
Displacement Logic for Grammar

Glyn Morrill & Oriol Valentı́n

Department of Computer Science
Universitat Politècnica de Catalunya

morrill@cs.upc.edu & oriol.valentin@gmail.com

ESSLLI 2016, Bolzano – Bozen

Lecture 4

From Linearity to Non-Linearity

Linguistic applications of connectives

In Gentzen sequent antecedents for displacement logic with
bracket modalities (structural inhibition) and exponentials
(structural facilitation) there is also a bracket constructor for the
former and ‘stoups’ for the latter.

Stoups (cf. the linear logic of Girard 2011[3]) (⇣) are stores read
as multisets for re-usable (nonlinear) resources which appear
at the left of a configuration marked off by a semicolon (when
the stoup is empty the semicolon may be omitted).

A configuration together with a stoup is a zone (⌦). The bracket
constructor applies not to a configuration alone but to a
configuration with a stoup, i.e a zone: reusable resources are
specific to their domain.

Linguistic applications of connectives

In Gentzen sequent antecedents for displacement logic with
bracket modalities (structural inhibition) and exponentials
(structural facilitation) there is also a bracket constructor for the
former and ‘stoups’ for the latter.

Stoups (cf. the linear logic of Girard 2011[3]) (⇣) are stores read
as multisets for re-usable (nonlinear) resources which appear
at the left of a configuration marked off by a semicolon (when
the stoup is empty the semicolon may be omitted).

A configuration together with a stoup is a zone (⌦). The bracket
constructor applies not to a configuration alone but to a
configuration with a stoup, i.e a zone: reusable resources are
specific to their domain.

Linguistic applications of connectives

In Gentzen sequent antecedents for displacement logic with
bracket modalities (structural inhibition) and exponentials
(structural facilitation) there is also a bracket constructor for the
former and ‘stoups’ for the latter.

Stoups (cf. the linear logic of Girard 2011[3]) (⇣) are stores read
as multisets for re-usable (nonlinear) resources which appear
at the left of a configuration marked off by a semicolon (when
the stoup is empty the semicolon may be omitted).

A configuration together with a stoup is a zone (⌦). The bracket
constructor applies not to a configuration alone but to a
configuration with a stoup, i.e a zone: reusable resources are
specific to their domain.

Linguistic applications of connectives

In Gentzen sequent antecedents for displacement logic with
bracket modalities (structural inhibition) and exponentials
(structural facilitation) there is also a bracket constructor for the
former and ‘stoups’ for the latter.

Stoups (cf. the linear logic of Girard 2011[3]) (⇣) are stores read
as multisets for re-usable (nonlinear) resources which appear
at the left of a configuration marked off by a semicolon (when
the stoup is empty the semicolon may be omitted).

A configuration together with a stoup is a zone (⌦). The bracket
constructor applies not to a configuration alone but to a
configuration with a stoup, i.e a zone: reusable resources are
specific to their domain.

Zones Zone, stoups Stoup and configurations Config are
defined by (; is the empty stoup; ⇤ is the empty configuration;
the separator 1 marks points of discontinuity.):

Zone ::= Stoup;Config

Stoup ::= ; | Tp0,Stoup

Config ::= ⇤ | TreeTerm,Config

TreeTerm ::= 1 | Tp0 | Tpi>0{Config : . . . : Config

| {z }
i Config

0s

} | [Zone]

Where a type A of sort i > 0 includes
↵0+1+↵1+ · · ·+↵i�1+1+↵i and �1 2 �1, . . . , �i 2 �i ,
A {�1 : . . . : �i} contains ↵0+�1+↵1+ · · ·+↵i�1+�i+↵i .

Zones Zone, stoups Stoup and configurations Config are
defined by (; is the empty stoup; ⇤ is the empty configuration;
the separator 1 marks points of discontinuity.):

Zone ::= Stoup;Config

Stoup ::= ; | Tp0,Stoup

Config ::= ⇤ | TreeTerm,Config

TreeTerm ::= 1 | Tp0 | Tpi>0{Config : . . . : Config

| {z }
i Config

0s

} | [Zone]

Where a type A of sort i > 0 includes
↵0+1+↵1+ · · ·+↵i�1+1+↵i and �1 2 �1, . . . , �i 2 �i ,
A {�1 : . . . : �i} contains ↵0+�1+↵1+ · · ·+↵i�1+�i+↵i .

