
Higher-order Linear Logic Programmingof Categorial DeductionGlyn MorrillSecci�o d'Intel�lig�encia Arti�cialDepartament de Llenguatges i Sistemes Inform�aticsUniversitat Polit�ecnica de CatalunyaPau Gargallo, 508028 Barcelonamorrill@lsi.upc.esAbstractWe show how categorial deduction canbe implemented in higher-order (lin-ear) logic programming, thereby realis-ing parsing as deduction for the associa-tive and non-associative Lambek calculi.This provides a method of solution tothe parsing problem of Lambek catego-rial grammar applicable to a variety ofits extensions.The present work deals with the parsing prob-lem for Lambek calculus and its extensions as de-veloped in, for example, Moortgat (1988), vanBenthem (1991), Moortgat and Morrill (1991),Moortgat and Oehrle (1993), Morrill (1994b) andHepple (1995). Some previous approaches to pars-ing Lambek grammar such as K�onig (1989), Hep-ple (1990) and Hendriks (1993) have concentratedon the possibilities of sequent proof normalisa-tion. In Roorda (1991), Moortgat (1992), Hen-driks (1993) and Oehrle (1994) a strategy of un-folding and labelling for proof net construction isconsidered. We aim to show here how such unfold-ing allows compilation into programs executableby a version of SLD resolution, implementing cat-egorial deduction in dynamic linear clauses. Thelinearity resides in the use exactly once per wordtoken of each of the clauses compiled from lexi-cal categorisations. By dynamic, it is meant thatclauses may be higher-order (they are hereditaryHarrop Horn clauses) so that clausal resolution in-volves insertion in, as well as retraction from, theresolution database; see Miller et al. (1991), andHodas and Miller (1994).It is shown how a range of calculi can betreated by dealing with the highest common fac-tor of connectives as linear logical validity. Theprosodic (i.e. sublinear) aspects of word orderand hierarchical structure are encoded in labels,in e�ect the term structure of quanti�ed linearlogic. Compiling labels according to interpreta-tions in groupoids provides a general method forcalculi with various structural properties and alsofor multimodal hybrid formulations. Uni�cation

must be carried out according to the structuralaxioms but is limited to one-way matching, i.e.one term is always ground. Furthermore, for theparticular case of associative Lambek calculus anadditional perspective of binary relational inter-pretation allows an especially e�cient coding inwhich the span of expressions is represented insuch a way as to avoid the computation of uni�ersunder associativity, and this can also be exploitedfor non-associative calculus.Higher-order linear logic programming has al-ready been applied to natural language process-ing in, for example, Hodas (1992) and Hodasand Miller (1994), in work deriving from Pareschi(1989) and Pareschi and Miller (1990). What weshow here is that such implementation can be re-alised systematically, indeed by a mechanical com-pilation, while grammars themselves are writtenin higher level categorial grammar formalism.Automated deduction for Lambek calculi is ofinterest in its own right but solution of the parsingproblem for categorial logic allowing signi�cantlinguistic coverage demands automated deductionfor more than just individual calculi. There isa need for methods applying to whole classes ofsystems in ways which are principled and power-ful enough to support the further generalisationsthat grammar development will demand. We aimto indicate here how higher-order logic program-ming can provide for such a need.After reviewing the \standard" approach, viasequent proof normalisation, we outline the rel-evant features of (linear) logic programming andexplain compilation and execution for associativeand non-associative calculi in terms of groupoidand binary relational interpretations of categorialconnectives. We go on to brie
y mention multi-modal calculi for the binary connectives.The parsing problem is usually construed asthe recovery of structural descriptions assignedto strings by a grammar. In practice the inter-est is in computing semantic forms implicit in thestructural descriptions, which are themselves usu-ally implicit in the history of a derivation recog-nising well-formedness of a string. This is truein particular of compositional categorial architec-

