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Abstract

Interaction oflexical and derivational
semantics--for example substitution
and lambdaconversion---is typically
a part of the on-line interpretation
process.Proof-nets are to categorial
grammarwhat phrasemarkers are to
phrase structure grammar: unique
graphical  structures underlying
equivalence classes of sequential
syntactic derivations; but the role of
proof-nets is deeper since they
integrate alssemanticsin this paper
we show how interaction of lexical
and derivational semantics at the
lexico-syntactic interface can be
precomputedasa processof off-line
lexical compilation comprising Cut
elimination in partial proof-nets.

Introduction

Consider the following examples of
paraphrase:

(1) a. Frodo lives in Bag End.
b. Frodo inhabits Bag End.
C. ((inb) (livef))

(2) a. John tries to find Mary.
b. John seeks Mary.

c.  ((try (find m))j)

Typically, for at least(1b) and (2b) the
normalisedsemanticforms result from a
process of substitution and lambda
conversion subsequent @y simultaneous
with syntactic derivation. We show how
such interaction of lexical and
derivational semantics at the lexico-
syntactic interface can bgrecomputedas
a processof off-line lexical compilation
comprising Cut elimination in partial
proof-nets.

For accessibility, we devote in the
initial sectionsa considerableproportion
of spaceto an introduction to categorial
grammar oriented towardsroof-nets; see

also Morrill (1994), Moortga{1996) and
Carpenter (1997).

1  Categorial grammar

We consider categorial grammar with
category formulasF (categoriesdefined
by the following grammar:

(3) a.  Fu=A|F\E|EIE |EE
b. A:z=S|N|CN|PP..

The categoriesin A are referred to as
atomic and correspondto the kinds of
expressionswhich are consideredto be
“complete”. Fairly uncontroversially,
this class maye takento include at least
sentences S and names N; what the diss
exactly is not fixed by the formalism.

Left division categoriesA\B (‘A under
B’) are those of expressions(functors)
which concatenatevith (arguments)in A
on the left to yield Bs. Right division
categoriesB/A (‘B over A’) are those of
expressiongfunctors) which concatenate
with (arguments) in A on the right
yielding Bs. Product categoriesAsB are
thoseof expressionsahich are the result
of concatenatingan A with a B; products
do not play a dominant role here.

More precisely, let L be the set of
strings (including the empty strirg) over
a finite vocabulary V and let + be the
operation of concatenation (i.d.,(*, €) is

the free monoid generatedby V)'. Each
category formula A is interpreted as a
subset [A]] of L. Whenthe interpretation
of atomic categorieshas been fixed, that
of complex categories is defined by (4).

(4)  [[AB]] = {5 OsO[[A]], s+sU[[BI]}
[[B/A]] = {s| UsO[[A]], stsU[[BI]}
[[ABI] = {s1+s2| s1U[[Al]l & s2U[[B]]}

1 In fact Lambek (1958) excludedthe empty
string ---and hence empty antecedentsn the
calculus of (5)--- butt is convenientto include
it here.



In general,given some type assignments
others may be inferred. Suckasoningis

precisely formulated in the Lambek
calculusL.

2 Lambek sequent calculus

In the sequent calculus of Lambek (1958)

asequent I' 0 A consists ofa sequencd”
of ‘input’ category formulas (the
antecedent)and an ‘output’ category
formula A (the succedent). A sequent
statesthat the ordered concatenationof
expressionsn the categoriesl” yields an
expressionof the category A. The valid
sequentsare the theoremsderivablefrom

the following axiom and rule schemata.

(5) a.
id

Al A

rgA ALAA20C 4t
Al,T,A20 C

b.
AT 0B \r
rd AB

rdgA AlBA20 C,
Al,T, AB,A20 C

C.
NAO B p
r o B/A

rgA Al,BA20 C ,
Al,B/AT,A20 C

d.
rig A r20 B
M, r20 A-B

N,A B r20 cC
MN,AsB,r20 C

2The completenessf the calculuswith respect
to the intended interpretation was proved in
Pentus (1994).