Zones Zone, stoups Stoup and configurations Config are
defined by (; is the empty stoup; ⇤ is the empty configuration;
the separator 1 marks points of discontinuity.):

Zone ::= Stoup;Config

Stoup ::= ; | Tp0,Stoup

Config ::= ⇤ | TreeTerm,Config

TreeTerm ::= 1 | Tp0 | Tpi>0{Config : . . . : Config

| {z }
i Config

0s

} | [Zone]

Where a type A of sort i > 0 includes
↵0+1+↵1+ · · ·+↵i�1+1+↵i and �1 2 �1, . . . , �i 2 �i ,
A {�1 : . . . : �i} contains ↵0+�1+↵1+ · · ·+↵i�1+�i+↵i .

For a type A , its sort sA is the i such that A 2 Tpi ;

for example:

s(S"1N)"1N = s(S"1N)"2N = 2

For a configuration �, its sort s� is |�|1, i.e. the number of
separators 1 which � contains.

For a zone ⌦, its sort s⌦ is the sort of its configuration since
stoup types are of sort is 0; for example:

sN; 1,1, (S"1N)"2N{N/CN,CN : 1} =
s1,1, (S"1N)"2N{N/CN,CN : 1} = 3

Sequents are of the form:

Zone) Tp such that sZone = sTp

For a type A , its sort sA is the i such that A 2 Tpi ; for example:

s(S"1N)"1N = s(S"1N)"2N = 2

For a configuration �, its sort s� is |�|1, i.e. the number of
separators 1 which � contains.

For a zone ⌦, its sort s⌦ is the sort of its configuration since
stoup types are of sort is 0; for example:

sN; 1,1, (S"1N)"2N{N/CN,CN : 1} =
s1,1, (S"1N)"2N{N/CN,CN : 1} = 3

Sequents are of the form:

Zone) Tp such that sZone = sTp

For a type A , its sort sA is the i such that A 2 Tpi ; for example:

s(S"1N)"1N = s(S"1N)"2N = 2

For a configuration �, its sort s� is |�|1, i.e. the number of
separators 1 which � contains.

For a zone ⌦, its sort s⌦ is the sort of its configuration since
stoup types are of sort is 0; for example:

sN; 1,1, (S"1N)"2N{N/CN,CN : 1} =
s1,1, (S"1N)"2N{N/CN,CN : 1} = 3

Sequents are of the form:

Zone) Tp such that sZone = sTp

For a type A , its sort sA is the i such that A 2 Tpi ; for example:

s(S"1N)"1N = s(S"1N)"2N = 2

For a configuration �, its sort s� is |�|1, i.e. the number of
separators 1 which � contains.

For a zone ⌦, its sort s⌦ is the sort of its configuration since
stoup types are of sort is 0; for example:

sN; 1,1, (S"1N)"2N{N/CN,CN : 1} =
s1,1, (S"1N)"2N{N/CN,CN : 1} = 3

Sequents are of the form:

Zone) Tp such that sZone = sTp

For a type A , its sort sA is the i such that A 2 Tpi ; for example:

s(S"1N)"1N = s(S"1N)"2N = 2

For a configuration �, its sort s� is |�|1, i.e. the number of
separators 1 which � contains.

For a zone ⌦, its sort s⌦ is the sort of its configuration since
stoup types are of sort is 0; for example:

sN; 1,1, (S"1N)"2N{N/CN,CN : 1} =
s1,1, (S"1N)"2N{N/CN,CN : 1} = 3

Sequents are of the form:

Zone) Tp such that sZone = sTp

For a type A , its sort sA is the i such that A 2 Tpi ; for example:

s(S"1N)"1N = s(S"1N)"2N = 2

For a configuration �, its sort s� is |�|1, i.e. the number of
separators 1 which � contains.

For a zone ⌦, its sort s⌦ is the sort of its configuration since
stoup types are of sort is 0; for example:

sN; 1,1, (S"1N)"2N{N/CN,CN : 1} =
s1,1, (S"1N)"2N{N/CN,CN : 1} = 3

Sequents are of the form:

Zone) Tp such that sZone = sTp

For a type A , its sort sA is the i such that A 2 Tpi ; for example:

s(S"1N)"1N = s(S"1N)"2N = 2

For a configuration �, its sort s� is |�|1, i.e. the number of
separators 1 which � contains.

