Displacement Logic for Grammar

Glyn Morrill \& Oriol Valentín

Department of Computer Science
Universitat Politècnica de Catalunya
morrill@cs.upc.edu \& oriol.valentin@gmail.com

ESSLLI 2016 Bozen-Bolzano

Lecture 4post
Some Metatheoretical Results

Some Metatheoretical Results

- The displacement hypersequent calculus hD has no structural rules.
- The absence of structural rules allows Morrill and Valentín (2010), Morrill et al (2011) to prove the Cut elimination theorem for hD by mimicking the Cut-elimination procedure provided by Lambek (1958) for the sequent calculus of the Lambek calculus (with some minor differences concerning the possibility of empty antecedents).
- D enjoys some nice properties such as the subformula property, decidablity, the finite reading property.
- Morrill and Valentn (2015) prove the focalisation property for D with additive connectives. As is known, focalisation (invented for linear logic by Andreoli (1992)) is a crucial property which holds for many Gentzen systems. Focalisation allows to reduce dramatically the spurious ambiguity of the proof search in sequent calculi.
- D is known to be NP-complete (Moot (2014)). Although S. Kuznetsov (p.c.) believes that a polynomial result can be proved in the style of the Lambek calculus, using the the measure of the order of a type.
- The unit-free fragment of \mathbf{D} can be encoded in first-order linear logic (Morrill and Fadda (2008), Fadda(2010), and Moot (2014)). This allows to give a Girard style proof-net machinery for \mathbf{D} (but not for additives!).

Some Metatheoretical Results

- Since we consider full displacement logic DL, proof-nets for multiplicative D are not satisfactory since DL heavily uses polymorphism, exponentials, and continuous and discontinuous units. NO satisfactory proof-net machinery is known for DL.

Displacement (Lambek) Grammars

- Given a finite vocabulary $V=\Sigma \cup\{1\}$, where $1 \notin \Sigma$, the set of prosodic strings is simply V^{*}.
- Define AssignStrings as $V^{*}-\left\{1^{n} \mid n \geq 0\right\}$. AssignStrings is the set of assignable V^{*} strings to a type. Intuitively, every string assigned to a type must have a contribution of at least one element of Σ.
- A lexicon Lex is a finite relation of AssignStrings $\times \mathcal{F}$, where each pair of Lex is called a lexical assigment, which is notated $\alpha: A$. In other words, a lexicon is a finite set of lexical assigments.
- Where $w: A \in$ Lex, we say that w is the prosodic component of $w: A$, and A is the type component of $w: A$.

Displacement (Lambek) Grammars

- Let Δ be a (hyper)configuration. Observe that Δ is in fact a mixed hedge where each internal node is either a type of sort strictly greater than 0 or a concatenation node. Nodes which are types have arity equal to the sort of their type, whereas concatenation nodes have unbounded arity. A labelling map is a function between the mixed hedge tree domain of Δ into AssignStrings.
- A labelled hyperconfiguration Δ^{σ} is pair comprising a hyperconfiguration Δ and a labelling σ of Δ. We define the yield of a labelled hyperconfiguration Δ^{σ} as follows:
(1) yield $\left(\Lambda^{\sigma}\right)=\Lambda$

$$
\operatorname{yield}\left(1^{\sigma}\right)=1
$$

$$
\text { yield }\left((\Delta, \Gamma)^{\sigma}\right)=\operatorname{yield}\left(\Delta^{\sigma}\right)+\operatorname{yield}\left(\Gamma^{\sigma}\right)
$$

$$
\text { yield }\left(\boldsymbol{A}^{\sigma}\right)=\sigma(\boldsymbol{A}) \text { for } A \text { of sort } 0
$$

$$
\operatorname{yield}\left(\left(A\left\{\Delta_{1}: \cdots: \Delta_{s A}\right\}\right)^{\sigma}\right)=
$$

$$
a_{1}+\operatorname{yield}\left(\Delta_{1}^{\sigma}\right)+a_{2}+\cdots+a_{S A-1}+\operatorname{yield}\left(\Delta_{s A}^{\sigma}\right)+a_{S A}
$$

Where in the last line of the definition A is of sort greater than 0 and $\sigma(A)$ is $a_{1}+1+a_{2}+\cdots+a_{S A-1}+1+a_{S A}$.

