, \〉, where Bn
L,∧,∨,⊤,⊥ are defined as in def-

inition 1, 1 = {ǫ}⊲⊳, and ◦, /, \ are as defined above.

Note that we somewhat overloaded the notation of SCLn(L); in the sequel
we will however thereby always refer to definition 5. Moreover, we will denote by
SCL the class of all lattices of the form SCL1(L) for some language L, without
any further requirement regarding L; same for SCLn for n ∈ N ∪ {ω}.

3 Lambek Calculus and Extensions

3.1 The Logics L, L1, FL and FL⊥

The Lambek calculus L was introduced in [13]. L1 is a proper extension of L,
and FL,FL⊥ are each conservative extensions of L1 and the preceding one. Let

179



Pr be a set, the set of primitive types, and C be a set of constructors, which
is, depending on the logics we use, CL := {/, \, •}, or CFL := {/, \, •,∨,∧}. By
TpC(Pr) we denote the set of types over Pr, which is defined as the smallest
set, such that:

1. Pr ⊆ TpC(Pr).

2. if α, β ∈ TpC(Pr), ⋆ ∈ C, then α ⋆ β ∈ TpC(Pr).

If there is no danger of confusion regarding the primitive types and construc-
tors, we also simply write Tp for TpC(Pr). We now present the inference rules
corresponding to these constructors. We call an inference of the form Γ ⊢ α a
sequent, for Γ ∈ Tp∗, α ∈ Tp, where by Tp∗ we denote the set of all (possi-
bly empty) sequences over Tp, which are concatenated by ‘,’ (keep in mind the
difference between sequents, which have the form Γ ⊢ α, and sequences like Γ ,
which are in Tp∗).

With few exceptions, rules of inference in our logics are not given in the form
of sequents Γ ⊢ α, but rather as rules to derive new sequents from given ones.
In general, uppercase Greek letters range as variables over sequences of types.
In the inference rules for L, premises of ′ ⊢′ (that is, left hand sides of sequents)
must be non-empty; in L1 they can be empty as well; everything else is equal. In
FL and FL⊥ we also allow for empty sequents. Lowercase Greek letters range
over single types. Below, we present the standard rules of the Lambek calculus
L / L1.

(ax) α ⊢ α (cut)

∆,β,Θ ⊢ α Γ ⊢ β

∆, Γ,Θ ⊢ α

(I− /)

Γ, α ⊢ β

Γ ⊢ β/α (I− \)

α, Γ ⊢ β

Γ ⊢ α\β

(/− I)

∆,β,Θ ⊢ γ Γ ⊢ α

∆, β/α, Γ,Θ ⊢ γ (\ − I)

∆,β,Θ ⊢ γ Γ ⊢ α

∆,Γ, α\β,Θ ⊢ γ

(• − I)

∆,α, β, Γ ⊢ γ

∆, α • β, Γ ⊢ γ (I− •)

∆ ⊢ α Γ ⊢ β

∆, Γ ⊢ α • β

These are the standard rules of L / L1 (roughly as in [13]). We have rules
to introduce either slash and ‘•’ both on the right hand side of ⊢ and on the
left hand side of ⊢. We will now add two additional connectives, which are well-
known from structural logics, namely ∨ and ∧. These are not present in L/L1,
have however been considered as extensions as early as in [14], and have been
subsequently studied by [11].

(∧ − I 1)

Γ, α,∆ ⊢ γ

Γ, α ∧ β,∆ ⊢ γ (∧ − I 2)

Γ, β,∆ ⊢ γ

Γ, α ∧ β,∆ ⊢ γ

180



(I− ∧)

Γ ⊢ α Γ ⊢ β

Γ ⊢ α ∧ β

(∨ − I)

Γ, α,∆ ⊢ γ Γ, β,∆ ⊢ γ

Γ, α ∨ β,∆ ⊢ γ

(I− ∨ 1)
Γ ⊢ α

Γ ⊢ α ∨ β (I− ∨ 2)

Γ ⊢ β

Γ ⊢ α ∨ β

(1− I)

Γ,∆ ⊢ α

Γ, 1, ∆ ⊢ α (I− 1) ⊢ 1

This gives us the logic FL. Note that this slightly deviates from standard
terminology, because usually, FL has an additional constant 0 (not to be con-
fused with ⊥!). In our formulation, 0 and 1 coincide. In order to have logical
counterparts for the bounded lattice elements ⊤ and ⊥, we introduce two logical
constants, which are denoted by the same symbol.2

(⊥ −I) Γ,⊥ ∆ ⊢ α (I−⊤) Γ ⊢ ⊤

This gives us the calculus FL⊥. ¿From a logical point of view, all these
extensions of L are quite well-behaved: they are conservative, and also allow us
to preserve the important result of [13], namely admissibility of the cut-rule.