(n) and A(n) range over context
sequences of category formulds;B, and
A*B are referred to as the active
formulas. The calculusL lacks the usual
structural  rules  of permutation,
contraction and weakening. Adding
permutation collapsesthe two divisions
into a single non-directional implication
and yields the multiplicative fragment of
intuitionistic linear logic, known as the

Lambek-van Benthem calcullsP.?

The validity of the id axiom and the
Cut rule follows from the reflexivity and
the transitivity respectively of set
containment. The calculus enjoys the
property of Cut elimination whereby
every proof has a Cut-free equivalent
(indeed, one in which only atomic id
axioms are used: what we shall call 3n-

long sequentproofs)? Thus, processing
can be performed using just the left (L)
and right (R) rules. These rules all
decomposeactive formulas A*B in the
left or the right of the conclusionsinto
subformulasA andB in the premisesand
have exactly one connective occurrence
less in the premises than in the

conclusion; therefore one can compute all

the (Cut-free) proofs of any sequentby
traversing the finite spacef proof search
without Cut.

By way of illustration of the sequent
calculus, the following is a proof of a
theorem of lifting, or (subject) type
raising:

(6)
NO N SO S\
N,N\SO S g
NO SI(N\S

Wherea labelsthe antecedentthe coding
of this proof as dambdaterm ---what we

3Adding also contraction and weakening we
obtain the implicational and conjunctive
fragment of intuitionistic logic. Thus every
Lambek proof can be read as an intuitionistic
proof andhasa constructivecontentwhich can
be identified withits intuitionistic normal form
natural deductiomproof (Prawitz 1965) or, what
is the same thing under the Curry-Howard
correspondenceits normal form as a typed
lambda term.

4By ‘equivalent’ we meana proof of the same
theorem with the sameonstructivecontent(fn.
3).



shall call the derivational semantics---is
AX(x a). The conversef lifting, lowering,
in (7) is not derivable. A proof of a
theorem of composition (it has as its
semantics functional composition) is
given in (8).

(7)  SIN\S)D N
(8)
BO B COCy_
AOA BBCOC
A AB,B(CO C g
A\B, BICO AC

A grammar contains a set of lexical
assignments a: A. An expression
w1+...+wm is of category A just in case
wi+...+wm is the  concatenation
a1+...+ap of lexical expressionssuch
that aj: Aj, 1<isn, and A1, ..., An 0 Als
valid. For instance, assuming te&pected
lexical type assignment$o proper names
and intransitiveand transitiveverbs,there
are the following derivations:

(9)
NO N SO Sy
N, N\SO S
john+runs: S
(10)
NON SO S\L
NO N N,N\sO s

N, (N\S)/N, NO S

john+findstmary: S

Ungrammaticality occurs when theie
no validity of the sequentsarising by
lexical insertion, as in the following:
(11)

N\S, NO S

runstjohn: S

3  Ambiguity and  spurious
ambiguity
The sentence (12) is structurally
ambiguous.

(12) Sometimes it rains surprisingly.

There is a reading “it is surprising that
sometimes it rains” and another
“sometimesthe mannerin which it rains
is surprising”. As would be expected
there are in such a case distinct
derivations correspondingto alternative
scopings of the adverbials:

(13) a.
SIS, S, S\&1 S

sometimestit+rainstsurprisingly: S

b.
SO S sO s,
SO S SIS, S0 S .
SIS, S, S\& S
C.
sO s SO S,
sO s S.S\s0 S,
SIS, S, S\& S

However, sometimesa non-ambiguous
expression also has more than one
sequentproof (evenexcluding Cut); thus
the sequent if{14a) hasthe proofs (14b)
and (14c).

(14) a.
N/CN, CN, N\SO S

the+tman+runs: S

b.
NO N SO s,
CNDO CN N,N\SO S
N/CN, CN, N\SO S
C.
CNOCN NONj,
N/CN, CNO N SO S,

N/CN, CN, N\SO S

As the readermay check, N/CN, CN [0

S/(N\S) has three Cut-free proofs; in
general the combinatorial possibilities
multiply exponentially. This feature is
sometimesreferredto asthe problem of
spurious ambiguity or derivational
equivalence. It isegardedas problematic
computationallybecausét meansthat in
an exhaustive traversal of the proof search
space one must either repeat



subcomputationspr else perform book-
keeping to avoid so doing.

