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Abstract. In the framework of labelled proof nets the task of parsing in
categorial grammar can be reduced to the problem of first-order matching
under theory. Here we shall show how to use the same method of labelled
proof nets to reduce the task of generating to the problem of higher-order
matching.

1 Introduction

Categorial grammar provides a mechanism for the analysis of linguistic expres-
sions on the basis of lexicalism and the parsing as deduction paradigm ([17]).3
In accordance with lezicalism each lexical entry of the language encapsulates all
the information needed to analyse the lexical item, and the grammar itself only
needs to know how to manage these resources. In the particular case of categorial
grammar, a lexical categorisation is a formula, or type, constructed over some
basic types by logical connectives; and the grammar constitutes the connectives’
syntactic behaviour (i.e. the laws governing the connectives). Within the pars-
wng as deduction paradigm the problem of analysing some linguistic expression
is rendered as the problem of proving (i.e. deducing) theorems in a deductive
system. In categorial grammar this means that to analyse a linguistic expression
we have to construct a sequent and prove its validity in the logic of categorial
connectives: the linguistic expression is well-formed if and only if the sequent is
valid in the logic. Thus, the language accepted is defined not by a set of grammar
rules (as in context free grammar) but by the meaning of the categorial types
assigned to the lexical items.

In practise it is not parsing itself which 1s useful so much as the fact that
parsing is tantamount to performing the process of interpretation: computing
the semantics associated with a given concrete syntax (we shall say: prosodics).
The opposite process is generation: computing the prosodics associated with a
given semantics. For present purposes prosodics is limited to word order, and
the semantics is understood as a logical form expressed as a term of higher-
order logic. We offer here a uniform framework for the computational tasks of
interpretation and generation.
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Methods for categorial interpretation based on proof nets ([5], [1], [18]) and
labelling of deductive systems ([3]) have been developed in [12], [14], [15] and
[11]. The formalism of proof nets provides a representation of the fundamental
structure of proofs, in the same way that parse trees do for context free grammar
derivations. Using proof nets we avoid “spurious ambiguity”: it is always the
case that two distinct (Cut-free) proof nets represent distinct associations of
prosodics and semantics. In labelled deductive systems we use labels to formalise
metalanguage of connectives in labelled formulas which are pairs (label, formula).
In the categorial application the label is split into the two linguistic dimensions:
({prosodics, semantics), categorial type).

Combining labelling and proof nets yields labelled proof nets for categorial
grammar, a parsing framework that expresses the proof search restrictions in
terms of (first-order) unifications. In fact, a clausal structuring of proof search
allows one to deal with one-way unification, i.e. matching, in which one of the
two terms to be unified contains no variables. Starting the search for proof nets
with the prosodics of the goal instantiated to a ground term but its semantics
expressed with a metavariable, the interpretation of a linguistic expression is
computed by constructing a proof net: the prosodic labelling controls the proof
search, and the semantic labelling allows us to retrieve the associated semantic
form.

In this paper we invoke the same techniques used for parsing and interpreting
linguistic expressions in order to generate from the logical form. The idea is
that we can use labelled formulas in such a way that the semantic labelling
controls the proof search while the prosodic labelling i1s used to retrieve the
word order associated with the initial logical form. The main difficulty arises
with the label unification: we must now unify typed A-terms, for which even
the second order problem is undecidable ([6]). In the special case of Second-
Order Linear Unification (SOLU: where variables are first-order but constants
may be first- or second-order, and each abstraction binds exactly one variable
occurrence) unifiability is still undecidable. But if no free variable occurs more
than twice, SOLU is decidable ([10]). Importantly, the labelled categorial proof
nets adhere to this latter condition: each free variable appears exactly twice.
Indeed, a clausal structuring again maintains a flow of information such that
one term 1n each unification pair contains no free variables, i.e. we need only
to deal with matching. In SOL matching there is a computable finite set of
most general unifiers. Thus, we are able to present a terminating algorithm for
categorial generation for the case of second order implicational categorial logic.*

Section 2 outlines proof nets for implicational linear logic; section 3 describes
the methods involved in our categorial parsing as deduction on labelled proof
nets; section 4 shows how to use these methods for the task of generation; finally,
in the appendix we describe higher-order unification and the SOLU matching
algorithm.