We say that a sequent Γ ⊢ α is derivable in a calculus, if it can be derived
by the axiom and the rules of inference; we then write 
L Γ ⊢ α, 
L1 Γ ⊢ α,

FL Γ ⊢ α etc., depending on which calculus we use.

3.2 Interpretations of L1, FL and FL⊥

The standard model for L1 is the class of residuated monoids. These are struc-
tures (M, ·, 1, \, /,≤), where (M, ·, 1) is a monoid, (M,≤) is a partial order, and
·, /, \ satisfy the law of residuation: for m,n, o ∈ M ,

(6) m ≤ o/n ⇔ m · n ≤ o ⇔ n ≤ m\o.

Note that this implies that · respects the order ≤. The standard model for FL
is the class of residuated lattices, and for FL⊥, the class of bounded residuated
lattices. A residuated lattice is an algebraic structure 〈M, ·,∨,∧, \, /, 1〉, where
in addition to the previous requirements, (M,∨,∧) is a lattice; the lattice order

2 Whereas L and L1 are equally powerful in the sense of languages which are recog-
nizable, [11] shows that FL is considerably more powerful than L: whereas L only
recognizes context-free languages by the classical result of [17], FL can recognize any
finite intersection of context-free languages. We only briefly mention this, because
we have no space to make precise what it means for a calculus to recognize a class
of languages.

181



≤ need not be stated, as it can be induced by ∨ or ∧: for a, b ∈ M , a ≤
b is a shorthand for a ∨ b = b. A bounded residuated lattice is a structure
〈M, ·,∨,∧, \, /, 1,⊤,⊥〉, where 〈M, ·,∨,∧, \, /, 1〉 is a residuated lattice, ⊤ is the
maximal element of the lattice order ≤ and ⊥ is its minimal element.

For a general introduction see [9]. We will give definitions only once for each
operator; we can do so because each definition for a given connector is valid for
all classes in which it is present.

We call the class of residuated monoids RM , the class of residuated lattices
RL; the class of bounded residuated lattices RL⊥. We now give a semantics for
the calculi above. We start with an interpretation σ : Pr → M which interprets
elements in Pr in elements of the lattice, and extend σ to σ by defining it induc-
tively over our type constructors, which is for now the set C := {/, \, •,∨,∧}.
For α, β ∈ TpC(Pr),

1. σ(α) = σ(α) ∈ M , if α ∈ Pr
2. σ(⊤) = ⊤
2’ σ(⊤) is an arbitrary m ∈ M such for all α ∈ TpC(Pr), σ(α) ≤ m.
3. σ(⊥) =⊥
4. σ(1) = 1
5. σ(α • β) := σ(α) · σ(β)
6. σ(α/β) := σ(α)/σ(β)
7. σ(α\β) := σ(α)\σ(β)
8. σ(α ∨ β) := σ(α) ∨ σ(β)
9. σ(α ∧ β) := σ(α) ∧ σ(β)

Note that the constructors on the left-hand side and on the right-hand side
of the definition look identical (with the exception of • and ·), but they are not:
on the left-hand side, they are type constructors, on the right hand side, they
are operators of a residuated lattice. The same holds for the constants ⊤,⊥, 1.
Note that there are two alternative interpretations for ⊤: one which interprets
it as the upper bound for the lattice, which is the standard interpretation, and
one which just interprets it as an arbitrary element. The latter will be called the
non-standard interpretation and play some role in the sequel. Non-standard
interpretations form a generalization of standard interpretations, and as we will
see below, this is a proper generalization. ¿From this it trivially follows that
every completeness result which holds for standard interpretations also holds for
non-standard interpretations, but we have to show that soundness is preserved.
This however is also straightforward, as there is only one rule involving ⊤ and
it can be easily seen to be sound under non-standard interpretations.