The problem is that different n-long
sequent derivations do not necessarily
representdifferent readings,and this is
the case becausethe sequent calculus
forces us to choose between a
sequentialisationof inferences ---in the

case of (14) /L and \L--- when in fact they

are not ordered by dependencyand can
be performed in parallel.

The problem can be resolved by
defining stricter normalisedproofs which
impose a unique ordering when
alternativeswould otherwisebe available
(Kénig 1990, Hepple 1990, Hendriks
1993). However, while this removes
spuriousambiguity as a problem arising
from independence of inferences, it
signally fails to exploit the fact that such
inferencescan be parallelised. Thus we
prefer the term ‘derivationaquivalence’
to ‘spuriousambiguity’ and interpretthe
phenomenon not as a problem for
sequentialisationput as an opportunity
for parallelism. This opportunity is
grasped irproof-nets.

4  Lambek proof-nets

Proof-nets for L were developed by
Roorda (1991), adapting their original
introduction for linear logic in Girard
(1987). In proof-nets,the opposition of
formulas arising from their location in
either the antecedenbr the succedentof
sequentsis replaced by assignment of

polarity: input (negative) for antecedent

and output (positive) for succedent.A
proof-net is a kind of graph of polar
formulas.

First we define a morgeneralconcept
of proof structure. These are graphs
assembled out of the followingnks:

(15) a.

X ~X
id link:

zero premises,
two conclusions

X ~X

Cut link:
two premises,
zero conclusions

A B-

i- and ii-Ii_nks:
two premises,
one conclusion

In the id and Cut links X and ~X
schematisever occurrencesof the same
category with opposit@olarity. Note that
the nodes of links are also marked
(implicitly) as being either conclusions
(looking down) or premises (lookingp).
In the i- and ii-links themiddle nodesare
the conclusionsand the outer nodesthe
premises. The i-links correspond tmary
sequentrules and the ii-links to binary
sequentrules. Observethat in the output,
but not inthe input, unfoldings the order
of subformulas is switched between
premisesand conclusion; this is essential
to the characterizationof ordering by
graph planarity.

Proof structures are assembled by
identifying nodes of the same polar
category which are the premises and
conclusions of different components;

premises and conclusions not fused in this

way are the premisesand conclusionsof



the proof structure as a whole. For
example, in (16a) four links are
assembledinto a proof structure (16b)
with no premisesand two conclusions N-
and S/(N\S)+:

(16) a.
N+ S-
ad ad
N+ S-
N\ i /
N- N\S- S+
ad ad
N\S- S+
\N i/
S/(N\S)+
b.
N+ S-
N\ i /
N\S- S+
\N i/
N- S/(N\S)+

Proof-netsare proof structureswhich
arise, essentially, by forgetting the
contexts of the sequentles and keeping
only the active formulas, but natl proof
structures are well-formed as proofs.
There must exist a globalynchronization
of the partitioning of contexts by rules
(the long trip condition of Girard 1987).
Eschewing the (somewhat involved)
details (Danos and Regnier 1990; Bellin
and Scott 1994) it suffices hereto state
that a proof structure is well-formed, a
module (partial proof-net), iffevery cycle
crossesboth edges of some i-link. A
module is a proof-net iff it containsno
premises.The structure(16b) is a proof-
net, in fact it is the proof-net for our
instance (6) of lifting since its conclusions
are the polar categories for this sequent:

(17)
N- S/(N\S)+

N O S/(N\S

The structurein (18) is not a module
because it contains the circularity
indicated:it correspondsto the lowering
(7), which is invalid.

(18)
S+ N-
N i /
S- N\S+
N\ i /
S/(N\S)- N+
S/(N\S)O S

The structure of figure 1 is module with
two premisesand three conclusions;the
latter are the polar categories of our
composition theorem (8). Adding the
remaining id axiom link makes it a proof-
net for composition.

For L, proof-netsmust be planar, i.e.
with no crossingedges.This corresponds
to the non-commutativity of L. In LP,
linear logic, which is commutative, there is
no such requirement.

Like the sequentcalculus, proof-nets
enjoy the Cut elimination property
whereby every proof has a Cut-free
equivalent.The evaluationof a net to its
Cut-free normal form is a process of
graph reduction. The reductions are as
shown in figure 2.

