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Methods for categorial interpretation based on proof nets ([5], [1], [18]) andlabelling of deductive systems ([3]) have been developed in [12], [14], [15] and[11]. The formalism of proof nets provides a representation of the fundamentalstructure of proofs, in the same way that parse trees do for context free grammarderivations. Using proof nets we avoid \spurious ambiguity": it is always thecase that two distinct (Cut-free) proof nets represent distinct associations ofprosodics and semantics. In labelled deductive systems we use labels to formalisemetalanguage of connectives in labelled formulas which are pairs hlabel; formulai.In the categorial application the label is split into the two linguistic dimensions:hhprosodics; semanticsi; categorial typei.Combining labelling and proof nets yields labelled proof nets for categorialgrammar, a parsing framework that expresses the proof search restrictions interms of (�rst-order) uni�cations. In fact, a clausal structuring of proof searchallows one to deal with one-way uni�cation, i.e. matching, in which one of thetwo terms to be uni�ed contains no variables. Starting the search for proof netswith the prosodics of the goal instantiated to a ground term but its semanticsexpressed with a metavariable, the interpretation of a linguistic expression iscomputed by constructing a proof net: the prosodic labelling controls the proofsearch, and the semantic labelling allows us to retrieve the associated semanticform.In this paper we invoke the same techniques used for parsing and interpretinglinguistic expressions in order to generate from the logical form. The idea isthat we can use labelled formulas in such a way that the semantic labellingcontrols the proof search while the prosodic labelling is used to retrieve theword order associated with the initial logical form. The main di�culty ariseswith the label uni�cation: we must now unify typed �-terms, for which eventhe second order problem is undecidable ([6]). In the special case of Second-Order Linear Uni�cation (SOLU: where variables are �rst-order but constantsmay be �rst- or second-order, and each abstraction binds exactly one variableoccurrence) uni�ability is still undecidable. But if no free variable occurs morethan twice, SOLU is decidable ([10]). Importantly, the labelled categorial proofnets adhere to this latter condition: each free variable appears exactly twice.Indeed, a clausal structuring again maintains a 
ow of information such thatone term in each uni�cation pair contains no free variables, i.e. we need onlyto deal with matching. In SOL matching there is a computable �nite set ofmost general uni�ers. Thus, we are able to present a terminating algorithm forcategorial generation for the case of second order implicational categorial logic.4Section 2 outlines proof nets for implicational linear logic; section 3 describesthe methods involved in our categorial parsing as deduction on labelled proofnets; section 4 shows how to use these methods for the task of generation; �nally,in the appendix we describe higher-order uni�cation and the SOLU matchingalgorithm.4 It is a su�cient condition for termination of our method that every lexical logicalform contain at least one constant. The method is complete for (second-order) logicalforms without logical constants.



2 Calculus of linear implicationIn this section we outline construction of proof nets for implicational linear logic.This serves two purposes. Firstly, the calculus of linear implication provides apoint of reference for sublinear categorial calculi such as associative Lambekcalculus to be used later. Secondly, and more importantly, the applications ofthe latter to linguistic processing will be seen as a re�nement of the basic problemof linear implicational theorem proving considered here.Let us assume sequents � ) A where � is a multiset (bag) of formulas, andA a single formula, built just out of the linear implication. The (intuitionistic)linear sequent calculus is as follows.(1) a. A ) A idb. � ) A A;� ) BCut�;�) Bc. � ) A B;� ) C��L�;A��B;� ) Cd. �;A ) B ��R� ) A��BThis calculus is also known in categorial contexts as Lambek-van Benthem cal-culus. It enjoys Cut-elimination, i.e. every sequent which is a theorem has aCut-free proof, and is thus decidable since in the two logical rules the conclusionhas one more connective than the premises. However, the sequent proofs copycontexts around in a cumbersome manner, and the partitionings required by bi-nary rules are a costly form of non-determinism in proof search. A much deeperproof syntax is provided by proof nets.Cut-elimination also entails the subformula property: all the formulas thatcan appear in a Cut-free proof already occur as subformulas of the sequent tobe proved. In proof nets we work directly on the formation trees of formulas, inwhich all subformulas are already present as subtrees. We mark all subformulaswith an explicit polarity, a or s, to indicate antecedent or succedent occurrences,rather than using positioning with respect to the sequent arrow; these polarformulas are unfolded recursively into formation trees with atomic leaves asfollows:(2) Ap BpA��BpThe polarities p and p are complementary. Polarities are propagated in such away that it is indicated whether subformulas would have antecedent or succedentoccurrences in sequent proofs.



