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Abstract

In type logical categorial grammar the analysis of an expression is a
resource-conscious proof. Anaphora represents a particular challenge to
this approach in that the antecedent resource is multiplied in the seman-
tics. This duplication, which corresponds logically to the structural rule
of contraction, may be treated lexically or syntactically. Furthermore,
anaphora is subject to constraints, which Chomsky (1981)[1] formulated
as Binding Principles A, B, and C. In this paper we consider English
anaphora in categorial grammar including reference to the binding princi-
ples. We invoke displacement calculus, modal categorial calculus, catego-
rial calculus with limited contraction, and entertain addition of negation
as failure.

1 Introduction

Principles A, B and C of Chomsky (1981)[1] identify conditions on reflexive
and personal pronouns in English. Principle A points to contrasts such as the
following:1

(1) a. Johni likes himselfi.

b.*Johni thinks Mary likes himselfi.

According to Principle A a reflexive requires a local c-commanding antecedent.
Principle B refers to contrasts such as:

1The research reported in the present paper was supported by DGICYT project
SESAAME-BAR (TIN2008-06582-C03-01).
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(2) a.*Johni likes himi.

b. Johni thinks Mary likes himi.

According to Principle B a personal pronoun must not have a local c-commanding
antecedent. Principle C filters examples such as:

(3) a.*Hei likes Johni.

b.*Hei/j thinks Billi likes Johnj .

According to Principle C a personal pronoun cannot c-command its antecedent.
In categorial grammar the duplication of the antecedent semantic resource

can be performed lexically or syntactically. We consider treating anaphora lex-
ically by assignment of pronouns to higher-order types with lexical semantic
contraction in displacement calculus (Morrill and Valent́ın 2010)[8], and syntac-
tically with the limited syntactic contraction of Jaeger (2005)[5]. In Section 2
we define the displacement calculus D, a calculus which deals with discontin-
uous phenomena. Like the Lambek calculus L, which it subsumes, D is a
sequence logic without structural rules which enjoys Cut-elimination, the sub-
formula property, and decidability. In Section 3 we look at reflexives and Princi-
ple A. In Section 4 we consider personal pronouns and Principle B. In Section 5
we look at Principle C.

2 Displacement Calculus

The types of the calculus of displacement D classify strings over a vocabulary
including a distinguished placeholder 1 called the separator. The sort i ∈ N
of a (discontinuous) string is the number of separators it contains and these
punctuate it into i + 1 maximal continuous substrings or segments. The types
of D are sorted into types Fi of sort i by mutual recursion as follows:

(4) Fj := Fi\Fi+j under
Fi := Fi+j/Fj over
Fi+j := Fi·Fj product
F0 := I product unit
Fj := Fi+1↓kFi+j , 1 ≤ k ≤ i+1 infix
Fi+1 := Fi+j↑kFj , 1 ≤ k ≤ i+1 extract
Fi+j := Fi+1�kFj , 1 ≤ k ≤ i+1 discontinuous product
F1 := J discontinuous product unit

Where A is a type we call its sort sA. The set O of configurations is defined as
follows, where Λ is the empty string and [ ] is the metalinguistic separator:

(5) O ::= Λ | [ ] | F0 | Fi+1{O : . . . : O︸ ︷︷ ︸
i+1 O′s

} | O,O
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Note that the configurations are of a new kind in which some type formulas,
namely the type formulas of sort greater than one, label mother nodes rather
than leaves, and have a number of immediate subconfigurations equal to their
sort. This signifies a discontinuous type intercalated by these subconfigura-
tions. Thus A{∆1 : . . . : ∆n} interpreted syntactically is formed by strings
α0+β1+ · · ·+βn+αn where α0+1+ · · ·+1+αn ∈ A and β1 ∈ ∆1, . . . , βn ∈ ∆n.
We call these types hyperleaves since in multimodal calculus they would be
leaves. We call these new configurations hyperconfigurations. The sort of a
(hyper)configuration is the number of separators it contains. A hypersequent
Γ ⇒ A comprises an antecedent hyperconfiguration Γ of sort i and a succedent
type A of sort i. The vector

−→
A of a type A is defined by:

(6)
−→
A =


A if sA = 0
A{[ ] : . . . : [ ]︸ ︷︷ ︸

sA [ ]
′
s

} if sA > 0

Where ∆ is a configuration of sort at least k and Γ is a configuration, the
k-ary wrap ∆|kΓ signifies the configuration which is the result of replacing by
Γ the kth separator in ∆. Where ∆ is a configuration of sort i and Γ1, . . . ,Γi
are configurations, the generalized wrap ∆⊗ 〈Γ1, . . . ,Γi〉 is the result of simul-
taneously replacing the successive separators in ∆ by Γ1, . . . ,Γi respectively.
In the hypersequent calculus we use a discontinuous distinguished hyperoccur-
rence notation ∆〈Γ〉 to refer to a configuration ∆ and continuous subconfigu-
rations ∆1, . . . ,∆i and a discontinuous subconfiguration Γ of sort i such that
Γ ⊗ 〈∆1, . . . ,∆i〉 is a continuous subconfiguration of ∆. That is, where Γ is
of sort i, ∆〈Γ〉 abbreviates ∆(Γ ⊗ 〈∆1, . . . ,∆i〉) where ∆(. . .) is the usual dis-
tinguished occurrence notation. Technically, whereas the usual distinguished
occurrence notation ∆(Γ) refers to a context containing a hole which is a leaf,
in hypersequent calculus the distinguished hyperoccurrence notation ∆〈Γ〉 refers
to a context containing a hole which may be a hyperleaf, a hyperhole.

The hypersequent calculus for the calculus of displacement is given in Fig-
ure 1. Observe that the rules for both the concatenating connectives \, ·, / and
the wrapping connectives ↓k,�k, ↑k are just like the rules for Lambek calculus
except for the vectorial notation and hyperoccurrence notation; the former are
specified in relation to the primitive concatenation represented by the sequent
comma and the latter are specified in relation to the defined operations of k-ary
wrap.

Abbreviating here and throughout ↑1 and ↓1 as ↑ and ↓ respectively, an
extensional lexicon for examples of this paper is as follows:

(7) a : ((S↑n(110))↓S)/cn(110) : λAλB∃C[(A C ) ∧ (B C )]
about : PP/n(98) : λAA
before : (S/S)/S : before
buys : (n(101)\S)/(n(106)•n(108)) : λA((buys π1A) π2A)
coffee : n(n) : coffee
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id−→
A ⇒ A

Γ ⇒ A ∆〈−→A 〉 ⇒ B
Cut

∆〈Γ〉 ⇒ B

Γ ⇒ A ∆〈−→C 〉 ⇒ D
\L

∆〈Γ,−−→A\C〉 ⇒ D

−→
A,Γ ⇒ C

\R
Γ ⇒ A\C

Γ ⇒ B ∆〈−→C 〉 ⇒ D
/L

∆〈−−→C/B,Γ〉 ⇒ D

Γ,
−→
B ⇒ C

/R
Γ ⇒ C/B

∆〈−→A,−→B 〉 ⇒ D
·L

∆〈−−→A·B〉 ⇒ D

Γ1 ⇒ A Γ2 ⇒ B
·R

Γ1,Γ2 ⇒ A·B

∆〈Λ〉 ⇒ A
IL

∆〈−→I 〉 ⇒ A
IR

Λ ⇒ I

Γ ⇒ A ∆〈−→C 〉 ⇒ D
↓kL

∆〈Γ|k
−−−→
A↓kC〉 ⇒ D

−→
A |kΓ ⇒ C

↓kR
Γ ⇒ A↓kC

Γ ⇒ B ∆〈−→C 〉 ⇒ D
↑kL

∆〈−−−→C↑kB|kΓ〉 ⇒ D

Γ|k
−→
B ⇒ C

↑kR
Γ ⇒ C↑kB

∆〈−→A |k
−→
B 〉 ⇒ D

�kL
∆〈−−−−→A�kB〉 ⇒ D

Γ1 ⇒ A Γ2 ⇒ B
�kR

Γ1|kΓ2 ⇒ A�kB

∆〈[ ]〉 ⇒ A
JL

∆〈−→J 〉 ⇒ A
JR

[ ] ⇒ J

Figure 1: Calculus of displacement D
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every : ((S↑n(110))↓S)/cn(110) : λAλB∀C[(A C )→ (B C )]
he : n(m)|n(m) : λAA
he : (((S↑n(m))↑n(m))&¬(J•((n(m)\S)↑n(m))))↓(S↑n(m)) :