5 Language processing

As is the casefor the sequentcalculus,
with proof-nets every proof has a Cut-free
equivalent in which onlyatomic id axiom
links are usedwhat we shall call Bn-long
proof-nets. However, whereassome [3n-
long sequent proofs are equivalent,
leading to spurious ambiguity/derivational
equivalence,distinct Bn-long proof-nets
always have distinct readings.

The analysis of an expression as search
for Bn-long proof-netscan be construed
in three phases,1) selection of lexical
categoriesfor elementsin the expression,
2) unfolding of these categoriesinto a
frame of trees of i- and ii-links with
atomic leaves (literals), arig) addition of
(planar) id axiom links to form proof-
nets. For example,‘John walks’ hasthe
following analysis:



(19)

N, N\SO S

john+walks:S
The ungrammaticalityof ‘walks John’ is
attested by the non-planaritf the proof
structure (20).

(20)

N+ S-

N\S- N- S+

N\S, NO S

walkstjohn:S

As expected,where there is structural
ambiguity there are multiple derivations;
seefigure 3. But now also,when there is
no structuralambiguity thereis only one
derivation, as in figure 4This property is
entirely general:the problem of spurious
ambiguity is resolved.

6 Proof-net semantic extraction

Until now we have not been expliabout
how a proof determines a semantic
reading. We shall show here how to

extract from a proof-net a functional term

representing the semanti¢seede Groote

and Retoré 1996, who reference

Lamarche 1995). This is done by
travelling through a proof-net and
constructing a lambda term following

deterministic instructions. (The proof-nets

are the proof structures in which
following these instructions visits each
node exactly once.)

First one assignsa distinct variable
index to each i-link; then one starts
travelling upwards through the unique

positive conclusion. Thereafter the
function L mapping proof-net$o lambda
terms is as follows (for brevity wexclude
product):

(21) a.
Going up through the conclusion
of a i-link, make a functional
abstraction for the corresponding
variable and continue upwards through
the positive premise:
In

(Y) Aan(‘\/)
L(\/):)\XnL(\/‘)

b.
Going up through one id conclusion,
go down through the other:

L( A= )
L(A ) = L( l)
C.

Going down through one premise
of Cut, go up through the other:

L<L|)_L(u)
NI

Gomg down through one premise
of a ii-link, make a functional
application and continue going
down through the conclusion
(function) and going up through
the other (argument)

L( \/) = (I( \V/) ( \/‘))
L(\/) = (L(\V/) L(‘\/))



e.

Going down through the premise
of a i-link, put the corresponding
variable:

C

L( ) =Xn
N

L( ) =Xn

f.

Going down through a terminal
node, substitute the associated
lexical semantics:

Y
L(P)=¢

Let us observe that the following
lexical type assignments capture the
paraphrasingof (1a) and (1b); a-@ = A
signifies the assignmento categoryA of
expressiorn with lexical semanticg.

(22)
frodo - f

= N
lives - live

= N\S
in - in

= (S\S)/N
bag+end - b

= N
inhabits -

MAY((in X) (livey))
(N\S)/IN

Then (1a) has the analygigven in figure
5, with semanticextraction (23), where *
marks the point at construction and
Roman numerals indicate the argument
traversals,performed after the function
traversals, triggered by entry into ii-links.

(23) (1
(C< 1 1)
((in ) 1)
((in b) *)
((inb) (* 1Y)
((inb) (live *))
((inb) (livef))

Example (1b) has the analysis given in
figure 6, for which the semantic
extraction is (24).

(24) (* 1)
(1)1 _
((D>Ay((inx) (livey)) *) 1)
((AAy((inx) (livey)) b) *)
((AAy((inx) (livey)) b) )

This is not the samsemanticterm asthat
in (23) but it reducesto the sameby [-
conversion, showing that the semantic

content in the two cases is identical, that is,

that there is paraphrase:

(25)  ((MAY((inx) (livey)) b) f) =
Ay((inb) (livey)) f) =
((inb) (ivef))

Although such lambda conversiononly
calculateswhatthe grammar defines and
is not part of the grammar itself,
computationallyit is an on-line process.
The following sectiornshowshow this can
be rendered,in virtue of proof-nets, an
off-line process of lexical compilation.