To try to construct a proof net for a sequent we �rst mark each formula inthe sequent with a polarity marker a or s, to indicate antecedent or succedentoccurrences, as shown in (3).(3) As Aa1 : : : AanA1; : : : ; An ) AThe result is a bag of formulas with polarity. We then recursively unfold thesepolar formulas. The result of this is called a proof frame. A proof structure is theresult of linking each literal to exactly one other, which must have the same atomwith the opposite polarity. A proof structure is a proof net, i.e. is well-formed asa proof, if and only if it meets a global condition, the long trip condition, whichcan be expressed in various ways, and which ensures that the proof structurecorresponds to a sequent proof. The links of proof nets are instances of thesequent axiom; but it must be assured that in ��R inferences the hypotheticalA really is used in the proof of B and not in some other subproof.Following on earlier work ([14], [15], [11]), we present the following linearclausal engine for the construction of proof nets, though without any proof ofcorrectness here. It addresses the basic problem of partitioning for binary sequentrules by putting a list of goals in the consequent of a single sequent and usingunary sequent rules together with checks that hypotheses have been used in therequisite subproofs. Formulas are labelled with constants and variables of anAssociative and Commutative (AC) term algebra representing bags. A sequent� ) � comprises a database � which is a bag of formulas labelled by distinctconstants, and an agenda � which is a list of items each of which is either aformula labelled with a variable (all distinct), or an assignment := to a variableof an AC term formed by multiset addition � (a total operation), subtraction	 (a partial operation) and the empty bag ;. One attempts to prove a sequentA1; : : : ; An ) A by proving a1: A1; : : : ; an: An ) [�: A]. The search terminatessuccessfully with proof of the empty agenda from the empty database:(4) ) []The variables labelling agenda formulas will in fact be assigned the labels ofthose database formulas which are used in their proof, i.e. in the overall case, �will be a1� : : :�an. There are three rules. Reading from conclusion to premises,RES (resolution) states that to prove an atom A �rst on the agenda, choose adatabase clause with head A which through zero or more implications impliesA; prove the antecedents of these implications, and the label for A is then thesum of those for the antecedent proofs plus that for the clause chosen (we nowwrite the implications in the logic programming, right-to-left, direction):(5) � ) [�1: A1; : : : ; �n: An; � := �1 � � � � � �n � kj�]RES, �i new vars.�; k: (� � � (A ��An) �� � � �) ��A1 ) [�: Aj�]The rule DT (deduction theorem) states that to prove B ��A �rst on the agenda



