Generalising Discontinuity

Glyn Morrill and Josep-Maria Merenciano
Dept. de Llenguatges 1 Sistemes Informatics
Universitat Politecnica de Catalunya
Pau Gargallo, 5
08028 Barcelona

morrill@lsi.upc.es, http://www-1lsi.upc.es/ glyn/

and.merenciano@lsi.upc.es

August 30, 1996

Abstract

This paper makes two generalisations of categorial calculus of discontinuity. In the first we in-
troduce unary modalities which mediate between continuous and discontinuous strings. In the
second each of the modes of adjunction of the proposal to date, concatenation, juxtaposition and
interpolation, are augmented with variants. Linguistic illustration and motivation is provided,
and we show how adherence to a discipline of sorting renders the generalisations tractable within
a particularly efficient logic programming paradigm.

Generalising Discontinuity

The present work continues in the line of others seeking to develop categorial type calculus
of discontinuity and associated automated theorem proving/parsing (Moortgat 1988, 1990, 1991;
Solias 1992; Morrill and Solias 1993; Morrill 1994, ch. 4, 1995a, 1995b, 1995¢; Lloré and Morrill
1995, Calcagno 1995). In particular, it generalises the sorted discontinuity calculus outlined in
the appendix of Morrill (1995b) and implemented in a linear clausal fragment by compilation as
described in Morrill 1995¢; familiarity with these two works is assumed in what follows.

We begin by summarising the point of departure for the present proposals. We then introduce
two generalisations: unary “split” and “bridge” operators mediating between strings and split
strings, and binary operators for staggered concatenation, and juxtaposition and interpolation
adjunctions which inherit split points from their operands. We go on to show how these proposals
fit into the linear logic programming paradigm for categorial parsing as deduction.

1 Sorted Discontinuity Calculus

The associative Lambek calculus (Lambek 1958) provides a logic of concatenation. Its types are
specifications of concatenative comportment and by classifying words with respect to types, prop-
erties of strings are defined which are the deductive consequences. The non-associative Lambek
calculus (Lambek 1961) is similarly a logic of juxtaposition, by which we mean putting side-by-
side in a way which imposes grouping (concatenation, being associative, forgets grouping). But
the existence of discontinuous phenomena in natural grammar guarantees that such logic of itself
cannot be adequate. In discontinuity calculus, as presented for example in Morrill (1994, ch. 4,
1995b), it is sought to combine and extend logic of concatenation and juxtaposition with logic of
interpolation. In one, unsorted, approach concatenation, juxtaposition and interpolation are each
assumed to be total functions in a single abstract total algebra and the categorial types are formed
from unsorted type-constructors without restriction.

The sorted discontinuity calculus is briefly introduced in the appendix of (Morrill 1995b). Tt
is distinguished from the unsorted version in that instead of assuming all adjunctions to be total
functions in an unsorted algebra, two sorts of object (string and split string) are assumed so that
the adjunctions are sorted operations in a sorted algebra, and the categorial types come in a
restricted form according to the sorted type-constructors. This formulation has particularly good
computational properties; while the unsorted version has a logic programming implementation
depending on matching under associativity and partial commutativity (Morrill 1995a), the sorted
version has one depending on just unification of unstructured terms (i.e. constants and variables;
Morrill 1995¢).

The sorted discontinuity calculus is as follows. Let us assume a monoid (L, +, €) comprising
the set of strings over some vocabulary, with + the associative operation of concatenation (so
that s1+(s2+s3) = (s1+s2)+s3), and with € the empty string (so that s+e = e+s = s). The
concatenation adjunction + has functionality L, L — L. We define a juxtaposition adjunction
(-,.) which is Cartesian product formation over L, of functionality L, L — L?; (s1, s2) =ar (51, 52)-
And we further define an interpolation adjunction W of functionality L2, L — L; (s1,52)Ws =4
s1+5+52. Because these operations are sorted, the categorial types and type-constructors defined
with respect to them are correspondingly sorted. We refer to sort L as sort string, and sort L? as
sort split string.

The family of concatenation connectives {/,\, e} are defined by “residuation” with respect to
the concatenation adjunction +, which is of functionality L, L — L. The existential conjunction
(product) AeB (A product B) is the setwise sum of the concatenation adjunction over A4 and B;
A\B (A under B) and B/A (B over A) are the universal directional implications (divisions).

(1) D(A\B) = {s|Vs' € D(A),s'+s € D(B)}
D(B/A) = {s|Vs' € D(A),s+s' € D(B)}
D(AeB) = {s| 3s1,s2,5 = s1+s2 & s1 € D(A) & s, € D(B)}

Each of these type-constructors requires its operands to be of sort string and produces a composite
type of sort string.

The family of juxtaposition connectives {<,>,°} are defined by residuation with respect to
the juxtaposition adjunction (.,.), which is of functionality L, L — L?. The product A°B is the
setwise sum of the juxtaposition adjunction over A and B; A>B (B to A) and B<A (B from A)
are the directional divisions.

(2) D(A>B) = {s|Vs' € D(A),(s,5) € D(B)}
D(B<A) = {s|Vs' € D(A),(s,s') € D(B)}
D(A°B) = {(s1,53)] s1 € D(A) & 55 € D(B)}

Since juxtaposition combines two strings to form a split string, product types are of sort split
string with sort string operands; and divisor types are of sort string and have the denominator
type of sort string and the numerator type of sort split string.

The family of interpolation connectives {f,], @} are defined by residuation with respect to the
interpolation adjunction W, which is of functionality L?, L — L. The product A®B is the setwise
sum of the interpolation adjunction over A and B; AlB (A infix B) and BtA (B extract A) are
the divisions.

(3) D(AlB) = {s| ¥{(s1,s2) € D(A), s1+s+s2 € D(B)}
D(BtA) = {{s1,s2)| Vs € D(A),s1+s+s2 € D(B)}
D(A®B) = {s| 3s1,5,52,8 = s1+5"+s2 & {s1,s2) € D(A) & s’ € D(B)}

Sorting considerations apply in ways similar to those made before. In summary, let us assume
that atomic formulas A are of sort string. The well-sorted category formulas (or: types) F of sort
string and G of sort split string are defined by mutual recursion thus:

(4) F u= A|F|F|F\F|FeF |G<F | F>G | GIF | GOF
G u= FoF | FtF

Each formula A of sort string has an interpretation D(A) C L and each formula A of sort split
string has an interpretation D(A) C L2.

The system mixing the three families of connectives is sublinear in the space of logics arising
from removing standard structural rules. Thus while linear logic (Girard 1987) results from removal
of freely applying contraction and weakening, but not exchange, the present system lacks free
commutativity also. This means that all theorems must be valid when reading divisions and
products as the linear (multiplicative) implication and conjunction. Linear validity is a necessary
condition for validity, though of course it is not sufficient because further sublinear structural
conditions must be respected.