For a zone ⌦, its sort s⌦ is the sort of its configuration since
stoup types are of sort is 0; for example:

sN; 1,1, (S"1N)"2N{N/CN,CN : 1} =
s1,1, (S"1N)"2N{N/CN,CN : 1} = 3

Sequents are of the form:

Zone) Tp such that sZone = sTp

The figure
�!
A of a type A is defined by:

�!
A =

8>>><>>>:

A if sA = 0
A {1 : . . . : 1| {z }

sA 1’s

} if sA > 0

The figure
�!
A of a type A is defined by:

�!
A =

8>>><>>>:

A if sA = 0
A {1 : . . . : 1| {z }

sA 1’s

} if sA > 0

Where � is a configuration of sort i and �1, . . . ,�i are
configurations, the fold � ⌦ h�1 : . . . : �ii is the result of
replacing the successive 1’s in � by �1, . . . ,�i respectively;

similarly, where ⌦ is a zone of sort i and �1, . . . ,�i are
configurations, the fold ⌦ ⌦ h�1 : . . . : �ii is the result of
replacing the successive 1’s in the configuration of ⌦ by
�1, . . . ,�i respectively.

Where � is a configuration of sort i and �1, . . . ,�i are
configurations, the fold � ⌦ h�1 : . . . : �ii is the result of
replacing the successive 1’s in � by �1, . . . ,�i respectively;
similarly, where ⌦ is a zone of sort i and �1, . . . ,�i are
configurations, the fold ⌦ ⌦ h�1 : . . . : �ii is the result of
replacing the successive 1’s in the configuration of ⌦ by
�1, . . . ,�i respectively.

Where � is a configuration of sort i, the hyperoccurrence
notation �h�i abbreviates �0(� ⌦ h�1 : . . . : �ii),

i.e. a context
configuration � (which is externally �0 and internally
�1, . . . ,�i) with a potentially discontinuous distinguished
subconfiguration �; similarly, where ⌦ is a zone of sort i, the
hyperoccurrence notation ⌦h�i abbreviates
⇣;�0(� ⌦ h�1 : . . . : �ii) where ⌦ = ⇣;� i.e. a context zone ⇣;�
(which is externally ⇣;�0 and internally �1, . . . ,�i) with a
potentially discontinuous distinguished subconfiguration �.

Where � is a configuration of sort i, the hyperoccurrence
notation �h�i abbreviates �0(� ⌦ h�1 : . . . : �ii), i.e. a context
configuration � (which is externally �0 and internally
�1, . . . ,�i) with a potentially discontinuous distinguished
subconfiguration �;

similarly, where ⌦ is a zone of sort i, the
hyperoccurrence notation ⌦h�i abbreviates
⇣;�0(� ⌦ h�1 : . . . : �ii) where ⌦ = ⇣;� i.e. a context zone ⇣;�
(which is externally ⇣;�0 and internally �1, . . . ,�i) with a
potentially discontinuous distinguished subconfiguration �.

Where � is a configuration of sort i, the hyperoccurrence
notation �h�i abbreviates �0(� ⌦ h�1 : . . . : �ii), i.e. a context
configuration � (which is externally �0 and internally
�1, . . . ,�i) with a potentially discontinuous distinguished
subconfiguration �; similarly, where ⌦ is a zone of sort i, the
hyperoccurrence notation ⌦h�i abbreviates
⇣;�0(� ⌦ h�1 : . . . : �ii) where ⌦ = ⇣;�

i.e. a context zone ⇣;�
(which is externally ⇣;�0 and internally �1, . . . ,�i) with a
potentially discontinuous distinguished subconfiguration �.

Where � is a configuration of sort i, the hyperoccurrence
notation �h�i abbreviates �0(� ⌦ h�1 : . . . : �ii), i.e. a context
configuration � (which is externally �0 and internally
�1, . . . ,�i) with a potentially discontinuous distinguished
subconfiguration �; similarly, where ⌦ is a zone of sort i, the
hyperoccurrence notation ⌦h�i abbreviates
⇣;�0(� ⌦ h�1 : . . . : �ii) where ⌦ = ⇣;� i.e. a context zone ⇣;�
(which is externally ⇣;�0 and internally �1, . . . ,�i) with a
potentially discontinuous distinguished subconfiguration �.

Where � is a configuration of sort i > 0 and � is a configuration,
the k th metalinguistic intercalation � |k �, 1  k  i, is given by:

� |k � =df � ⌦ h1 : . . . : 1| {z }
k�1 1’s

: � : 1 : . . . : 1| {z }
i�k 1’s

i

i.e. � |k � is the configuration resulting from replacing by � the
k th separator in �.

Where � is a configuration of sort i > 0 and � is a configuration,
the k th metalinguistic intercalation � |k �, 1  k  i, is given by:

� |k � =df � ⌦ h1 : . . . : 1| {z }
k�1 1’s

: � : 1 : . . . : 1| {z }
i�k 1’s

i

i.e. � |k � is the configuration resulting from replacing by � the
k th separator in �.

