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1 IntroductionAccording to the dependency locality theory (DLT) of [7], the resources re-quired for storing a partially processed structure are proportional to the num-ber of incomplete syntactic dependencies at that point in processing the struc-ture. [11] and [15] instantiate this view by reference to proof nets as the syn-tactic structures of Type Logical Grammar ([14]). In type logical proof nets,dependencies are identity links and the number of unresolved syntactic depen-dencies at a word boundary is simply the number of identity links spanningthat point. [11] argues that the maximal number of unresolved dependenciesso-measured underlies the unacceptability of centre-embedding. [15] arguesthat the measure of the incremental course of complexity (complexity pro�le)of analyses underlies also processing phenomena such as garden pathing, rightassociation (right attachment), left-to-right quanti�er scoping in passives andactives, preference for passivisation of nested sentential subjects, and heavynoun phrase shift, in what we might call type logical DLT.Complexity-based accounts are not always computationally rigorous, thus [9,p.56] writes: \Take complexity-based accounts . . . . Here, the idea is to es-tablish a nonarbitrary metric for complexity, one that makes reference tostructure. These metrics are rarely spelled out explicitly or motivated the-oretically." On the other hand, computational rigor often requires ancillaryassumptions, as noted by [17, p.1145]: \. . . the complexity of the componentprocesses in sentence processing does not lend itself well to developing [compu-tational] models that make close contact with empirical data without makingnumerous ancillary assumptions." Type logical DLT, we suggest, squares thiscircle. At the same time that it is computationally rigorous, assuming uniformcost for dependencies no ancillary assumptions are required to draw the com-plexity pro�le prediction of processing complexity. In this paper we analysewhether aphasic processing complexities correlate with type logical DLT com-plexity pro�les. We �nd that they do, suggesting that aphasics su�er a de�citof working memory capacity in the incremental comprehension of language.[10] describes a computational model of aphasic sentence comprehension basedon the premise that all aphasics share a common de�cit in the activationresources of working memory. They simulate the data from [2] (see [3]) ofaphasic patients from all major syndrome types. In their system \As each wordcomes in, the model attempts to incorporate it as much as possible into theevolving syntactic and semantic representation. First, the word is perceptuallyencoded. Then, lexical access makes available its meaning and syntactic classand, in the case of verbs, also its argument structure. Based on its word classand a grammar, the word is integrated into a parse tree representation. Thethematic role mapping component computes thematic-role bindings." ([10,p.88]). \The hypothesized resource reduction in aphasia was then induced by2



decreasing the model's working memory capacity considerably, reducing it byhalf to a level of 15 activation units, to optimize the �t with the Caplan et al.data." ([10, p.96]).Our result echoes that of [10] with a di�erent grammar architecture, one thatdoes not make reference to distinct syntactic structure, argument structureand thematic-role bindings.We focus on experiment 2 reported in [3] Chapter 4. In this experiment thesubjects were 37 largely unselected native English speaker aphasics. The exper-imenter read a sentence with normal nonemphatic intonation and the subjectswere required to perform an object-manipulation task using toys to demon-strate semantic features of the sentence. The types of sentences were as follows:Active A The rat hit the dog.Dative D The rat gave the dog to the cow.Conjoined C The rat hit the dog and kissed the cow.Passive P The rat was hit by the dog.Dative Passive DP The rat was given to the dog by the cow.Object-Subject relative OS The rat hit the dog that kissed the cow.Subject-Object relative SO The rat that the dog hit kissed the cow.Cleft-Subject CS It was the rat that hit the dog.Cleft-Object CO It was the rat that the dog hit.