This is how we interpret the types of our logic. What we want to interpret
next is the sequents of the form Γ ⊢ α. We say that a sequent R = γ1, ..., γi ⊢ α
is true in a model M under assignment σ, in symbols: (M, σ) |= γ1, ..., γi ⊢ α, if
and only if σ(γ1 • ... • γi) ≤ σ(α) holds in M. That is, we interpret the ‘,’, which
denotes concatenation in sequents, as · in the model, and ⊢ as ≤. In the sequel,
for Γ a sequence of types, we will often write σ(Γ ) as an abbreviation, where we
leave the former translation implicit. For the case of theorems, that is, derivable

182



sequents with no antecedent, we have the following convention: (M, σ) |= ⊢ α,
iff 1 ≤ σ(α) in M, where 1 is the unit element of M (note that this case does
not arise in L).

More generally, for a given class of (bounded) residuated lattices (monoids,
semigroups) C, we say that a sequent is valid in C, in symbols, C |= γ1, ..., γi ⊢ α,
if for all M ∈ C and all interpretations σ, (M, σ) |= γ1, ...γi ⊢ α (here we have
to distinguish between standard and non-standard interpretations).

4 Completeness: Previous Results

There are a number of completeness results for the logics we have considered
here. We will consider the most general ones, which will be important in the
sequel.

Theorem 6 For the class RM of residuated monoids, the class RL of residuated
lattices, the class RL⊥ of bounded residuated lattices,

1. RM |= Γ ⊢ α if and only if 
L1 Γ ⊢ α,
2. RL |= Γ ⊢ α if and only if 
FL Γ ⊢ α,
3. RL⊥ |= Γ ⊢ α if and only if 
FL⊥

Γ ⊢ α.

For reference on theorem 6, see [1], [2], [9]. The proofs for the above com-
pleteness theorems usually proceed via the Lindenbaum-Tarski construction: we
interpret primitive types as atomic terms modulo mutual derivability, and de-
fine σ(α) ≤ σ(β) iff α ⊢ β. Then we can perform an induction over constructors
to get the same for arbitrary formulas/terms. So there are quite simple com-
pleteness proofs for the general case. These completeness results can actually be
strengthened to the finite model property. A logic, equipped with a class of mod-
els and interpretations, is said to have finite model property if it is complete in
the finite; that is, theorem 6 remains valid if we restrict ourself to finite models.
These results are highly non-trivial; for example, classical first-order logic fails
to have finite model property.

Theorem 7 1. L1 has finite model property;
2. FL has finite model property;
3. FL⊥ has finite model property.

For the first claim, consider [8]; the second and third has been established
by [16]. We want to establish soundness and completeness of the calculi with
respect to the class of syntactic concept lattices and their reducts. The latter
results are crucial to show that completeness holds if we restrict ourselves to
languages over finite alphabets.

Now we list some soundness and completeness results for syntactic concept
lattices. First we see that our calculus is sound with respect to the model:

Theorem 8 (Soundness) If 
FL⊥
Γ ⊢ α, then for the class of syntactic concept

lattices SCL, we have SCL |= Γ ⊢ α.

183



This actually follows from soundness direction of theorem 6, because SCL is
just a particular class of bounded residuated lattices. As L,L1,FL are fragments
of FL⊥, we get the same result for L,L1 and FL, considering the terms which
contain only the operators which have a counterpart in the logic.

Let SCLL1 be the class of SCL reducts with {◦, /, \}, which specify a unit,
and SCLFL be the class of SCL reducts with operators {◦, /, \,∨,∧}, that is,
without the constants ⊤ and ⊥.

Theorem 9 (Completeness)

1. If SCLL1 |= Γ ⊢ α, then 
L1 Γ ⊢ α;
2. if SCLFL |= Γ ⊢ α, then 
FL Γ ⊢ α;
3. if SCL |= Γ ⊢ α, then 
FL⊥

Γ ⊢ α;

The completeness proofs can be found in [19]. The proof shows that for any
(bounded) residuated lattice (reduct) S, there is a language L(S) such that S
can be isomorphically embedded in SCL(L(S)). This embedding thus preserves
validity in both directions, and thus completeness follows. The language L(S) is
constructed with the elements of S as underlying alphabet. By the finite model
property, we can conclude that the result remains valid if we restrict ourselves
to languages over finite alphabets: if S is finite, L(S) is a language over a finite
alphabet (though still infinite!). So theorem 9 also holds for languages over finite
alphabets only.