Where � is a configuration of sort i > 0 and � is a configuration,
the k th metalinguistic intercalation � |k �, 1  k  i, is given by:

� |k � =df � ⌦ h1 : . . . : 1| {z }
k�1 1’s

: � : 1 : . . . : 1| {z }
i�k 1’s

i

i.e. � |k � is the configuration resulting from replacing by � the
k th separator in �.

A semantically labelled sequent is a sequent in which the
antecedent types A1, . . . ,An are labelled by distinct variables
x1, . . . , xn of types T(A1), . . . ,T(An) respectively, and the
succedent type A is labelled by a term of type T(A) with free
variables drawn from x1, . . . , xn.

The identity rules

The identity axiom is (a); since we adopt the convention that
empty stoups can be omitted, we write (b):

a. id
;;�!A : x) A : x b . id�!

A : x) A : x

The Cut rule is:

⇣1; �) A ⇣2;�h
�!
A i)) B

Cut
⇣1] ⇣2;�h�i)) B

The identity rules

The identity axiom is (a); since we adopt the convention that
empty stoups can be omitted, we write (b):

a. id
;;�!A : x) A : x b . id�!

A : x) A : x

The Cut rule is:

⇣1; �) A ⇣2;�h
�!
A i)) B

Cut
⇣1] ⇣2;�h�i)) B

The identity rules

The identity axiom is (a); since we adopt the convention that
empty stoups can be omitted, we write (b):

a. id
;;�!A : x) A : x b . id�!

A : x) A : x

The Cut rule is:

⇣1; �) A ⇣2;�h
�!
A i)) B

Cut
⇣1] ⇣2;�h�i)) B

Continuous multiplicatives

The continuous multiplicatives {/, \, •, I} of Lambek (1958[7];
1988[6]), are the basic means of categorial (sub)categorization.

1.
⇣1;�) B: ⇣2;�h

�!
C : zi) D:!

/L

⇣1] ⇣2;�h
���!
C/B: x ,�i) D:!{(x)/z}

⇣;�,
�!
B : y) C:�

/R

⇣;�) C/B:�y�

2.
⇣1;�) A :� ⇣2;�h

�!
C : zi) D:!

\L
⇣1] ⇣2;�h�,

���!
A\C: yi) D:!{(y �)/z}

⇣;
�!
A : x ,�) C:�

\R
⇣;�) A\C:�x�

3.
⇣;�h�!A : x ,

�!
B : yi) D:!

•L
⇣;�h���!A•B: zi) D:!{⇡1z/x ,⇡2z/y}

⇣1;�1) A :� ⇣2;�2) B:

•R
⇣1] ⇣2;�1 ,�2) A•B: (�,)

4.

⇣;�h⇤i) A :�

IL

⇣;�h�!I : xi) A :�

IR

⇤) I: 0

Continuous multiplicatives

The continuous multiplicatives {/, \, •, I} of Lambek (1958[7];
1988[6]), are the basic means of categorial (sub)categorization.

1.
⇣1;�) B: ⇣2;�h

�!
C : zi) D:!

/L

⇣1] ⇣2;�h
���!
C/B: x ,�i) D:!{(x)/z}

⇣;�,
�!
B : y) C:�

/R

⇣;�) C/B:�y�

2.
⇣1;�) A :� ⇣2;�h

�!
C : zi) D:!

\L
⇣1] ⇣2;�h�,

���!
A\C: yi) D:!{(y �)/z}

⇣;
�!
A : x ,�) C:�

\R
⇣;�) A\C:�x�

3.
⇣;�h�!A : x ,

�!
B : yi) D:!

•L
⇣;�h���!A•B: zi) D:!{⇡1z/x ,⇡2z/y}

⇣1;�1) A :� ⇣2;�2) B:

•R
⇣1] ⇣2;�1 ,�2) A•B: (�,)

4.

⇣;�h⇤i) A :�

IL

⇣;�h�!I : xi) A :�

IR

⇤) I: 0

Continuous multiplicatives

The continuous multiplicatives {/, \, •, I} of Lambek (1958[7];
1988[6]), are the basic means of categorial (sub)categorization.

1.
⇣1;�) B: ⇣2;�h

�!
C : zi) D:!

/L

⇣1] ⇣2;�h
���!
C/B: x ,�i) D:!{(x)/z}

⇣;�,
�!
B : y) C:�

/R

⇣;�) C/B:�y�

2.
⇣1;�) A :� ⇣2;�h

�!
C : zi) D:!

\L
⇣1] ⇣2;�h�,

���!
A\C: yi) D:!{(y �)/z}

⇣;
�!
A : x ,�) C:�

\R
⇣;�) A\C:�x�

3.
⇣;�h�!A : x ,

�!
B : yi) D:!