Displacement (Lambek) Grammars

- A labelling σ of a hyperconfiguation Δ is compatible with a lexicon Lex if and only if $\sigma(A): A \in$ Lex for every A in Δ.
- A grammar is a pair $G=($ Lex; $S)$ where Lex is a lexicon and S a subtype of the type components of the lexicon. S is the target (type) symbol.
- The language of $G L(G)$ is defined as follows:
(2) $L($ Lex, $A)=\left\{\right.$ yield $\left(\Delta^{\sigma}\right) \mid$ such that $\Delta \Rightarrow A$ is a theorem of D and σ is compatible with Lex\}
- The problem of recognition in the class of \mathbf{D}-grammars is decidable.
Proof. Since for every labelling σ compatible with a lexicon for every type $A, \sigma(A)$ contains at least one symbol of Σ $(\sigma(A) \in$ AssignStrings!), the set of labelled hyperconfigurations such that their yield equals a given α is finite. Now as theoremhood in the \mathbf{D} is decidable we have then that the problem of recognition is decidable since it reduces to a finite number of tests of theoremhood. \square

On the Generative Capacity of the Core Logic D: Lower Bounds

The generative capacity of \mathbf{D} has as lower bounds two axes of classes of languages:

- The class of well-nested multiple context-free languages (Wijnholds (2011) and Sorokin (2013))
- The class of the permutation closure of context-free languages (Morrill and Valentín 2010)

On the Generative Capacity of the Core Logic D: Well-Nested Multiple Context-Free Languages

- Wijnholds (2011) shows that lexicalized well-nested range-concatenation languages are generable by first-order displacement Lambek grammars. As a matter of fact, the class of well-nested range-concatenation languages equals the class of well-nested multiple context-free languages. In order to show this theorem this author proves a result of lexicalization of well-nested range-concatenation grammars.
- Sorokin (2013) generalises DMCFGs to an unbounded number of points of discontinuity (an infinite set of function modes of intercalation). In this way, he gives among other nomal forms a Greibach-like normal form for what he calls displacement grammars (not to be confused with our displacement Lambek grammars!). The Greibach normal for displacement grammars allows Sorokin to define a first-order displacement (Lambek) grammar which generates the language of displacement grammars. But, the class of (Sorokin) displacement languages equals the class of well nested multiple context-free languages.

On the Generative Capacity of the Core Logic \mathbf{D} : The Class of the Permutation Closure of Context-Free Languages

- This result is obtained using a restricted fragment of the calculus. We define the set $T=$ $\{A \mid A$ is an atomic type $\} \cup\{(A \uparrow I) \downarrow B \mid A$ and B are atomic types $\}$. A T-hypersequent is a hypersequent such that the types of the antecedent belong to T and the succedent is an atomic type. Note every type of T has sort 0 .
- Interestingly, one can see that every provable T-hypersequent satisfies that every permutation of the antecedent preserves the provability of the hypersequent.
- To every right-linear grammar corresponds a lexicon constituted by types belonging to T.
- Invoking properties of semi-linear sets (Van Benthem (1991)), one proves that displacement (Lambek) grammars generate the permutation closure of context-free languages.

Some Examples of Formal Languages: the Copy Language

Let Lex contain the following lexical assignments:

$$
\begin{array}{lll}
a & : & A, J(A \backslash S), J \backslash(S \downarrow(A \backslash S)) \\
b & : & B, J \backslash(B \backslash S), J \backslash(S \downarrow(B \backslash S))
\end{array}
$$

Where A and B are of sort 0 , and S of sort 1. Let the \mathbf{D} grammar $G=($ Lex; $S \odot I)$. The target symbol is $S \odot I . L(G)=\left\{w+w \mid w \in\{a, b\}^{+}\right\}$. We have the following hypersequent derivation for $a+b+a+b: S \odot I$:

$\frac{B \Rightarrow B \quad S\{1\} \Rightarrow S}{B, 1, \underline{J \backslash(B \backslash S)} \Rightarrow S} \backslash L$	$\frac{A \Rightarrow A \quad S\{1\} \Rightarrow S}{A, B, \underline{S \downarrow(A \backslash S)}\{1\}, J \backslash(B \backslash S) \Rightarrow S}$
$1 \Rightarrow J$	
$a: A, b: B, 1, a: \underline{J \backslash(S \downarrow(A \backslash S)), b: J \backslash(B \backslash S) \Rightarrow S \quad(\star)} \backslash L$	