one assumes A and proves B, and then checks that A has been used to prove B:(6) �; k: A ) [�: B; 
 := � 	 kj�]DT, k new constant, � new variable� ) [
: B ��Aj�]When the assignment condition in (6) is checked by (7) the evaluation succeeds ifthe hypothesis has been used but fails otherwise (since 	 is a partial operation):(7) � ) �[� EV AL(�0)]Assig� ) [� := �0j�]Let us consider the construction of the proof net for C ��B;B ��A ) C ��A:(8) jjj j jjj jj jj jCs Aa Ca Bs Ba AsC ��As C ��Ba B ��Aa0 1 2We shall reference subformulas by their tree, 0, 1, . . . from left-to-right, andtheir node address within the tree given as a sequence of l(eft)s and r(ight)sstarting at the root. Then, reading from the conclusion up to the axiom, thesuccessive states in the construction of (8) are as follows.(9) ) [] Assig) [�0 := (a3 � a2 � a1) 	 a3] Assig) [�1 := a3 � a2 � a1; �0 := �1 	 a3] Assig) [�2 := a3 � a2; �1 := �2 � a1; �0 := �1 	 a3] Assig) [�3 := a3; �2 := �3 � a2; �1 := �2 � a1; �0 := �1 	 a3] RESa3: 0r ) [�3: 2r; �2 := �3 � a2; �1 := �2 � a1; �0 := �1 	 a3]RESa2: 2; a3: 0r ) [�2: 1r; �1 := �2 � a1; �0 := �1 	 a3]RESa1: 1; a2: 2; a3: 0r ) [�1: 0l; �0 := �1 	 a3]DTa1: 1; a2: 2 ) [�0: 0]To begin, one is trying to prove 0 from 1 and 2. Since 0 is implicational, in the�rst step 0r is added to the database and 0l is put on the agenda. This goalis attempted by resolution with clause 1 (highest link in the proof net). Thenew goal issued is attempted by resolution with clause 2 (middle link in theproof net). The next goal issued is resolved with the unit clause 0r put into thedatabase at the �rst step (lowest link in the proof net).



3 Categorial parsing as deduction on labelled proof nets3.1 Lambek CalculusWe shall deal with an implicational version L of associative Lambek Calculus([9]) with formulas or (categorial) types de�ned by the connectives n (`under')and / (`over') on the basis of atomic types A, as shown in (10).F = A j FnF j F=F(10)The two connectives are directional implications. By way of illustration of thenotation, let us assume atomic types such as S (sentence), N (nominal), CN(commonnoun) and PP (prepositional phrase); then intransitive verbs, requiringa subject nominal on the left to form a sentence, have type NnS; transitive verbs,combining with an object on the right to form an intransitive verb phrase, havetype (NnS)/N.The interpretation of the categorial connectives is made prosodically in the�eld of a semigroup, i.e. a set L closed under an associative operation +, andsemantically in a frame of function spaces, i.e. an indexed family fD�g�2T ; T =D j T ! T where fD�g�2D are basic domains, and D�1!�2 is the set of functionsfrom D�1 to D�2 . A mapping T which associates a semantic function space witheach categorial type is such that T (AnB) = T (B=A) = T (A) ! T (B). Eachcategorial type A is interpreted as a subset of L� T (A). The signs of type AnB(B=A) are those which concatenate prosodically with signs of type A on the left(right), and apply semantically as functions, to yield signs of type B:D(AnB) = fhs;mij8hs0;m0i 2 D(A); hs0+s;m(m0)i 2 D(B)gD(B=A) = fhs;mij8hs0;m0i 2 D(A); hs+s0;m(m0)i 2 D(B)g(11)In order to present calculi for reasoning about categorial types we use la-belling to codify information from the interpretation clauses. Prosodic labelsare terms over variables and constants constructed by the operator +; seman-tic labels are typed �-terms. We de�ne a sequent calculus as follows.5 A typeassignment statement is of the form � { �: A where � is a prosodic term, � a se-mantic term and A a categorial type. A con�guration is a multiset (bag) of typeassignment statements in which the terms are all variables, and are all distinct.A sequent � ) X comprises an antecedent � which is a con�guration and asuccedent X which is a type assignment statement. We read a sequent as statingthat (for all interpretations), if the objects referred to in the antecedent are in5 The prosodic labelling is not essential for Lambek sequent calculus: the prosodicinformation can be left implicit in antecedents structured as sequences (orderedsequent calculus). The semantic information can also be recovered from a sequentproof: the associated lambda term is a notation for the proof as natural deduction,according to the Curry-Howard correspondence. But labelled sequent calculus is moregeneral than ordered sequent calculus; both the prosodic and the semantic labellingare used in the subsequent development of proof nets, and the methods we describeapply not just to Lambek calculus but to a wider class of categorial logics which canbe expressed in the general labelled format.