tures and we shall focus on algorithms for showingwell-formedness. The further step to computingsemantics is unproblematic.For the non-associative Lambek calculus NL ofLambek (1961) we assume types freely generatedfrom a set of primitive types by binary (in�x) op-erators n, / and �. A sequent comprises a succe-dent type A and an antecedent con�guration �which is a binary bracketed list of one or moretypes; we write �) A. The notation �(�) hererefers to a con�guration � with a distinguishedsubcon�guration �. (1)a. A) A id �) A �(A)) BCut�(�)) Bb. �) A �(B)) CnL�([�;AnB])) C [A;�]) BnR�) AnBc. �) A �(B)) C/L�([B=A;�])) C [�;A]) B/R�) B=Ad. �([A;B])) C�L�(A�B)) C �) A �) B�R�; �) A�BFor the associative Lambek calculus L of Lambek(1958) the types are the same. A sequent com-prises a succedent type A and an antecedent con-�guration � which is a list of one or more types;again we write �) A. (2)a. A) A id �) A �(A)) BCut�(�)) Bb. �) A �(B)) CnL�(�; AnB)) C A;�) BnR�) AnBc. �) A �(B)) C/L�(B=A;�)) C �; A) B/R�) B=Ad. �(A;B)) C�L�(A�B)) C �) A �) B�R�;�) A�BLambek showed Cut-elimination for both calculi,i.e. every theorem has a Cut-free proof. Of theremaining rules each instance of premises has ex-actly one connective occurrence less than the cor-responding conclusion so Cut-elimination showsdecidability through �nite space Cut-free sequentproof search from conclusions to premises. Liftingis derivable in NL as follows: (3)A) A B) BnL[A, AnB]) B/RA) B/(AnB)It is also derivable in L; indeed all NL deriva-tions are converted to L derivations by simply

erasing the brackets. But L-derivable composi-tion depends essentially on associativity and is notNL-derivable: (4)A) A B) B C) CnLB, BnC) CnLA, AnB, BnC) CnRAnB, BnC) AnCEven amongst the Cut-free proofs however thereis still semantic equivalence under the Curry-Howard rendering (van Benthem, 1983; see Mor-rill, 1994b) and in this respect redundancy inparsing as exhaustive proof search since distinctlines of inference converge on common subprob-lems. This derivational equivalence (or: \spuri-ous ambiguity") betrays the permutability of cer-tain rule applications. Thus two left rules may bepermutable: N/CN, CN, NnS) S can be provedby choosing to work on either connective �rst.And left and right rules are permutable: N/CN,CN) S/(NnS)) may be proved by applying a leftrule �rst, or a right rule, (and the latter step thenfurther admits the two options of the �rst exam-ple). Such non-determinism is not signi�cant se-mantically: the variants have the same readings;the non-determinism in partitioning by the binaryleft rules in L is semantically signi�cant, but stilla source of ine�ciency in its backward chaining\generate-and-test" incarnation. Another sourceof derivational equivalence is that a complex id ax-iom instance such as NnS) NnS can be provedeither by a direct matching against the axiomscheme, or by two rule applications. This is easilysolved by restricting id to atomic formulas. Moreproblematic are the permutability of rule applica-tions, the non-determinismof rules requiring split-ting of con�gurations in L, and the need in NL tohypothesise con�guration structure a priori (suchhierarchical structure is not given by the inputto the parsing problem). It seems that only the�rst of these di�culties can be overcome from aGentzen sequent perspective.The situation regarding equivalence and rule or-dering is solved, at least for L�f�Lg, by sequentproof normalisation (K�onig, 1989; Hepple, 1990;Hendriks, 1993): (5)a. A) A id� �1; A ;�2) BP��1; A;�2) Bb. �) A �(B)) CnL��(�; AnB)) C A;�) B nR�) AnBc. �) A �(B)) C/L��(B=A ;�)) C �; A) B /R�) B=AThis involves �rstly ordering right rules beforeleft rules reading from endsequent to axiom leaves

