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AbstractThis paper makes two generalisations of categorial calculus of discontinuity. In the �rst we in-troduce unary modalities which mediate between continuous and discontinuous strings. In thesecond each of the modes of adjunction of the proposal to date, concatenation, juxtaposition andinterpolation, are augmented with variants. Linguistic illustration and motivation is provided,and we show how adherence to a discipline of sorting renders the generalisations tractable withina particularly e�cient logic programming paradigm.



1Generalising DiscontinuityThe present work continues in the line of others seeking to develop categorial type calculusof discontinuity and associated automated theorem proving/parsing (Moortgat 1988, 1990, 1991;Solias 1992; Morrill and Solias 1993; Morrill 1994, ch. 4, 1995a, 1995b, 1995c; Llor�e and Morrill1995, Calcagno 1995). In particular, it generalises the sorted discontinuity calculus outlined inthe appendix of Morrill (1995b) and implemented in a linear clausal fragment by compilation asdescribed in Morrill 1995c; familiarity with these two works is assumed in what follows.We begin by summarising the point of departure for the present proposals. We then introducetwo generalisations: unary \split" and \bridge" operators mediating between strings and splitstrings, and binary operators for staggered concatenation, and juxtaposition and interpolationadjunctions which inherit split points from their operands. We go on to show how these proposals�t into the linear logic programming paradigm for categorial parsing as deduction.1 Sorted Discontinuity CalculusThe associative Lambek calculus (Lambek 1958) provides a logic of concatenation. Its types arespeci�cations of concatenative comportment and by classifying words with respect to types, prop-erties of strings are de�ned which are the deductive consequences. The non-associative Lambekcalculus (Lambek 1961) is similarly a logic of juxtaposition, by which we mean putting side-by-side in a way which imposes grouping (concatenation, being associative, forgets grouping). Butthe existence of discontinuous phenomena in natural grammar guarantees that such logic of itselfcannot be adequate. In discontinuity calculus, as presented for example in Morrill (1994, ch. 4,1995b), it is sought to combine and extend logic of concatenation and juxtaposition with logic ofinterpolation. In one, unsorted, approach concatenation, juxtaposition and interpolation are eachassumed to be total functions in a single abstract total algebra and the categorial types are formedfrom unsorted type-constructors without restriction.The sorted discontinuity calculus is brie
y introduced in the appendix of (Morrill 1995b). Itis distinguished from the unsorted version in that instead of assuming all adjunctions to be totalfunctions in an unsorted algebra, two sorts of object (string and split string) are assumed so thatthe adjunctions are sorted operations in a sorted algebra, and the categorial types come in arestricted form according to the sorted type-constructors. This formulation has particularly goodcomputational properties; while the unsorted version has a logic programming implementationdepending on matching under associativity and partial commutativity (Morrill 1995a), the sortedversion has one depending on just uni�cation of unstructured terms (i.e. constants and variables;Morrill 1995c).The sorted discontinuity calculus is as follows. Let us assume a monoid hL;+; �i comprisingthe set of strings over some vocabulary, with + the associative operation of concatenation (sothat s1+(s2+s3) = (s1+s2)+s3), and with � the empty string (so that s+� = �+s = s). Theconcatenation adjunction + has functionality L;L ! L. We de�ne a juxtaposition adjunction(:; :) which is Cartesian product formation over L, of functionality L;L! L2; (s1; s2) =df hs1; s2i.And we further de�ne an interpolation adjunction W of functionality L2; L! L; hs1; s2iWs =dfs1+s+s2. Because these operations are sorted, the categorial types and type-constructors de�nedwith respect to them are correspondingly sorted. We refer to sort L as sort string, and sort L2 assort split string.The family of concatenation connectives f=; n; �g are de�ned by \residuation" with respect tothe concatenation adjunction +, which is of functionality L;L ! L. The existential conjunction(product) A�B (A product B) is the setwise sum of the concatenation adjunction over A and B;AnB (A under B) and B=A (B over A) are the universal directional implications (divisions).D(AnB) = fsj 8s0 2 D(A); s0+s 2 D(B)gD(B=A) = fsj 8s0 2 D(A); s+s0 2 D(B)gD(A�B) = fsj 9s1; s2; s = s1+s2 & s1 2 D(A) & s2 2 D(B)g(1)