the types indicated, then the object referred to in the succedent is in the typeindicated. The theorems of the calculus are generated by the following sequentrules.(12) a. a { x: A ) a { x: A idb. � ) � { �: A a { x: A;� ) �[a] {  [x]: BCut�;� ) �[�] {  [�]: Bc. � ) � { �: A b { y: B;� ) 
[b] { �[y]: CnL�; d { w: AnB;� ) 
[�+d] { �[(w �)]: Cd. �; a { x: A ) a+
 {  : BnR� ) 
 { �x : AnBe. � ) � { �: A b { y: B;� ) 
[b] {  [y]: C/L�; d { w: B=A;� ) 
[d+�] {  [(w �)]: Cf. �; a { x: A ) 
+a {  : B/R� ) 
 { �x : B=AThe notation [�] indicates distinguished suboccurrences of terms. By way of ex-ample, there is the following derivation of a case of \subject type raising":(13) a { x: N ) a { x: N c { z: S ) c { z: SnLa { x: N, b { y: NnS ) a+b { (y x): S/Ra { x: N ) a { �y(y x): S/(NnS)Each lexical entry is a type assignment statement � { �: A where � and �are closed (contain no free variables). Examples of lexical assignments are givenin �gure 1.6 Consider the following derivation:(14) a { x: CN ) a { x: CN b { y: N ) b { y: N c { z: S ) c { z: S/Ld { w: N/CN, a { x: CN ) d+a { (w x): N nLd { w: N/CN, a { x: CN, e { v: NnS ) d+a+e { (v (w x)): SSubstituting the prosodics and semantics for `the', `dog' and `runs' we derivethat the+dog+runs with semantics (run (the dog)) is a sentence. Of coursethe lexical semantics can be elaborated and more complex examples may invite�-reduction in computational implementations, but we see here the essentialfeatures of analysis. We can also see here the essential computational problem6 We omit here details of in
ection and morphology; see e.g. chapter 6 of [13].



John { j : NMary { m : Nruns { run : NnSlikes { like : (NnS)/Nvotes { vote : (NnS)/PPtalks { talk : (NnS)/PPfor { for : PP/Nabout { about : PP/Nthe { the : N/CNdog { dog : CNwho { �x�y�z[(y z) ^ (x z)] : (CNnCN)/(S/N)seeks { �x(try (x �nd)) : (NnS)/(((NnS)/N)n(NnS))Fig. 1. Lexical Assignmentswith this proof syntax: although the Cut-elimination property renders decidabil-ity (since in the logical rules the conclusion has one more connective than thepremises) distinct proofs may de�ne the same analysis. For example (15), whichis not the same proof as (14), nevertheless derives the same labelled conclusion.(15) a { x: CN ) a { x: CN b { y: N ) b { y: N c { z: S ) c { z: SnLb { y: N, e { v: NnS ) b+e { (v y): S/Ld { w: N/CN, a { x: CN, e { v: NnS ) d+a+e { (v (w x)): SThis \spurious ambiguity" of the sequent proof syntax is remedied in the syntaxof proof nets, to which we now turn.3.2 Labelled Proof NetsAs before, in the proof nets we work directly on the formation trees of formulas,but now they are labelled. Marking labelled subformulas for polarity a or s, polartype assignment statements are unfolded recursively into formation trees withatomic leaf types as follows:7(16) � { �: Ap �+
 { (� �): Bp
 { �: AnBp 
+� { (� �): Bp � { �: Ap
 { �: B=Ap� and � new variable/constant as p = a=sMetavariables and Skolem constants correspond to the quantifers of the inter-7 The unfolding is a little di�erent than that in [12], which instantiates �-abstractionin succedent unfolding in such a way that extraction of semantics in parsing is imme-diate. The current version will be used uniformly for parsing and generating, servingto maximise a symmetry that would otherwise be less apparent.