(1)

The sentences are all unambiguous except the Object-Subject relative (OS)type, which has a right extraposed reading in which the relative clause modi�esthe subject. This is presumably an unintended defect in experimental designsince apparent aphasic error could be the consequence of interference from thegrammatical extraposition reading. (Indeed, in only this case attributed erroris much higher than predicted by our model.)2 The formalism of basic Type Logical GrammarWe present the formalism of basic Type Logical Grammar, su�cient for ourcurrent purposes, this being an embellishment of the Lambek calculus ([12])with semantics along the lines of [13].3



2.1 ProsodicsLet a prosodic structure be a semigroup, i.e. an algebra (L;+) of arity (2) suchthat + is associative:s1+(s2+s3) = (s1+s2)+s3(2)Let there be a set A of prosodic constants. Then the set A of prosodic formsis de�ned by:A ::= A j A+A(3)A prosodic interpretation comprises a prosodic structure (L;+) and a prosodicvaluation mapping from A into L. Then the prosodic value [�] of a prosodicform � relative to a prosodic interpretation with prosodic valuation v is de�nedby: [c] = v(c) for prosodic constant c[�+�] = [�]+[�](4)
Prosodic forms � and � are equivalent, � � �, if and only if [�] = [�] in everyprosodic interpretation. Clearly we have:�+(�+) � (�+�)+(5)So we can omit parentheses in prosodic forms.2.2 SemanticsLet the set T of semantic types be de�ned by:T ::= e j t j T! T j T&T(6) 4



Then the semantic structure induced by a non-empty set E of entities is theT-indexed family of sets fD�g�2T such that:De = EDo = P(f;g) = f;; f;ggD�!� 0 = DD�� 0D�&� 0 = D� �D� 0
(7)
Let there be a set X� of semantic variables of each semantic type � , and aset C� of semantic constants of each semantic type � , including the logicalsemantic constants:: 2 Ct!t^;_;! 2 Ct!(t!t)= 2 Ce!(e!t)8; 9 2 C(e!t)!t� 2 C(e!t)!e
(8)
The sets �� of semantic terms of type � for each semantic type � are de�nedby: �� ::= C� j X� j (�� 0!� �� 0) j �1��&� 0 j �2�� 0&���!� 0 ::= �X��� 0��&� 0 ::= (�� ;�� 0)(9)
We assume a convention of left-association such that ((�  ) �) may be abbre-viated as (�  �). An occurrence of a semantic variable x in a semantic termis free if and only if it does not fall within any �x�; otherwise it is bound.The result  f�=xg of substituting semantic variable x (of semantic type �) bysemantic term � (of semantic type �) is the result of replacing by � every freeoccurrence of x in  ; the substitution  f�=xg is free if and only if no variablebecomes bound in the process of replacement. A semantic form is a semanticterm containing no free variables.A semantic interpretation comprises a semantic structure fD�g�2T, a semanticassignment g mapping from each X� into D� , and a semantic valuation f5



mapping from each C� into D� such that:
f(:)(m) = mf;gf(^)(m) = m0 7! m \m0f(_)(m) = m0 7! m [m0f(!)(m) = m0 7! mf;g [m0f(=)(m) = m0 7! f;g if m = m0 else ;f(8)(m) = Tm02Em(m0)f(9)(m) = Sm02Em(m0)f(�)(fmg) = m

(10)

The semantic value [�]g 2 D� of a semantic term � 2 �� with respect to asemantic interpretation with semantic valuation f and semantic assignment gis de�ned by:
[c]g = f(c) for semantic constant c[x]g = g(x) for semantic variable x[(�  )]g = [�]g([ ]g) functional application[�1�]g = fst([�]g) �rst projection[�2�]g = snd([�]g) second projection[�x�]g = D� 3 m 7! [�](g�f(x;g(x))g)[f(x;m)g for x 2 V� functional abstraction[(�;  )]g = h[�]g; [ ]gi pair formation

(11)
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Semantic terms � and  are equivalent, � �  , if and only if [�]g = [�]g inevery semantic interpretation. We have the laws of ���-conversion:a. �x� � �y(�fy=xg) �-conversionprovided y is not free in � and �fy=xg is freeb. (�x�  ) � �f =xg �-conversionprovided �f =xg is free�1(�;  ) � � �2(�;  ) �  c. �x(� x) � � �-conversionprovided x is not free in �(�1�; �2�) � �

(12)