2Each of these type-constructors requires its operands to be of sort string and produces a compositetype of sort string.The family of juxtaposition connectives f<;>; �g are de�ned by residuation with respect tothe juxtaposition adjunction (:; :), which is of functionality L;L ! L2. The product A�B is thesetwise sum of the juxtaposition adjunction over A and B; A>B (B to A) and B<A (B from A)are the directional divisions.D(A>B) = fsj 8s0 2 D(A); hs0; si 2 D(B)gD(B<A) = fsj 8s0 2 D(A); hs; s0i 2 D(B)gD(A�B) = fhs1; s2ij s1 2 D(A) & s2 2 D(B)g(2)Since juxtaposition combines two strings to form a split string, product types are of sort splitstring with sort string operands; and divisor types are of sort string and have the denominatortype of sort string and the numerator type of sort split string.The family of interpolation connectives f"; #;�g are de�ned by residuation with respect to theinterpolation adjunction W , which is of functionality L2; L! L. The product A�B is the setwisesum of the interpolation adjunction over A and B; A#B (A in�x B) and B"A (B extract A) arethe divisions.D(A#B) = fsj 8hs1; s2i 2 D(A); s1+s+s2 2 D(B)gD(B"A) = fhs1; s2ij 8s 2 D(A); s1+s+s2 2 D(B)gD(A�B) = fsj 9s1; s0; s2; s = s1+s0+s2 & hs1; s2i 2 D(A) & s0 2 D(B)g(3)Sorting considerations apply in ways similar to those made before. In summary, let us assumethat atomic formulas A are of sort string. The well-sorted category formulas (or: types) F of sortstring and G of sort split string are de�ned by mutual recursion thus:F ::= A j F=F j FnF j F�F j G<F j F>G j G#F j G�FG ::= F�F j F"F(4)Each formula A of sort string has an interpretation D(A) � L and each formula A of sort splitstring has an interpretation D(A) � L2.The system mixing the three families of connectives is sublinear in the space of logics arisingfrom removing standard structural rules. Thus while linear logic (Girard 1987) results from removalof freely applying contraction and weakening, but not exchange, the present system lacks freecommutativity also. This means that all theorems must be valid when reading divisions andproducts as the linear (multiplicative) implication and conjunction. Linear validity is a necessarycondition for validity, though of course it is not su�cient because further sublinear structuralconditions must be respected.We present a tree-style natural deduction proof format in which linear logical resource-consciousnessis re
ected by closure of a unique assumption in conditionalisation. The sublinear conditions areexpressed in labels (Gabbay 1991) re
ecting the interpretation. We use boldface romans as con-stants naming elements of L, and we use �; �; 
; : : : as variables over L term labels. A labelledformula of sort string has the form �: A and a labelled formula of sort split string is of theform (�; �): A. The labelled natural deduction rules can be seen as a restatement left-to-rightand right-to-left of the bidirectional interpretation clauses rotated ninety degrees clockwise forthe elimination (E) rules and anticlockwise for the introduction (I) rules,1 with metavariables orSkolem constants according to quanti�ers and the polarity of their context. We give only in-troduction rules for existentials since the elimination rules are both problematic, and apparentlyunmotivated linguistically.(5) ... ...�: A 
: AnBnE�+
: B a: An...a+
: BnIn
: AnB1Cf. Ranta (1994), who attributes the observation to Martin-L�of (1987).
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41.1 ExamplesWe assume the reader has some familiarity with semantic composition in type-logical grammar,and with linguistic applications such as re
exivisation and quanti�cation treated in the referencedworks. We illustrate here with respect to two constructions, VP Ellipsis and wide scope `or' notyet mentioned in the literature.1.1.1 VP EllipsisWe describe our treatment by reference to examples from Dalrymple, Shieber and Pereira (1991),showing how a categorial type-driven treatment renders unnecessary a mechanism of higher-orderuni�cation. Consider the following.Dan likes golf and George does too.(14)Let us suppose the following to be given, either listed or derived in the lexicon, or derived catego-rially from more fundamental assignments.(and, does+too) { �x�y�z[(y z) ^ (y x)]:= ((NnS)n(NnS))"N(15)Then there is the following derivation of `likes golf and George does too' in NnS=VP.(16) Dan: N likes+golf: VP (and, does+too): (VPnVP)"N George: N"Eand+George+does+too: VPnVPnElikes+golf+and+George+does+too: VPnEDan+likes+golf+and+George+does+too: SSemantics is derived by the standard Curry-Howard rendering of categorial deductions: functionalapplication for rules of implicational use (elimination) and functional abstraction for rules ofimplicational proof (introduction). In the following we show the normalised semantic terms foreach node of (16).(17) d lg �x�y�z[(y z) ^ (y x)] g"E�y�z[(y z) ^ (y g)]nE�z[(lg z) ^ (lg g)]nE[(lg d) ^ (lg g)]Thus (14) receives the required logical form [(lg d) ^ (lg g)].We leave it to the reader to check that, in the absence of other constraints, with `himself'assigned semantics �x�y((x y) y) in category (VP"N)#VP, `John likes himself and Bill does too' ispredicted to have both a sloppy and a strict reading. The point is that the in situ re
exive bindermay take e�ect at either a verb phrase formed over `likes himself', which gives rise to a sloppyreading, or one formed by `likes himself and Bill does too', giving a strict reading. It may besimilarly checked that with (18) and `everyone' in category (S"N)#S, `John greated everyone whenBill did' gets readings \When Bill greated everyone, John greated everyone" (with the quanti�erscoping abstractly in `greated everyone' of category NnS), and \for each person, when Bill greatedhim/her, so did John" (scoping over the entire sentence).(when, did) { �x�y�z((when (y z)) (y x)):= ((NnS)n(NnS))"N(18)



51.1.2 Wide Scope \Or"Under the phenomenon of wide-scope `or' (Partee and Rooth 1983, Rooth and Partee 1982), asentence such as `John thinks Bill or Mary walks' is ambiguous between readings in which thedisjunction scopes above or below the propositional attitude verb. The discontinuity apparatusallows a treatment analogous to that whereby `John thinks someone walks' is ambiguous betweenspeci�c and non-speci�c readings. The following lexical assignment to the disjunctive particleyields a coordinate structure in an in situ binder type which may operate at the subordinate orthe superordinate level.or { �x�y�z[(z y) _ (z x)]:= (Nn((S"N)#S))/N(19)Then the narrow scope and wide scope readings are delivered through the following two derivationsin which the coordinate structure substitutes in at the subordinate and superordinate sentencesrespectively.(20) walks: NnS Bill: N or: (Nn((S"N)#S))/N Mary: N/Eor+Mary: Nn((S"N)#S)nEBill+or+Mary: (S"N)#S1a: N nEa+walks: S "I1(�, walks): S"N #EBill+or+Mary+walks: S(21) John: N thinks: (NnS)/S walks: NnS Bill+or+Mary: (S"N)#S1a: N nEa+walks: S/Ethinks+a+walks: NnSnEJohn+thinks+a+walks: S "I1(John+thinks, walks): S"N #EJohn+thinks+Bill+or+Mary+walks: SThe following two sections generalise the calculus that we have presented and illustrated.2 Bridge and Split OperatorsWe propose here to enrich the discontinuity calculus of the previous section with two unaryoperators ^ (bridge) and $(split) which relate continuous and split strings. Bridging is to map splitstrings into strings and splitting is to map strings into split strings, so the formulas are extendedas follows.F ::= A j F=F j FnF j F�F j G<F j F>G j G#F j G�F j ^GG ::= F�F j F"F j $F(22)Interpretation is now made with respect to a connection set J which is a subset of L that contains�. Intuitively, connections allow for hypothetical reasoning over discontinuous strings as if theywere continuous, by supposing that they are connected; the connection set includes � because theempty string always connects adjacent strings. The interpretations of the earlier binary operatorsare independent of the connection set and are as given before. However, ^ and $ behave as anexistential and a universal respectively with respect to the connection set. Signs in $A are splitstrings which, joined by any connection, give a string in A; signs in ^A are the results of joining



6by some connection some split string in A.2D($A) = fhs1; s2ij 8s 2 J; s1+s+s2 2 D(A)gD(^A) = fsj 9s1; s2; s0; s = s1+s0+s2 & s0 2 J & hs1; s2i 2 D(A)g(23)Labelled natural deduction rules are read o� the interpretation clauses as before, and again theproblematic existential elimination is excluded. Connections are represented j(�); because � is aconnection in all models, j(�) may be assumed freely, but other connections assumed will have tobe conditionalised in logical deductions.(24) ... ...(
1; 
2): $A j(�)$E
1+�+
2: A j(b)n...
1+b+
2: A$In(
1; 
2): $A(25) ... ...(
1; 
2): A j(�)^I
1+�+
2: ^AThe bridge and split type-constructors form a conjugate pair of respectively existential anduniversal modal operators (see Moortgat 1995) and thus satisfy laws such as A ) $^A:(26) (�1; �2): A 1j(b)^I�1+b+�2: ^A$I1(�1; �2): $^ABy way of linguistic illustration, we observe that assignment of a type R/^(S"N) to a relativepronoun allows medial relativisation such as `that Mary sent to John' to be generated as a con-tinuous string:(27) that: R/^(S"N) Mary: N sent: ((NnS)/PP)/N to+John: PP j(�)1b: N/Esent+b: (NnS)/PP /Esent+b+to+John: NnSnEMary+sent+b+to+John: S "I1(Mary+sent, to+John): S"N ^IMary+sent+to+John: ^(S"N)/Ethat+Mary+sent+to+John: RThe subsequent section introduces the second generalisation, relating to binary operators.2The operators are identity mappings with respect to the semantic dimension of signs. Note that as a logicalbasic type J would obey A ) A�J (and A ) J�A), but not A�J ) A (or J�A ) A), whereas a true product unitI with D(I) = f�g would obey all four such laws. With an I-type connection set the interpretations become:D($A) = fhs1; s2ij s1+s2 2 D(A)gD(^A) = fsj 9s1 ; s2; s = s1+s2 & hs1; s2i 2 D(A)gWe emphasise the J-version because the commutativity of the neutral element (s+� = �+s) would underminecertain intended applications. Observe that so far as prosodic dimensions of signs are concerned we could de�ne$A as A"J and ^A as A�J , but semantically it is unclear how to give meanings to unit types, or a meaning inA"J which, applied to that of J returns itself as value. For these reasons we propose unary modalities and not unittypes.



