CatLog: A Categorial Parser /Theorem-Prover*

Glyn Morrill

Universitat Politécnica de Catalunya
morrill@lsi.upc.edu.edu
http://www.1lsi.upc.edu/ "morrill

Abstract. We present CatLog, a parser/theorem-prover for logical cat-
egorial grammar. The logical fraginent implemented is a displacement
logic the multiplicative basis of which is the displacement calculus of
Meorrill, Valentin & Fadda (2011)[8].

(Logical) categorial grammar (Morrill 1994[9], 2011[10]; Moortgat 1997[6];
Carpenter 1998[1]; Jiger 2005[4]) originated with Lambek’s (1958[5]) insight
that a calculus of grammatical types (constituting a residuated monoid) can
be formulated using Gentzen’s method. The result is an algebraic readering of
grammar as logic and parsing as deduction. Although the design is, really, ar-
chitecturally perfect and, by now, well-understood, linguistically it is strictly
limited to continuity by the fact that it deals with a residuated family with
parent (the canonical extension of) concatenation: after all, the whole challenge
of modern linguistics for 50 years has been the ubiquity in natural grammar
of discontinuity. In this relation Morrill, Valentin & Fadda (2011)[8] provides
for discontinuity the displacement calculus D, deductively a conservative exten-
sion of the Lambek calculus L with residuated families with respect to ‘both
concatenation and intercalation. Like L, D is free of structural rules and enjoys
Cut-elimination and its corollaries the subformula property, decidability, and the
finite reading property.

CatLog is a categorial parser/theorem prover implementing a categorial logic
extending D. It employs Cut-free backward chaining sequent theorem-proving.
For L deductive spurious ambiguity can be removed by normalization (Hendriks
1993[3]). Because D is based on the same design principles, the same techniques
can be adopted (Morrill 2011]7]) and CatLog depends on this. In addition to
normalization CatLog uses sequent search space pruning by the count invariance
of van Benthem (1991[11]). The type-constructors of the displacement logic of
CatLog are shown in Fig. 1.

" Version f1.2 of CatLog is pfovisional in a number of respects. In particular,
not all spurious ambiguity is eliminated for the categorial logic fragment, and
non-duplication of results is achieved by filtering according to a brute force
duplication check. Furthermore, bracketing structure must be specified in the
input, rather than be induced. Aad the count-invariance check for multiplicatives

* This research was partially supported by BASMATI MICINN project (TIN2011-
27479-C04-03) and by SGR2009-1428 (LARCA).

I\, / Lambek connectives
J, {dx> Ok, Tk Jre(>,<} displacement connectives

®, - nondeterministic continuous connectives
1,0,% nondeterministic discontinuous connectives

{"%, "* eei>,<} bridge and split
ol nondeterministic bridge and split

a1 q,p,p7t left and right projection and injection
&, + semantically active additives

mn,u semantically inactive additives

v,3 first-order quantifiers

it structural modalities

0= 0 bracket modalities

0,m normal modalities

| limited contraction for anaphora

Fig. 1. Type-constructors of CatLog

is not adapted to additives and structural modalities. These issues remain topics
for future improvement. Nevertheless CatLog 1.2 already provides fast and wide-
coverage Montague-like parsing.

The program comprises 3000 lines of Prolog implementing some 80 inference
rules for the categorial logic fragment, IIEX outputting, lexicon, and sample
sentences. Among the examples four blocks are distininguished: Dutch examples
(cross-serial dependencies), relativization including islands and parasitic gaps,
the Montague example sentences of Dowty, Wall and Peters (1981)(2] Chapter 7,
and the example sentences of Morrill, Valentin and Fadda (2011)[8].