We also have semantic equivalences arising in virtue of the logical semanticconstants, for example:(^ (= � �)  ) �  (9 �x(^ � (= x  ))) � �f =xg provided �f =xg is free(13)
2.3 SyntaxLet there be a set A of atomic syntactic types. Then the set F of syntactictypes is de�ned by:F ::= A j F�F j FnF j F=F(14)The operators �, n and / are referred to product, left division and right divisionrespectively. Let there be a basic type map t mapping from A into T. This7



induces the type map T from F into T such that:T (P ) = t(P ) for atomic syntactic type PT (A�B) = T (A)&T (B)T (AnC) = T (A) ! T (C)T (C=B) = T (B) ! T (C)
(15)
A syntactic interpretation comprises a prosodic structure (L;+), a semanticstructure fDg�2T, and a syntactic valuation F sending each P 2 A into asubset of L�Dt(P ). Then the value [[A]] � L�DT (A) of a syntactic type withrespect to a syntactic interpretation with valuation F is de�ned by:[[P ]] = F (P ) for atomic syntactic type P[[A�B]] = f(s1+s2; hm1; m2i)j 9(s1; m1) 2 [[A]]; (s2; m2) 2 [[B]]g[[AnC]] = f(s2; m2)j 8(s1; m1) 2 [[A]]; (s1+s2; m2(m1)) 2 [[C]])g[[C=B]] = f(s1; m1)j 8(s2; m2) 2 [[B]]; (s1+s2; m1(m2)) 2 [[C]])g
(16)
A type assignment statement ���: A comprises a syntactic type A, a prosodicform �, and a semantic form � of semantic type T (A). A prosodic, semanticand syntactic interpretation is a model of a type assignment statement ���: Aif and only if h[�]; [�]gi 2 [[A]]; it is a model of a set � of type assignmentstatements if and only if it is a model of every type assignment statement� 2 �.A set � of type assignment statements entails a type assignment statement�, � j= �, if and only if every model of � is also a model of �. A lexicon is aset of type assignment statements. The language L(Lex) de�ned by a lexiconLex is the set of type assignment statements that it entails:L(Lex) = f���: Aj Lex j= ���: Ag(17)

8



and��x�y�z(^ (y z) (x z)): ((NnS)n(NnS))/(NnS)by��x�y�z(^ (y z) (= x z)): ((NnS-)n(NnS-))/Ncow�cow: CNdog�dog: CNgave�give: ((NnS)/PP)/Ngiven�(�x�y�z(^ (y z) (9 (x z))); give): ((CNnCN)/(Nn(NnS-)))�(Nn((NnS-)/PP))hit�hit: (NnS)/Nhit�(�x�y�z(^ (y z) (9 (x z))); hit): (((CNnCN)/(Nn(NnS-)))�(Nn(NnS-))it��xx: NPitkissed�kiss: (NnS)/Nrat�rat: CNthat��x�y�z(^ (y z) (x z)): (CNnCN)/(NnS)that��x�y�z(^ (y z) (x z)): (CNnCN)/(S/N)the��: N/CNto��xx: PP/Nwas��x�y(x (= y) y): (NnS)/(CNnCN)was��x�y�z(z (y (= x) x)): ((NPitnS)/(CNnCN))/NFig. 1. Type logical lexicon3 GrammarLet there be the following basic types and the lexicon in �gure 1.Atomic syntactic type P t(P )count noun CN e!tproper name N eexpletive pronoun NPit t!tprepositional phrase PP edeclarative sentence S tabstract passive sentence S- t
(18)
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Then the language model de�ned includes the following:A the+rat+hit+the+dog�(hit (� dog) (� rat)): SD the+rat+gave+the+dog+to+the+cow�(give (� dog) (� cow) (� rat)): SC the+rat+hit+the+dog+and+kissed+the+cow�(^ (hit (� dog) (� rat)) (kiss (� cow) (� rat))): SP the+rat+was+hit+by+the+dog�(hit (� rat) (� dog)): SDP the+rat+was+given+to+the+dog+by+the+cow�(give (� rat) (� dog) (� cow)): SOS the+rat+hit+the+dog+that+kissed+the+cow�(hit (� �z(^ (dog z) (kiss (� cow) z))) (� rat)): SSO the+rat+that+the+dog+hit+kissed+the+cow�(kiss (� cow) (� �z(^ (rat z) (hit z (� dog))))): SCS it+was+the+rat+that+hit+the+dog�(hit (� dog) (� rat)): SCO it+was+the+rat+that+the+dog+hit�(hit (� rat) (� dog)): S

(19)