We present a tree-style natural deduction proof format in which linear logical resource-consciousness
is reflected by closure of a unique assumption in conditionalisation. The sublinear conditions are
expressed in labels (Gabbay 1991) reflecting the interpretation. We use boldface romans as con-
stants naming elements of L, and we use «, 3,7,... as variables over L term labels. A labelled
formula of sort string has the form a: A and a labelled formula of sort split string is of the
form (a, 5): A. The labelled natural deduction rules can be seen as a restatement left-to-right
and right-to-left of the bidirectional interpretation clauses rotated ninety degrees clockwise for
the elimination (E) rules and anticlockwise for the introduction (I) rules,! with metavariables or
Skolem constants according to quantifiers and the polarity of their context. We give only in-
troduction rules for existentials since the elimination rules are both problematic, and apparently
unmotivated linguistically.

. . —n
(5) : : a: A
a: Ay A\B
oz-l—’Y: B a+7: B\In
v: A\B

LOf. Ranta (1994), who attributes the observation to Martin-L5f (1987).

(11)

(13)

v: B/A a:‘A
vy+a: B /E

a A B:‘B
a+3: AeB *

I

a: A vy A>B
(@,7): B

v: B<A a:‘A
(v,@): B

<E

a A B:‘B
—]

(a, B): A°B

(ar,a2): A AiB
|E

aj+y+ar: B

(v1,72): BtA a:‘A
yita+vy2: B

1E

(a1, a9): A B:‘B

a1+fB+az: AOB o

(a1, asz): An
a;t+vy+as: B

In

~v: AlB

—n

a: A

vi+a+vy2: B
I’ﬂ
(v1,72): BtA

1.1 Examples

We assume the reader has some familiarity with semantic composition in type-logical grammar,
and with linguistic applications such as reflexivisation and quantification treated in the referenced
works. We illustrate here with respect to two constructions, VP Ellipsis and wide scope ‘or’ not
yet mentioned in the literature.

1.1.1 VP Ellipsis

We describe our treatment by reference to examples from Dalrymple, Shieber and Pereira (1991),
showing how a categorial type-driven treatment renders unnecessary a mechanism of higher-order
unification. Consider the following.

(14) Dan likes golf and George does too.

Let us suppose the following to be given, either listed or derived in the lexicon, or derived catego-
rially from more fundamental assignments.

(15) (and, does+too) - AxAyAz[(y 2) A (y z)]
= ((NAS)\(N\S)) TN

Then there is the following derivation of ‘likes golf and George does too’ in N\S=VP.

(16) (and, does+too): (VP\VP)tN George: N .
likes+golf: VP and+George+does+too: VP\VP\
E
Dan: N likes+golf+and+George+does+too: VP

Dan+likes+golf+and+George+does+too: S

Semantics is derived by the standard Curry-Howard rendering of categorial deductions: functional
application for rules of implicational use (elimination) and functional abstraction for rules of
implicational proof (introduction). In the following we show the normalised semantic terms for

each node of (16).

(17) AxAyAz[(y 2) A (y 7)) g
lg AyAz[(y 2) A (y g)]\E
d Az[(lg 2) A (lg g)]\E

(g d) A (1g g)]

Thus (14) receives the required logical form [(1g d) A (1g g)]-

We leave it to the reader to check that, in the absence of other constraints, with ‘himself’
assigned semantics Az Ay((z y) y) in category (VPTN)| VP, ‘John likes himself and Bill does too’ is
predicted to have both a sloppy and a strict reading. The point is that the in situ reflexive binder
may take effect at either a verb phrase formed over ‘likes himself’, which gives rise to a sloppy
reading, or one formed by ‘likes himself and Bill does too’, giving a strict reading. It may be
similarly checked that with (18) and ‘everyone’ in category (STN)]S, ‘John greated everyone when
Bill did” gets readings “When Bill greated everyone, John greated everyone” (with the quantifier
scoping abstractly in ‘greated everyone’ of category N\S), and “for each person, when Bill greated
him/her, so did John” (scoping over the entire sentence).

(18) (when, did) - AziyAiz((when (y 2)) (v z))
= (N\S\N\S)IN

1.1.2 Wide Scope “Or”

Under the phenomenon of wide-scope ‘or’ (Partee and Rooth 1983, Rooth and Partee 1982), a
sentence such as ‘John thinks Bill or Mary walks’ is ambiguous between readings in which the
disjunction scopes above or below the propositional attitude verb. The discontinuity apparatus
allows a treatment analogous to that whereby ‘John thinks someone walks’ is ambiguous between
specific and non-specific readings. The following lexical assignment to the disjunctive particle
yields a coordinate structure in an in situ binder type which may operate at the subordinate or
the superordinate level.

(19) or — AzAyAz[(z y) V(2 2)]
= (N\((StN){5))/N
Then the narrow scope and wide scope readings are delivered through the following two derivations

in which the coordinate structure substitutes in at the subordinate and superordinate sentences
respectively.

1
(20) a: N walks: N\S . or: (N\((STN)|S))/N Mary: N
at+walks: S . Bill: N or+Mary: N\((STN)]S) .
(€, walks): STNT Bill+or+Mary: (STNNSiE

Bill+or+Mary+walks: S

(21) a: N walks: N\S .
thinks: (N\S)/S a+walks: S .
John: N thinks+a+walks: N\S

John+thinks+a+walks: S M
(John+thinks, walks): STN Bill+or+Mary: (STNNSiE

John+thinks+Bill+-or+Mary+walks: S

The following two sections generalise the calculus that we have presented and illustrated.

2 Bridge and Split Operators

We propose here to enrich the discontinuity calculus of the previous section with two unary
operators * (bridge) and $(split) which relate continuous and split strings. Bridging is to map split
strings into strings and splitting is to map strings into split strings, so the formulas are extended
as follows.

(22) F u= A|F/F|IF\F|FeF|G<F | F>G|GIF|GOF|"G
G u= FoF | FAF|$F

Interpretation is now made with respect to a connection set J which is a subset of L that contains
€. Intuitively, connections allow for hypothetical reasoning over discontinuous strings as if they
were continuous, by supposing that they are connected; the connection set includes € because the
empty string always connects adjacent strings. The interpretations of the earlier binary operators
are independent of the connection set and are as given before. However, * and $ behave as an
existential and a universal respectively with respect to the connection set. Signs in $A4 are split
strings which, joined by any connection, give a string in A; signs in * A are the results of joining

by some connection some split string in A.2

(23) D($A) = {{s1,s2)| Vs € J,s1+s+s2 € D(A)}
D("A) = {s| 3s1,s2,5,5=s51+5+s9 & 5 € J & {s1,59) € D(A)}

Labelled natural deduction rules are read off the interpretation clauses as before, and again the
problematic existential elimination is excluded. Connections are represented j(«); because € is a
connection in all models, j(¢) may be assumed freely, but other connections assumed will have to
be conditionalised in logical deductions.