5 SCLn – Completeness via Embeddings

We now extend theorem 9 to the structures SCLn : n ∈ N ∪ {ω} (henceforth:
Nω). Again, we proceed by showing that there is an isomorphic embedding from
SCL(L) → SCLn(L). To increase readability and avoid misunderstandings,
in the following we let ⊲, ⊳, ◦ denote operations in SCL, ◭,◮,⊙ denote the
corresponding operations in SCLn. This convention however only concerns this
section! We will exemplify the embedding for SCL2, but it is easy to see that
this can be extended to any n ∈ N.

Assume M ∈ SCL(L). We take a map α : ℘(Σ∗) → ℘(Σ∗ × Σ∗), which is
defined as a lifting of α′ : w 7→ (w, ǫ) to sets composed with closure, so we define
α(M) = (α′[M ])◮◭. The following are more or less immediate:

1. α(M) ∈ SCL2(L);
2. if w ∈ M , then (w, ǫ) ∈ α(M);
3. α′[M ] ⋆ α′[N ] = α′[M ⋆N ], for ⋆ ∈ {·,∪,∩}.

The third point ensures that α′ is a homomorphism for sets and classical set-
theoretic operations of languages. Moreover, it is easy to see that α′ is a bijection.
So α′ is an isomorphic embedding from (℘(Σ∗), ·,∪,∩) to (℘(Σ∗ × Σ∗), ·,∪,∩)
Note that all these points remain valid if we suitably extend α′ to α′

n, with

α′
n(w) = (w,

n times
︷ ︸︸ ︷
ǫ, ..., ǫ ), with αn defined accordingly.

184



This is quite obvious. It becomes much less obvious, if we switch our attention
to α, that is, add the closure operation. The reason is as follows: α(M) might
contain elements of the form (w, v) with v 6= ǫ; and thus α(M) · α(N) might
contain terms of the form (w1, w2) · (v1, v2) = (w1v1, w2v2). This is obviously
problematic, as in α(M)·α(N) substrings occur in an order which differs from the
one in fo(α(M))fo(α(N)). We show that the map αn is nonetheless an isomorphic
embedding SCL(L) → SCLn(L). This requires some work, and we prove the
claim step by step via the following lemmas (again, we exemplify this for n =
1, but results can be easily extended to the general case). We first make the
following observation:

Lemma 10 α′[M ]◮ = {(x, y, z) : (x, yz) ∈ M⊲};

Both inclusions are obvious. This means that α(M) is the set of all (a, b)
such that if xMyz ⊆ L, then xaybz ∈ L. This allows to show the following:

Lemma 11 For M = M⊲⊳, (w, ǫ) ∈ α(M) if and only if w ∈ M .

Proof. If -direction is immediate. Only if : If (w, ǫ) ∈ α(M), then whenever
(x, y, z) ∈ α(M)◮, we have xwyz ∈ L. Now, M⊲ is exactly the set of all (x, yz)
such that (x, y, z) ∈ α(M)◮. Thus we have w ∈ M⊲⊳ = M . ⊣

Put Ma := {wav : wv ∈ M}.

Lemma 12 α(M)⊙ α(N) ⊆ α(M ◦N).

Proof. Case 1 : Assume (w, v) ∈ α(M) · α(N). Then (w, v) = (a1b1, a2b2),
where (a1, a2) ∈ α(M), (b1, b2) = α(N). So for (a1, a2) it follows: if xMyz ⊆ L,
then xa1ya2z ∈ L; the same holds for (b1, b2) ∈ α(N). So we have the following:

1. if wMv ⊆ L wa1v
a2 ⊆ L, and

2. if wNv ⊆ L, then wb1v
b2 ⊆ L.

Case 1a: Assume there are x, y such that xMNy ⊆ L. Then it follows (by
2) that for every z1, z2 with z1z2 = y, xMb1z1b2z2 ⊆ L, and consequently (by
1) that xa1b1z1a2b2z2 ∈ L, and so we have (a1b1, a2b2) ∈ (α′[M ◦ N ])◮◭ =
α(M ◦N).

Case 1b: There are no x, y, z such that xMNyz ⊆ L. Then we have M ◦N =
⊤, and MN⊲ = ∅. By lemma 10, it follows that α′[MN ]◮ = ∅, and therefore,
α′[MN ]◮◭ = α(M ◦N) = ⊤.