* It is a sufficient condition for termination of our method that every lexical logical
form contain at least one constant. The method is complete for (second-order) logical
forms without logical constants.



2 Calculus of linear implication

In this section we outline construction of proof nets for implicational linear logic.
This serves two purposes. Firstly, the calculus of linear implication provides a
point of reference for sublinear categorial calculi such as associative Lambek
calculus to be used later. Secondly, and more importantly, the applications of
the latter to linguistic processing will be seen as a refinement of the basic problem
of linear implicational theorem proving considered here.

Let us assume sequents I" = A where I' is a multiset (bag) of formulas, and
A a single formula, built just out of the linear implication. The (intuitionistic)
linear sequent calculus is as follows.

(1) a A=A id

b. I'==A A A=B
Cut
I'A=B

c. I'=A B A=C
I'A—B, A= C

—oL

d. I'A= B

— R
I'= A—oB

This calculus is also known in categorial contexts as Lambek-van Benthem cal-
culus. It enjoys Cut-elimination, i.e. every sequent which is a theorem has a
Cut-free proof, and is thus decidable since in the two logical rules the conclusion
has one more connective than the premises. However, the sequent proofs copy
contexts around in a cumbersome manner, and the partitionings required by bi-
nary rules are a costly form of non-determinism in proof search. A much deeper
proof syntax is provided by proof nets.

Cut-elimination also entails the subformula property: all the formulas that
can appear in a Cut-free proof already occur as subformulas of the sequent to
be proved. In proof nets we work directly on the formation trees of formulas, in
which all subformulas are already present as subtrees. We mark all subformulas
with an explicit polarity, ® or ®, to indicate antecedent or succedent occurrences,
rather than using positioning with respect to the sequent arrow; these polar
formulas are unfolded recursively into formation trees with atomic leaves as
follows:

(2) AP Bp
A—oBP

The polarities p and § are complementary. Polarities are propagated in such a
way that 1t 1s indicated whether subformulas would have antecedent or succedent
occurrences in sequent proofs.



To try to construct a proof net for a sequent we first mark each formula in
the sequent with a polarity marker  or ®, to indicate antecedent or succedent
occurrences, as shown in (3).

(3)  As AT .. AR

n

At Ay = A

The result is a bag of formulas with polarity. We then recursively unfold these
polar formulas. The result of this is called a proof frame. A proof structure is the
result of linking each literal to exactly one other, which must have the same atom
with the opposite polarity. A proof structure is a proof net, i.e. is well-formed as
a proof, if and only if it meets a global condition, the long trip condition, which
can be expressed in various ways, and which ensures that the proof structure
corresponds to a sequent proof. The links of proof nets are instances of the
sequent axiom; but it must be assured that in —oR inferences the hypothetical
A really is used in the proof of B and not in some other subproof.

Following on earlier work ([14], [15], [11]), we present the following linear
clausal engine for the construction of proof nets, though without any proof of
correctness here. It addresses the basic problem of partitioning for binary sequent
rules by putting a list of goals in the consequent of a single sequent and using
unary sequent rules together with checks that hypotheses have been used in the
requisite subproofs. Formulas are labelled with constants and variables of an
Associative and Commutative (AC) term algebra representing bags. A sequent
A = ¥ comprises a database A which is a bag of formulas labelled by distinct
constants, and an agenda X which 1s a list of items each of which is either a
formula labelled with a variable (all distinct), or an assignment := to a variable
of an AC term formed by multiset addition @ (a total operation), subtraction
© (a partial operation) and the empty bag §). One attempts to prove a sequent
Ay, ..., A, = Aby proving ai: Ay, ... a5 Ay = [a: A]. The search terminates
successfully with proof of the empty agenda from the empty database:

4 =1

The variables labelling agenda formulas will in fact be assigned the labels of
those database formulas which are used in their proof, i.e. in the overall case, «
will be a1 ®...B a,. There are three rules. Reading from conclusion to premises,
RES (resolution) states that to prove an atom A first on the agenda, choose a
database clause with head A which through zero or more implications implies
A; prove the antecedents of these implications, and the label for A is then the
sum of those for the antecedent proofs plus that for the clause chosen (we now
write the implications in the logic programming, right-to-left, direction):

(5) A= o Ay, o Anya = a1 @ B o, @ k|
Ak (- (Ao Ay)o— ) o— Ay = [a: A|X]

RES, a; new vars.