(so left rules only apply to sequents with atomicsuccedents; this e�ects uniform proof; see Milleret al., 1991), and secondly further demandingsuccessive unfolding of the same con�gurationtype (\focusing"). In the *-ed rules the succe-dent is atomic. A necessary condition for suc-cess is that an antecedent type is only selectedby P� if it yields the succedent atom as its even-tual range. Let us refer to (5) as L . L isfree of spurious ambiguity, and `L �) A i�` L �) A . The focusing strategy breaks downfor �L: (VP/PP)/N, N�PP) VP requires switch-ing between con�guration types. It happens thatleft occurrences of product are not motivated ingrammar, but more critically sequent proof nor-malisation leaves the non-determinism of parti-tioning, and o�ers no general method for multi-modal extensions which may have complex andinteracting structural properties. To eliminatethe splitting problem we need some kind of repre-sentation of con�gurations such that the domainof functors need not be hypothesised and thenchecked, but rather discovered by constraint prop-agation. Such is the character of our treatment,whereby partitioning is explored by uni�cation inthe term structure of higher-order linear logic pro-gramming, to which we now turn. By way of ori-entation we review the (propositional) features ofclausal programming.The �rst order case, naturally, corresponds toProlog. Let us assume a set AT OM of atomicformulas, 0-ary, 1-ary, etc., formula constructorsf� ^ : : :^ �gn2f0;1;:::g and a binary (in�x) formulaconstructor . A sequent comprises an agendaformula A and a database � which is a bag ofprogram clauses fB1; : : : ; Bngm; n � 0 (subscriptm for multiset); we write �) A. In BNF, theset of agendas corresponding to the nonterminalAGENDA and the set of program clauses corre-sponding to the nonterminalPCLS are de�ned by:(6)AGENDA ::= GOAL ^ : : : ^ GOALPCLS ::= AT OM AGENDAFor �rst order programming the set GOAL ofgoals is de�ned by: (7)GOAL ::= AT OMThen execution is guided by the following rules.(8)�; A) A axI.e. the unit agenda is a consequence of anydatabase containing its atomic clause. (9)�; A B1 ^ : : : ^ Bn) B1 ^ : : : ^Bn^C1 ^ : : : ^ Cm RES�; A B1 ^ : : : ^Bn) A ^C1 ^ : : : ^CmI.e. we can resolve the �rst goal on the agenda with

the head of a program clause and then continuewith the program as before and a new agendagiven by pre�xing the program clause subagendato the rest of the original agenda (depth-�rstsearch).For the higher-order case agendas and programclauses are de�ned as above, but the notion ofGOAL on which they depend is generalised to in-clude implications: (10)GOAL ::= AT OM j GOAL PCLSAnd a \deduction theorem" rule of inference isadded: (11)�; B) A �) C1 ^ : : : ^CmDT�) (A B) ^C1 ^ : : : ^ CmI.e. we solve a higher-order goal �rst on the agendaby adding its precondition to the database andtrying to prove its postcondition.In linear logic programming the rules becomeresource conscious; in this context we write
 forthe conjunction and �� for the implication: (12)A) A axI.e. an atomic agenda is a consequence of its unitdatabase: all program clauses must be \used up"by the resolution rule: (13)�) B1
 : : :
Bn
C1
 : : :
Cm RES�; A ��B1
 : : :
Bn) A
C1
 : : :
CmI.e. a program clause disappears from the databaseonce it is resolved upon: each is used exactlyonce. The deduction theorem rule for higher-orderclauses also becomes sensitised to the employmentof antecedent contexts: (14)�; B) A �) C1
 : : :
CmDT�;�) (A ��B)
C1
 : : :
CmWe shall motivate compilation into linearclauses directly from simple algebraic models forthe calculi. In the case of L we have �rst inter-pretation in semigroups hL;+i (i.e. sets L closedunder associative binary operations +; intuitively:strings under concatenation). Relative to a modeleach type A has an interpretation as a subsetD(A) of L. Given that primitive types are in-terpreted as some such subsets, complex types re-ceive their denotations by residuation as follows(cf. e.g. Lambek, 1988): (15)D(A�B) = fs1+s2js1 2 D(A) ^ s2 2 D(B)gD(AnB) = fsj8s0 2 D(A); s0+s 2 D(B)gD(B=A) = fsj8s0 2 D(A); s+s0 2 D(B)gFor the non-associative calculus we drop the con-dition of associativity and interpret in arbitrary