λAλB((π1A B) B)
himself : ((n(m)\S)↑n(m))↓(n(m)\S) : λAλB((A B) B)
himself : (((n(118)\S)↑n(m))↑n(m))↓2((n(133)\S)↑n(m)) :

λAλB((A B) B)
john : n(m) : j
loves : (n(101)\S)/n(103) : loves
man : cn(m) : man
mary : n(f) : m
says : (n(101)\S)/S : says
smiles : n(98)\S : smiles
talks : ((n(104)\S)/PP)/PP : talks
to : PP/n(98) : λAA
walks : n(98)\S : walks
woman : cn(f) : woman

The first digit in the identifier names of feature variables appear as subscripts,
which is the way LATEX interprets the intial underscore of the variable names of
the Prolog implementation used for the derivations in this paper. Atomic types
which are unstructured appear in upper case; atomic types with arguments
appear all in lower case.

By way of illustration of the displacement calculus consider the example:

(8) every+man+loves+a+woman : S

Lexical lookup yields the following semantically labelled sequent:

(9) ((S↑n(305))↓S)/cn(305) : λAλB∀C[(A C )→ (B C )], cn(m) : man
, (n(369)\S)/n(371) : loves, ((S↑n(396))↓S)/cn(396) : λAλB∃C[(A C ) ∧
(B C )], cn(f) : woman ⇒ S

This has the following derivations and readings:

(10)

cn(m) ⇒ cn(m)

cn(f) ⇒ cn(f)

n(f) ⇒ n(f)

n(m) ⇒ n(m) S ⇒ S

\L

n(m), n(m)\S ⇒ S

/L

n(m), (n(m)\S)/n(f), n(f) ⇒ S

↑R

[ ], (n(m)\S)/n(f), n(f) ⇒ S↑n(m) S ⇒ S

↓L

(S↑n(m))↓S, (n(m)\S)/n(f), n(f) ⇒ S

↑R

(S↑n(m))↓S, (n(m)\S)/n(f), [ ] ⇒ S↑n(f) S ⇒ S

↓L

(S↑n(m))↓S, (n(m)\S)/n(f), (S↑n(f))↓S ⇒ S

/L

(S↑n(m))↓S, (n(m)\S)/n(f), ((S↑n(f))↓S)/cn(f), cn(f) ⇒ S

/L

((S↑n(m))↓S)/cn(m), cn(m), (n(m)\S)/n(f), ((S↑n(f))↓S)/cn(f), cn(f) ⇒ S
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(11) ∃C[(woman C ) ∧ ∀G[(man G)→ ((loves C ) G)]]

(12)

cn(m) ⇒ cn(m)

cn(f) ⇒ cn(f)

n(f) ⇒ n(f)

n(m) ⇒ n(m) S ⇒ S

\L

n(m), n(m)\S ⇒ S

/L

n(m), (n(m)\S)/n(f), n(f) ⇒ S

↑R

n(m), (n(m)\S)/n(f), [ ] ⇒ S↑n(f) S ⇒ S

↓L

n(m), (n(m)\S)/n(f), (S↑n(f))↓S ⇒ S

/L

n(m), (n(m)\S)/n(f), ((S↑n(f))↓S)/cn(f), cn(f) ⇒ S

↑R

[ ], (n(m)\S)/n(f), ((S↑n(f))↓S)/cn(f), cn(f) ⇒ S↑n(m) S ⇒ S

↓L

(S↑n(m))↓S, (n(m)\S)/n(f), ((S↑n(f))↓S)/cn(f), cn(f) ⇒ S

/L

((S↑n(m))↓S)/cn(m), cn(m), (n(m)\S)/n(f), ((S↑n(f))↓S)/cn(f), cn(f) ⇒ S

(13) ∀C[(man C )→ ∃G[(woman G) ∧ ((loves G) C )]]

3 Reflexives and Principle A

A subject-oriented reflexive may be assigned type ((N\S)↑N)↓(N\S) with se-
mantics λxλy((x y) y). This generates example (1a) Johni likes himselfi as
follows:

(14)