The rule DT (deduction theorem) states that to prove B o— A first on the agenda



one assumes A and proves B, and then checks that A has been used to prove B:
(6) Ak: A= [3: B,y =5kl
A= [y: Bo— A|Y]

DT, k£ new constant, 5 new variable

When the assignment condition in (6) is checked by (7) the evaluation succeeds if
the hypothesis has been used but fails otherwise (since © is a partial operation):

(7) A= Yo+ EVAL(Q'))
A= [a:=a|X]

Assig

Let us consider the construction of the proof net for C'o— B, Bo— A = C'o— A:

(8)
| |

cc A* C* B B* A
Co—A® Co—B® Bo— A?
0 1 2

We shall reference subformulas by their tree, 0, 1, ... from left-to-right, and
their node address within the tree given as a sequence of I(eft)s and r(ight)s
starting at the root. Then, reading from the conclusion up to the axiom, the
successive states in the construction of (8) are as follows.

9 =
©) I Assig
= [ag := (ag P az D ay) © ag] .
Assig
= [y ;= az P as S ar, a0 := a1 © ag) .
Assig
= [y = az P ag, a1 1= ay Pag, ap = a1 S ag] .
Assig
= [ag:=ag,ay ;= agDag, a1 1= as D ay, ap 1= a1 © ag)
RES

ag: 0r = [as: 2r a0 i= as P ag, a1 = as @ ag, ap 1= a1 © ag]

RES

ag: 2,as: 0r = [ag: 1r,ay i= ag P ag, ap := ay S ag)

RES
ar: 1,as: 2,a3: 0r = [aq: 00, o := a1 © ag)

ar: 1,as: 2 = [ag: 0]

To begin, one is trying to prove 0 from 1 and 2. Since 0 is implicational, in the
first step Or is added to the database and 0/ is put on the agenda. This goal
is attempted by resolution with clause 1 (highest link in the proof net). The
new goal issued is attempted by resolution with clause 2 (middle link in the
proof net). The next goal issued is resolved with the unit clause Or put into the
database at the first step (lowest link in the proof net).



3 Categorial parsing as deduction on labelled proof nets

3.1 Lambek Calculus

We shall deal with an implicational version L of associative Lambek Calculus
([9]) with formulas or (categorial) types defined by the connectives \ (‘under’)
and / (‘over’) on the basis of atomic types A, as shown in (10).

(10) F=A|F\F|F/F

The two connectives are directional implications. By way of illustration of the
notation, let us assume atomic types such as S (sentence), N (nominal), CN
(common noun) and PP (prepositional phrase); then intransitive verbs, requiring
a subject nominal on the left to form a sentence, have type N\S; transitive verbs,
combining with an object on the right to form an intransitive verb phrase; have
type (N\S)/N.

The interpretation of the categorial connectives is made prosodically in the
field of a semigroup, i.e. a set L closed under an associative operation +, and
semantically in a frame of function spaces, i.e. an indexed family {D; },;c7, T =
D|T — T where {D; },cp are basic domains, and Dy, ,, is the set of functions
from D;, to D,,. A mapping T" which associates a semantic function space with
each categorial type is such that T(A\B) = T(B/A) = T(A) — T(B). Each
categorial type A is interpreted as a subset of L x T(A). The signs of type A\ B
(B/A) are those which concatenate prosodically with signs of type A on the left
(right), and apply semantically as functions, to yield signs of type B:

(11) D(A\B) = {(s, m)|V(s',m") € D(A), (s'+s,m(m")) € D(B)}
D(B/A) = {(s,m)[¥(s",m") € D(A), (s+s", m(m')) € D(B)}