groupoids (intuitively: trees under adjunction1).Categorial type assignment statements com-prise a term � and a type A; we write �: A. Givena set of lexical assignments, a phrasal assignmentis projected if and only if in every model satisfyingthe lexical assignments the phrasal assignment isalso satis�ed. A categorial sequent has a trans-lation given by j � j into a linear sequent of typeassignments which can be safely read as predica-tions. For L we have the following (NL preservesinput antecedent con�guration in output succe-dent term structure): (16)jB0; : : : ; Bn) Aj =k0: B+0 ; : : : ;kn: B+n) k0+ : : :+kn: A�Categorial type assignment statements are trans-lated into linear logic according to the interpreta-tion of types. The polar translation functions areidentity functions on atomic assignments; on com-plex category predicates they are de�ned mutu-ally as follows (for related unfolding, but for proofnets, see Roorda, 1991; Moortgat, 1992; Hendriks,1993; and Oehrle, 1994); p indicates the polaritycomplementary to p: (17)�+
: Bp �� �: Ap � new variable/constant as p +=�
: AnBp
+�: Bp �� �: Ap � new variable/constant as p +=�
: B=ApThe unfolding transformations have the same gen-eral form for the positive (con�guration/database)and negative (succedent/agenda) occurrences; thepolarity is used to indicate whether new symbolsintroduced for quanti�ed variables in the inter-pretation clauses are metavariables (in italics) orSkolem constants (in boldface); we shall see ex-amples shortly. The program clauses and agendaare read directly o� the unfoldings, with the onlymanipulation being a
attening of positive impli-cations into uncurried form: (18)((X+ ��Y �1) �� : : :) ��Y �n >X+ ��Y �1
 : : :
Y �n(This means that matching against the head of aclause and assembly of subgoals does not requireany recursion or restructuring at runtime.) Weshall also allow unit program clauses X �� to beabbreviated X.Starting from the initial database and agenda,a proof will be represented as a list of agendas,avoiding the context repetition of sequent proofsby indicating where the resolution rule retractsfrom the database (superscript coindexed over-line), and where the deduction theorem rule addsto it (subscript coindexation):1Though NL with product is incomplete with re-spect to �nite trees as opposed to groupoids in general.

(19)database �; A ��B1
 : : :
Bniagendai: A
C1
 : : :
Cm RESi+1: B1
 : : :
Bn
C1
 : : :
Cm (20)database �; Biagendai: (A ��B)
C1
 : : :
Cm DTi+1: A
C1
 : : :
CmThe sharing of a Skolem constant between A andB in (20) ensures that B can and must be used toprove A so that a mechanism for the lazy splittingof contexts is e�ected. The termination conditionis met by a unit agenda with its unit database.By way of illustration for L consider composi-tion given the sequent translation (21). (21)jAnB, BnC) AnCj=k: AnB+, l: BnC+) k+l: AnC�The assignments are unfolded thus: (22)a+k: B �� a: Ak: AnB+ b+l: C �� b: Bl: BnC+m+(k+l): C �� m: Ak+l: AnC�Then the proof runs as follows. (23)database a+k: B ��a: A3,b+l: C �� b: B2,m: A14agenda1. m+(k+l): C ��m: A DT2. m+(k+l): C RES b =m+k3. m+k: B RES a =m4. m: A RESThe uni�cation at line 2 relies on associativity.Note that uni�cations are all one-way, but evenone-way associative (=string) uni�cation has ex-pensive worst cases.For NL the term labelling provides a clausalimplementation with uni�cation being non-associative. Consider lifting: (24)jA) B/(AnB)j = k: A) k: B/(AnB) (25)k+l: B �� a+l: B �� a: Al: AnB+k: B/(AnB)�The proof is as follows. (26)database k: A3;a+l: B ��a: A12agenda1. k+l: B �� (a+l: B ��a: A) DT2. k+l: B RES a = k3. k: A RES