7 Off-line semantic evaluation

In the processingas presentedso far
semantic evaluation is, as is usual,
normalisation ofthe result of substituting
lexical semantics into derivational
semantics. Logically speaking, this
substitution at the lexico-syntactic
interface is a Cut, and theormalisationis
a processof Cut elimination. Currently
the substitution and Cut elimination is
executed after thproof search.However,
if lexical semanticsis representedas a
proof-net, one can calculate off-line the
module resulting from connecting the
lexical semantics with a Cut to tmeodule
resulting from the unfolding of the
lexical categories.

Lexical semantics expressed atinear
(=single bind) lambdaterm is unfolded
into an (unordered) proof-net by the
algorithm (26):

(26) a
b

Tb unfoldAx,¢+, make it the
conclusion of a i-link with index

and unfoldp+ at the positive premise:

ot
in o
AXN@+

® Lecomte and Retoré (1995) propdseusethe
expressivityof modulesin generalto classify
words rather than just category formulas
(=modules without id or Cut links). Oumethod
provides semantic motivation for modulegtz
machinelevel but we proposeto maintain the
less unwieldy categories at the user level.

Start with theA-term¢ at a + nodedp+.



C.
To unfold Ax,$-, make it a Cut
premise and unfoldx,¢+ at the
other premise:

AXN@- AXn@+
| A

d.

To unfold @ )-, make it the
premise of a ii-link and unfolg-
at the conclusion angi+ at the
other premise:

(@ W)- P+

e.
To unfold ¢ )+ make it the

conclusion of an id link and unfold

(¢ W)- at the other conclusion:

| Y

(ew)+ (P Y)-

f.
At a constank- unfolding stops;

to unfold a constarit+ make it an id

premise first:

Y

k+ k-

g.
To unfold a bound variable,- make
it the other premise of the i-link with

index n:
XN-

4 in.

to unfoldx,+ make it an id premise first

Y

Xn- XN+
A in

For example, the lexical semantics of
‘inhabits’ can be unfolded as shown in
figure 7. The result of suchunfolding of
lexical semanticscan be substitutedinto
the unfolded lexical category by a Cut,
and the resulting module normalisedby
Cut eliminationin a precompilation.This
is illustrated for the ‘inhabitsexamplein
figure 8.

In this way, rather than starting the
proof search with a frameomprisingjust
the unfolding of lexical categories,one
startswith a frame comprising the pre-
evaluatedmodules resulting from lexical
substitution.Let us consider again (1b)
from this point ofview. First note, aswell
as figure 8, the precompilation of a
proper name lexical assignmentas in
figure 9. The proof frame prior to proof
search is that ifigure 10. Adding axiom
links yields the same net, and thus the
samesemanticsasthat obtained for (1a)
in figure 5.

A slightly more involved illustratiorof
the same point is provided by the
following lexical assignmentsfor the
paraphrases (2a) and (2b).

(27)
john  -j
tries -try

= (N\S)/(N\S)
to - AXX

= (N\S)/(N\S)
find - find

= (N\S)/N
mary -m

seeks - Ax(try (x find))
= (N\S)/(N\S)/N)\(N\S))

Theseassignsemanticg2c) to both (2a)
and (2b) and, as the reader may chdwuk,
partially evaluatinglexical modulesin a
precompilation, normaform semanticds
obtained directly in both cases.

Conclusion

In both the example worked out
explicitly and the one left to the reader,
we deal with words whichare synonyms
of continuous expressions:‘inhabits’ =
‘lives in’ and ‘seeks’ = ‘tries to find’.
This enables u$o representhe evaluated
lexical modules as planar. However it
should be noted that in general lexical
substitution involves linking syntactic
modules which are ordered with lexical
semanticmoduleswhich are not ordered,
and which could be multiple-bindingnd
Cut elimination hasto be performedin a
hybrid architecturewhich must preserve
the linearprecedenceof syntacticliterals.
It is therefore ofimportanceto the future
generalizationof the methodwe propose
to investigatethe precisenature of such
hybrid architectures.
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