From (\star) we have:

$$
\frac{A, B, 1, J \backslash(S \downarrow(A \backslash S)), J \backslash(B \backslash S) \Rightarrow S \quad \Lambda \Rightarrow I}{a: A, b: B, \wedge, a: J \backslash(S \downarrow(A \backslash S)), b: J \backslash(B \backslash S) \Rightarrow \underline{S} \odot} \odot R
$$

Some Examples of Formal Languages: MIX

Recall that $M I X=\left\{w \mid w \in\{a, b, c\}^{+}\right.$and $\left.\#_{a}(w)=\#_{b}(w)=\#_{c}(w)\right\}$. Let Lex $=\left\{a:^{`} S_{1} \downarrow S, b:^{`} S_{2} \downarrow S_{1}, c: S_{2}, c:^{`} S \downarrow S_{2}\right\}$. Let $G=($ Lex; $S)$. We have $L(G)=$ MIX. A sample of a derivation of $c+a+b+a+c+b$:
$\xrightarrow{1, S_{2} \Rightarrow S_{2} \quad S_{1} \Rightarrow S_{1}} \downarrow L$

$$
\Lambda, S_{2} \downarrow S_{1}, S_{2} \Rightarrow S_{1}
$$

$$
1,{ }^{\sim} S_{1} \downarrow S,{ }^{\sim} S_{2} \downarrow S_{1}, S_{2} \Rightarrow \sim S \quad S_{2} \Rightarrow S_{2}
$$

$$
S_{1} \Rightarrow S_{1}
$$

$$
\begin{aligned}
& { }^{`} \text { } \downarrow \downarrow S_{2},{ }^{\wedge} S_{1} \downarrow S,{ }^{\bullet} S_{2} \downarrow S_{1}, \Lambda, S_{2},{ }^{\wedge} S_{2} \downarrow S_{1} \Rightarrow S_{1} \\
& { }^{`} S^{\prime} \downarrow S_{2},{ }^{`} S_{1} \downarrow S,{ }^{`} S_{2} \downarrow S_{1}, 1, S_{2},{ }^{`} S_{2} \downarrow S_{1} \Rightarrow{ }^{`} S_{1} \\
& S \Rightarrow S \\
& c: ` \checkmark \downarrow S_{2}, a:{ }^{`} S_{1} \downarrow S, b:{ }^{`} S_{2} \downarrow S_{1}, a:{ }^{`} S_{1} \downarrow S, c: S_{2}, b:{ }^{`} S_{2} \downarrow S_{1} \Rightarrow S
\end{aligned}
$$

Towards Algebraic Semantics

- \mathbf{D} is model-theoretically motivated, and the key to its conception is the use of many-sorted universal algebra (Goguen and Meseguer (1985)), namely ω-sorted universal algebra.
- Here, we assume a version of many-sorted algebra such that the sort domains of an ω-sorted algebra \mathcal{A} are non-empty. With this condition we avoid some pathologies which arise in a naïve version of many-sorted universal algebra (Goguen and Meseguer (1985), Lalement (1991)).
- In the naïve version of many-sorted universal algebra the completeness theorem of many-sorted equational logic does not hold!

Towards Algebraic Semantics

- Consider the ω-sorted signature $\Sigma_{D}=\left(+,\left\{x_{i}\right\}_{i>0}, 0,1\right)$ with sort functionalities $\left((i, j \rightarrow i+j)_{i, j \geq 0}(i, j \rightarrow i+j-1)_{i>0, j \geq 0}, 0,1\right)$. Displacement algebras (DAs) for \mathbf{D} have this signature.
- The ω-sorted signature for residuated DAs is $\sum_{D}^{R e s}=\left(+, \backslash \backslash, / /,\left\{\times_{i}\right\}_{>0},\left\{\uparrow \uparrow_{i}\right\}_{\gg 0},\left\{\downarrow \downarrow_{i}\right\}_{\gg 0}, 0,1\right)$ with sort functionalities:

$$
\left((i, j \rightarrow i+j)_{i, j \geq 0},(i, i+j \rightarrow j),(j, i+j \rightarrow i),(i, j \rightarrow i+j-1)_{i>0, j \geq 0},(i+j, j \rightarrow i+1),(i+1, j \rightarrow i+j), 0,1\right)
$$