The simple one-way term uni�cation is very fastbut it is unnatural from the point of view of pars-ing that, as for the sequent approach, a hierarchi-cal binary structure on the input string needs tobe posited before inference begins, and exhaustivesearch would require all possibilities to be tried.Later we shall see how hierarchical structure canbe discovered rather than conjectured by factoringout horizontal structure.Let us note here the relation to L . L applies(working back from the target sequent) right rulesbefore left rules. Here, when a higher-order goalis found on the agenda its precondition is addedto the database by DT. This precedes applicationsof the RES rule (hence the uniformity character)which corresponds to the left sequent inferences.It applies when the agenda goal is atomic andpicks out antecedent types which yields that atom(cf. the eventual range condition of L). The fo-cusing character is embodied by creating in onestep the objective of seeking all the arguments ofan uncurried functor.By way of further example consider the follow-ing in L, with terms and types as indicated. (27)(a book from which) the references are missing (28)the referencesr: N are missingm: ((S/(NnS))nS)/PP) r+m: S/PPWe have compilation for `are missing' as in Fig-ure 1 yielding (29). (29)>b+(m+a): S �� (b+k: S �� (c+k: S �� c: N))
 a: PPAnd the succedent unfolds as follows: (30)(r+m)+l: S �� l: PPr+m: S/PP�> (r+m)+l: S �� l: PPDerivation is as in �gure 2. The uni�cation at line2 relies on associativity and as always atomic goalson the agenda are ground. But in general we haveto try subproofs for di�erent uni�ers, that is, wee�ectively still have to guess partitioning for leftrules. We shall see that this is not necessary, andthat associative uni�cation can be avoided.There is a further problem which will be solvedin the same move. Unfolding of left productswould create two positive subformulas and thusfall outside the scope of Horn clause programming.However, the term-labelled implementation as ithas been given also fails for right products: (31)�: A�
 �: B�
 = �+�?
: A�B�

The problem is that � and � are not determin-istically given by
 at the \compile time" of un-folding. The best we could manage seems to be totry di�erent partitionings of
 at execution time;but even if this could work it would still amountto trying di�erent partitionings for �R as in thesequent calculus: a source of non-determinism weseek to reduce. This limitation combines with theother di�culties with groupoid labelling of worstcase of (even) one-way associative uni�cation forL, and the need for a priori hypothesis of non-associative structure for NL.The method of solution resides in looking atan alternative model: the associative calculus hasrelational algebraic models (van Benthem, 1991)which interpret types as relations on some set V ,i.e. as sets of ordered pairs. Given denotationsfor primitive types, those of compound types are�xed as subsets of V � V by: (32)D(AnB) = fhv2; v3ij8hv1; v2i 2 D(A);hv1; v3i 2 D(B)gD(B=A) = fhv1; v2ij8hv2; v3i 2 D(A);hv1; v3i 2 D(B)gD(A�B) = fhv1; v3ij9v2; hv1; v2i 2 D(A) &hv2; v3i 2 D(B)gPoints in V intuitively corresponds to string posi-tions (as in de�nite clause grammars, and charts)and ordered pairs to the vertices of substrings per-taining to the categories to which they are as-signed. This induces unfolding as follows: (33)i { k: Bp �� i { j: Ap i new variable/constant as p +=�j { k: AnBpi { k: Bp �� j { k: Ap k new variable/constant as p +=�i { j: B=ApFurthermore right product (though still not non-Horn left product) unfolding can be expressed:(34)i { j: A�
 j { k: B�j new variablei { k: A�B�Composition is now treated as follows. Assumesequent translation thus: (35)jAnB, BnC) AnCj =0 { 1: AnB+, 1 { 2: BnC+) 0 { 2: AnC�The assignments are compiled as shown in (36).(36)i { 1: B �� i { 0: A0 { 1: AnB+j { 2: C �� j { 1: B1 { 2: BnC+ 3 { 2: C �� 3 { 0: A0 { 2: AnC�The proof is thus:

b+(m+a): S �� b+k: S �� c+k: S �� c: N �� a: PPk: NnS+b: S/(NnS)�m+a: (S/(NnS))nS+m: ((S/(NnS))nS)/PP+Figure 1: Groupoid compilation of the assignment to `are missing'database r: N5,b+(m+a): S �� (b+k: S �� (c+k: S �� c: N))
a: PP 2,l: PP16,c+k: S �� c: N34,agenda1. (r+m)+l: S �� l: PP DT2. (r+m)+l: S RES b=r, a=l3. (r+k: S �� (c+k: S �� c: N))
 l: PP DT4. r+k: S
 l: PP RES c=r5. r: N
 l: PP RES6. l: PP RESFigure 2: Groupoid execution for `the references are missing'(37)database i { 1: B �� i { 0: A3,j { 2: C �� j { 1: B2,3 { 0: A14agenda1. 3 { 2: C �� 3 { 0: A DT2. 3 { 2: C RES j = 33. 3 { 1: B RES i = 34. 3 { 0: A RESIn this way associative uni�cation is avoided; in-deed the only matching is trivial uni�cation be-tween constants and variables. So for L the rela-tional compilation allows partitioning by the bi-nary rules to be discovered by simple constraintpropagation rather than by the generate-and-teststrategy of normalised sequent proof.Although the (one-way) term uni�cation forgroupoid compilation of the non-associative cal-culus is very fast we want to get round the factthat a hierarchical binary structure on the inputstring needs to be posited before inference begins.We can do this through observation of the follow-ing:� All non-associative theorems are associativetheorems (ignore brackets)� Interpret non-associative operators in theproduct algebra of NL groupoid algebra andL relational algebra, and perform labelledcompilation accordingly� Use the (e�cient) relational labelling to checkassociative validity� Use the groupoid labelling to check non-associative validity and compute the prosodicform inducedI.e. the endsequent succedent groupoid term can

be left as a variable and the groupoid uni�cationperformed on the return trip from axiom leaves af-ter associative validity has been assured, as will beseen in our �nal example. The groupoid uni�ca-tion will now be one-way in the opposite direction.The simultaneous compilation separates hori-zontal structure (word order) represented by inter-val segments, and horizontal-and-vertical struc-ture (linear and hierarchical organisation) repre-sented by groupoid terms, and uses the e�cientsegment labelling to compute L-validity, and thenthe term labelling both to check the stricter NL-validity, and to calculate the hierarchical struc-ture. In this way we use the fact that models forNL are given by intersection in the product of re-lational and groupoid models. Each type A hasan interpretation D(A) as a subset of L� V � V :(38)D(AnB) = fhs; v2; v3ij8hs0; v1; v2i 2 D(A);hs0+s; v1; v3i 2 D(B)gD(B=A) = fhs; v1; v2ij8hs0; v2; v3i 2 D(A);hs+s0; v1; v3i 2 D(B)gD(A�B) = fhs1+s2; v1; v3ij9v2; hs1; v1; v2i 2 D(A)& hs2; v2; v3i 2 D(B)gUnfolding is thus: (39)�+
-i-k: Bp �� �-i-j: Ap �; i new variables/constants as p +=�
-j-k: AnBp
+�-i-k: Bp �� �-j-k: Ap �; k new variables/constants as p +=�
-i-j: B=Ap�-i-j: A�
 �-j-k: B��;�; j new variables�+�-i { k: A�B�

b+(m+a)-i-k1: S �� b+k-i-4: S �� c+k-l-4: S �� c-l-1: N �� a-2-k1: PPk-1-4: NnS+b-i-1: S/(NnS)�m+a-1-k1: (S/(NnS))nS+ m-1-2: ((S/(NnS))nS)/PP+Figure 3: Groupoid-relational compilation of the assignment to `are missing'database r-0-1: N4,b+(m+a)-i-k1: S �� (b+k-i-4: S �� (c+k-l-4: S �� c-l-1: N))
a-2-k1: PP1,c+k-l-4: S �� c-l-1: N23,f -2-3: PP5agenda1. d-0-3: S RES d = b+(m+a)2. (b+k-0-4: S �� (c+k-l-4: S �� c-l-1: N))
a-2-3: PP DT3. b+k-0-4: S
a-2-3: PP RES b = c4. c-0-1: N
a-2-3: PP RES c = r5. a-2-3: PP RES a = fFigure 4: Groupoid-relational execution for `the references are missing from this book'By way of example consider the following:(40)the referencesr-0-1: N are missingm-1-2: ((S/(NnS))nS)/PPfrom this bookf-2-3: PP) d-0-3: SThe unfolding compilation yielding (41) for `aremissing' is given in Figure 3. (41)>b+(m+a)-i-k1: S ��(b+k-i-4: S �� (c+k-l-4: S �� c-l-1: N))
 a-2-k1: PPThe derivation is given in Figure 4. Note howthe term uni�cation computing the hierarchicalstructure can be carried out one-way in the re-verse order to the forward segment matchings:(42)d = b+(m+a) = c+(m+a) = r+(m+a) =r+(m+f)In the case of NL-invalidity the term uni�cationwould fail.We mention �nally multimodal generalisations.In multimodal calculi families of connectivesf=i; ni; �igi2f1;:::;ng are each de�ned by residua-tion with respect to their adjunction in a \poly-groupoid" hL; f+igi2f1;:::;ngi (Moortgat and Mor-rill, 1991): (43)D(A�iB) = fs1+is2js1 2 D(A) ^ s2 2 D(B)gD(AniB) = fsj8s0 2 D(A); s0+is 2 D(B)gD(B=iA) = fsj8s0 2 D(A); s+is0 2 D(B)gMultimodal groupoid compilation for implicationsis immediate:

(44)�+i
: Bp �� �: Ap � new variable/constant as p +=�
: AniBp
+i�: Bp �� �: Ap � new variable/constant as p +=�
: B=iApThis is entirely general. Any multimodal cal-culus can be implemented this way provided wehave a (one-way) uni�cation algorithm specialisedaccording to the structural communication ax-ioms. For example Morrill (1993) deals with mul-timodality for discontinuity which involves vary-ing internal structural properties (associativity vs.non-associativity) as well as \split/wrap" interac-tion between modes. This is treated computa-tionally in the current manner in Morrill (1994a)which also considers head-oriented discontinuityand unary operators projecting bracketed stringstructure. In these cases also simultaneous com-pilation including binary relational labelling canprovide additional advantages.Labelled unfolding of categorial formulas hasbeen invoked in the references cited as a way ofchecking well-formedness of proof nets for catego-rial calculi by uni�cation of labels on linked for-mulas. This o�ers improvements over sequent for-mulations but raises alternative problems; for ex-ample associative uni�cation in general can havein�nite solutions and is undecidable. Taking lin-ear validity as the highest common factor of sub-linear categorial calculi we have been able to showa strategy based on resolution in which the
ow ofinformation is such that one term in uni�cation isalways ground. Furthermore binary relational la-belling propagates constraints in such a way that

computation of uni�ers may be reduced to a sub-set of cases or avoided altogether. Higher-ordercoding allows emission of hypotheticals to be post-poned until they are germane. Simultaneous com-pilation allows a factoring out of horizontal struc-ture from vertical structure within the sublinearspace in such a way that the partial information ofword order can drive computation of hierarchicalstructure for the categorial parsing problem in thepresence of non-associativity. The treatments forthe calculi above and their multimodal generalisa-tions have been implemented in Prolog (Morrill,1994a).Referencesvan Benthem, Johan: 1983, `The Semantics ofVariety in Categorial Grammar', Report 83-29,Department of Mathematics, Simon Fraser Uni-versity, also in Buszkowski, W., W. Marciszewski,and J. van Benthem (eds.): 1988, CategorialGrammar, Linguistic & Literary Studies in East-ern Europe Volume 25, John Benjamins, Amster-dam, 37{55.van Benthem, J.: 1991, Language in Action:Categories, Lambdas and Dynamic Logic, Studiesin Logic and the Foundations of Mathematics Vol-ume 130, North-Holland, Amsterdam.Hendriks, Herman: 1993, Studied Flexibility:Categories and Types in Syntax and Semantics,Ph.D dissertation, Institute for Logic, Languageand Computation, Universiteit van Amsterdam.Hepple, Mark: 1990, The Grammar and Pro-cessing of Order and Dependency: A CategorialApproach, Ph.D. dissertation, University of Edin-burgh.Hepple, Mark: 1995, `Mixing Modes of Linguis-tic Description in Categorial Grammar', this vol-ume.Hodas, J.: 1992, `Specifying Filler-Gap De-pendency Parsers in a Linear-Logic ProgrammingLanguage', in Proceedings of the Joint Interna-tional Conference and Symposium on Logic Pro-gramming, 622{636.Hodas, Joshua and Dale Miller: 1994, `LogicProgramming in a Fragment of Intuitionistic Lin-ear Logic', to appear in Journal of Informationand Computation.K�onig, E.: 1989, `Parsing as natural deduction',in Proceedings of the Annual Meeting of the Asso-ciation for Computational Linguistics, Vancouver.Lambek, J.: 1958, `The mathematics of sentencestructure', American Mathematical Monthly 65,154{170, also in Buszkowski, W., W. Mar-ciszewski, and J. van Benthem (eds.): 1988, Cate-gorial Grammar, Linguistic & Literary Studies inEastern Europe Volume 25, John Benjamins, Am-sterdam, 153{172.