The functionality is as follows. Once CatLog has been loaded into Prolog, the
query 7- pplex. will cause the lexicon to be pretty printed in the console win-
dow, the Dutch part of which is as shown in Fig. 2. The query 7- pplexlatex.
has no visible effect but will cause the lexicon to be output in KTEX to a file
named “s.tex”. Querying t(N) will test the examples unifying with term N.
For example 7- t(rel(6)). tests the relativization example 6, 7- t(rel(.)).
tests all the relativization examples, and 7- t(_). tests all the examples. The
analyses — the examples, the derivational proofs, and the semantic readings
— appear in the Prolog window, and this information but without duplicate
equivalent analyses is written in BTEX to a file named “t.tex”. TEXing the file
“out.tex” will include s.tex and t.tex and format the lexicon and last analyses
made. For example, 7- t(d(2)) . produces the contents in Fig. 3 in Prolog. The
KTEX output for the Dutch part of the lexicon and the same example is as shown
in Figs. 4 and 5.

References

1. Bob Carpenter. Type-Logical Semantics. MIT Press, Cambridge, MA, 1997.
2. David R. Dowty, Robert E. Wall, and Stanley Peters. Iniroduction to Montague
Semantics, volume 11 of Synthese Language Library. D. Reidel, Dordrecht, 1981.

wil: (NA\Si)in(NA\Sf): LBLC((want (B C)) C)

wil: Q/~(Sfex((NA\Si)in(NA\Sf))): LB(B LCLD((want (C D)) D))
alles: (SAexNt(s{(n)))inSA: LBAC[(thing C) -> (B C)]

boeken: Np(n): books

cecilia: Nt(s(f)): c

de: Nt(s(A))/CNA: the

helpen: |>-1((NA\Si)in(NB\(NA\Si))): LCLD((help (C D)) D)
henk: Nt(s(m)): h

jan: Nt(s(m)): j

kan: (NA\Si)in(NA\Sf): LBLC((isable (B C)) C)

kunnen: |>-1((NA\Si)in(NA\Si)): LBLC((isable (B C)) C)

las: NA\(Nt(s(B))\Sf): read

lezen: |>-1(NA\(NB\Si)): read

nijlpaarden: CNp(n): hippos

voeren: |[>-1(NA\(NB\Si)): feed

zag: (Nt(s(A))\Si)in(NB\ (Nt (s(4))\Sf)): LCILD((saw (C D)) D)

Fig. 2. Dutch part of lexicon
(d(2)) jantboekentkantlezan S_647
Nt(s(m)): j, Np(n): books, (NA\Si)in(NA\Sf): LBLC((isable (B C)) C), |>-1(ND\(NE\Si)): read => SF

Nt(s(m)), Np(n), (Nt(s(m))\Si)in(Nt(s(m))\Sf), |>=1(Np(m)\(Nt(s(m))\8i)) => Sf [imL]
Np(n), 1, [>-1(Np(n)\(Nt(s(m))\8i)) => Nt(s(m))\Si [\R]
Nt(s(m)), Np(m), 1, I>-1(Np@\(Nt(sm)I\8i)) => Si [1>-1L]
Nt(s(m)), Np(n), Np@\(Nt(s(m))\Si){1} => 8i [\L]
Np(n) => Np(m)
Nt(s(m)), Nt(s@))\Si{1} => 8i [\L]
Nt(s(m)) => Nt{s(m))
Si{1} => Si
Nt(s(m)), Nt(s(m))\Sf => Sf [\L]
Nt(s(m)) => Nt(s(m))
Sf => Sf

((isable ((read books) j)) j)