73 Generalised Sorted Discontinuity CalculusThe concatenation, juxtaposition, and interpolation adjunctions of the discontinuity calculus canbe illustrated as follows:� + � = � �( � , � ) = � � � � �� � � � 
 W � = � � 
(28)These are natural operations in the realm of strings and split strings, but others are imaginable,and linguistically motivated. In particular we consider here a generalisation of the discontinuitycalculus in which each initial adjunction is augmented with variants (though these do not exhaustthe conceivable options). Juxtaposition and interpolation have left and right variants accordingto positions of split points; concatenation has a single staggered variant because of the absence ofa split point.Discont. Calculus Generalised Discont. Calculus+: concatenation +2: staggered concatenation(., .): juxtaposition (.,l .): juxtaposition inheriting split on the left(.,r .): juxtaposition inheriting split on the rightW : interpolation Wl: interpolation at the left interiorWr: interpolation at the right interior(29)The staggered concatenation adjunction is of functionality L2; L2 ! L; left and right inheritingjuxtaposition are of functionality L2; L ! L2 and L;L2 ! L2 respectively; the left and rightinterior interpolations are of functionality L2; L! L2. The variants perform the same basic roleas their mother operations: concatenation outputs strings, juxtaposition outputs split strings,preserving operand order; interpolation performs a wrapping of the �rst operand around thesecond. The de�nitions of the new adjunctions are as follows.h�; �i+2h
; �i =df �+
+�+�(h�; �i;l 
) =df h�; �+
i (�;r h�; 
i) =df h�+�; 
)h�; 
iWl� =df h�+�; 
) h�; 
iWr� =df h�; �+
)(30)More graphically, we have (31).� � � � � +2 
 � � � � = � 
 � �( � � � � � ,l 
 ) = � � � � � 
 ( � ,r � � � � 
 ) = � � � � � 
( � � � � 
 Wl � ) = � � � � � 
 ( � � � � 
 Wr � ) = � � � � � 
(31)The community of discontinuity connectives becomes generalised to (32) where m 2 fl; r; 0g,n 2 f2; 0g, and the zero variants, those we already had, will continue to be written withoutexplicit subscript.+n nn under (staggered) /n over (staggered) �n(.,m .) >m to (left, right) <m from (left, right) �mWm "m extract (left, right) #m in�x (left, right) �m(32)



8Interpretation is made by residuation in just the same way as has been seen earlier. By wayof example, for the staggered concatenation family we have:D(An2B) = fhs3; s4ij 8hs1; s2i 2 D(A); s1+s3+s2+s4 2 D(B)gD(B/2A) = fhs1; s2ij 8hs3; s4i 2 D(A); s1+s3+s2+s4 2 D(B)gD(A�2B) = fs1+s3+s2+s4j hs1; s2i 2 D(A) & hs3; s4i 2 D(B)g(33)We do not list labelled deduction rules since these are entirely predictable, being obtained in justthe same way as those for the original discontinuity calculus. To mention a single case, introduc-tion of staggered product is (34).(34) ... ...(�1; �2): A (�1; �2): B�2I�1+�1+�2+�2: A�2B3.1 Examples3.1.1 Gapping as Like-Category CoordinationWe present a characterisation of gapping as almost like category coordination. We take ourinspiration from Hendriks (1995), but our generalisation of the discontinuity calculus is di�erentfrom hers; in particular our generalised discontinuity calculus has the computationally convenientsorted formulation which the generalisation of Hendriks necessarily lacks,3 but our analysis can besaid to be borrowed. We treat the example `John studies logic and Charles phonetics' by assigning`and' the almost like category coordinator type (X>lX)/^X where X is S"TV and TV is (NnS)/N,with semantics �x�y�z[(y z) ^ (x z)].(35)(John, logic): S"TV and Charles: N phn: N j(�)1a: TVCharles+a+phn: S "I1(Charles;phn): S"TV ^ICharles+phn: ^(S"TV)/Eand+Charles+phn: X>lX>rE(John; logic+and+Charles+phn): S"TVStarting at the top right hand corner, `Charles a phonetics' is derived straightforwardly as asentence from the hypothetical transitive verb a. The hypothetical can be withdrawn to yield asplit form which wants to wrap around a transitive verb to form a sentence. This is mapped by ^Iwhich fuses the right hand conjunct to a string of the right type for the coordinator to consumeby over elimination, which pre�xes the coordinator. The left hand conjunct `John logic' is alsoderivable as S"TV, in just the same way as `Charles phonetics'; when the coordinator combineswith this conjunct, by to left elimination, the split marking of this conjunct is inherited by theresult, again in type S"TV. So this will wrap around the transitive verb interpolating it in the�rst conjunct, and distributing its semantics over the conjuncts. The semantics is spelled out in(36).3The problem is that the new interaction principle [MA], p.113 requires �2 to be of split string sort qua thesplit operand of wrap (her notation is swapped relative to ours); but then since the new g-mode gets a string sortleft operand in the top line, it cannot take �rst operand �2, of split string sort, in the second line.