N ⇒ N N\S ⇒ N\S
/L

(N\S)/N,N ⇒ N\S
↑R

(N\S)/N, [ ] ⇒ (N\S)↑N

N ⇒ N S ⇒ S
\L

N,N\S ⇒ S
↓L

N, (N\S)/N, ((N\S)↑N)↓(N\S) ⇒ S

Thanks to the accommodation of discontinuity in D, the assignment also gener-
ates non-peripheral subject-oriented reflexivization as in the following example
(something not possible in the Lambek calculus):

(15) john+buys+himself+coffee : S

Lexical lookup yields the semantically labelled sequent:

(16) n(m) : j , (n(197)\S)/(n(202)•n(204)) : λA((buys π1A) π2A),
((n(m)\S)↑n(m))↓(n(m)\S) : λAλB((A B) B), n(n) : coffee ⇒ S

This has the following derivation:
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(17)

n(m) ⇒ n(m) n(n) ⇒ n(n)

•R

n(m), n(n) ⇒ n(m)•n(n)

n(m) ⇒ n(m) S ⇒ S

\L

n(m), n(m)\S ⇒ S

/L

n(m), (n(m)\S)/(n(m)•n(n)), n(m), n(n) ⇒ S

\R

(n(m)\S)/(n(m)•n(n)), n(m), n(n) ⇒ n(m)\S

↑R

(n(m)\S)/(n(m)•n(n)), [ ], n(n) ⇒ (n(m)\S)↑n(m)

n(m) ⇒ n(m) S ⇒ S

\L

n(m), n(m)\S ⇒ S

↓L

n(m), (n(m)\S)/(n(m)•n(n)), ((n(m)\S)↑n(m))↓(n(m)\S), n(n) ⇒ S

This derivation delivers the lexical semantics:

(18) (((buys j ) coffee) j )

Consider further object-oriented reflexivization:

(19) mary+talks+to+john+about+himself : S

Lexical lookup for our secondary wrap object-oriented reflexivization type as-
signment yields the semantically labelled sequent:

(20) n(f) : m, ((n(256)\S)/PP)/PP : talks,PP/n(269) : λAA, n(m) : j ,
PP/n(298) : λAA, (((n(337)\S)↑n(m))↑n(m))↓2((n(352)\S)↑n(m)) :
λAλB((A B) B) ⇒ S

This has the proof given in Figure 2. This delivers semantics:

(21) (((talks j ) j ) m)

However, such extensional types will also allow Principle A violation such as
(1b). Modal categorial calculus can be employed to rectify this.

Whatever the details of temporal semantics may turn out to be, it seems clear
that the semantics of each lexical item is evaluated at a temporal index bound
in the minimal tensed S within which it occurs. Morrill (1990)[7] proposed to
characterize such intensionality by adding a modality to Lambek calculus. Let
us extend the set of types as follows:

(22) Fi := 2Fi

The semantic type map τ will be such that τ(2A) = T → τ(A) where T is
the set of time indices, i.e. expressions of type 2A are to have as semantics
the functional abstraction of the corresponding extensional semantics of the
expression of type A. Thus, we assume the following semantically annotated
rules of S4 modality where ˆ and ˇ represent temporal intensionalisation and
extensionalisation respectively:

(23)
2Γ ⇒ A : φ

2R
2Γ ⇒ 2A : ˆφ

Γ〈−→A : x〉 ⇒ B : φ(x)

Γ〈−→2A : y〉 ⇒ B : φ(ˇy)
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Then assuming the lexical type assignments indicated, John thinks Mary left is
derived as shown in (24) with semantics (25).

(24)

N ⇒ N
2L

2N ⇒ N S ⇒ S
\L

2N,N\S ⇒ S
2L

2N,2(N\S) ⇒ S
2R

2N,2(N\S) ⇒ 2S

N ⇒ N
2L

2N ⇒ N S ⇒ S
\L

2N,N\S ⇒ S
/L

2N, (N\S)/2S,2N,2(N\S) ⇒ S
2L

John
2N ,

thinks
2((N\S)/2S),

Mary
2N ,

left
2(N\S) ⇒ S

(25) ((ˇthinks′ ˆ(ˇleft′ ˇMary′)) ˇJohn′)

Such modality, independently motivated for categorial intensional semantics,
provides a handle on Principle A.