In order to present calculi for reasoning about categorial types we use la-
belling to codify information from the interpretation clauses. Prosodic labels
are terms over variables and constants constructed by the operator +; seman-
tic labels are typed A-terms. We define a sequent calculus as follows.> A type
assignment statement is of the form a — ¢: A where « is a prosodic term, ¢ a se-
mantic term and A a categorial type. A configuration is a multiset (bag) of type
assignment statements in which the terms are all variables, and are all distinct.
A sequent I' = X comprises an antecedent [' which is a configuration and a
succedent X which 1s a type assignment statement. We read a sequent as stating
that (for all interpretations), if the objects referred to in the antecedent are in

5 The prosodic labelling is not essential for Lambek sequent calculus: the prosodic
information can be left implicit in antecedents structured as sequences (ordered
sequent calculus). The semantic information can also be recovered from a sequent
proof: the associated lambda term is a notation for the proof as natural deduction,
according to the Curry-Howard correspondence. But labelled sequent calculus is more
general than ordered sequent calculus; both the prosodic and the semantic labelling
are used in the subsequent development of proof nets, and the methods we describe
apply not just to Lambek calculus but to a wider class of categorial logics which can
be expressed in the general labelled format.



the types indicated, then the object referred to in the succedent is in the type
indicated. The theorems of the calculus are generated by the following sequent
rules.

(12) a. a-zA=a-2A id
b. I's>a-¢:A a-x:A A= Bla] - ¢[z]: B
I'A = o] - 4[¢]: B

c. I'sa—-¢:A b-—y BA=~[b]-xy:C
I''d—w: A\B, A = y[a+d] - x[(w ¢)]: C

Cut

\L

d. TINa-z:A=at+y—-¢: B
I'' =~y - ey A\B

\R

e. I'sa—¢:A b-—y B A= b —Yly: C
I''d - w: B/A, A = ~[dta] — ¥[(w ¢)]: C

/L

f. INa—-z: A= ~v+a-9Y: B
I' =~y - Azy: B/A

/R

The notation [-] indicates distinguished suboccurrences of terms. By way of ex-
ample, there is the following derivation of a case of “subject type raising”:

(13) a-=:N =a-a:N ¢-z:S =>c¢-2:8
a-z:N;b—y: N\S = a+b—-(y x): S
a-z:N = a—Ay(y z): S/(N\S)

\L

Each lexical entry is a type assignment statement o — ¢: A where o and ¢
are closed (contain no free variables). Examples of lexical assignments are given
in figure 1.5 Consider the following derivation:

(14 a—-2:CN = a—-2:CN bfy:N:>bfy:N/L
d-w:N/CN,a—-2:CN = d+a - (w z): N c—zS=c— 28
d-w:N/CN, a—z: CN, e — v: N\S = d+a+e - (v (w z)): S

Substituting the prosodics and semantics for ‘the’; ‘dog’ and ‘runs’ we derive
that the+dog+runs with semantics (run (the dog)) is a sentence. Of course
the lexical semantics can be elaborated and more complex examples may invite
A-reduction in computational implementations, but we see here the essential
features of analysis. We can also see here the essential computational problem

® We omit here details of inflection and morphology; see e.g. chapter 6 of [13].



John - j : N

Mary - m : N

runs - run : NAS

likes - like : (N\S)/N

votes - vote : (N\S)/PP
talks - talk . (N\S)/PP

for - for : PP/N

about - about : PP/N

the - the : N/CN

dog - dog : CN

who - Azdyhz[(y z) A (z 2)]: (CN\CN)/(S/N)
seeks — Ao(try (rfind)) (N\S)/((N\$)/N)\(N\S))

Fig. 1. Lexical Assignments

with this proof syntax: although the Cut-elimination property renders decidabil-
ity (since in the logical rules the conclusion has one more connective than the
premises) distinct proofs may define the same analysis. For example (15), which
is not the same proof as (14), nevertheless derives the same labelled conclusion.

(15) b—yN=b-yN c¢c-—z:S=c—2z:8
a—ax:CN = a—x: CN b-y:Ne-v:N\S=>bte—(vy):S
d - w:N/CN,a—x: CN, e — v: N\S = d+a+e — (v (w z)): S

/L

This “spurious ambiguity” of the sequent proof syntax is remedied in the syntax
of proof nets, to which we now turn.