9(36)�x((x logic) j) �x�y�z[(y z) ^ (x z)] c x phn1x((x phn) c) "I1�x((x phn) c) ^I�x((x phn) c)/E�y�z[(y z) ^ ((z phn) c)]>rE�z[((z logic) j) ^ ((z phn) c)]The last step illustrates inference with a inheriting juxtaposition. Our next example will illustratestaggered concatenation.3.1.2 Comparative SubdeletionWe make the second illustration of generalised discontinuity with reference to comparative subdele-tion. Again the treatment is inspired by Hendriks (1995), but it uses the present sorted calculus,and the analysis assumes that `more : : : than' in examples such as the following has a unitarymeaning.a. More sheep ran than �sh swam.b. John ate more bagels than Mary ate donuts.(37)Our analytical perspective is that `more : : : than' combines with two sentences each lacking onequanti�er; `more' occupies the determiner gap in the �rst, and the two sentences are conjoinedwith `than'. Semantically there is a comparison, in the case of (37b) for example, between thecardinality of the set of bagels that John ate, and the cardinality of the set of donuts that Maryate. The construction is triggered by the following lexical assignment, where Q abbreviates thequanti�er type ((S"N)#S)/CN.(more, than) { �x�y[�z(x �p�q[(p z) ^ (q z)]) > �z(y �p�q[(p z) ^ (q z)])]:= (S"Q)n2(S/^(S"Q))(38)Then there is the following derivation of (37b), where TV again abbreviates (NnS)/N.John: N ate: TV bagels: CN1a: QJohn+ate+a+bagels: S "I1(John+ate, bagels): S"Q more thann2EJohn+ate+more+bagels+than: S/^(S"Q) (Mary+ate, donuts): S"Q j(�)^IMary+ate+donuts: ^(S"Q)/EJohn+ate+more+bagels+than+Mary+ate+donuts: S(39)Observe in particular the staggered concatenation inference step n2E with combines (John+ate,bagels) with (more, than) to yield John+ate+more +bagels+than. The semantics of (39) isas follows.(40)j ate bagel1w((w bagel) �u((ate u) j)) "I1�w((w bagel) �u((ate u) j)) more than n2�y[�z[(bagel z) ^ ((ate z) j)] > �z(y �p�q[(p z) ^ (q z)])] �w((w donut) �u((ate u) m)) ^I�w((w donut) �u((ate u) m))/E[�z[(bagel z) ^ ((ate z) j)] > �z[(donut z) ^ ((ate z) m)]The relevant comparison of cardinalities is indeed made.Rather than continue here with linguistic illustration of interior edge interpolation we pass ondirectly to consider computational aspects.



104 ComputationThe current section shows how the generalised discontinuity proposals �t into the paradigm forlogic programming of categorial deduction developed in Morrill (1995a, 1995c) and Llor�e andMorrill (1995). The general proposal is to compile categorial assignments into clauses of linearlogic. The compilation is performed systematically, according to the interpretations of catego-rial type-constructors; the target formalism of a linear logic programming fragment (Hodas andMiller 1994) is suitable because it is the most speci�c level of propositional logic embracing allthe sublinear categorial calculi with their discontinuity, partial commutativity, and so forth, andbecause in structuring resources as bags rather than lists, we eliminate the need to conjecture par-tition points of ordered sequents, a source of ine�cient don't know non-determinism indigenousto Lambek sequent deduction.It is possible to work just with algebraic interpretation, as in Morrill (1995a), but in Morrill(1995c) and Llor�e and Morrill (1995) it is observed that by exploiting the binary relational models(van Benthem 1991) of associative Lambek calculus one can avoid computation of matching underassociativity, and instead propagate constraints under associativity by methods analogous to theuse of string positions/di�erence lists in the logic programming of DCGs.Both the original sorted discontinuity calculus and its generalisation here can be interpretedand implemented according to just binary relational models. However, because linguistically wewish to be able to represent not only precedence relations, but also dominance relations (e.g. usingbracket operators; Morrill 1992, 1994 ch. 7) the algebraic dimension is needed to induce hierarchicalstructure that cannot be captured in binary relations. For this reason, we deal here with the moregeneral problem of interpretation and computation according to combined algebraic and relationalmodels. In this general setting matching under associativity is not altogether avoided. Howeverwe combine algebraic and relational style models into multidimensional hybrid models which allowus to exploit constraint propagation and adopt a lazy approach to computation of matching underassociativity, by only attempting to check the algebraic conditions once satisfaction of the binaryrelational conditions have been con�rmed.4.1 Hybrid ModelsWe begin by reviewing the hybrid models for the sorted version of the original discontinuitycalculus. Interpretation takes place relative to a monoid hL;+; �i and a set V . Each formula A ofsort string has an interpretation D(A) � V 2 � L and each formula A of sort split string has aninterpretation D(A) � V 4 � L2.The family of connectives f=; n; �g are de�ned by residuation with respect to a concatenationadjunction of functionality V 2 � L; V 2 � L ! V 2 � L. The adjunction is a partial operation,de�ned on hv1; v2; s1i and hv3; v4; s2i (respectively) just in case v2 = v3, in which case its value ishv1; v4; s1+s2i.D(AnB) = fhv2; v3; sij 8hv1; v2; s0i 2 D(A);hv1; v3; s0+si 2 D(B)gD(B=A) = fhv1; v2; sij 8hv2; v3; s0i 2 D(A);hv1; v3; s+s0i 2 D(B)gD(A�B) = fhv1; v3; sij 9v2; s1; s2; s = s1+s2& hv1; v2; s1i 2 D(A)& hv2; v3; s2i 2 D(B)g(41)The family of connectives f<;>; �g are de�ned by residuation with respect to a juxtapositionadjunction of functionality V 2�L; V 2�L! V 4�L2. It is de�ned as Cartesian product formation:



11applied to hv1; v2; s1i and hv3; v4; s2i (respectively) its value is hv1; v2; v3; v4; s1; s2i.D(A>B) = fhv3; v4; sij 8hv1; v2; s0i 2 D(A);hv1; v2; v3; v4; s0; si 2 D(B)gD(B<A) = fhv1; v2; sij 8hv3; v4; s0i 2 D(A);hv1; v2; v3; v4; s; s0i 2 D(B)gD(A�B) = fhv1; v2; v3; v4; s1; s2ijhv1; v2; s1i 2 D(A)& hv3; v4; s2i 2 D(B)g(42)The family of connectives f"; #;�g are de�ned by residuation with respect to an interpolationadjunction of functionality V 4 � L2; V 2 � L ! V 2 � L. It is a partial operation, de�ned onhv1; v2; v3; v4; s1; s2i and hv5; v6; si (respectively) just in case v2 = v5 and v3 = v6, in which caseits value is hv1; v4; s1+s+s2i.D(A#B) = fhv2; v3; sij 8hv1; v2; v3; v4; s1; s2i 2 D(A);hv1; v4; s1+s+s2i 2 D(B)gD(B"A) = fhv1; v2; v3; v4; s1; s2ij 8hv2; v3; si 2 D(A);hv1; v4; s1+s+s2i 2 D(B)gD(A�B) = fhv1; v4; sij 9v2; v3; s1; s0; s2; s = s1+s0+s2& hv1; v2; v3; v4; s1; s2i 2 D(A)& hv2; v3; s0i 2 D(B)g(43)Exactly as before we can present a tree-style linear natural deduction proof format with thesublinear conditions expressed by labels. We use naturals as labels naming elements of V ; we useI; J;K; : : : in italic as variables over V labels, in boldface for uniquely occuring V constants. Astring label is of the form I { J { � and a split string label is of the form (I { J;K { L) { (�; �).Again, the labelled natural deduction rules can be seen as a restatement left-to-right and right-to-left of the bidirectional interpretation clauses rotated ninety degrees clockwise for the elimination(E) rules and anticlockwise the introduction (I) rules, with metavariables or Skolem constantsaccording to quanti�ers and the polarity of their context.(44) ... ...I { J { �: A J { K { 
: AnBnEI { K { �+
: B I { J { a: An...I { K { a+
: BnInJ { K { 
: AnB(45) ... ...I { J { 
: B=A J { K { �: A/EI { K { 
+�: B J { K { a: An...I { K { 
+a: B=InI { J { 
: B=A(46) ... ...I { J { �: A J { K { �: B�II { K { �+�: A�B(47) ... ...I { J { �: A K { L { 
: A>B>E(I { J;K { L) { (�; 
): B I { J { a: An...(I { J;K { L) { (a; 
): B>InK { L { 
: A>B