. . —
(24) : : j(b)
(v1,72): 84 j(B) :
: SE y1+b+y2: A
71‘1‘6‘1‘72- A —$In
(71,72): 34

(25) :
(y1,72): A 4(B)
Y1+8+72: M A

A

The bridge and split type-constructors form a conjugate pair of respectively existential and
universal modal operators (see Moortgat 1995) and thus satisfy laws such as A = $" A:

1
(26) (a1,a2): A j(b)AI

$1

ai+b+as: M A
(Oq, Ozg): $AA

By way of linguistic illustration, we observe that assignment of a type R/*(STN) to a relative
pronoun allows medial relativisation such as ‘that Mary sent to John’ to be generated as a con-
tinuous string:

(27) sent: ((N\S)/PP)/N b: N
sent+b: (N\S)/PP to+John: PP
Mary: N sent+b+to+John: N\S
Mary-+sent+b+to+John: S
(Mary+sent, to+John): StN j(e)AI
that: R/"(STN) Mary+sent+to+John: *(STN)

that+Mary+sent+to+John: R

The subsequent section introduces the second generalisation, relating to binary operators.

2The operators are identity mappings with respect to the semantic dimension of signs. Note that as a logical
basic type J would obey A = AeJ (and A = JeA), but not AeJ = A (or JeA = A), whereas a true product unit
I with D(I) = {e} would obey all four such laws. With an I-type connection set the interpretations become:

D(8A) {{s1,82}| s1+s2 € D(A)}
D(MA4) {s] s1,s2,5 = s1+s52 & (s1,52) € D(A)}

We emphasise the J-version because the commutativity of the neutral element (S+E = E+S) would undermine
certain intended applications. Observe that so far as prosodic dimensions of signs are concerned we could define
$A as ATJ and A as A®J, but semantically it is unclear how to give meanings to unit types, or a meaning in
A1J which, applied to that of J returns itself as value. For these reasons we propose unary modalities and not unit
types.

3 Generalised Sorted Discontinuity Calculus

The concatenation, juxtaposition, and interpolation adjunctions of the discontinuity calculus can
be illustrated as follows:

(28) BJr = [alg
loblo) = [of-17]
B...W = la[s]~

These are natural operations in the realm of strings and split strings, but others are imaginable,

and linguistically motivated. In particular we consider here a generalisation of the discontinuity
calculus in which each initial adjunction is augmented with variants (though these do not exhaust
the conceivable options). Juxtaposition and interpolation have left and right variants according
to positions of split points; concatenation has a single staggered variant because of the absence of
a split point.

(29)

|| Discont. Calculus || Generalised Discont. Calculus ||

+: concatenation +9: staggered concatenation

(.1 .): juxtaposition inheriting split on the left
(., -): juxtaposition inheriting split on the right
W;: interpolation at the left interior

W,: interpolation at the right interior

(., .): juxtaposition

W: interpolation

The staggered concatenation adjunction is of functionality L%, L2 — L; left and right inheriting
juxtaposition are of functionality L2, L — L? and L,L? — L? respectively; the left and right
interior interpolations are of functionality L?, L — L?. The variants perform the same basic role
as their mother operations: concatenation outputs strings, juxtaposition outputs split strings,
preserving operand order; interpolation performs a wrapping of the first operand around the
second. The definitions of the new adjunctions are as follows.

(30)

(@, B)+2(7,0) =4 aty+6+6
(<O‘7ﬁ>vl 7) —df <Oz,ﬁ—|—’y> (Oz,r <ﬁa 7>) =df <Oz—|—ﬁ, 7)
(e, WiB =g (a+B,7) | {as W, B =q (e, B+7)

More graphically, we have (31).

31) o} [3] 0 [1}-)= [1 35
R = [BR @ [)f) L[
(}-Lwls) = [pb-G] (@bFw) = [«

The community of discontinuity connectives becomes generalised to (32) where m € {[,r 0},
n € {2,0}, and the zero variants, those we already had, will continue to be written without
explicit subscript.

(32)

[l
o
®
2

+n \n under (staggered) /n over (staggered) | e,
(om) | >m to (left, right) <m from (left, right) | °n,
Wi tm extract (left, right) | |, infix (left, right) | &

Interpretation is made by residuation in just the same way as has been seen earlier. By way
of example, for the staggered concatenation family we have:

(33) D(A\2B) = {{s3,54)| Y{s1,52) € D(A), s1+83+52+s4 € D(B)}
D(B/QA) = {<81, 82>| V<83, 84> c D(A), S1+83+59+54 € D(B)}
D(Ae;B) = {sy+s3+s2+s4| (s1,82) € D(A) & (s3,54) € D(B)}

We do not list labelled deduction rules since these are entirely predictable, being obtained in just

the same way as those for the original discontinuity calculus. To mention a single case, introduc-

tion of staggered product is (34).

(34) : :

(a1 a2): A (B, B2): B
ar+f1+az+8:: AexB

ol

3.1 Examples
3.1.1 Gapping as Like-Category Coordination

We present a characterisation of gapping as almost like category coordination. We take our
inspiration from Hendriks (1995), but our generalisation of the discontinuity calculus is different
from hers; in particular our generalised discontinuity calculus has the computationally convenient
sorted formulation which the generalisation of Hendriks necessarily lacks,® but our analysis can be
said to be borrowed. We treat the example ‘John studies logic and Charles phonetics’ by assigning
‘and’ the almost like category coordinator type (X>;X)/*X where X is STV and TV is (N\S)/N,
with semantics AzAyAz[(y z) A (z 2)].

(35) Charles: N a: TV1 phn: N
Charles+a+phn: S
(Charles, phn): STTV jle)
and Charles+phn: *(STTV) .
(John, logic): STTV and+Charles+phn: X>; X

(John, logic+and+Charles+phn): STV

Starting at the top right hand corner, ‘Charles a phonetics’ is derived straightforwardly as a
sentence from the hypothetical transitive verb a. The hypothetical can be withdrawn to yield a
split form which wants to wrap around a transitive verb to form a sentence. This is mapped by *I
which fuses the right hand conjunct to a string of the right type for the coordinator to consume
by over elimination, which prefixes the coordinator. The left hand conjunct ‘John logic’ is also
derivable as STTV, in just the same way as ‘Charles phonetics’; when the coordinator combines
with this conjunct, by to left elimination, the split marking of this conjunct is inherited by the
result, again in type STTV. So this will wrap around the transitive verb interpolating it in the
first conjunct, and distributing its semantics over the conjuncts. The semantics is spelled out in

(36).

3The problem is that the new interaction principle [MA], p.113 requires Ay to be of split string sort gua the
split operand of wrap (her notation is swapped relative to ours); but then since the new g-mode gets a string sort
left operand in the top line, it cannot take first operand As, of split string sort, in the second line.