Case 2 : (w, v) /∈ α(M) · α(N). In this case, for all (x, y, z) such that for
all (a, b) ∈ α(M) · α(N), xaybz ∈ L, we have xwyvz ∈ L. So it follows that if
(x, y, z) ∈ α′[M ◦N ]◮, then xwyvz ∈ L; thus (w, v) ∈ α′[M ◦N ]◮◭ = α(M ◦N).
⊣

This is the first of a number of lemmas which establish the main theorem of
this section. The second one establishes the inverse inclusion:

Lemma 13 α(M ◦N) ⊆ α(M)⊙ α(N).

185



Proof. Assume (w, v) ∈ α(M ◦N).
Case 1 : (w, v) ∈ α′[M ◦N ]. Then v = ǫ, and w ∈ M ◦N . For all w ∈ MN ,

(w, ǫ) ∈ α(M)·α(N). Furthermore, if w ∈ MN⊲⊳, then (w, ǫ) ∈ (α(M)·α(N))◮◭

by as simple argument using lemma 10. Consequently, (w, v) = (w, ǫ) ∈ α(M)⊙
α(N).

Case 2 : Assume (w, v) /∈ α′[M ◦N ]. Consequently, it holds that if (x, y, z) ∈
α′[M ◦ N ]◮, then xwyvz ∈ L. As α′[M ◦ N ] ⊆ α(M) ⊙ α(N) (by case 1), we
have α′[M ◦N ]◮ ⊇ (α(M)⊙α(N))◮, and so if (x, y, z) ∈ (α(M)⊙α(N))◮, then
xwyvz ∈ L, and (w, v) ∈ (α(M)⊙ α(N))◮◭ = α(M)⊙ α(N). ⊣

So α is a homomorphism of ◦ (more generally, every αn is a ◦-homomorphism).
To show that it preserves meets and joins does not require a lot of work. In order
to save one step, we directly prove the claim for infinite meets.

Lemma 14
∧

i∈I α(Mi) = α(
∧

i∈I Mi).

This proof is rather straightforward, as ∧ equals ∩ in our case, a fact we will
make use of.

Proof. ⊆ Assume (w, v) ∈ α(Mi) for all i ∈ I. This means for all i ∈ I, if
x(Mi)yz ⊆ L , then xwyvz ∈ L. We have (x, yz) ∈ (

∧

i∈I Mi)
⊲ iff and only

if (x, y, z) ∈ α′[
∧

i∈I Mi]
◮ (lemma 10). So if (x, y, z) ∈ α′[

∧

i∈I Mi]
◮, then

x(
⋂

i∈I Mi)yz ⊆ L, and so xwyvz ∈ L, and so (w, v) ∈ α′[
∧

i∈I Mi]
◮◭ =

α(
∧

i∈I Mi).
⊇ Assume (w, v) ∈ α(

∧

i∈I Mi). Because α(X) = α′[X]◮◭, α′ being a point-
wise map on sets and [−]◮◭ being a closure operator, from

∧

i∈I Mi ⊆ Mj : j ∈ I
it follows that α(

∧

i∈I Mi) ⊆ α(Mj); and so α(
∧

i∈I Mi) ⊆
⋂

i∈I α(Mi) =
∧

i∈I α(Mi). ⊣
Now we can use the fact that in a complete lattice, we can use meets to define

joins (and vice versa). This allows us to derive the following:

Lemma 15 α(M) ∨ α(N) = α(M ∨N).

Proof. We use the facts that 1. both SCL(L), SCL2(L) are complete, and
2. α preserves infinite meets. For these reasons, the following equality holds:

α(M) ∨ α(N) =
∧
{α(X) : X ≥ M,N} = α(

∧
{X : X ≥ M,N}).

Moreover, we can easily extend this to the infinite case:
∨

i∈I α(Mi) =
∧
{α(X) : X ≥ Mi : i ∈ I} = α(

∧
{X : X ≥ Mi : i ∈ I}) =

α(
∨

i∈I Mi).

⊣
Again, this can be easily extended to any αn, n ∈ Nω.
Needless to say, every map αn : SCL(L) → SCLn(L) is an injection. To

see this, just assume we have M,N ∈ SCL(L); and assume without loss of
generality that (w, v) ∈ M⊲, (w, v) /∈ N⊲. Then we have (w, ǫ, v) ∈ α′[M ]◮,
but (w, ǫ, v) /∈ α′[N ]◮, so α(M) = α′[M ]◮◭ 6= α′[N ]◮◭ = α(N). This together
with the with fact that we preserve joins and meets makes the following rather
obvious:

186



Lemma 16 X ◦N ≤ M iff α(X) • α(N) ≤ α(M).