pretation clauses and are introduced into labels in accordance with the polarityof context.The de�nitions of proof frame and proof structure are just as before, but nowwe have labels. Any sublinear calculus must satisfy the linear long trip conditionon proof nets, to ensure linear validity. But we have a further condition in view ofsublinear structure, which is that the uni�cation problem comprising the linkedprosodic terms be solvable. So far as we are aware, the prosodic and semanticlabelling actually subsume the linear labelling of section 2, in that uni�abilityof either ensures the relevant use of hypotheses; however for consistency wecontinue to include the linear labelling.8This means, then, that in order to check that a proof structure is a proofnet we have to determine the solvability of a �rst-order uni�cation system, i.e.the solvability (under associativity) of the set of prosodic equations inducedby the linking. However, from a processing point of view we do not want toconstruct whole proof structures and then test if they are proof nets, but ratherpropagate constraints and prune search in the course of conjecturing linking.Indeed, we do not want to take a given proof frame as our point of departure,since that presupposes a selection of lexical assignments: for n words each k-wayslexically ambiguous there are kn such choices and we do not want to have toenumerate them all, but select them only when they must be brought into, andare compatible with, the search and proof construction.A suitable method is obtained by generalising the clausal engine of the pre-vious section, which in fact allows us to practice a top-down backtracking parsesearch restricted to one-way uni�cation (matching), i.e. uni�cation in which oneterm has no free variables. The generalisation includes resolution with lexicalclauses, with control of the label tokens being introduced into the proof. Se-quents now have the form � ) �� where a control parameter � is a multiset ofconstant tokens, the cardinalities which lexical insertion must meet as a neces-sary condition for successful proof construction. The lexical insertion resolutionrule LRES requires the lexical assignment of type (� � � (A ��An) �� � � �) ��A1(ignoring directionality) to a sign & and decrements ��#(&) according to thecount #(&) of the lexical sign & on the label dimension controlling the proofsearch (prosodics for parsing; semantics for generation). The remaining rules are8 By retaining an appropriate ordering it is possible to restrict attention in L to planarlinking in virtue of noncommutativity, which is certainly of crucial computationalimportance (though not enough to ensure the long trip condition). But our �rstconcern here is with the generality of our methodology for generation, which does notneed to rely on any noncommutativity and which extends to all manner of sublinearcalculi through uni�cation under theory as in [14]. Although introduced as longago as [18], whether the prosodic uni�ability alone assures the long trip conditionhas not been shown. Nor does it appear that uni�cation under associativity (non-deterministic) is imperative for L: [15] and [16] propose formulations on the basisof just structural term uni�cation (deterministic). Still, it seems unlikely that thepresent proposals would be irrelevant to such re�nements as could be either necessaryor advantageous. That the semantic uni�cation is necessary but not su�cient iscertain, since this checks validity as natural deduction, but does not check order.



unaltered except that they transmit the control parameter.(17) ) ;[](18) � ) �[�1: A1; : : : ; �n: An; � := �1 � � � � � �n � kj�]RES, �i new vars.�; k: (� � � (A ��An) �� � � �) ��A1 ) �[�: Aj�](19) � ) �[�1: A1; : : : ; �n: An; � := �1 � � � � � �nj�]LRES, �i new vars.� ) ��#(&)[�: Aj�](20) �; k: A ) � [�: B; 
 := � 	 kj�]DT, k new constant, � new variable� ) �[
: B ��Aj�](21) � ) ��[� EV AL(�0)]Assig� ) �[� := �0j�]Let us consider �rst just parsing our example `the dog runs' as S; see �gure 2.The trace of search states is as follows:(22) ) ;[] Assig) ;[�0 := ;] Assig) ;[�1 := ;; �0 := �1] Assig) ;[�2 := ;; �1 := �2; �0 := �1]LRES) dog[�2: 2r; �1 := �2; �0 := �1]LRES) the�dog[�1: 1l; �0 := �1]LRES) the�dog�runs[�0: 0]Initially, the agenda comprises the type S unit clause at 0 with prosodic termthe+dog+runs. There are no clauses in the database, so we must resolve byLRES with a lexical clause projecting a type S head. We do not need to attemptresolving with any lexical entry unless the prosodic constant(s) occurring in theentry are contained in the bag of tokens controlling the proof search.9 Since`the' and `dog' do not project S, we can only resolve with the lexical clause for`runs', the prosodic label of which must be uni�ed with the+dog+runs. Thisinstantiates a to the+dog (in this case there is no other uni�er) and the newagenda comprises the type N unit clause at 1l with prosodic term the+dog. Forthe same reasons again, this must resolve with the lexical clause for `the', in-9 In practice, we can precompute a working set of lexical entries, being those theconstants of which are contained in the target assignment. Skolem constants andmetavariables need to be refreshed on each invocation, but, the rest of the lexiconcan be ignored.