-1
(36) ¢ = phn

(z phn))
Az((z phn) ¢)
AzAyAz[(y 2) A (2 2)] Az((z phn) C)E
Az((z logic) j) AyAz[(y z) A ((= phn) c)]
Az[((= logic) j) A (= phn) ¢)] '

The last step illustrates inference with a inheriting juxtaposition. Our next example will illustrate
staggered concatenation.

Il

3.1.2 Comparative Subdeletion

We make the second illustration of generalised discontinuity with reference to comparative subdele-
tion. Again the treatment is inspired by Hendriks (1995), but it uses the present sorted calculus,
and the analysis assumes that ‘more ...than’ in examples such as the following has a unitary
meaning.

(37) a. More sheep ran than fish swam.
b. John ate more bagels than Mary ate donuts.

Our analytical perspective is that ‘more ... than’ combines with two sentences each lacking one
quantifier; ‘more’ occupies the determiner gap in the first, and the two sentences are conjoined
with ‘than’. Semantically there is a comparison, in the case of (37b) for example, between the
cardinality of the set of bagels that John ate, and the cardinality of the set of donuts that Mary
ate. The construction is triggered by the following lexical assignment, where @ abbreviates the

quantifier type ((STN)]S)/CN.

(38) (more, than) — Axdy[hz(z ApAgl(p 2) A (g 2)]) > Az(y ApAgl(p 2) A (¢ 2)])]
= (STQ)\2(S/*(51Q))

Then there is the following derivation of (37b), where TV again abbreviates (N\S)/N.
(39)

—1
John: N ate: TV a: Q bagels: CN

John-+tateda+bagels: S .
T

(John+ate, bagels): S1Q more than ~(Mary+ate, donuts): STQ j(e)
i

John+ate+more+bagels+than: S/A(STQ) = Mary+ate+donuts: A(STQ)/
E

John-+tated4more+tbagelst+than+Mary-+ateddonuts: S

Observe in particular the staggered concatenation inference step \2E with combines (John+ate,
bagels) with (more, than) to yield John+ate+more +bagels+than. The semantics of (39) is
as follows.

—1

(4ﬂ) ate w bagel
(v bagel) Au(ate) §)
Aw((w bagel) \u((ate u) j)) more than Aw((w donut) Au((ate u) m))
NulAzl(bagel =) A ((ate =))] > Ax(y AoMal(p) Alg D] Aw((w donut) Au((ate) m))

E
[Az[(bagel z) A ((ate z) j)] > Az[(donut z) A ((ate z) m)] /
The relevant comparison of cardinalities is indeed made.
Rather than continue here with linguistic illustration of interior edge interpolation we pass on
directly to consider computational aspects.

10

4 Computation

The current section shows how the generalised discontinuity proposals fit into the paradigm for
logic programming of categorial deduction developed in Morrill (1995a, 1995¢) and Lloré and
Morrill (1995). The general proposal is to compile categorial assignments into clauses of linear
logic. The compilation is performed systematically, according to the interpretations of catego-
rial type-constructors; the target formalism of a linear logic programming fragment (Hodas and
Miller 1994) is suitable because it is the most specific level of propositional logic embracing all
the sublinear categorial calculi with their discontinuity, partial commutativity, and so forth, and
because in structuring resources as bags rather than lists, we eliminate the need to conjecture par-
tition points of ordered sequents, a source of inefficient don’t know non-determinism indigenous
to Lambek sequent deduction.

It is possible to work just with algebraic interpretation, as in Morrill (1995a), but in Morrill
(1995c¢) and Lloré and Morrill (1995) it is observed that by exploiting the binary relational models
(van Benthem 1991) of associative Lambek calculus one can avoid computation of matching under
associativity, and instead propagate constraints under associativity by methods analogous to the
use of string positions/difference lists in the logic programming of DCGs.

Both the original sorted discontinuity calculus and its generalisation here can be interpreted
and implemented according to just binary relational models. However, because linguistically we
wish to be able to represent not only precedence relations, but also dominance relations (e.g. using
bracket operators; Morrill 1992, 1994 ch. 7) the algebraic dimension is needed to induce hierarchical
structure that cannot be captured in binary relations. For this reason, we deal here with the more
general problem of interpretation and computation according to combined algebraic and relational
models. In this general setting matching under associativity is not altogether avoided. However
we combine algebraic and relational style models into multidimensional hybrid models which allow
us to exploit constraint propagation and adopt a lazy approach to computation of matching under
associativity, by only attempting to check the algebraic conditions once satisfaction of the binary
relational conditions have been confirmed.

4.1 Hybrid Models

We begin by reviewing the hybrid models for the sorted version of the original discontinuity
calculus. Interpretation takes place relative to a monoid (L, +,¢) and a set V. Each formula A of
sort string has an interpretation D(A) C V2 x L and each formula A of sort split string has an
interpretation D(A) C V* x L2.

The family of connectives {/,\, o} are defined by residuation with respect to a concatenation
adjunction of functionality V* x L,V? x I — V? x L. The adjunction is a partial operation,
defined on (v, vg, s1) and {vs, vy, s3) (respectively) just in case vy = v, in which case its value is
<017 V4, 51+82>-

(41) D(A\B) = {{v3,vs,s)| Y{v1,vq,5) € D(A),
(v1,v3,8'+sy € D(B)}

D(B/A) = {{v1,v2,5)| Y{ve,vs,s’) € D(A),
(v1,v3, s+s"y € D(B)}

D(A.B) = {<Ulav375>| Jvg, 51, 52,5 = s1+52

& <Ul,1}2,81> € D(A)
& <Ug,1}3,82> € D(B)}

The family of connectives {<,>,°} are defined by residuation with respect to a juxtaposition
adjunction of functionality V2 x L, VZx I — V*x L?. It is defined as Cartesian product formation:

11

applied to (v, v, s1) and {(vs, vy, s2) (respectively) its value is {v1, v2, v3, v4, $1, S2).

(42) D(A>B) = {(vs,va,s)| V{v1,v3,5) € D(A),
(v1,v2,v3,v4,5",5) € D(B)}
D(B<A) = {{v1,v3,s)| Y(vs,v4,5") € D(A),

<Ula V2, U3, V4, S, S/> € D(B)}

D(AOB) = {<017027037U4751752>|

<Ul, Vg, 81> € D(A)
& <Ug, V4, 82> c D(B)}
The family of connectives {1,],®} are defined by residuation with respect to an interpolation

adjunction of functionality V* x L2, V2 x L — V? x L. It is a partial operation, defined on
(v1, v2, V3, V4, $1, S2) and {vs, ve, s) (respectively) just in case vy = v5 and vz = ve, in which case

its value is {(v1, v4, s1+s+52).