12(48) ... ...I { J { 
: B<A K { L { �: A<E(I { J;K { L) { (
; �): B J { K { a: An...(I { J;J { K) { (
; a): B<InI { J { 
: B<A(49) ... ...I { J { �: A K { L { �: B�I(I { J;K { L) { (�; �): A�B(50) ... ...(I { J;K { L) { (�1; �2): A J { K { 
: A#B#EI { L { �1+
+�2: B (I { J;K { L) { (a1; a2): An...I { L { a1+
+a2: B#InJ { K { 
: A#B(51) ... ...(I { J;K { L) { (
1; 
2): B"A J { K { �: A"EI { L { 
1+�+
2: B J { K { a: An...I { L { 
1+a+
2: B "In(I { J;K { L) { (
1; 
2): B"A(52) ... ...(I { J;K { L) { (�1; �2): A J { K { �: B�II { L { �1+�+�2: A�BSuch labelled natural deduction for the generalisations of discontinuity are obtained directly.In (52) we give the example of just staggered product introduction.(53) ... ...(I { J;K { L) { (�1; �2): A (J { K;L { M ) { (�1; �2): B�2II { M { �1+�1+�2+�2: A�2BBefore considering the logic programming, we repeat some earlier derivations, now with thehybrid model labelling. With respect to the VP Ellipsis example, we begin analysis according tooccurrences with string positions named as shown in (54).0 Dan 1 likes 2 golf 3 and 4 George 5 does 6 too 7(54)Then there is the following derivation of `likes golf and George does too' in NnS=VP.1 { 3 { likes+golf: VP (3 { 4, 5 { 7) { (and, does+too): (VPnVP)"N 4 { 5 { George: N"E3 { 7 { and+George+does+too: VPnVPnE1 { 7 { likes+golf+and+George+does+too: VP(55)Similarly, for the wide scope \or" case assume the string positions (56).0 John 1 thinks 2 Bill 3 or 4 Mary 5 walks 6(56)



13Then the narrow scope and wide scope readings are delivered by the following two derivations inwhich the coordinate structure substitutes in below and above `thinks' respectively.5 { 6 { walks: NnS 2 { 3 { Bill: N 3 { 4 { or: (Nn((S"N)#S))/N 4 { 5 { Mary: N/E3 { 5 { or+Mary: Nn((S"N)#S)nE2 { 5 { Bill+or+Mary: (S"N)#S12 { 5 { a: N nE2 { 6 { a+walks: S "I1(2 { 2, 5 { 6) { (�, walks): S"N #E2 { 5 { Bill+or+Mary+walks: S(57)
0 { 1 { John: N 1 { 2 { thinks: (NnS)/S 5 { 6 { walks: NnS 6 { 7 { Bill+or+Mary: (S"N)#S12 { 5 { a: N nE2 { 6 { a+walks: S/E1 { 6 { thinks+a+walks: NnSnE0 { 6 { John+thinks+a+walks: S "I1(O { 2, 5 { 6) { (John+thinks, walks): S"N #E0 { 7 { John+thinks+Bill+or+Mary+walks: S(58)In the hybrid models for the unary bridge and split modalities interpretation is made withrespect to a connection set which is a subset of V 2�L that is a superset of fhv; v; �ij v 2 V g; thatis, the family of possible connection sets is (59).fJ � V � V � Lj 8v; hv; v; �i 2 Jg(59)The operators ^ and $ behave as an existential and a universal respectively with respect to theconnection set J . Signs in $A are split strings which, joined by any connection give a string in A;signs in ^A are the results of joining by some connection some split string in A.D($A) = fhv1; v2; v3; v4; s1; s2ij8hv2; v3; si 2 J;hv1; v4; s1+s+s2i 2 D(A)gD(^A) = fhv1; v4; sij9s1; s2; hv2; v3; s0i 2 J; s = s1+s0+s2& hv1; v2; v3; v4; s1; s2i 2 D(A)g(60)Labelled natural deduction rules are read o� the interpretation clauses as before. Connections arerepresented j(I; J; �) and instances of j(I; I; �) may be introduced at any point as logical axioms.(61) ... ...(I { J;K { L) { (
1; 
2): $A j(J;K; �)$EI { L { 
1+�+
2: A j(J;K;b)n...I { L { 
1+b+
2: A $In(I { J;K { L) { (
1; 
2): $A(62) ... ...(I { J;K { L) { (
1; 
2): A j(J;K; �)^II { L { 
1+�+
2: ^AThe hybrid derivation (63) shows the conjugate property �: A ) �: $^A seen before for thepurely relational labelling.(63) (I { J;K { L) { (�1; �2): A 1j(J;K;b)^II { L { �1+b+�2: ^A $I1(I { J;K { L) { (�1; �2): $^A