a = the+dog
w = (run  (the dog))

b = dog

x = (the dog)

y = dog

a – x: Ns a+runs – (run x): Sa the+b – (the y): Na b – y: CNs

the+dog+runs – w: Ss runs – run : N\Sa the – the: N/CNa   dog – dog: CNaFig. 2. Proof net for parsing of `the dog runs'stantiating b to dog, and the subgoal issued resolves with the unit lexical clausefor `dog'. Tracing back, the three successive steps yield semantically y = dog,x = (the dog) and w = (run (the dog)), which last represents the semanticinterpretation. Note that this is the only proof net for this (unambiguous) ex-pression: the problem of spurious ambiguity that is encountered in the syntax ofsequent calculus is not present in that of proof nets.By way of a slightly more involved example we consider parsing `John talksabout' as S/N (as in the analysis of a relative clause `who John talks about' giventhe second-order assignment to the relative pronoun); see �gure 3. First, the unitN clause in the body of the initial agenda is put into the database and the S headis linked to the head of the lexical clause for `talks' which projects an S. Theprosodic uni�er is fb = John; a = about+dg. The two (unit) clauses in the bodyof the lexical clause go into the agenda; the N is resolved with the unit lexicalclause for `John', and the PP with the lexical clause for `about', when c = d. Nowthe agenda comprises an N unit clause with prosodic label d and we terminateby resolving with the corresponding clause added to the database at the �rststep. Tracing back the semantics we end up with (v w) = ((talk (about w)) j)which clearly has solution v = �w((talk (about w)) j).This last example shows that recovery of semantics can involve a mild degreeof higher-order uni�cation. In the continuation we address the task of generationand this will require a direct confrontation with higher-order uni�cation.



b = John; a = about+d
v = λw((talk   (about w) j )

y = j

c = d
x = (about w)

z = w 

b – y: Ns b+talks+a – ((talk  x) y): Sa

John+talks+about+d – (v w): Ss d – w: Na talks+a – (talk  x): N\Sa  a – x: PPs about+c – (about z): PPa c – z: Ns

John+talks+about – v: S/Ns talks – talk : (N\S)/PPa John – j : Na about – about: PP/Na

Fig.3.Proofnetforparsingof`Johntalksabout'