(43) D(ALB) = {{va,vs,s)| Y{v1,va,v3,v4, 51, 52) € D(A),
(v1, v4, S1+s+s2) € D(B)}

D(BtA) = {{v1,v2,v3,v4, 51, 52)| Y{va,v3,5) € D(A),

(v1, v4, S1+s+s2) € D(B)}

D(A®B) = {{v1,v4,s)| Tva,v3,51,5, 82,5 = 51+ +52

& (v1,v2,v3,v4, 51, 52) € D(A)
& (v2,v3,8") € D(B)}

Exactly as before we can present a tree-style linear natural deduction proof format with the

sublinear conditions expressed by labels. We use naturals as labels naming elements of V; we use

I, J,K,... in italic as variables over V labels, in boldface for uniquely occuring V constants. A
string label is of the form I — J — « and a split string label is of the form (I - J,K — L) — («, 3).
Again, the labelled natural deduction rules can be seen as a restatement left-to-right and right-to-
left of the bidirectional interpretation clauses rotated ninety degrees clockwise for the elimination

(E) rules and anticlockwise the introduction (I) rules, with metavariables or Skolem constants
according to quantifiers and the polarity of their context.

(44) : :
I-J-a:A J-K-~ A\B
\\E
I-K-o+v: B
(45) : :
I-J-yB/A J-K-a A
/E
I-K—-~+a: B
(46) : :
I-J-a A J*K*ﬁ:BI
I - K a+3: AeB
(47)

I-J-a:A K-L- v A>B
(I-J,K-1L)-(a,7): B

J-K -~ A\B

—n
I-J-a A

I-K-a+y: B
In

—n
J-K-a A

I-K-vy+a: B

/1
I-J-~ B/A

—n
I-J-a A

(I-J,K-1L)-(a,v): B
K—-L—-~: A>B

12

-
(48) : : J-K-a: 4
I-J-yB<A K-L-oa:A :
p <E (I-J,3-K)- (y,a): B
(I-J,K-1L)-(y,a): B ’ ’ <I"
I-J -~ B<A
(49) : :
I-J-a A K*L*ﬁ:BI
(I-J,K L) (o,p): A°B
n
(50) : : (I-J,K-L)-(aj,az): A
(I-J,K-L)- (aj,a9): A J-K - A¢Bi :
E T :
I-L-a+y+as: B I-L-a+y+ax: B I
J-K -~ AlB
e 1
(51) : : J-K-a A
(I-JK-L) - (y,%2): BtA J-K-a ATE :
I-1L- Y1t+a+v2: B I-L- nitaty: B 1"
(I-J,K~-L)-(y1,72): Bt4
(52)

(I-JK-L) - (an,a2): A J-K - p: B
I - L - aj+p+as: AOB

ol

Such labelled natural deduction for the generalisations of discontinuity are obtained directly.
In (52) we give the example of just staggered product introduction.

(53) : ‘
(I-J,K-L)-(a,a2): A (J - K,L- M)~ (B1,5): B

I - M - a1+51+az+53:: Aey B

o

Before considering the logic programming, we repeat some earlier derivations, now with the
hybrid model labelling. With respect to the VP Ellipsis example, we begin analysis according to
occurrences with string positions named as shown in (54).

(54) o Dan 1 likes 5 golf 3 and 4 George 5 does g too 7
Then there is the following derivation of ‘likes golf and George does too’ in N\S=VP.
(55)

(3-4,5-7) - (and, does+too): (VPA\VP)tN 4 -5 — George: N
1E

1 — 3 — likes+golf: VP 3 — 7 - and+George+does+too: VP\VP\
E
1 - 7 — likes+golf+and+George+does+too: VP

Similarly, for the wide scope “or” case assume the string positions (56).

(56) o John 1 thinks 5 Bill 3 or 4 Mary 5 walks ¢

13

Then the narrow scope and wide scope readings are delivered by the following two derivations in
which the coordinate structure substitutes in below and above ‘thinks’ respectively.
(57)

1

2-5-a:N 5-6—walks: N\S 3—-4 —or: (N\((StN){8))/N 4 -5- Mary: N
2 -6 —atwalks: S TIlE 2-3-Bil: N 3 -5 —or+Mary: N\ ((STN).S) -
(2-2,5-6)— (e, walks): STN 2 - 5 — Bill4or4+Mary: (STN).S
2 — 5 — Bill4+or+Mary+walks: S e
(58)
E—
2-5-a:N 5-6-walks: N\S
1 — 2 — thinks: (N\S)/S 2 - 6 — atwalks: S
0-1-John: N 1 - 6 — thinks+a+walks: N\S
0 -6 — John-+thinks+a+walks: S . \E
(O -2,5-6) — (John+thinks, walks): STN 6 — 7 — Bill4-or+Mary: (STN)¢S¢E

0 — 7 — John+thinks+Bill+or+Mary—+walks: S

In the hybrid models for the unary bridge and split modalities interpretation is made with
respect to a connection set which is a subset of V2 x L that is a superset of {{v, v,€)| v € V' }; that
is, the family of possible connection sets is (59).

(59) {JCV xV xL|Vv,{v,v,¢) € J}

The operators * and $ behave as an existential and a universal respectively with respect to the

connection set J. Signs in $4 are split strings which, joined by any connection give a string in A;
signs in * A are the results of joining by some connection some split string in A.

(60) D($A) = {<Ul,Ug,03,1}4,81,82>|V<Ug,1}3,8> S J,
(v1, v4, 51+5+s2) € D(A)}
D("A) = {{v1,v4, s)|3s1, 52,{v2,v3,5") € J, 5 = 51+5 +59

& <Ulv V2, U3, V4, 51, 52> € D(A)}

Labelled natural deduction rules are read off the interpretation clauses as before. Connections are
represented j(I,.J,) and instances of j(I, I, €) may be introduced at any point as logical axioms.

(61) : . j(J, I(ab)n
(I-J,K L)~ (y1,72): $4 j(J,K,ﬁ)$E ‘
T— L —tftra: A I - L —v+b+vy: A -
(I-J,K -L) - (y1,72): $4
(62)

(I,J’[(,L),(,yl’,m):A _](J,[Qﬁ)
I-L - y+48472: "4

A

The hybrid derivation (63) shows the conjugate property o: A = o: $* A seen before for the
purely relational labelling.

—1
(63) (LKD) (anas) A j(hED)
I-L—-ai+btas: M4
(I - J, K - L) - (al,ag): $AA

$It

14

The following derivation shows the hybrid version of medial extraction which was also been
seen before in the non-hybrid case.