The derivations, or syntactic structures, of TLG are (proof) nets ([8], [16]),which we de�ne in the next section.
4 Nets for basic Type Logical GrammarA label is a syntactic type together with a polarity input (�) or output (�).Where p is a polarity, p is the opposite polarity. Labels Ap and Ap are com-plementary. A literal is a label the type of which is atomic.A link has a list of premise labels (above) and a list of conclusion labels10
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A logical link is one of the local trees given in Figure 2. A polar type tree isa tree the leaves of which are literals and each local tree of which is a logicallink. An input polar type tree is one the root of which has input polarity; anoutput polar type tree is one the root of which has output polarity. Each labelis the root of a unique polar type tree, which is the result of unfolding thelabel upwards according to the logical links. For example, the (input) polartype tree for (CNnCN)/(S/N)� is:CN� ii CN� N� i S�CNnCN�P P P nnn ii S=N�I I I uuu(CNnCN)=(S=N)�Y Y Y Y Y Y Y Y Y Y
ggggggggg

(21)
A frame is a list comprising an output polar type tree followed by some inputpolar type trees. For example, the following is a frame:S� ii S�N� ii S� SnS�H H H mmmmmm ii N�S� N� NnS�G G G xxx (SnS)=N�P P P P

pppp N�(22)
A net is the result of connecting by an identity link every leaf in a frame with11
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Fig. 3. Semantic trip travel instructionsa unique complementary leaf such that:planarity The identity links are planar in the list ordering.acyclicity Every cycle crosses both edges of some i-link.no subtending No identity link connects the leftmost and rightmostdescendent leaves of an output division node.
(23)
(For planarity see [16] and [1]; for acyclicity see [4]; for no subtending see [6].)For example, the following is a net:

S� ii S�N� ii S����� __
�
� SnS�C C C C

pppppp ii N�S�
�
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�

N������ ___

�

� NnS�C C C C
|||| (SnS)=N�M M M M M

ttttt N������_ _ _

�

�

(24)
Let there be semantic forms of the appropriate type associated with each inputpolar tree in a net. The semantic trip of the net with each output divisionlogical link assigned a distinct semantic variable is the trip which originatesupwards at the unique output root and generates a textual form proceeding asshown in Figure 3 and bouncing with the associated semantic form at inputroots ([5]). The semantic trip ends when it returns downwards at the origin.The reading �� of a net � is the textual form generated by its semantic trip.12
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�� rat hit � dogthe rat hit the dogFig. 4. Net for an Active (A) sentenceThen we have the following:Proposition 1 (Soundness). If �1��1: A1; : : : ; �n��n: An 2 Lex then forevery net � over the frame A0�; A1��1 ; : : : ; An��n , �1+ � � �+�n���: A0 2 L(Lex).Proposition 2 (Completeness). If ���: A0 2 L(Lex) then there exist �1��1: A1;: : : ; �n��n: An 2 Lex and a net � over the frame A0�; A1��1 ; : : : ; An��n such that� � �1+ � � �+�n and � � ��.

5 SentencesIn the following subsections we give the nets and semantics for each of thesentence types. We also give the complexity pro�les, these being a plot of thenumber of unbounded dependencies (overarching identity links) at each wordboundary. Following Johnson (1988) we refer to this number as the `cut' andwe note maximal cuts and average cuts.
5.1 Active (A)The net for a sentence of this type is given in �gure 4. The result of thesemantic trip is the following:(hit (� dog) (� rat))(25) 13
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� rat give � dog �xx � cowthe rat gave the dog to the cowFig. 5. Net for a Dative (D) sentenceThe complexity pro�le is thus:3 a2 a1 a a a0 aThe rat hit the dog.
(26)
The maximal cut is 3; the average cut is 1.33.5.2 Dative (D)The net for a sentence of this type is given in �gure 5. The result of thesemantic trip is (27a) which normalizes to (27b).a. (give (� dog) (�xx (� cow) (� rat))b. (give (� dog) (� cow) (� rat))(27)
The complexity pro�le is as follows:3 a2 a a a1 a a a a0 aThe rat gave the dog to the cow.
(28)
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The maximal cut is 3; the average cut is 1.44.5.3 Conjoined (C)The net for a sentence of this type is given in �gure 6. The normalized seman-tics is as follows.(^ (hit (� dog) (� rat)) (kiss (� cow) (� rat)))(29)The complexity pro�le is thus:5 a a4 a3 a2 a a1 a a a0 aThe rat hit the dog and kissed the cow.
(30)