Proof. If : For contraposition, assume X ◦N 6≤ M . Then there is w ∈ X ◦N ,
w /∈ M . Consequently, there is (w, ǫ) ∈ α(X) • α(N), but w /∈ α(M) (by lemma
11).

Only if : Assume X ◦ N ≤ M . Then obviously α(X ◦ N) = α(X) • α(N) ≤
α(M), as α preserves ⊆. ⊣

Lemma 17 α(M)/α(N) = α(M/N)

Proof. We have M/N =
∨
{X : X ◦N ≤ M}; moreover α(

∨
{X : X ◦N ≤

M}) =
∨
{α(X) : X ◦N ≤ M}. Since X ◦N ≤ M iff α(X) • α(N) ≤ α(M), we

have
∨
{α(X) : X ◦N ≤ M} =

∨
{α(X) : α(X)•α(N) ≤ α(M)} = α(M)/α(N).

⊣
Again, this proof works perfectly fine for any αn. To not get confused with

⊥,⊤ in SCL, SCL2, we denote the latter elements with ⊥2,⊤2 etc.

Lemma 18 α(⊥) =⊥2, but there are languages L such that α(⊤) 6= ⊤2.

Proof. 1. ⊥ We have defined ⊥= ∅⊲⊳. Assume ⊥= ∅; in this case, the result
is obvious. Assume there is w ∈⊥. Then for every (x, y) ∈ Σ∗ × Σ∗, xwy ∈ L.
Consequently, for all (x, y, z) ∈ (Σ∗)3, xwyz ∈ L. So α′[⊥]◮ = ∅◮, and α(⊥
) =⊥2.

2. Take the language L = a(a+b)∗a. Then (a, a) ∈ ((a+b)∗)⊲, where (a+b)∗ =
⊤. Consequently, (a, a, ǫ) ∈ α′[⊤]◮. As abab /∈ L, we have (b, b) /∈ α′[⊤]◮◭ =
α(⊤), hence α(⊤) 6= ⊤2 = Σ∗ ×Σ∗. ⊣

Again, this is easily extended to arbitrary n ∈ Nω. So we have a serious
problem, because our embedding does not preserve⊤. We can dodge this however
by considering non-standard interpretations (see section 3.2 and proof of theorem
20 below).

So this proves the first main theorem:

Theorem 19 For every n ∈ Nω, there is an isomorphic embedding αn : SCL(L) →
SCLn(L), such that αn(⊥) =⊥, and which in addition preserves infinite meets
and joins.

¿From theorem 19 it is rather easy to extend the completeness result to
SCLn:

Theorem 20 For arbitrary n ∈ Nω, 
FL⊥
Γ ⊢ α iff SCLn |= Γ ⊢ α.

Proof. Soundness is clear and follows from more general results. Regarding
completeness: Assume we have 6
FL⊥

Γ ⊢ γ. Then there is an L, σ : Pr →
SCL(L) such that σ(Γ ) 6⊆ σ(γ). It follows that αn(σ(Γ ) 6⊆ αn(σ(γ)), and so
SCLn(L), αn ◦ σ 6|= Γ ⊢ γ, which proves the claim.

But keep in mind that αn ◦ σ is a non-standard interpretation, as αn ◦ σ(⊤)
need not be ⊤ in the lattice! ⊣

The results obviously also hold for the logics FL, L1 and the corresponding
syntactic concept lattice reducts (for these, the notions of standard and non-
standard interpretation coincide). Note also that this shows that the notion of
a non-standard interpretation properly generalizes standard interpretations.

187



6 A Characterization for Finite SCLω-structures

Obviously, if L /∈ Reg, then SCLω(L) is infinite; but the converse is wrong (see
lemma 2). A permutation π is a map on words which preserves all cardinalities
of all letters in this word. For any language L, define Π(L) = {w : π(v) = w for
some permutation π and some v ∈ L}. Let PermReg be the class of languages,
which is defined as follows:

Definition 21 L ∈ PermReg, iff 1. L ∈ Reg, and 2. Π(L) = L.

This concerns, for example, languages like {w : |w|a is even for a ∈ Σ}. We
will show that SCLω(L) is finite iff L ∈ PermReg. For the if -direction, we first
show the following lemma, which at the same time gives some understanding of
the combinatorics of permutations:

Lemma 22 Assume L 6= Π(L), so there is a permutation π, w ∈ L, such that
π(w) /∈ L. Then there are w, v ∈ (Σ∗)ω such that fo(v · w) = w, fo(w)fo(v) =
π(w).