14The following derivation shows the hybrid version of medial extraction which was also beenseen before in the non-hybrid case.0 that 1 Mary 2 sent 3 to 4 John 5(64)1 { 2 { Mary: N 2 { 3 { sent: ((NnS)/PP)/N 3 { 4 { to+John j(3;3; �)13 { 3 { b: N/E2 { 3 { sent+b: (NnS)/PP /E2 { 4 { sent+b+to+John: NnSnE1 { 4 { Mary+sent+b+to+John: S "I1(1 { 3, 3 { 4) { (Mary+sent, to+John): S"N ^I1 { 4 { Mary+sent+to+John: ^(S"N)(65)Finally, we give hybrid version of the generalised discontinuity gapping treatment. It shouldbe clear that the methods applying to yield hybrid models and labelled natural deduction for thegeneralised discontinuity are exactly the same as those for the basic discontinuity.0 John 1 studies 2 logic 3 and 4 Charles 5 phonetics 6(66)(0 { 1, 2 { 3) { (John, logic): S"TV and 4 { 5 { Charles: N 5 { 6 { phn: N j(5;5; �)15 { 5 { a: TV4 { 6 { Charles+a+phn: S "I1(4 { 5;5 { 6) { (Charles;phn): S"TV ^I4 { 6 { Charles+phn: ^S"TV/E3 { 6 { and+Charles+phn: X>lX>rE(0 { 1; 2 { 6) { (John; logic+and+Charles+phn): S"TV(67)The next section shows how the hybrid models we have introduced and illustrated support aclausal compilation and automated proof search.4.2 Linear clausal fragmentLogic programming is a paradigm of computation as proof search. We represent a program asa list of program clauses � and the task of deciding whether a query A follows is the task ofdetermining whether the sequent � ) A is derivable (output takes the form of computing valuesfor the variables in A such that � ) A). We assume, following the works referenced above, thelinear clausal fragment (68).PCLS ::= AT OM��AGENDAAGENDA ::= 1 j GOAL
AGENDAGOAL ::= AT OM j (AGENDA��PCLS)(68)Thus a program clause PCLS comprises an atomic head which is the postcondition of a linearimplication, and a body which is a (possibly empty) list of goals which is the precondition of theimplication. Goals may be atoms or may themselves be implications from a program clause to alist of goals. Such implicational goals are the only extension to ordinary Horn clauses exploitedhere.The propositional linear logic programming rules are as follows. The termination conditionrequires all the program clauses to have been consumed so that the empty agenda only followsfrom the empty program database:



15(69) ) 1The resolution rule uses up and therefore removes from the program database the program clauseagainst which resolution is performed:(70) � ) B1
 : : : 
Bn
C RESA ��B1
 : : : 
Bn
1;� ) A
CThe deduction theorem rule distributes the program clauses between its two premises:(71) A;� ) B � ) CDT�;� ) (B ��A)
CThe rule requires us to show that B ��A follows from some of the premises, �, while the remainder� of the premises yield the remainder C of the agenda. By the deduction theorem, � yields A ��Bif and only if A;� ) B. In practice a lazy approach to the partitioning can be adopted wherebythe whole bag of conclusion premises, plus A, are made available to try to prove B and, afterchecking that A has been consumed, those not used are supplied to try to prove C (Llor�e andMorrill 1995).Compilation takes place according to an immediate correspondence with interpretation. In thecase of the associative implications, for example, we have the following, which is just a restatementof the hybrid interpretation clauses.(72) a. 8I; �(I { K { �+
: B �� I { J { �: A)J { K { 
: AnBb. 8K;�(I { K { 
+�: B �� J { K { �: A)I { J { 
: B=ACategorial type assignments are translated into quanti�er-free linear clauses by polar translationfunctions; the polarity is used to indicate whether new symbols introduced for quanti�ed variablesin the interpretation clauses are metavariables or Skolem constants. They are identity functionson atomic assignments; on complex category predicates they are de�ned mutually as follows (forrelated unfolding see Roorda 1991, Moortgat 1992, Hendriks 1993 and Oehrle 1994); p indicatesthe polarity complementary to p:(73) a. I { K { �+
: Bp �� I { J { �: ApI; � new variable/constant as p +=�J { K { 
: AnBpb. I { K { 
+�: Bp �� J { K { �: ApI; � new variable/constant as p +=�I { J { 
: B=ApThe program clauses and agenda are read directly o� the unfoldings, with the only manipulationbeing a 
attening of positive implications into uncurried form:((X+ ��Y �1 ) �� : : :) ��Y �n > X+ ��Y �1 
 : : : 
Y �n(74)We shall allow an agenda X1
 : : : 
Xn
1 to be written X1
 : : : 
Xn and we shall also allowunit program clauses X ��1 to be abbreviated X.The unfolding for the remaining connectives of the basic discontinuity calculus is as follows.Unfolding is provided for negative (succedent occurrences) of products, but not for positive (an-tecedent occurrences), the compilations of which would fall outside of our linear logic programming



16fragment.I { J { �: A� 
 J { K { �: B�J; �; � new variables; 
 = �+�I { K { 
: A�B�(75) (I { J; K { L) { (�;
): Bp �� I { J { �: ApI; J; � new variables/constants as p +=�K { L { 
: A>Bp(76) (I { J;K { L) { (
; �): Bp �� K { L { �: ApK;L;� new variables/constants as p +=�I { J { 
: B<ApI { J { �: A� 
 K { L { �: B��;� new variables; 
 = (�;�)(I { J;K { L) { 
: A�B�I { L { �1+
+�2: Bp �� I { J; K { L { (�1; �2): ApI; L;�1; �2 new variables/constants as p +=�J { K { 
: A#Bp(77) I { L { 
1+�+
2: Bp �� J { K { �: Ap� new variable/constant as p +=�(I { J;K { L) { (
1; 
2): B"Ap(I { J;K { L) { (�1; �2): A� 
 J { K { �: B�J; K;�1; �2; � new variables; 
 = �1+�+�2I { L { 
: A�B�Evidently the generalised discontinuity connectives will be unfolded in the corresponding system-atic manner, therefore for binary adjunctions we again give just the case of staggered concatenationproduct.(I { J;K { L) { (�1; �2): A� 
 (J { K;L { M) { (�1; �2): B�J; K;L; �1; �2; �1; �2 new variables; 
 = �1+�1+�2+�2I { M { 
: A�2B�(78)We do however show the unary split and bridge unfolding explicitly in (79).I { L { 
1+�+
2: Ap �� j(J;K; �)p� new variable/constant as p +=�(I { J;K { L) { (
1; 
2): $Ap(I { J;K { L) { (�1; �2): A� 
 j(J;K; �)�J;K; �1; �2; � new variables; 
 = �1+�+�2I { L { 
: ^A�(79)We consider in detail the logic programming analysis of medial extraction. Assume the stringpositions named in (80).0 that 1 Mary 2 sent 3 to 4 John 5(80)The relative pronoun type is unfolded as follows.0 { I { that+a: R �� 1 { I { a1+b+a2: S �� J { K { b: N(1 { J;K { I) { (a1; a2): S"N� 
 j(J;K; f)a = a1+f+a21 { I { a: ^(S"N)�0 { 1 { that: R/^(S"N)+(81)