(64) o that ; Mary 2 sent 3 to 4 John 5

(65)
—_— 1
2 — 3 —sent: ((N\S)/PP)/N 3-3-b: N/
E
2 - 3 — sent+b: (N\S)/PP 3 -4 - to+John
E
1-2- Mary: N 2 — 4 — sent+b-+to+John: N\S\
E
1 - 4 — Mary-+sent+b+to+John: S .
1
(1-3,3-4) - (Mary+sent, to+John): STN 7(3,3,¢€)

A

1 -4 - Mary+sent+to+John: *(S1N)

Finally, we give hybrid version of the generalised discontinuity gapping treatment. It should
be clear that the methods applying to yield hybrid models and labelled natural deduction for the
generalised discontinuity are exactly the same as those for the basic discontinuity.

(66) o John 1 studies 2 logic 3 and 4 Charles 5 phonetics ¢

(67)
—_—1
4-5—-Charless N 5-5-a:TV 5-6—-phn: N
4 — 6 — Charles+a-+phn: S .
il
(4 -5,5—6) — (Charles, phn): StTV j(5,5,¢€)
and 4 — 6 — Charles+phn: ’\/STTV

E

(0-1,2-3)— (John, logic): STTV 3 - 6 — and+Charles+phn: X>;X
>p

(0-1,2-6) — (John,logic+and+Charles{phn): STV

The next section shows how the hybrid models we have introduced and illustrated support a
clausal compilation and automated proof search.

4.2 Linear clausal fragment

Logic programming is a paradigm of computation as proof search. We represent a program as
a list of program clauses I' and the task of deciding whether a query A follows is the task of
determining whether the sequent T' = A is derivable (output takes the form of computing values
for the variables in A such that T' = A4). We assume, following the works referenced above, the
linear clausal fragment (68).

(68) PCLS w= ATOMo— AGENDA
AGENDA = 1| GOALR AGENDA
GOAL n= ATOM | (AGENDA—PCLS)

Thus a program clause PCLS comprises an atomic head which is the postcondition of a linear
implication, and a body which is a (possibly empty) list of goals which is the precondition of the
implication. Goals may be atoms or may themselves be implications from a program clause to a
list of goals. Such implicational goals are the only extension to ordinary Horn clauses exploited
here.

The propositional linear logic programming rules are as follows. The termination condition
requires all the program clauses to have been consumed so that the empty agenda only follows
from the empty program database:

15

69) =1

The resolution rule uses up and therefore removes from the program database the program clause
against which resolution is performed:

(70) I'=hme...eB,aC
Ao-B1®...9B,®1,I = AgC

RES

The deduction theorem rule distributes the program clauses between its two premises:

(1) AT'=B A=C
DT
A= (Bo—A)oC

The rule requires us to show that B o— A follows from some of the premises, I', while the remainder
A of the premises yield the remainder C' of the agenda. By the deduction theorem, I' yields A o— B
if and only if A,I' = B. In practice a lazy approach to the partitioning can be adopted whereby
the whole bag of conclusion premises, plus A, are made available to try to prove B and, after
checking that A has been consumed, those not used are supplied to try to prove C' (Lloré and
Morrill 1995).

Compilation takes place according to an immediate correspondence with interpretation. In the
case of the associative implications, for example, we have the following, which is just a restatement
of the hybrid interpretation clauses.

(72) a. VIi,a(I-K-a+y:B o I-J-a:4)
J - K -~ A\B

b. VK,a(I-K-y+a:B o J-K-a:A)
I-J-~ B/A

Categorial type assignments are translated into quantifier-free linear clauses by polar translation
functions; the polarity is used to indicate whether new symbols introduced for quantified variables
in the interpretation clauses are metavariables or Skolem constants. They are identity functions
on atomic assignments; on complex category predicates they are defined mutually as follows (for
related unfolding see Roorda 1991, Moortgat 1992, Hendriks 1993 and Oehrle 1994); B indicates
the polarity complementary to p:

(73) a. I-K-a4+y:B? o I-J-a: AP
I, « new variable/constant as p +/—
J - K —~: A\BP

b. I -K-~+a: B? o— J-K-a: AP
I, « new variable/constant as p +/—
I-J -~ B/AP

The program clauses and agenda are read directly off the unfoldings, with the only manipulation
being a flattening of positive implications into uncurried form:

(74) ((X"'O—Yl_)o—...)o—Yn_ > X+0—Y1_®...®Yn_

We shall allow an agenda X7 ® ... ® X,, ®1 to be written X7 ® ... ® X,, and we shall also allow
unit program clauses X o—1 to be abbreviated X.

The unfolding for the remaining connectives of the basic discontinuity calculus is as follows.
Unfolding is provided for negative (succedent occurrences) of products, but not for positive (an-
tecedent occurrences), the compilations of which would fall outside of our linear logic programming

16

fragment.

(75) I-J-a:A= ® J-K-p:B~
I - K —~: AeB™

J,a, B new variables; v = a+3

(76) (I-J,K-L)-(a,7): B> o= I—-J—oa: AP

1, J, & new variables/constants as p +/—

K- L -~ A>BP

(I-J,K—-L)-(y,a): B> o K -L-a:AP

K, L,a new variables/constants as p +/—

I —J—~: B<AP

I-J-aA- ® K-L-pB:B-
(I-J,K-L)-~: A°B—

a, 3 new variables; v = (a, 8)

(77) I-L-oy4y4as: BP o= I-J K-L-(aj,a): AP
J— K —~: ALBP

I, L, a1, as new variables/constants as p +/—

I - L -~ +oaty: BP o— J - K —a: AP
- « new variable/constant as p +/—
(I J,K — L) — (v1,72): BIAP

(I-J,K-L)-(1,a2): A= @ J-K-pB:B~

J, K, a1, a9, 3 new variables; v = a1 +8+as
I-L-~ A®B~

Evidently the generalised discontinuity connectives will be unfolded in the corresponding system-
atic manner, therefore for binary adjunctions we again give just the case of staggered concatenation
product.

(78)

(I-J,K-L)-(a1,az): A~ ® (J-K,L-M)-(5,82): B~
I - M —~: Aes B~

J, K, L,a1, a3, 81,82 new variables; v = a1 +81 +as+32

We do however show the unary split and bridge unfolding explicitly in (79).
(79) I~ L4847y AP o~ j(J,K,B)P
(I-J,K—L) - (y1,72): $4°

3 new variable/constant as p +/—

(I-J,K L) (a1,00): A= @ j(J.K,B)~
I-L-—~vy:"A"

J, K, aq, g, B new variables; v = a1+0+as

We consider in detail the logic programming analysis of medial extraction. Assume the string
positions named in (80).

(80) o that ; Mary 2 sent 3 to 4 John 5

The relative pronoun type is unfolded as follows.

(81)
1-1-a;+b+as: S o— J-K-b:N
(1-J,K-1I)-(a1,a2): STN™ [J(LK,f)
a = a1+ f+as
0—- 1 —-that+a: R o— 1-1-a:SIN)—

0 -1 - that: R/M(SIN) T

17

And the prepositional ditransitive as shown in (82).