The requirement on 2R that every antecedent type be 2-ed automatically
sensitizes higher order functors to temporal domains according to whether ot
not a hypothetical subtype is modalized. A modal reflexive type in which the
hypothetical subtype is modalized, 2(((N\S)↑2N)↓(N\S)), would generate
both of (1a) and (1b); the type 2(((N\S)↑N)↓(N\S)) succeeds in generating
(1a), as shown in (26), but not (1b), as shown in (27). Here and henceforth we
may abbreviate N\S as VP.

(26)

N ⇒ N VP ⇒ VP
/L

VP/N,N ⇒ VP
2L

2(VP/N), N ⇒ VP
↑R

2(VP/N), [ ] ⇒ VP↑N

N ⇒ N S ⇒ S
\L

N,VP ⇒ S
2L

2N,VP ⇒ S
↓L

2N,2(VP/N), (VP↑N)↓VP ⇒ S
2L

John
2N ,

likes
2(VP/N),

himself
2((VP↑N)↓VP) ⇒ S

(27)

∗2R
2N,2(VP/N), N ⇒ 2S VP ⇒ VP

/L
VP/2S,2N,2(VP/N), N ⇒ VP

2L
2(VP/2S),2N,2(VP/N), N ⇒ VP

↑R
2(VP/2S),2N,2(VP/N), [ ] ⇒ VP↑N

···
2N,VP ⇒ S

↓L
2N,2(VP/2S),2N,2(VP/N), (VP↑N)↓VP ⇒ S

2L
John
2N ,

thinks
2(VP/2S),

Mary
2N ,

likes
2(VP/N),

himself
2((VP↑N)↓VP) ⇒ S
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An intensional lexicon for examples of this paper is as follows:

(28) after : 2((S/2S)/2S) : ˆλAλB((ˇafter A) B)
arrives : 2(n(100)\S) : arrives
debbie : 2n(f) : ˆd
everyone : 2((S↑n(109))↓S) : ˆλA∀B[(ˇperson B)→ (A B)]
herself : 2(((n(f)\S)↑n(f))↓(n(f)\S)) : ˆλAλB((A B) B)
herself : 2((((n(122)\S)↑n(f))↑2n(f))↓2((n(137)\S)↑n(f))) :

ˆλAλB((A B) B)
likes : 2((n(103)\S)/n(105)) : likes
she : 2n(f)|n(f) : λAˆA
she : 2(((S↑2n(f))↑2n(f))↓(S↑2n(f))) : ˆλAλB((A B) B)
sings : 2(n(100)\S) : sings
someone : 2((S↑2n(111))↓S) : ˆλA∃B[(ˇperson B) ∧ (A ˆB)]
suzy : 2n(f) : ˆs
thinks : 2((n(103)\S)/2S) : thinks

4 Personal Pronouns and Principle B

Jaeger (2005)[5] presents a syntactic type logical categorial grammar treatment
of anaphora inspired by the combinatory categorial grammar treatment of Ja-
cobson (1999)[4]. This uses a type constructor B|A for an expression of type B
requiring an antecedent of type A. This was in turn inspired by the syntactic
treatment of Hepple (1990)[3] which assigns pronouns the identity function as
lexical semantics. Jaeger gives the following left rule for |:

(29)
Γ ⇒ A : φ ∆1, A : x,∆2, B : y,∆3 ⇒ D : ω(x, y)

|L
∆1,Γ,∆2, B|A : z,∆3 ⇒ D : ω(φ, (z φ))

Thus in an extensional grammar there is the analysis:

(30) john+says+he+walks : S

(31) n(m) : j , (n(197)\S)/S : says, n(m)|n(m) : λAA, n(231)\S : walks ⇒ S

(32)

n(m) ⇒ n(m)

n(m) ⇒ n(m) S ⇒ S
\L

n(m), n(m)\S ⇒ S

n(m) ⇒ n(m) S ⇒ S
\L

n(m), n(m)\S ⇒ S
/L

n(m), (n(m)\S)/S, n(m), n(m)\S ⇒ S
|L

n(m), (n(m)\S)/S, n(m)|n(m), n(m)\S ⇒ S

(33) ((says (walks j )) j )

Intensionally, and with a quantified antecedent:
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(34) everyone+thinks+she+sings : S

(35) 2((S↑n(195))↓S) : ˆλA∀B[(ˇperson B) → (A B)],2((n(251)\S)/2S) :
thinks,2n(f)|n(f) : λAˆA,2(n(295)\S) : sings ⇒ S