3.2 Labelled Proof Nets

As before, in the proof nets we work directly on the formation trees of formulas,
but now they are labelled. Marking labelled subformulas for polarity * or *, polar
type assignment statements are unfolded recursively into formation trees with
atomic leaf types as follows:”

(16) a—-¢: AP aty - (x4): B® ~y+a—(x¢): BP «a-— ¢ AP
v —x: A\BP v — x: BJAP

« and ¢ new variable/constant as p = a/s

Metavariables and Skolem constants correspond to the quantifers of the inter-

" The unfolding is a little different than that in [12], which instantiates A-abstraction
in succedent unfolding in such a way that extraction of semantics in parsing is imme-
diate. The current version will be used uniformly for parsing and generating, serving
to maximise a symmetry that would otherwise be less apparent.



pretation clauses and are introduced into labels in accordance with the polarity
of context.

The definitions of proof frame and proof structure are just as before, but now
we have labels. Any sublinear calculus must satisfy the linear long trip condition
on proof nets, to ensure linear validity. But we have a further condition in view of
sublinear structure, which is that the unification problem comprising the linked
prosodic terms be solvable. So far as we are aware, the prosodic and semantic
labelling actually subsume the linear labelling of section 2, in that unifiability
of either ensures the relevant use of hypotheses; however for consistency we
continue to include the linear labelling.®

This means, then, that in order to check that a proof structure is a proof
net we have to determine the solvability of a first-order unification system, i.e.
the solvability (under associativity) of the set of prosodic equations induced
by the linking. However, from a processing point of view we do not want to
construct whole proof structures and then test if they are proof nets, but rather
propagate constraints and prune search in the course of conjecturing linking.
Indeed, we do not want to take a given proof frame as our point of departure,
since that presupposes a selection of lexical assignments: for n words each k-ways
lexically ambiguous there are k™ such choices and we do not want to have to
enumerate them all, but select them only when they must be brought into, and
are compatible with, the search and proof construction.

A suitable method is obtained by generalising the clausal engine of the pre-
vious section, which in fact allows us to practice a top-down backtracking parse
search restricted to one-way unification (matching), i.e. unification in which one
term has no free variables. The generalisation includes resolution with lexical
clauses, with control of the label tokens being introduced into the proof. Se-
quents now have the form A = 53" where a control parameter ¢ is a multiset of
constant tokens, the cardinalities which lexical insertion must meet as a neces-
sary condition for successful proof construction. The lexical insertion resolution
rule LRES requires the lexical assignment of type (- (Ao— Ap)o— --+)o— A
(ignoring directionality) to a sign ¢ and decrements §®#(s) according to the
count #(s) of the lexical sign ¢ on the label dimension controlling the proof
search (prosodics for parsing; semantics for generation). The remaining rules are

8 By retaining an appropriate ordering it is possible to restrict attention in L to planar
linking in virtue of noncommutativity, which is certainly of crucial computational
importance (though not enough to ensure the long trip condition). But our first
concern here is with the generality of our methodology for generation, which does not
need to rely on any noncommutativity and which extends to all manner of sublinear
calculi through unification under theory as in [14]. Although introduced as long
ago as [18], whether the prosodic unifiability alone assures the long trip condition
has not been shown. Nor does it appear that unification under associativity (non-
deterministic) is imperative for L: [15] and [16] propose formulations on the basis
of just structural term unification (deterministic). Still, it seems unlikely that the
present proposals would be irrelevant to such refinements as could be either necessary
or advantageous. That the semantic unification is necessary but not sufficient is
certain, since this checks validity as natural deduction, but does not check order.



unaltered except that they transmit the control parameter.

(17 =4l

(18) A= sloag: Al o Apya = a1 & D oy @ kY]
Ak: (- (A= Ap)o— - Jo— Ay = s5ar A|Y]

RES, a; new vars.

(19) A= slog: Ar, .o an Ap,a = a1 @ - B ay| Y]
A= 5@#(g)[0z: A|E]

LRES, «; new vars.