17And the prepositional ditransitive as shown in (82).P { N { e+sent+c+d: S �� P { 2 { e: N �� M { N { d: PP �� 3 { M { c: N2 { N { sent+c+d: NnS2 { M { sent+c: (NnS)/PP2 { 3 { sent: ((NnS)/PP)/N(82)Initially we have the linear program clauses compiled from the word tokens in the string markedby parentheses, as well as the universal axiom j(Q;Q; �) marked by braces signifying optionalityand iterability of use. Agendas are marked by bare numerals. The initial agenda is to show thatthe entire span of the string is an R.fg j(Q;Q; �)() 0 { I { that+a1+f+a2: R �� (1 { I { a1+b+a2: S �� J { K { b: N) 
 j(J;K; f)() 1 { 2 { Mary: N() P { N { e+sent+c+d: S ��P { 2 { e: N 
M { N { d: PP 
 3 { M { c: N() 3 { 4 { to+John: PP1. 0 { 4 { g: R(83)This unit agenda is resolved against the relative pronoun clause; the use of the clause is indicatedby coindexing with the agenda against which it is resolved. The string position uni�cations(notated term/variable) are made and a new agenda obtained from the program clause subgoalsaccordingly, but the monoid term uni�cation (notated term=term) is postponed.fg j(Q;Q; �)(1) 0 { I { that+a1+f+a2: R �� (1 { I { a1+b+a2: S �� J { K { b: N) 
 j(J;K; f)() 1 { 2 { Mary: N() P { N { e+sent+c+d: S ��P { 2 { e: N 
M { N { d: PP 
 3 { M { c: N() 3 { 4 { to+John: PP1. 0 { 4 { g: R 4=I; g = that+a1+f+a22. (1 { 4 { a1+b+a2: S �� J { K { b: N) 
 j(J;K; f)(84)The top goal on the agenda is implicational. Its precondition is added as an additional premisefor a subproof of the postcondition. This premise is required to have been used before exiting thesubproof and continuing with the rest of the old agenda.fg j(Q;Q; �)(1) 0 { I { that+a1+f+a2: R �� (1 { I { a1+b+a2: S �� J { K { b: N) 
 j(J;K; f)() 1 { 2 { Mary: N() P { N { e+sent+c+d: S ��P { 2 { e: N 
M { N { d: PP 
 3 { M { c: N() 3 { 4 { to+John: PP1. 0 { 4 { g: R 4=I; g = that+a1+f+a22. (1 { 4 { a1+b+a2: S �� J { K { b: N) 
 j(J;K; f)() J { K { b: N3. 1 { 4 { a1+b+a2: S(85)



18The top goal on the subagenda is resolved against the prepositional ditransitive clause. The stringposition uni�cation is performed; the monoid term uni�cation postponed.fg j(Q;Q; �)(1) 0 { I { that+a1+f+a2: R �� (1 { I { a1+b+a2: S �� J { K { b: N) 
 j(J;K; f)() 1 { 2 { Mary: N(3) P { N { e+sent+c+d: S ��P { 2 { e: N 
M { N { d: PP 
 3 { M { c: N() 3 { 4 { to+John: PP1. 0 { 4 { g: R 4=I; g = that+a1+f+a22. (1 { 4 { a1+b+a2: S �� J { K { b: N) 
 j(J;K; f)() J { K { b: N3. 1 { 4 { a1+b+a2: S 1=P; 4=N; a1+b+a2 = e+sent+c+d4. 1 { 2 { e: N 
M { 4 { d: PP 
 3 { M { c: N(86)
The current goal is resolved against the subject unit program clause.fg j(Q;Q; �)(1) 0 { I { that+a1+f+a2: R �� (1 { I { a1+b+a2: S �� J { K { b: N) 
 j(J;K; f)(4) 1 { 2 { Mary: N(3) P { N { e+sent+c+d: S ��P { 2 { e: N 
M { N { d: PP 
 3 { M { c: N() 3 { 4 { to+John: PP1. 0 { 4 { g: R 4=I; g = that+a1+f+a22. (1 { 4 { a1+b+a2: S �� J { K { b: N) 
 j(J;K; f)() J { K { b: N3. 1 { 4 { a1+b+a2: S 1=P; 4=N; a1+b+a2 = e+sent+c+d4. 1 { 2 { e: N 
M { 4 { d: PP 
 3 { M { c: N e =Mary5. M { 4 { d: PP 
 3 { M { c: N
(87)
The next goal on the agenda is resolved against the prepositional phrase unit program clause.fg j(Q;Q; �)(1) 0 { I { that+a1+f+a2: R �� (1 { I { a1+b+a2: S �� J { K { b: N) 
 j(J;K; f)(4) 1 { 2 { Mary: N(3) P { N { e+sent+c+d: S ��P { 2 { e: N 
M { N { d: PP 
 3 { M { c: N(5) 3 { 4 { to+John: PP1. 0 { 4 { g: R 4=I; g = that+a1+f+a22. (1 { 4 { a1+b+a2: S �� J { K { b: N) 
 j(J;K; f)() J { K { b: N3. 1 { 4 { a1+b+a2: S 1=P; 4=N; a1+b+a2 = e+sent+c+d4. 1 { 2 { e: N 
M { 4 { d: PP 
 3 { M { c: N e =Mary5. M { 4 { d: PP 
 3 { M { c: N 3=M; d = to+John6. 3 { 3 { c: N
(88)
The current goal is now resolved against the subproof hypothesis. The subproof postcondition hasbeen shown, and the subproof precondition has been used, so we exit and pursue the remainder



19of the agenda after the implicational top goal.fg j(Q;Q; �)(1) 0 { I { that+a1+f+a2: R �� (1 { I { a1+b+a2: S �� J { K { b: N) 
 j(J;K; f)(4) 1 { 2 { Mary: N(3) P { N { e+sent+c+d: S ��P { 2 { e: N 
M { N { d: PP 
 3 { M { c: N(5) 3 { 4 { to+John: PP1. 0 { 4 { g: R 4=I; g = that+a1+f+a22. (1 { 4 { a1+b+a2: S �� J { K { b: N) 
 j(J;K; f)(6) J { K { b: N3. 1 { 4 { a1+b+a2: S 1=P; 4=N; a1+b+a2 = e+sent+c+d4. 1 { 2 { e: N 
M { 4 { d: PP 
 3 { M { c: N e =Mary5. M { 4 { d: PP 
 3 { M { c: N 3=M; d = to+John6. 3 { 3 { c: N 3=J; 3=K; c= b7. j(3; 3; f)
(89)
This last goal is satis�ed by resolution against the universal connection axiom.f7g j(Q;Q; �)(1) 0 { I { that+a1+f+a2: R �� (1 { I { a1+b+a2: S �� J { K { b: N) 
 j(J;K; f)(4) 1 { 2 { Mary: N(3) P { N { e+sent+c+d: S ��P { 2 { e: N 
M { N { d: PP 
 3 { M { c: N(5) 3 { 4 { to+John: PP1. 0 { 4 { g: R 4=I; g = that+a1+f+a22. (1 { 4 { a1+b+a2: S �� J { K { b: N) 
 j(J;K; f)(6) J { K { b: N3. 1 { 4 { a1+b+a2: S 
 j(J;K; f) 1=P; 4=N; a1+b+a2 = e+sent+c+d4. 1 { 2 { e: N 
M { 4 { d: PP 
 3 { M { c: N e =Mary5. M { 4 { d: PP 
 3 { M { c: N 3=M; d = to+John6. 3 { 3 { c: N 3=J; 3=K; c = b7. j(3; 3; f) f = �
(90)
Only at this point are the monoid matchings chased back:7. f = �6. c = b5. d = to+John4. e =Mary3. a1 =Mary+sent; a2 = to+John1. g = that+Mary+sent+to+John(91)That is, the parsing as deduction process requires just uni�cation of unstructured terms (theconstants and variables of the binary relational labelling), and algebraic matching (one-way uni-�cation) under associativity only after the conditions on word order have been veri�ed. (In theabsence of hierarchical structure the algebraic matching succeeds if and only if the relational la-belling does, so algebraic labelling is only needed when some non-associativity is present.) Theseproperties are common to the basic discontinuity calculus, and the two generalisations of it madehere.Referencesvan Benthem, J.: 1991, Language in Action: Categories, Lambdas and Dynamic Logic, Studies inLogic and the Foundations of Mathematics Volume 130, North-Holland, Amsterdam.