4 Categorial generation as deduction on labelled proofnets.Now we will use the same techniques to generate from the semantic form. Thebasic idea is that we can use bidimensional labelled formulas � { �: A in sucha way that the semantic labelling controls the proof search while the prosodiclabelling is used to retrieve the word order associated with the semantic form. Todo this it is enough to express in the semantic label of the goal a closed �-termrepresenting the source semantics, leave a metavariable in the prosodic label,determine solvability of the uni�cation system expressed by (semantic) linking,and con�rm solvability of the uni�cation system induced over prosodic labels,recovering the prosodic unknown.Using the goal-driven strategy for proof search above we have to resolve, foreach linking, a higher-order matching problem. Like matching under associativ-ity, higher-order matching is non-deterministic in that (already considering onlynormal forms) in general there is not a unique most general uni�er. For example,the uni�cation problem f(x f) = (f (f a))g has solucions x = �z(z (f a)) andx = �z(f (z a)) neither of which is more general than the other. It's known thatthird-order matching is decidable; though it's not known whether the problemin general is decidable, the conjecture is that it is ([7]); see also [8], [6], [4] and[2].Decidability is not enough however: in processing we are interested in e�ec-tively computing all possible uni�ers, and in general this is not possible becausewith higher-order terms we can have an in�nite number of uni�ers for a givenequation that cannot be expressed with a �nite number of most general uni�ers.If we restrict the linguistic fragment to expressions with a second-order semanticform the problem reduces to second-order linear matching because the semanticunfolding maintains linearity. This particular problem is semi-decidable, but ifno free variable occurs more than twice we obtain decidability; furthermore, inthis case we have a �nite number of (second-order linear) most general uni�ersand an algorithm to compute them ([10]). Critically, our semantic unfolding def-inition is such that we have exactly two occurrences of each free variable. Notethat restriction to second-order types is not so bad: Montague's grammar is atmost third order.Once a proof net has been built we can con�rm ordering well-formedness andretrieve the word order associated with the semantics by solving the equationson prosodic labels generated by the linking. Thus, if the matching problem fora given fragment of �-calculus is computable, so also is the task, within thatfragment, of generating linguistic expressions from their semantics, if each lexicalsemantics contains at least one constant. This last condition is not necessary toensure a �nite search space, but it is su�cient, since it bounds the number ofLRES inferences that can be made. It is the analogue of an assumption thatlexical items contain at least one prosodic constant (i.e. that no type is lexicallyassigned to the empty string) which is su�cient (though not necessary) to ensuretermination of certain parsing methods.



Figure 4 shows generation of `John talks about' from �w((talk (about w)) j).As with the prosodic control of search in parsing, we do not need to attemptresolving with any lexical entry unless the bag of (semantic) constants occurringlexically is contained in the bag of such constants controlling the proof search.10The entries for `about' and `John' do not project S: after adding the condition-alised N to the database, the head of the literal initially on the agenda is matchedto the head of the lexical clause for `talks'. A uni�er performing the matching isfx = (about w); y = jg. The N goal resolves with `John', the PP goal with theclausal head for `about' under z = w, and the N goal issued is resolved at thelast step with the N put into the database at the �rst step.The structure is just like that for parsing, but with known and unknowninformation inverted. Since matching under associativity is non-deterministicone must in general be prepared to backtrack and try di�erent uni�ers in parsing(though this does not arise in our examples); likewise for higher-order matchingin generation, where indeed the non-determinism of matching is more severe. Thecon�rmation and recovery of prosodic form is also invoked by matching, as withparsing. Working backwards we have at the last step c = d, then a = about+dand b = John. Finally, we solve e+d = John+talks+about+d, generating theprosodic form John+talks+about.One last example is given in �gure 5.11 The main interest is the semanticmatching at the �rst step, which requires x to be mapped to a second-order �-abstracted term. In the appendix we discuss an algorithm for the case of second-order matching. Although that is not enough for the current example, which isthird-order, it does enable us to compute in the manner we have presented thetask of generation not only for the associative Lambek calculus as elucidated,but also for a much wider range of sublinear labelled calculi. This is becausethe only adjustment necessary is accommodation of prosodic matching underthe relevant theory. Until now no such general method has been available. Theprinciple issues arising are: how to performmatching for a wider class of �-terms,and how to extend treatment to include logical constants. We hope to be ableto address these questions in future work.
10 Again, we can in practice precompute a working set of lexical entries and ignore therest of the lexicon.11 For explanation of the categorial assignment to `seeks' see chapter 5 of [13].