(20) Ak A= 5[8: B,y =p86k|X
A = 5[y Bo— A|Y]

DT, k£ new constant, 5 new variable

(21) A= sX[a+ EVAL(Q)]
A= sla = a2

Assig

Let us consider first just parsing our example ‘the dog runs’ as S; see figure 2.
The trace of search states is as follows:

(22) = gl

Assig
N @[ao — 0 ssi

Assig
= @[al =0, a0 1= o]

Assig

= plaz = 0,01 1= @z, a9 1= o]
LRES
= doglva: 21,y 1= g, 0 1= g
[ l ] LRES
= theqdoglar: 1, ag = a
theddos 2 0 T RES

= the®dog@runs [a0: 0]

Initially, the agenda comprises the type S unit clause at 0 with prosodic term
the+dog+runs. There are no clauses in the database, so we must resolve by
LRES with a lexical clause projecting a type S head. We do not need to attempt
resolving with any lexical entry unless the prosodic constant(s) occurring in the
entry are contained in the bag of tokens controlling the proof search.® Since
‘the’ and ‘dog’ do not project S, we can only resolve with the lexical clause for
‘runs’, the prosodic label of which must be unified with the+dog+runs. This
instantiates @ to the+dog (in this case there is no other unifier) and the new
agenda comprises the type N unit clause at 1! with prosodic term the+dog. For
the same reasons again, this must resolve with the lexical clause for ‘the’; in-

® In practice, we can precompute a working set of lexical entries, being those the
constants of which are contained in the target assignment. Skolem constants and
metavariables need to be refreshed on each invocation, but, the rest of the lexicon
can be ignored.



a = the+dog
w = (run (the dog))

b =dog
X = (the dog)

y = dog

a—x: NS at+runs — (run x): 2 the+b — (the y): N& b—y: CNS
the+dog+runs —w: S° runs —run: N\S? the —the: N/CN& dog—dog: CN&

Fig. 2. Proof net for parsing of ‘the dog runs’

stantiating b to dog, and the subgoal issued resolves with the unit lexical clause
for ‘dog’. Tracing back, the three successive steps yield semantically y = dog,
z = (the dog) and w = (run (the dog)), which last represents the semantic
interpretation. Note that this is the only proof net for this (unambiguous) ex-
pression: the problem of spurious ambiguity that is encountered in the syntax of
sequent calculus is not present in that of proof nets.

By way of a slightly more involved example we consider parsing ‘John talks
about’ as S/N (as in the analysis of a relative clause ‘who John talks about’ given
the second-order assignment to the relative pronoun); see figure 3. First, the unit
N clause in the body of the initial agenda is put into the database and the S head
is linked to the head of the lexical clause for ‘talks’ which projects an S. The
prosodic unifier is {6 = John, @ = about+d}. The two (unit) clauses in the body
of the lexical clause go into the agenda; the N is resolved with the unit lexical
clause for ‘John’, and the PP with the lexical clause for ‘about’, when ¢ = d. Now
the agenda comprises an N unit clause with prosodic label d and we terminate
by resolving with the corresponding clause added to the database at the first
step. Tracing back the semantics we end up with (v w) = ((talk (about w)) j)
which clearly has solution v = Aw((talk (about w)) j).

This last example shows that recovery of semantics can involve a mild degree
of higher-order unification. In the continuation we address the task of generation
and this will require a direct confrontation with higher-order unification.



Jgnoqe sye) uygor, jo SUESJ’EC{ JIOJ 39U JOOIJ *¢ ‘8!&

b = John;

a = about+d

v=Aw((talk (aboutw)j)

c=d

X = (about w)

b—y: NS b+talks+a — ((talk x) y): S?

John+talks+about+d — (vw): S° d-—w: N2

talks+a — (talk x): N\S?

a-x PP

about+c — (about 2): P2

c—z NS

John+talks+about —v: S/NS

talks —talk: (N\S)/PF

John—j: N& about—about. PP/N?