20Calcagno, M.: 1995, Bulletin of the Interest Group in Propositional and Predicate Logic Vol. 3No. 4, pp. 555{578.Dalrymple, M., S.M. Sheiber and F.C.N. Pereira: 1991, `Ellipsis and higher-order uni�cation',Linguistics and Philosophy 18: 399{452.Gabbay, D.: 1991, Labelled Deductive Systems, to appear, Oxford University Press, Oxford.Girard, J-Y.: 1987, `Linear Logic', Theoretical Computer Science 50, 1{102.Hendriks, H.: 1993, Studied Flexibility: Categories, and Types in Syntax and Semantics, Ph.D.dissertation, Institute for Logic, Language and Computation, Universiteit van Amsterdam.Hendriks, P.: 1995, `Ellipsis and multimodal categorial type logic' in G. Morrill and R.T. Oehrle(eds.) Formal Grammar, Proceedings of the Conference of the European Summer School inLogic, Language and Information, Barcelona, 107{122.Hodas, J. and D. Miller: 1994, `Logic Programming in a Fragment of Intuitionistic Linear Logic',Journal of Information and Computation 110(2), 327{365.Lambek, J.: 1958, `The mathematics of sentence structure', American Mathematical Monthly 65,154{170, also in Buszkowski, W., W. Marciszewski, and J. van Benthem (eds.): 1988, Catego-rial Grammar, Linguistic & Literary Studies in Eastern Europe Volume 25, John Benjamins,Amsterdam, 153{172.Lambek, J.: 1961, `On the calculus of syntactic types', in R. Jakobson (ed.) Structure of languageand its mathematical aspects, Proceedings of the Symposia in Applied Mathematics XII,American Mathematical Society, 166{178.Llor�e, F.X. and G. Morrill: 1995, `Di�erence Lists and Di�erence Bags for Logic Programmingof Categorial Deduction', in Proceedings of SEPLN XI, Deusto. Also available as Reportde Recerca LSI-95-30-R, Departament de Llenguatges i Sistemes Inform�atics, UniversitatPolit�ecnica de Catalunya.Martin-L�of, P.: 1987, `Truth of a proposition, evidence of a judgement, validity of a proof, Synthese73: 407{420.Moortgat, M.: 1988, Categorial Investigations: Logical and Linguistic Aspects of the LambekCalculus, Foris, Dordrecht.Moortgat, M.: 1990, `The Quanti�cation Calculus: Questions of Axiomatisation', in DeliverableR1.2.A of DYANA Dynamic Interpretation of Natural Language, ESPRIT Basic ResearchAction BR3175.Moortgat, M.: 1991, `Generalised Quanti�cation and Discontinuous type constructors', to appearin Sijtsma and Van Horck (eds.) Proceedings Tilburg Symposium on Discontinuous Con-stituency, Walter de Gruyter, Berlin.Moortgat, M.: 1992, `Labelled Deductive Systems for categorial theorem proving', OTS Work-ing Paper OTS{WP{CL{92{003, Rijksuniversiteit Utrecht, also in Proceedings of the EighthAmsterdam Colloquium, Institute for Language, Logic and Information, Universiteit van Am-sterdam.Moortgat, G.: 1995, `Multimodal Linguistic Inference', Bulletin of the Interest Group in Proposi-tional and Predicate Logic Vol. 3 No. 2, 3, pp. 371{401.Morrill, Glyn: 1992, `Categorial Formalisation of Relativisation: Pied Piping, Islands, and Ex-traction Sites', Report de Recerca LSI{92{23{R, Departament de Llenguatges i SistemesInform�atics, Universitat Polit�ecnica de Catalunya.Morrill, G.: 1994, Type Logical Grammar: Categorial Logic of Signs, Kluwer Academic Publishers,Dordrecht.Morrill, G.: 1995a, `Clausal Proofs and Discontinuity', Bulletin of the Interest Group in Proposi-tional and Predicate Logic Vol. 3 No. 2, 3, pp. 403{427.Morrill, G.: 1995b, `Discontinuity in Categorial Grammar', Linguistics and Philosophy 18: 175{219.Morrill, G.: 1995c, `Higher-order Linear Logic Programming of Categorial Deduction', Proceed-ings Meeting of the European Chapter of the Association for Computational Linguistics,Dublin.Morrill, G. and T. Solias: 1993, `Tuples, Discontinuity and Gapping', Proceedings Meeting of theEuropean Chapter of the Association for Computational Linguistics, Utrecht, 287{297.



21Oehrle, R.T.: 1994, `Term-Labeled Categorial Type Systems', Linguistics and Philosophy 17,633{678.Partee, Barbara and Mats Rooth: 1983, `Generalized conjunction and type ambiguity', inR. B�auerle, C. Schwarze and A. von Stechow (eds.) Meaning, Use, and Interpretation ofLanguage, Linguistic Analysis Volume 6, Walter de Gruyter, Berlin, 53{95.Ranta, R.: 1994, Type-Theoretical Grammar, Oxford University Press, Oxford.Rooth, Mats and Barbara H. Partee: 1982, `Conjunction, type ambiguity, and wide scope `or'',in Daniel Flickinger, Marlys Macken, and Nancy Wiegand (eds.) Proceedings of the FirstWest Coast Conference on Formal Linguistics, Stanford Linguistics Department, Stanford,353{362.Roorda, Dirk: 1991, Resource Logics: proof-theoretical investigations, Ph.D. dissertation, Univer-siteit van Amsterdam.Solias, T.: 1992, Gram�aticas Categoriales, Coordinaci�on Generalizada y Elisi�on, Ph.D. disserta-tion, Universidad Aut�onoma de Madrid.