Fig. 3. Dutch verb raising

wil : (NA\SH)L(NA\SS) : ABAC((went (B C)) C)

wil : Q/ 7 (SFH((NA\SI)L(NA\SS))) : AB(B ACAD((want (C D)) D))
alles : (SATNt(s(n))){SA : ABVC|(thing C) — (B C)]

boeken : Np(n) : books

cecilia : Nt(s(f)): ¢

de : Nt(s(A))/CNA : the

helpen : >~ ((NA\Si){(NB\(NA\S%))) : A\CAD((hkelp (C D)) D)
henk : Ni(s(m)): h

jan : Nt(s(m)) : j

kan : (NA\S3)L(NA\Sf) : ABAC((isable (B C)) C)

kunnen : >~ ((NA\Si)(NA\Si)) : A\BAC((isable (B C)) C)

las : NA\(Nt(s(B))\Sf) : read

lezen : > (NA\(NB\S%)) : read

nijlpaarden : CNp(n) : hippos

voeren : >~ (NA\(N B\Si)) : feed

zag : (Nt(s(A))\Si)L(NB\(Nt(s(A)\SS)) : \CAD((saw (C D)) D)

Fig. 4. Dutch part of lexicon

(d(2)) jan+boeken+kan+lezen : Sg47

Nt(s(m)) : §, Np(n) : books, (NA\Si)L(NA\Sf) : ABAC((isable (B C)) C),>"(ND\(NE\S%)) :
read = SF

Ni(s(m)) = Nt(s(m)) Si{1} = Si

N > Notm) Ne(olm) | NeGemNSE | & 51

Nt(s(m)), Np(n),[Np\(Nt(sm)\Si){1} | = si \L_l
Nt(a(m)), No(n), 1, >~ (Np(m)\(Nt(s(m))\S%)) | = i Neatm) > Nes(m) Sf = S
N 1,0 NP\ (NGNS > Nee(mNSE Ne(a(m))| NeGmNSS] = 51 i;L

Ni(s(m)), Np(ﬂ),l (Nt(s(m)\Si)L(Nt(s(m))\Sf) I >~ H(Np(n)\(Nt(s(m))\Si)) = Sf

((isable ((read books) j)) j)

Fig. 5. Dutch verb raising

3. H. Hendriks. Studied flezibility. Categories and types in syntaxr and semantics.
PhD thesis, Universiteit van Amsterdam, ILLC, Amsterdam, 1993.

4. Gerhard Jager. Anaphore and Type Logical Grammar, volume 24 of Trends in
Logic — Studia Logica Library. Springer, Dordrecht, 2005.

5. Joachim Lambek. The mathematics of sentence structure. American Mathematical
Monithly, 65:154-170, 1958. Reprinted in Buszkowski, Wojciech, Wojciech Mar-
ciszewski, and Johan van Benthem, editors, 1988, Categorial Grammar, Linguistic
& Literary Studies in Eastern Europe volume 25, John Benjamins, Amsterdam,
153-172.

6. Michael Moortgat. Categorial Type Logics. In Johan van Benthem and Alice ter
Meulen, editors, Handbook of Logic and Language, pages 93-177. Elsevier Science
B.V. and the MIT Press, Amsterdam and Cambridge, Massachusetts, 1997.

7. Glyn Morrill. Logic Programming of the Displacement Calculus. In Sylvain Pogo-
dalla and Jean-Philippe Prost, editors, Proceedings of Logical Aspects of Compu-
tational Linguistics 2011, LACL’11, Montpellier, number LNAI 6736 in Springer
Lecture Notes in Al pages 175-189, Berlin, 2011. Springer.

8. Glyn Morrill, Oriol Valentin, and Mario Fadda. The Displacement Calculus. Jour-
nal of Logic, Language and Information, 20(1):1-48, 2011. Doi 10.1007/s10849-
010-9129-2.

9. Glyn V. Morrill. Type Logical Grammar: Categorial Logic of Signs. Kluwer Aca-
demic Publishers, Dordrecht, 1994.

10. Glyn V. Morrill. Categorial Grammar: Logical Syntaz, Semantics, and Processing.
Oxford University Press, 2011.

11. J. van Benthem. Language in Action: Categories, Lambdas, and Dynamic Logic.
Number 130 in Studies in Logic and the Foundations of Mathematics. North-
Holland, Amsterdam, 1991. Revised student edition printed in 1995 by the MIT
Press.