4 Categorial generation as deduction on labelled proof
nets.

Now we will use the same techniques to generate from the semantic form. The
basic idea is that we can use bidimensional labelled formulas o — ¢: A in such
a way that the semantic labelling controls the proof search while the prosodic
labelling is used to retrieve the word order associated with the semantic form. To
do this it is enough to express in the semantic label of the goal a closed A-term
representing the source semantics, leave a metavariable in the prosodic label,
determine solvability of the unification system expressed by (semantic) linking,
and confirm solvability of the unification system induced over prosodic labels,
recovering the prosodic unknown.

Using the goal-driven strategy for proof search above we have to resolve, for
each linking, a higher-order matching problem. Like matching under associativ-
ity, higher-order matching is non-deterministic in that (already considering only
normal forms) in general there is not a unique most general unifier. For example,
the unification problem {(z f) = (f (f a))} has solucions # = Az(z (f a)) and
z = Az(f (z a)) neither of which is more general than the other. Tt’s known that
third-order matching is decidable; though it’s not known whether the problem
in general is decidable, the conjecture is that it is ([7]); see also [8], [6], [4] and
[2].

Decidability is not enough however: in processing we are interested in effec-
tively computing all possible unifiers, and in general this is not possible because
with higher-order terms we can have an infinite number of unifiers for a given
equation that cannot be expressed with a finite number of most general unifiers.
If we restrict the linguistic fragment to expressions with a second-order semantic
form the problem reduces to second-order linear matching because the semantic
unfolding maintains linearity. This particular problem is semi-decidable, but if
no free variable occurs more than twice we obtain decidability; furthermore, in
this case we have a finite number of (second-order linear) most general unifiers
and an algorithm to compute them ([10]). Critically, our semantic unfolding def-
inition is such that we have exactly two occurrences of each free variable. Note
that restriction to second-order types is not so bad: Montague’s grammar is at
most third order.

Once a proof net has been built we can confirm ordering well-formedness and
retrieve the word order associated with the semantics by solving the equations
on prosodic labels generated by the linking. Thus, if the matching problem for
a given fragment of A-calculus is computable; so also is the task, within that
fragment, of generating linguistic expressions from their semantics, if each lexical
semantics contains at least one constant. This last condition is not necessary to
ensure a finite search space, but it is sufficient, since it bounds the number of
LRES inferences that can be made. It is the analogue of an assumption that
lexical items contain at least one prosodic constant (i.e. that no type is lexically
assigned to the empty string) which is sufficient (though not necessary) to ensure
termination of certain parsing methods.



Figure 4 shows generation of ‘John talks about’ from Aw((talk (about w)) j).
As with the prosodic control of search in parsing, we do not need to attempt
resolving with any lexical entry unless the bag of (semantic) constants occurring
lexically is contained in the bag of such constants controlling the proof search.'®
The entries for ‘about’ and ‘John’ do not project S: after adding the condition-
alised N to the database, the head of the literal initially on the agenda is matched
to the head of the lexical clause for ‘talks’. A unifier performing the matching is
{x = (about w),y = j}. The N goal resolves with ‘John’, the PP goal with the
clausal head for ‘about’ under z = w, and the N goal issued is resolved at the
last step with the N put into the database at the first step.

The structure is just like that for parsing, but with known and unknown
information inverted. Since matching under associativity is non-deterministic
one must in general be prepared to backtrack and try different unifiers in parsing
(though this does not arise in our examples); likewise for higher-order matching
in generation, where indeed the non-determinism of matching is more severe. The
confirmation and recovery of prosodic form is also invoked by matching, as with
parsing. Working backwards we have at the last step ¢ = d, then ¢ = about+d
and b = John. Finally, we solve e+d = John+talks+about+d, generating the
prosodic form John+talks+about.

One last example is given in figure 5.!! The main interest is the semantic
matching at the first step, which requires z to be mapped to a second-order A-
abstracted term. In the appendix we discuss an algorithm for the case of second-
order matching. Although that is not enough for the current example, which is
third-order, it does enable us to compute in the manner we have presented the
task of generation not only for the associative Lambek calculus as elucidated,
but also for a much wider range of sublinear labelled calculi. This is because
the only adjustment necessary 1s accommodation of prosodic matching under
the relevant theory. Until now no such general method has been available. The
principle issues arising are: how to perform matching for a wider class of A-terms,
and how to extend treatment to include logical constants. We hope to be able
to address these questions in future work.