Note firstly that assumptions assure that w 6= π(w). From this follows that
fo(w) 6= ǫ 6= fo(v), as this would entail w = π(w).

Proof. We choose some arbitrary w, π such that w ∈ L, π(w) /∈ L (which
exist by assumption). We let ai denote the ith letter of π(w). We construct w
in the following fashion:

Step 1 Take a1, the first letter of π(w), and put w = (a1, ǫ, ǫ, ...). Of course,
there is v ∈ (Σ∗)ω such that fo(v · (a1, ǫ, ...)) = w, because a1 occurs in some
place in w. Now there are two possible cases:

Case 1 : fo(w)fo(v) /∈ L; then we change the “target permutation” π from the
lemma to ξ, where ξ(w) = fo(w)fo(v) (this is clearly a permutation). Then we
are done, as ξ, w satisfy the claim!

Case 2 : fo(w)fo(v) ∈ L. In this case, we discard w, π and consider w1, π1

instead, where w1 = fo(w)fo(v) ∈ L, and π1 is defined by π1(w1) = π(w) (this
works because w,w1 are permutations of each other). Then continue with step
2.

Step 2 Having chosen ai before, we now take ai+1 (as πi(wi) = π(w), it does
not matter which of the two we consider). Put w = (a1...ai, ai+1, ǫ, ...); there is
obviously a v such that fo((a1...ai, ai+1, ǫ, ...) ·v) = wi, because wi is constructed
as a1...aiv, and v necessarily contains the letter ai+1. Now we can go back to
the case distinction and repeat the procedure.

In the end, there are two possibilities: as w is a finite word, either at some
point we hit case 1, and the claim follows. Assume we do not hit case 1. Then
at some point we have i = |w| = |π(w)|, so we construct w|w| as a1...a|w|. Then
by definition and assumption, we have a1...a|w| = π(w) /∈ L. But we also have,

as we do not hit case 1 by assumption, a1...a|w| = fo(w)fo(v) = w|w| ∈ L –
contradiction. ⊣

As we can see, we can even make sure that w has the form (w, a, ǫ, ǫ, ...), and
v = (v1, v2, v3, ǫ, ǫ, ...).

188



Lemma 23 L ∈ PermReg if and only if SCLω(L) is finite.

Proof. Only if : There are only finitely many non-equivalent concepts of the
form (w, ǫ, ǫ, ...). Moreover, by permutation closure, we know that if fo(w) =
fo(v), then {w}⊲ = {v}⊲ and the claim follows easily.

If : For this we need the previous lemma. We prove the contraposition, so
assume L /∈ PermReg. Then either L /∈ Reg, and the claim follows easily.
Or Π(L) 6= L. In this case, we have w, π such that w ∈ L, π(w) /∈ L, and
there are w, v ∈ (Σ∗)ω such that fo(v · w) = w, fo(w)fo(v) = π(w). Moreover,
w = (w, a, ǫ, ǫ, ...), and v = (v1, v2, v3, ǫ, ǫ, ...).

Now for every n ∈ N, we simply take a tuple (

2n times
︷ ︸︸ ︷
ǫ, ..., ǫ , w, ǫ, ǫ, ...). It is clear

that for every n, we get non-equivalent tuples: We have

(#) fo((ǫ1, ..., ǫ2n, v1, v2, v3, ǫ, ǫ, ...) · (ǫ1, ..., ǫ2(n−1), w, a, ǫ, ǫ, ...)) = π(w) /∈ L,

whereas

fo((ǫ1, ..., ǫ2n, v1, v2, v3, ǫ, ǫ, ...) · (ǫ1, ..., ǫ2n, w, a, ǫ, ǫ, ...)) = w ∈ L.