(36)
n(f) ⇒ n(f)

n(f) ⇒ n(f) S ⇒ S
\L

n(f), n(f)\S ⇒ S
2L

n(f),2(n(f)\S) ⇒ S
2L

2n(f),2(n(f)\S) ⇒ S
2R

2n(f),2(n(f)\S) ⇒ 2S

n(f) ⇒ n(f) S ⇒ S
\L

n(f), n(f)\S ⇒ S
/L

n(f), (n(f)\S)/2S,2n(f),2(n(f)\S) ⇒ S
|L

n(f), (n(f)\S)/2S,2n(f)|n(f),2(n(f)\S) ⇒ S
↑R

[ ], (n(f)\S)/2S,2n(f)|n(f),2(n(f)\S) ⇒ S↑n(f) S ⇒ S
↓L

(S↑n(f))↓S, (n(f)\S)/2S,2n(f)|n(f),2(n(f)\S) ⇒ S
2L

(S↑n(f))↓S,2((n(f)\S)/2S),2n(f)|n(f),2(n(f)\S) ⇒ S
2L

2((S↑n(f))↓S),2((n(f)\S)/2S),2n(f)|n(f),2(n(f)\S) ⇒ S

(37) ∀B[(ˇperson B)→ ((ˇthinks ˆ(ˇsings B)) B)]

This account has the benefit of great simplicity; it is difficult to see how an
account of anaphora could be more simple. But it does not respect Principle B
and we do not see any way to sensitize it to principle B or antilocality. Per-
haps the following could be said. As reflected in Principles A (locality) and B
(antilocality), the distributions of reflexives and personal pronouns are largely
complementary, and when a reflexive is used the resolution of the anaphora is
less nondeterministic since only local antecedents are allowed. Therefore, per-
haps Principle B violation readings are unavailable because our use of language
conforms to the facilitative principle that if the local interpretation had been
intended, the less ambiguous, or unambiguous, reflexive pronoun form would
have been used. Perhaps, therefore, Principle B is not a grammatical princi-
ple but a pragmatic principle (cf. Grodzinsky and Reinhart 1993)[2]. In that
case, it could be argued, we need not expect our grammar to be able to express
antilocality since it is a ‘transgenerational’ pragmatic effect.

This view may well be the right one, and would allow us to preserve the
minimality of the Jaeger account. However, we consider as another possibility
the lexical contraction treatment of personal pronouns in displacement calculus,
which will provide us with a grammatical handle on antilocality in terms of
negation as failure.

Let us extend the calculus with linear additives as follows (cf. Kanazawa
1992[6]):
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(38) Fi := Fi&Fi | Fi+Fi

(39)
Γ〈−→A 〉 ⇒ C

&L1
Γ〈−−−→A&B〉 ⇒ C

Γ〈−→B 〉 ⇒ C
&L2

Γ〈−−−→A&B〉 ⇒ C

Γ ⇒ A Γ ⇒ B
&R

Γ ⇒ A&B

Γ〈−→A 〉 ⇒ C Γ〈−→B 〉 ⇒ C
+L

Γ〈−−−→A+B〉 ⇒ C

Γ ⇒ A
+L1

Γ ⇒ A+B

Γ ⇒ B
+L2

Γ ⇒ A+B

We propose to introduce into type logical categorial grammar a negation,
interpreted in the succedent as non-provability (strong negation, as for example
in autoepistemic logic, and Prolog):

(40) Fi := ¬Fi

(41)
6` Γ ⇒ A

¬R
Γ ⇒ ¬A

Thus, to express that walk is a non-third person present tense form we might
assign it type (∃aN(a)&¬N(3(sg)))\S.

Treating pronouns by secondary wrap in modal displacement calculus, gen-
erating an example like (2b) requires a pronoun type 2(((S↑N)↑22N)↓2(S↑N))
in which the pronoun hypothetical subtype is modalized to allow the pronoun
in a subordinate clause. But this would also overgenerate (2a). Our proposal is
to enforce Principle B by employing the negation:

(42) him : 2((((S↑N)↑22N)&¬((J ·(N\S))↑2N))↓2(S↑N)) = 2α

Then (2a) is filtered because the negative goal in Figure 3 succeeds; here and
henceforth we may abbreviate (N\S)/N as TV. succeeds. Example (2b) is
allowed however because the negative goal in Figure 4 fails as required.