19 Again, we can in practice precompute a working set of lexical entries and ignore the
rest of the lexicon.
' For explanation of the categorial assignment to ‘seeks’ see chapter 5 of [13].



X = (aboutw); y =j

e = John+talks+about |

b =John

Z=W

a =about+d

e+d — ((talk (about w)) j): S° d—w: N@

b-y: NS

b+talks+a— ((talk x) y): S&

talks+a — (talk x): N\S® a—x: PP

e-Aw((talk (aboutw))j): SINS

talks —talk: (N\S)/PF

John—j: N&

about+c — (about 2): PP

c—z NS

about—about: PP/N2

Fig. 4. Proof net for generation of ‘John talks about’
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Appendix: Higher-order unification

Higher-order unification is the task of unifying typed A-terms. We assume single-
bind, i.e. linear, A-terms. All A-terms can be expressed in n-long normal form
as shown in (23a), where each t; is in fn-long normal form; ¢ is a constant or
a variable (free or bound), called the head of the term. In (23b) we show an
abbreviated “flattened” form that we use for the nested functional application
in (23a); and in (23c), vector-style notations for iterated functional application
and A-abstraction.

(23) a. Azpdes. . Arp (o (6 ¥1) ¥2) o m) mn >0
b. Az Azy . AL, G(Y1, Vo, -, )
C. /\qu)(ﬂ){l,,m})

We say a term is rigid when its head is a constant or a bound variable, and
flexible when its head is a free variable.

A higher-order unification equation is a pair of terms to be unified, ¢ = ¢, and
a Higher-Order Unification System (HOUS) is a set of such equations, that must
be satisfied simultaneously. A common method for solution of a HOUS is that of
transformations ([19], [4]): there are a set of transformation rules that transform
a system S to a system S’ with the same set of unifiers. The transformation
rules we will use not only transform the HOUS but will also compute a unifier;
any state of the process is represented by the unifier ¢ computed up to the
current moment and the current unification system S (to which ¢ has been
applied): (S,o); the end of the process is marked by transformation into the
empty system.

Application of transformation rules has the form (24): some (active) uni-
fication equation ¢ = ¢ is removed and replaced by subproblems R, and a
substitution p is applied to the system and composed with the substitution to
date.

(24) (SU{p=1},0) = (p(SUR),poa)

At each stage fn-long normal form is to be restored. There are three kinds of
transformation depending on the nature of the terms in the active equation:
flexible/flexible, flexible/rigid, and rigid/rigid. The algorithm for the particular
case of linear second-order matching is adapted from the unification algorithm
of [10] (in fact, we only have to drop from it the flexible/flexible case).

If two terms to be unified have different length lambda prefixes the unification
fails (it means they are not of the same type). Otherwise, we assume a-conversion
making the A-prefixes identical. The rigid/rigid case checks the identity of the
two heads and tries to unify the parameters:

(25) AT (T, ) = AT (X ])

R={ Ty 1 = ATr X1, AT m = ATy Xm }

p=1{}
For the flexible/rigid case we choose in a don’t know non-deterministic way to
project or to imitate. The projection rule instantiates the head of the flexible



term, a free variable #, with the identity function (it must, then, be of a first-
order endocentric type 7 — 1,7 € D):

(26) ATy 0(Y1, m}) = ATn.2(X)

R ={\70.0(¥q1,. my) = ATn.x}
p={x=Ayy}

The imitation rule decomposes (in a don’t know non-deterministic way) the
flexible term into a set of m new flexible terms, arranging a linear allocation
of the arguments x1,..., x, as the arguments of m new variables z,..., z, to
be unified with the m terms 1, ..., %, This allocation is given by a partition

Ry,...,Rnofl,....p

(27) A& .0(¥q1,.my) = AZn.x(Xq1,. p1)
R={)\z, Y1 = /\E.zl(X—Rl), ey AT, = AT Zm (m)}
p=1x =g 0(z1(UR,)s - - > #m(UR..)) }
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