x = (about w); y = j
e = John+talks+about

b = John

z = w
a = about+d

c = d 

b – y: Ns b+talks+a – ((talk  x) y): Sa

e+d – ((talk   (about w)) j ): Ss d – w: Na talks+a – (talk  x): N\Sa  a – x: PPs about+c – (about z): PPa c – z: Ns

e – λw((talk   (about w)) j ): S/Ns talks – talk : (N\S)/PPa John – j : Na about – about: PP/Na Fig.4.Proofnetforgeneratio
nof`Johntalksabout'



x = λq(q j ); y = m
g = Mary +seeks+John

b = Mary

v = j ; u = w
a = John

f = d

e = John

f – u: Ns f+c+e – ((z v) u): Sa

c+e – (z v): N\Sa e – v: Ns d – w: Na d+c+a – ((x z) w): Ss

b – y: Ns b+seeks+a – ((try  (x find )) y): Sa c – z: (N\S)/Na c+a – (x z): N\Ss

seeks+a – (try  (x find )): N\Sa a – x: ((N\S)/N)\(N\S)s

g – ((try  (find j)) m): Ss seeks – λp(try  (p find )): (N\S)/(((N\S)/N)\(N\S))a Mary  – m: Na John – j : Na

Fig.5.Proofnetforgenerationof`MaryseeksJohn'



Appendix: Higher-order uni�cationHigher-order uni�cation is the task of unifying typed �-terms. We assume single-bind, i.e. linear, �-terms. All �-terms can be expressed in ��-long normal formas shown in (23a), where each  i is in ��-long normal form; � is a constant ora variable (free or bound), called the head of the term. In (23b) we show anabbreviated \
attened" form that we use for the nested functional applicationin (23a); and in (23c), vector-style notations for iterated functional applicationand �-abstraction.a. �x1�x2 : : : �xn(: : : ((�  1)  2) : : : m) m;n � 0b. �x1�x2 : : : �xn:�( 1;  2; : : : ;  m)c. �xn�( f1;:::;mg)(23)We say a term is rigid when its head is a constant or a bound variable, and
exible when its head is a free variable.A higher-order uni�cation equation is a pair of terms to be uni�ed, � =  , anda Higher-Order Uni�cation System (HOUS) is a set of such equations, that mustbe satis�ed simultaneously. A commonmethod for solution of a HOUS is that oftransformations ([19], [4]): there are a set of transformation rules that transforma system S to a system S0 with the same set of uni�ers. The transformationrules we will use not only transform the HOUS but will also compute a uni�er;any state of the process is represented by the uni�er � computed up to thecurrent moment and the current uni�cation system S (to which � has beenapplied): hS; �i; the end of the process is marked by transformation into theempty system.Application of transformation rules has the form (24): some (active) uni-�cation equation � =  is removed and replaced by subproblems R, and asubstitution � is applied to the system and composed with the substitution todate. hS [ f� =  g; �i =) h�(S [R); � � �i(24)At each stage ��-long normal form is to be restored. There are three kinds oftransformation depending on the nature of the terms in the active equation:
exible/
exible, 
exible/rigid, and rigid/rigid. The algorithm for the particularcase of linear second-order matching is adapted from the uni�cation algorithmof [10] (in fact, we only have to drop from it the 
exible/
exible case).If two terms to be uni�ed have di�erent length lambda pre�xes the uni�cationfails (it means they are not of the same type). Otherwise, we assume �-conversionmaking the �-pre�xes identical. The rigid/rigid case checks the identity of thetwo heads and tries to unify the parameters:�xn:�( f1;:::;mg) = �xn:�(�f1;:::;mg)R = f�xn: 1 = �xn:�1; : : : ; �xn: m = �xn:�mg� = fg(25)For the 
exible/rigid case we choose in a don't know non-deterministic way toproject or to imitate. The projection rule instantiates the head of the 
exible



term, a free variable x, with the identity function (it must, then, be of a �rst-order endocentric type � ! �; � 2 D):�xn:�( f1;:::;mg) = �xn:x(�)R = f�xn:�( f1;:::;mg) = �xn:�g� = fx = �y:yg(26)The imitation rule decomposes (in a don't know non-deterministic way) the
exible term into a set of m new 
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