Residuated DAs

A residuated $\mathrm{DA} \mathcal{A}$ is a $\Sigma_{D}^{\text {Res }}$ algebra such that

- The Σ_{D}-reduct of \mathcal{A} is a DA
- The $(+, / /, \backslash \backslash)$ forms a residuated triple
- For every $i>0,\left(\times_{i}, \uparrow \uparrow_{i}, \downarrow \downarrow_{i}\right)$ forms a residuated triple

Displacement Models

- Consider the $\sum_{D}^{\text {Res }} \mathcal{F}$ algebra of \mathbf{D} types. Let $\mathcal{P} \mathcal{R}$ be the set of ω-sorted primitive types.
- A model $\mathcal{M}=(\mathcal{A}, v)$ comprises a residuated DA and a ω-sorted mapping $v: \mathscr{P} \mathcal{R} \rightarrow \mathcal{F}$ called a valuation. The mapping \widehat{v} is the

$$
\text { (3) } \begin{aligned}
\widehat{v}(A * B) & =\widehat{v}(A) * \widehat{v}(B) \quad \text { if } * \text { is a binary connective } \\
\widehat{v}(I) & =0 \mathcal{A} \\
\widehat{v}(J) & =1 \mathcal{A}
\end{aligned}
$$

- Needless to say, the mappings v and \widehat{v} preserve the sorting regime.

The (very) First Step towards Algebraic Semantics

- The Lindenbaum-Tarski construction in algebraic semantics (Font et al (2003))
- This classical construction leads to the strong completeness of D w.r.t. the class of residuated DAs

Some Special Residuated DAs

- Since the class of DAs form a variety, it is closed by subalgebras, direct products and homomorphic images, which give additional DAs, in which we can consider residuation.
- We have other interesting examples of DAs, for instance the powerset DA over a DA $\mathcal{A}=\left(A,+,\left\{x_{i}\right\}_{i>0}, 0,1\right)$, which we denote $\mathcal{P}(\mathcal{A})$. We have:
(4) $\mathcal{P}(\mathcal{A})=\left(\mathcal{P}(\mathcal{A}), \cdot,\left\{\circ_{i}\right\}_{>0}, \mathbb{I}, \mathbb{J}\right)$

The notation of the carrier set of $\mathcal{P}(\mathcal{A})$ presupposes that its members are same-sort subsets; notice that \emptyset vacuously satisfies the same-sort condition.

It is readily seen that for every $\mathcal{A}, \mathcal{P}(\mathcal{A})$ is in fact a DA. Notice that every sort domain $\mathcal{P}(\mathcal{A})_{i}$ is a collection of same-sort subsets.

- The continuous and discontinuous residuals are naturally induced by the powerset operations

Some Special Completeness results

Consider the so-called implicative fragment, which we denote $\mathbf{D}[\rightarrow]$. This fragment comprises the continuous and discontinuous implications, the non-deterministic discontinuous connectives, and the (synthetic) unary connectives ${ }_{k}^{\sim}$ and projections ($\triangleleft^{-1}, \triangleright^{-1}$).

- Projections can simplify the account of cross-serial dependencies in Dutch.
- The nondeterministic discontinous implications (\uparrow, \Downarrow) can be used to account for particle shift nondeterminism where the object can be intercalated between the verb and the particle, or after the particle. For a particle verb like call $+1+$ up we can give the lexical assigment $\triangleleft^{-1}\left(\begin{array}{l}\imath \\ 1\end{array}(N \backslash S) \Uparrow N\right)$.
- The split connective can be used for parentheticals like fortunately with the type assignment ${ }_{1}{ }^{`} S \downarrow_{1} S$.

Some Special Completeness results

- $\mathbf{D}[\rightarrow]$ is strongly complete w.r.t. the so-called free separated monoids (Valentín (2016)).
- $\mathrm{D}[\rightarrow]$ without the split connectives are strongly complete w.r.t. the so-called language models (ibid).
- In fact, the last result is true of language models with exacly three generators, one of them being of course the separator (ibid).
- D is strongly complete over residuated powerset residuated DAs over DAs, via a representation theorem à la Buszkowski (1997) (to be submitted).