Moreover, (#) holds if in the term 2n is replaced by any number m ≥ 2n. Put
wm = (ǫ1, ..., ǫ2m, w, a, ǫ, ǫ, ...). So for any wm, wn, if m 6= n, then {wm}⊲ 6=
{wn}

⊲, and as these sets are closed and there are infinitely many of them,
SCLω(L) is infinite. ⊣

7 Conclusion

We have shown completeness results for extensions of syntactic concepts to fi-
nite and infinite tuples; moreover, we have given a precise characterization of
the class of languages which result in finite lattices in all cases. Interpreting sub-
structural logics in sets of tuples rather than sets of strings is interesting for a
number of reasons: from the perspective of categorial grammar and/or Lambek
calculus as language-recognizing devices, the interpretation in tuples allows us
to recognize languages which are not context-free (by letting grammars recog-
nize tuples modulo fo). This relates more “classical” categorial approaches to
new approaches such as the displacement calculus D, which also recognizes lan-
guages which are not context-free. In this context, infinite tuples are particularly
interesting, as they allow to simulate both the “wrapping”-style extended con-
catenation in D and the “crossing”-style extended concatenation we have looked
at in this paper. The usage of formal concept analysis is particularly interesting
in connection with learning theory; so the results here might also be of some
interest for learning beyond context-free languages.

References

1. Wojciech Buszkowski. Completeness results for Lambek syntactic calculus. Math-

ematical Logic Quarterly, 32(1-5):13–28, 1986.

189



2. Wojciech Buszkowski. Algebraic structures in categorial grammar. Theor. Comput.

Sci., 1998(1-2):5–24, 1998.
3. Alexander Clark. A learnable representation for syntax using residuated lattices. In

Philippe de Groote, Markus Egg, and Laura Kallmeyer, editors, Proceedings of the
14th Conference on Formal Grammar, volume 5591 of Lecture Notes in Computer

Science, pages 183–198. Springer, 2009.
4. Alexander Clark. Learning context free grammars with the syntactic concept lat-

tice. In José M. Sempere and Pedro Garćıa, editors, 10th International Colloquium

on Grammatical Inference, volume 6339 of Lecture Notes in Computer Science,
pages 38–51. Springer, 2010.

5. Alexander Clark. Logical grammars, logical theories. In Denis Béchet and Alexan-
der Ja. Dikovsky, editors, LACL, volume 7351 of Lecture Notes in Computer Sci-

ence, pages 1–20. Springer, 2012.
6. Alexander Clark. The syntactic concept lattice: Another algebraic theory of the

context-free languages? Journal of Logic and Computation, 2013.
7. B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge

University Press, Cambridge, 2 edition, 1991.
8. Maciej Farulewski. On finite models of the lambek calculus. Studia Logica,

80(1):63–74, 2005.
9. Nikolaos Galatos, Peter Jipsen, Tomasz Kowalski, and Hiroakira Ono. Residuated

Lattices: An Algebraic Glimpse at Substructural Logics. Elsevier, 2007.
10. Zellig S. Harris. Structural Linguistics. The University of Chicago Press, 1963.
11. Makoto Kanazawa. The Lambek calculus enriched with additional connectives.

Journal of Logic, Language, and Information, 1:141–171, 1992.
12. Makoto Kanazawa, Jens Michaelis, Sylvain Salvati, and Ryo Yoshinaka. Well-

nestedness properly subsumes strict derivational minimalism. In Logical Aspects

of Computational Linguistics - 6th International Conference, LACL 2011, Mont-

pellier, France, June 29 - July 1, 2011. Proceedings, pages 112–128, 2011.
13. Joachim Lambek. The Mathematics of Sentence Structure. The American Math-

ematical Monthly, 65:154–169, 1958.
14. Joachim Lambek. On the calculus of syntactic types. In Roman Jakobson, editor,

Structure of Language and its Mathematical Aspects, pages 166–178. Providence,
1961.

15. Glyn Morrill, Oriol Valent́ın, and Mario Fadda. The displacement calculus. Journal
of Logic, Language and Information, 20(1):1–48, 2011.

16. Mitsuhiro Okada and Kazushige Terui. The finite model property for various
fragments of intuitionistic linear logic. J. Symb. Log., 64(2):790–802, 1999.

17. M. Pentus. Lambek grammars are context free. In Proceedings of the 8th Annual

IEEE Symposium on Logic in Computer Science, pages 429–433, Los Alamitos,
California, 1993. IEEE Computer Society Press.

18. A. Sestier. Contributions à une théorie ensembliste des classifications linguis-
tiques. (Contributions to a set–theoretical theory of classifications). In Actes du

Ier Congrès de l’AFCAL, pages 293–305, Grenoble, 1960.
19. Christian Wurm. Completeness of full lambek calculus for syntactic concept lat-

tices. In Formal Grammar - 17th and 18th International Conferences, FG 2012,

Opole, Poland, August 2012, Revised Selected Papers, FG 2013, Düsseldorf, Ger-

many, August 2013. Proceedings, pages 126–141, 2012.

190