(82)
P — N — et+sent+c+d: S o— P-2-eN
2 — N - sent+4c+d: N\S o— M - N —-d: PP
2 — M — sent+c: (N\S)/PP o— 3-M-aN

2 — 3 — sent: ((N\S)/PP)/N

Initially we have the linear program clauses compiled from the word tokens in the string marked
by parentheses, as well as the universal axiom j(Q, @, €) marked by braces signifying optionality
and iterability of use. Agendas are marked by bare numerals. The initial agenda is to show that
the entire span of the string is an R.

0 - I —that+a;+f+az: R o— (1 =T —a;+b+as: S o= J - K -b: N) @ j(J, K, f)
1 -2 - Mary: N

P—-N—-etsentc+d: S - P—-2—-e:N QM -N-d: PP ®3-M —e: N

3 -4 - to+John: PP

(83)

)} J(Q, Qs ¢)
)

)

)

. 0-4-¢g:R

[N

This unit agenda is resolved against the relative pronoun clause; the use of the clause is indicated
by coindexing with the agenda against which it is resolved. The string position unifications
(notated term/variable) are made and a new agenda obtained from the program clause subgoals
accordingly, but the monoid term unification (notated term=term) is postponed.

0 i@.Q.0

(1) 0-1TI-that+a;+f+az: R o— (1 - T —a;+b+as:S o—J - K - b: N) ®@j(J, K, f)
() 1-2- Mary: N

() P-N-etsenttc+d: S o-P-2-e N QM -N-d: PP ®3-M -e: N

() 3 -4 -to+John: PP

1. 0-4-¢g:R 4/1, g = that+a;+f+as
2. (1-4-a1+b+az:S o—J - K -b: N) ®@j(J, K, f)

The top goal on the agenda is implicational. Its precondition is added as an additional premise
for a subproof of the postcondition. This premise is required to have been used before exiting the
subproof and continuing with the rest of the old agenda.

i J(@,Q,9¢

(1) 0-1TI-that+a;+f+az: R o— (1 - T —a;+b+as:S o—J - K - b: N) ®@j(J, K, f)
() 1-2- Mary: N

() P—-N-etsent+c+d: S - P-2-e N QM -N-d:PP @3- M -c: N

() 3 -4 - to+John: PP

1. 0-4-¢g:R 4/1, g = that+a;+f+as
2. (1-4-a1+b+az:S o—J - K -b: N) ®@j(J, K, f)
0 |J-K-BmN

3. 1-4—-ay1+b+as: S

18

The top goal on the subagenda is resolved against the prepositional ditransitive clause. The string

position unification is performed; the monoid term unification postponed.

(86)

— g —
~— ~—

S QO DO s s s e

The

A
o]
b

=

e =0
Loz

The next goal on the agenda is resolved against the prepositional phrase unit program clause.

SR
o]

o]

=z

J(Q.@.0
0 — I — that+a;+f+az: R o— (1 - I —a;+b+ax: S o= J - K -b: N) @j(J, K, f)
1-2-Mary: N
P—-N—-etsentdc4+d:S - P -2—-e:N QM -N-d: PP 3 -M —c: N
3 -4 - to+John: PP
0-4-¢g: R 4/1, g = that+a;+f+as
(1-4-ai+b+ax:S o= J -K -b:N) @j(J, K, f)
J—-—K-b:N
1-4-a;+b+as: S 1/P,4/N,a1+b+ay = e+sent+c+d
1-2-eeNQM-4—-d: PP ®3-M —¢: N

current goal is resolved against the subject unit program clause.
J(@:Q.0)
0 — I — that+a;+f+az: R o— (1 - I —a;+b+ax: S o= J - K -b: N) @j(J, K, f)
1-2-Mary: N
P-N-etsent+c+d:S - P-2-eeNQOM-N-d:PP ®3-M - N
3 -4 - to+John: PP
0-4-¢g: R 4/1, g = that+a;+f+as
(1-4-ai+b+ax:S o= J -K -b:N) @j(J, K, f)
J-K-b:N
1-4-a;+b+as: S 1/P,4/N,a1+b+ay = e+sent+c+d
1-2-eNoM-4-d:PP @3 -M-c: N e = Mary
M-4-d:PP ®@3-M-c N

J(Q.@.0

0 — I — that+a;+f+az: R o— (1 - I —a;+b+ax: S o= J - K -b: N) @j(J, K, f)

1-2-Mary: N

P-N—-etsent+c+d: S oo P-2—-e N QM -N—-d: PP ®3-M - N

3 -4 - to+John: PP

0-4-¢g: R 4/1, g = that+a;+f+as

(1-4-ai+b+ax:S o= J -K -b:N) @j(J, K, f)
J-K-b:'N
1-4-a;+b+as: S 1/P,4/N,a1+b+ay = e+sent+c+d
1-2-eNoM-4-d:PP @3 -M-c: N e = Mary
M-4-d:PP ®3-M —-¢: N 3/M,d = to+John
3-3-e N

The current goal is now resolved against the subproof hypothesis. The subproof postcondition has

been shown, and the subproof precondition has been used, so we exit and pursue the remainder

19

of the agenda after the implicational top goal.

0-4-¢g: R 4/1, g = that+a;+f+as
(1-4-ai+b+ax:S o= J -K -b:N) @j(J, K, f)

(89)
0 @0
(1) 0-1TI-that+a;+f+az: R o— (1 - T —a;+b+as:S o—J - K - b: N) ®@j(J, K, f)
(4) 1-2-Mary: N
(3) P-N-etsent+c+d:S o-P-2-e:NQM-N-d: PP 3-M - N
(5) 3 -4 -to+John: PP
1.
2

(6) J-K-b:N

3 1-4-a;+b+as: S 1/P,4/N,a1+b+ay = e+sent+c+d
4. 1-2-eNoM-4-d:PP @3 -M-c: N e = Mary
5. M-4-d:PP ®3-M-c N 3/M,d = to+John
6 3-3-eaN 3/J,3/K,c=b
T (3,30

This last goal is satisfied by resolution against the universal connection axiom.

Q@0

(1) 0-1TI-that+a;+f+az: R o— (1 - I —a34+b+as: S o—J - K -b:N) ®@j(J, K, f)
(4) 1-2-Mary: N

(3) P-N-etsent+c+d:S o= P -2-e:N QM -N-d: PP 3 -M - N

(5) 3 -4 - to+John: PP

1. 0-4-¢: R 4/1, g = that+a;+f+as
2. (1 -4—-aj+b+ax:S o= J - K -b:N) @j(J, K, f)

6) |J-K-bN

3 1-4-aj+btasz: S @j(J, K, f) 1/P,4/N,a1+b+ay = e+sent+c+d
4. 1-2-eNe@M-4-d:PP ®3-M - N e = Mary
5. M-4-d:PP ®3-M-cN 3/M,d = to+John
6 3-3-eaN 3/J.3/K,c=b
7 73,3, 1) f=e€

Only at this point are the monoid matchings chased back:
(91) 7. f=e¢

c=b
d = to+John
e = Mary

ay; = Mary-+sent, a; = to+John
g = that+Mary+sent-+to+John

i A =2

That is, the parsing as deduction process requires just unification of unstructured terms (the
constants and variables of the binary relational labelling), and algebraic matching (one-way uni-
fication) under associativity only after the conditions on word order have been verified. (In the
absence of hierarchical structure the algebraic matching succeeds if and only if the relational la-
belling does, so algebraic labelling is only needed when some non-associativity is present.) These
properties are common to the basic discontinuity calculus, and the two generalisations of it made
here.