5 Principle C

We can adopt a similar strategy in order to block Principle C violations in cat-
aphora. The analysis of the following, where the pronoun does not c-command
its antecedent, goes through since the negative subgoal fails as required.

(43) before+he+walks+every+man+smiles : S

12



·
·
·

[ ],2TV, [ ] ⇒ (S↑N)↑22N

JR
[ ] ⇒ J

N ⇒ N

N ⇒ N S ⇒ S
\L

N,VP ⇒ S
\R

VP ⇒ VP
/L

TV, N ⇒ VP
2L

2TV, N ⇒ VP
·R

[ ],2TV, N ⇒ J·VP
↑2R

[ ],2TV, [ ] ⇒ (J·VP)↑2N
¬R

6` [ ],2TV, [ ] ⇒ ¬((J·VP)↑2N)
&R

[ ],2TV, [ ] ⇒ ((S↑N)↑22N)&¬((J·VP)↑2N)

·
·
·

S↑N{2N} ⇒ S
↓2L

2N,2TV, α ⇒ S
2L

2N,2TV,2α ⇒ S

Figure 3: Blocking of Johni likes himi in accordance with Principle B because
of the provability of the subgoal which is required to be not provable

Lexical lookup yields the semantically labelled sequent:

(44) (S/S)/S : before, (((S↑n(m))↑n(m))&¬(J•((n(m)\S)↑n(m))))↓(S↑n(m)) :
λAλB((π1A B) B), n(341)\S : walks, ((S↑n(366))↓S)/cn(366) :
λAλB∀C[(A C )→ (B C )], cn(m) : man, n(427)\S : smiles ⇒ S

The derivation delivers semantics:

(45) ∀C[(man C )→ ((before (walks C )) (smiles C ))]

But as required, Principle C violations such as the following will be blocked.

(46) a.*Hei likes Johni.

b.*Hei thinks Mary likes Johni.

6 Conclusion

This paper offers two innovations in relation to anaphora and the binding princi-
ples: we consider the possible application of the generalized discontinuity of the
displacement calculus to various forms of anaphora, and we make the technical
innovation of introducing negation as failure into categorial logic, and apply this
to the capture of binding principles.

As regards the Cut rule and negation as failure, note that by using them
both together we would get undesirable derivations such as the following:
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Figure 4: Derivation of Johni thinks Mary likes himi in accordance with Princi-
ple B because of the nonproveability of the subgoal which is required to be not
proveable.
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(47) N ⇒ S/(N\S)

6` S/(N\S) ⇒ N
¬R

S/(N\S) ⇒ ¬N
Cut

N ⇒ ¬N
Adding the negation as failure (right) rule brings our categorial logic to the
realms of non-monotonic reasoning where the transitivity of the consequence
relation must be dropped. The other connectives used in this paper, the dis-
placement connectives, S4 modality, and additives, enjoy Cut-elimination. But
in the presence of negation as failure, the Cut rule must be considered not
just eliminable, but inadmissable. However, the subformula property holds of
all the connectives used here: the sequent presentation is such that for every
rule, the formula occurrences in the premises are always subformulas of those
in the conclusion. Given this state of affairs, the Cut-free backward chaining
sequent search space turns out to be finite and hence the categorial logic used
in this paper is decidable. Thus the system considered here is implementable;
indeed some derivation examples used in this document have been generated
automatically from a Prolog implementation.

Concerning the negation connective, let us remark the following aspects. On
the one hand, as far as we are aware, no left sequent rule for negation as failure
is known. This seems to be an open problem. On the other hand, as the reader
may have noticed, the polarity of the negated subtypes in our applications is
always positive, consistent with the absence of a left rule.

Much remains to be said and done on anaphora and the binding principles
in English and other languages and we have only been able to touch on a few
points here. The account of Principle A in terms of modal categorial logic was
introduced twenty years ago but it appears that no other categorial account
of locality has been developed in detail. Here we have suggested that parts
of Principles B (antilocality) and C may be treated in the grammar by means
of negation, in particular negation as failure. We hope this may be a first
indication of how categorial approaches may be sensitized to these negative
conditions directly in the grammar while preserving as much as possible the
good theoretical properties of the logic.
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