Lambek, J.: 1961, `On the calculus of syntactictypes', in R. Jakobson (ed.) Structure of languageand its mathematical aspects, Proceedings of theSymposia in Applied Mathematics XII, AmericanMathematical Society, 166{178.Lambek, J.: 1988, `Categorial and CategoricalGrammars', in Richard T. Oehrle, Emmon Bach,and Deidre Wheeler (eds.) Categorial Grammarsand Natural Language Structures, Studies in Lin-guistics and Philosophy Volume 32, D. Reidel,Dordrecht, 297{317.Miller, D., G. Nadathur, F. Pfenning, andA. Scedrov: 1991, `Uniform Proofs as a Founda-tion for Logic Programming', Annals of Pure andApplied Logic 51, 125{157.Moortgat, Michael: 1988, Categorial Investiga-tions: Logical and Linguistic Aspects of the Lam-bek Calculus, Foris, Dordrecht.Moortgat, Michael: 1992, `Labelled DeductiveSystems for categorial theorem proving', OTSWorking Paper OTS{WP{CL{92{003, Rijksuni-versiteit Utrecht, also in Proceedings of the EighthAmsterdam Colloquium, Institute for Language,Logic and Information, Universiteit van Amster-dam.Moortgat, Michael and Glyn Morrill: 1991,`Heads and Phrases: Type Calculus for Depen-dency and Constituent Structure', to appear inJournal of Language, Logic, and Information.Moortgat, Michael and Dick Oehrle: 1994, `Ad-jacency, dependency and order', in Proceedings ofthe Ninth Amsterdam Colloquium, 447{466.Morrill, Glyn: 1993, Discontinuity and Pied-Piping in Categorial Grammar, Report de Re-cerca LSI{93{18{R, Departament de Llenguatgesi Sistemes Inform�atics, Universitat Polit�ecnica deCatalunya, to appear in Linguistics and Philoso-phy.Morrill, Glyn: 1994a, `Higher-Order LinearLogic Programming of Categorial Deduction', Re-port de Recerca LSI{94{42{R, Departament deLlenguatges i Sistemes Inform�atics, UniversitatPolit�ecnica de CatalunyaMorrill, Glyn: 1994b, Type Logical Grammar:Categorial Logic of Signs, Kluwer Academic Pub-lishers, Dordrecht.Oehrle, Dick: 1994, `Term labelled categorialtype systems', to appear in Linguistics and Phi-losophy.Pareschi, R.: 1989, Type-driven Natural Lan-guage Analysis, Ph.D. thesis, University of Edin-burgh.Pareschi, R. and D, Miller: 1990, `Extend-ing De�nite Clause Grammars with Scoping Con-structs', in D.H.D. Warren and P. Szeredi (eds.)1990 International Conference in Logic Program-ming, MIT Press, 373{389.Roorda, Dirk: 1991, Resource Logics: proof-theoretical investigations, Ph.D. dissertation, Uni-versiteit van Amsterdam.