The maximal cut is 5; the average cut is 2.40.5.4 Passive (P)The net for a sentence of this type is given in �gure 7; the analysis of passiveis that of [15]. The normalized semantics is (31a) which is logically equivalentto (31b).a. (^ (= (� rat) (� rat)) (9 �z(^ (hit (� rat) z) (= (� dog) z))))b. (hit (� rat) (� dog))(31)
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The complexity pro�le is as follows:4 a3 a2 a a1 a a a0 aThe rat was hit by the dog.
(32)

The maximal cut is 4; the average cut is 1.75.5.5 Dative Passive (DP)The net for a sentence of this type is given in �gures 8 and 9; the analysis ofdative passive is a generalization of that of passive of [15]. The normalizedsemantics is (33a) which is logically equivalent to (33b).a. (^ (= (� rat) (� rat)) (9 �z(^ (give (� rat) (� dog) z) (= (� cow) z))))b. (give (� rat) (� dog) (� cow))(33)
The complexity pro�le is as follows:5 a a a4 a3 a2 a a1 a a a0 aThe rat was given to the dog by the cow.
(34)

The maximal cut is 5; the average cut is 2.64.18
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The complexity pro�le is thus:3 a2 a a a1 a a a a a0 aThe rat hit the dog that kissed the cow.
(36)
The maximal cut is 3; the average cut is 1.40.5.7 Subject-Object relative (SO)The net for a sentence of this type is given in �gure 11. The normalizedsemantics is as follows:(kiss (� cow) (� �z(^ (rat z) (hit z (� dog)))))(37)The complexity pro�le is thus:6 a5 a4 a a3 a2 a1 a a a0 aThe rat that the dog hit kissed the cow.

(38)

The maximal cut is 6; the average cut is 2.70.5.8 Cleft-Subject (CS)The net for a sentence of this type is given in �gure 12; the analysis of theexpletive subject of cleft constructions would appear to be new to this paper.22
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The normalized semantics is (39a) which is logically equivalent to (39b).a. (^ (= (� rat) (� rat)) (hit (� dog) (� rat)))b. (hit (� dog) (� rat))(39)
The complexity pro�le is as follows:3 a a2 a a a1 a a a0 aIt was the rat that hit the dog.
(40)
The maximal cut is 3; the average cut is 1.67.5.9 Cleft-Object (CO)The net for a sentence of this type is given in �gure 13. The normalisedsemantics is (41a) which is logically equivalent to (41b).a. (^ (= (� rat) (� rat)) (hit (� dog) (� rat)))b. (hit (� dog) (� rat))(41)
The complexity pro�le is as follows:4 a3 a a a2 a a a1 a0 aIt was the rat that the dog hit.
(42)

The maximal cut is 4; the average cut is 2.22.24
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6 ResultsThe mean comprehension results on a scale of 0 (worst) to 5 (best) were asfollows ([3, p.105]), compared to the maximal cut and average cut of the proofnet analyses:Sentence type mean comprehension maximal cut average cutA 4.4 3 1.33CS 4.2 3 1.67D 3.2 3 1.44P 2.9 4 1.75C 2.7 5 2.40CO 2.6 4 2.22OS 2.3 3 1.40DP 2.0 5 2.64SO 1.3 6 2.70

(43)

The maximal cut and average cut correlate quite well with the mean com-prehension with the exception of the OS sentence type. As we noted in theintroduction, this sentence type is ambiguous, allowing a right extraposedreading, so that the existence of this reading would be expected to detractfrom the prescribed interpretation. Otherwise, in particular, the A sentencetype has the best comprehension and the lowest cut complexity and the SOsentence type has the worst comprehension and the highest cut complexity.
7 ConclusionWe argue that the aphasic comprehension of the sentence types of the Caplanet al. experiment correlates with the proof net complexity of these sentencetypes. The measure of complexity with which we correlate aphasic comprehen-sion is an immediate reection of grammar, no ancilliary assumption is madebeyond that that dependencies are of uniform cost.27
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