References

van Benthem, J.: 1991, Language in Action: Categories, Lambdas and Dynamic Logic, Studies in
Logic and the Foundations of Mathematics Volume 130, North-Holland, Amsterdam.

20

Calcagno, M.: 1995, Bulletin of the Interest Group in Propositional and Predicate Logic Vol. 3
No. 4, pp. 555-578.

Dalrymple, M., S.M. Sheiber and F.C.N. Pereira: 1991, ‘Ellipsis and higher-order unification’,
Linguistics and Philosophy 18: 399-452.

Gabbay, D.: 1991, Labelled Deductive Systems, to appear, Oxford University Press, Oxford.

Girard, J-Y.: 1987, ‘Linear Logic’, Theoretical Computer Science 50, 1-102.

Hendriks, H.: 1993, Studied Flexibility: Categories, and Types in Syntaxr and Semantics, Ph.D.
dissertation, Institute for Logic, Language and Computation, Universiteit van Amsterdam.

Hendriks, P.: 1995, ‘Ellipsis and multimodal categorial type logic’ in G. Morrill and R.T. Oehrle
(eds.) Formal Grammar, Proceedings of the Conference of the European Summer School in
Logic, Language and Information, Barcelona, 107-122.

Hodas, J. and D. Miller: 1994, ‘Logic Programming in a Fragment of Intuitionistic Linear Logic’,
Journal of Information and Computation 110(2), 327-365.

Lambek, J.: 1958, ‘The mathematics of sentence structure’, American Mathematical Monthly 65,
154-170, also in Buszkowski, W., W. Marciszewski, and J. van Benthem (eds.): 1988, Catego-
rial Grammar, Linguistic & Literary Studies in Eastern Europe Volume 25, John Benjamins,
Amsterdam, 153-172.

Lambek, J.: 1961, ‘On the calculus of syntactic types’, in R. Jakobson (ed.) Structure of language
and its mathematical aspects, Proceedings of the Symposia in Applied Mathematics XII,
American Mathematical Society, 166-178.

Lloré, F.X. and G. Morrill: 1995, ‘Difference Lists and Difference Bags for Logic Programming
of Categorial Deduction’, in Proceedings of SEPLN XI, Deusto. Also available as Report
de Recerca LSI-95-30-R, Departament de Llenguatges i Sistemes Informatics, Universitat
Politécnica de Catalunya.

Martin-Lof, P.: 1987, “Truth of a proposition, evidence of a judgement, validity of a proof, Synthese
73: 407-420.

Moortgat, M.: 1988, Categorial Investigations: Logical and Linguistic Aspects of the Lambek
Calculus, Foris, Dordrecht.

Moortgat, M.: 1990, ‘The Quantification Calculus: Questions of Axiomatisation’, in Deliverable
R1.2.A of DYANA Dynamic Interpretation of Natural Language, ESPRIT Basic Research
Action BR3175.

Moortgat, M.: 1991, ‘Generalised Quantification and Discontinuous type constructors’, to appear
in Sijtsma and Van Horck (eds.) Proceedings Tilburg Symposium on Discontinuous Con-
stituency, Walter de Gruyter, Berlin.

Moortgat, M.: 1992, ‘Labelled Deductive Systems for categorial theorem proving’, OTS Work-
ing Paper OTS-WP-CL-92-003, Rijksuniversiteit Utrecht, also in Proceedings of the Eighth
Amsterdam Colloguium, Institute for Language, Logic and Information, Universiteit van Am-
sterdam.

Moortgat, G.: 1995, ‘Multimodal Linguistic Inference’, Bulletin of the Interest Group in Proposi-
tional and Predicate Logic Vol. 3 No. 2, 3, pp. 371-401.

Morrill, Glyn: 1992, ‘Categorial Formalisation of Relativisation: Pied Piping, Islands, and Ex-
traction Sites’, Report de Recerca LSI-92-23-R, Departament de Llenguatges i Sistemes
Informatics, Universitat Politecnica de Catalunya.

Morrill, G.: 1994, Type Logical Grammar: Categorial Logic of Signs, Kluwer Academic Publishers,

Dordrecht.
Morrill, G.: 1995a, ‘Clausal Proofs and Discontinuity’, Bulletin of the Interest Group in Proposi-

tional and Predicate Logic Vol. 3 No. 2, 3, pp. 403-427.
Morrill, G.: 1995b, ‘Discontinuity in Categorial Grammar’, Linguistics and Philosophy 18: 175-

219.
Morrill, G.: 1995¢, ‘Higher-order Linear Logic Programming of Categorial Deduction’, Proceed-

ings Meeting of the Furopean Chapter of the Association for Computational Linguistics,

Dublin.
Morrill, G. and T. Solias: 1993, ‘Tuples, Discontinuity and Gapping’, Proceedings Meeting of the

FEuropean Chapter of the Association for Computational Linguistics, Utrecht, 287-297.

21

Oehrle, R.T.: 1994, ‘Term-Labeled Categorial Type Systems’, Linguistics and Philosophy 17,

633-678.
Partee, Barbara and Mats Rooth: 1983, ‘Generalized conjunction and type ambiguity’, in

R. Biuerle, C. Schwarze and A. von Stechow (eds.) Meaning, Use, and Interpretation of
Language, Linguistic Analysis Volume 6, Walter de Gruyter, Berlin, 53-95.

Ranta, R.: 1994, Type- Theoretical Grammar, Oxford University Press, Oxford.

Rooth, Mats and Barbara H. Partee: 1982, ‘Conjunction, type ambiguity, and wide scope ‘or’’,
in Daniel Flickinger, Marlys Macken, and Nancy Wiegand (eds.) Proceedings of the First
West Coast Conference on Formal Linguistics, Stanford Linguistics Department, Stanford,

353-362.
Roorda, Dirk: 1991, Resource Logics: proof-theoretical investigations, Ph.D. dissertation, Univer-

siteit van Amsterdam.
Solias, T.: 1992, G'ramdticas Categoriales, Coordinacion Generalizada y FElision, Ph.D. disserta-

tion, Universidad Auténoma de Madrid.