•L
⇣;�h���!A•B: zi) D:!{⇡1z/x ,⇡2z/y}

⇣1;�1) A :� ⇣2;�2) B:

•R
⇣1] ⇣2;�1 ,�2) A•B: (�,)

4.

⇣;�h⇤i) A :�

IL

⇣;�h�!I : xi) A :�

IR

⇤) I: 0

The directional divisions over, /, and under, \, are exemplified
by assignments such as the:N/CN for the man:N and
sings:N\S for John sings:S, and loves: (N\S)/N for
John loves Mary:S.

Hence, for the man:

CN) CN N) N
/L

N/CN,CN) N

And for John sings and John loves Mary:

N) N S) S
\L

N,N\S) S
N) N

N) N S) S
\L

N,N\S) S
/L

N, (N\S)/N,N) S

The directional divisions over, /, and under, \, are exemplified
by assignments such as the:N/CN for the man:N and
sings:N\S for John sings:S, and loves: (N\S)/N for
John loves Mary:S. Hence, for the man:

CN) CN N) N
/L

N/CN,CN) N

And for John sings and John loves Mary:

N) N S) S
\L

N,N\S) S
N) N

N) N S) S
\L

N,N\S) S
/L

N, (N\S)/N,N) S

The directional divisions over, /, and under, \, are exemplified
by assignments such as the:N/CN for the man:N and
sings:N\S for John sings:S, and loves: (N\S)/N for
John loves Mary:S. Hence, for the man:

CN) CN N) N
/L

N/CN,CN) N

And for John sings and John loves Mary:

N) N S) S
\L

N,N\S) S
N) N

N) N S) S
\L

N,N\S) S
/L

N, (N\S)/N,N) S

The continuous product • is exemplified by a ‘small clause’
assignment such as considers: (N\S)/ (N•(CN/CN)) for
John considers Mary socialist:S.

N) N

CN) CN CN) CN
/L

CN/CN,CN) CN
/R

CN/CN) CN/CN
•R

N,CN/CN) N•(CN/CN)

N) N S) S
\L

N,N\S) S
/L

N, (N\S)/(N•(CN/CN)),N,CN/CN) S

Of course this use of product is not essential: we could just as
well have used ((N\S)/(CN/CN))/N since in general we have
both A/(C•B)) (A/B)/C (currying) and
(A/B)/C) A/(C•B) (uncurrying).

The continuous product • is exemplified by a ‘small clause’
assignment such as considers: (N\S)/ (N•(CN/CN)) for
John considers Mary socialist:S.

N) N

CN) CN CN) CN
/L

CN/CN,CN) CN
/R

CN/CN) CN/CN
•R

N,CN/CN) N•(CN/CN)

N) N S) S
\L

N,N\S) S
/L

N, (N\S)/(N•(CN/CN)),N,CN/CN) S

Of course this use of product is not essential: we could just as
well have used ((N\S)/(CN/CN))/N since in general we have
both A/(C•B)) (A/B)/C (currying) and
(A/B)/C) A/(C•B) (uncurrying).

The continuous product • is exemplified by a ‘small clause’
assignment such as considers: (N\S)/ (N•(CN/CN)) for
John considers Mary socialist:S.

N) N

CN) CN CN) CN
/L

CN/CN,CN) CN
/R

CN/CN) CN/CN
•R

N,CN/CN) N•(CN/CN)

N) N S) S
\L

N,N\S) S
/L

N, (N\S)/(N•(CN/CN)),N,CN/CN) S

Of course this use of product is not essential: we could just as
well have used ((N\S)/(CN/CN))/N since in general we have
both A/(C•B)) (A/B)/C (currying) and
(A/B)/C) A/(C•B) (uncurrying).

Discontinuous multiplicatives

The discontinuous multiplicatives {", #, �, J}, the displacement
connectives, of Morrill and Valentı́n (2010[13]), Morrill et al.
(2011[15]), are defined in relation to intercalation.

5.
⇣1;�) B: ⇣2;�h

�!
C : zi) D:!

"k L

⇣1] ⇣2;�h
����!
C"k B: x |k �i) D:!{(x)/z}

⇣;� |k
�!
B : y) C:�

"k R

⇣;�) C"k B:�y�

6.
⇣1;�) A :� ⇣2;�h

�!
C : zi) D:!

#k L

⇣1] ⇣2;�h� |k
�����!
A#k C: yi) D:!{(y �)/z}

⇣;
�!
A : x |k �) C:�

#k R

⇣;�) A#k C:�x�

7.
⇣;�h�!A : x |k

�!
B : yi) D:!

�k L

⇣;�h�����!A�k B: zi) D:!{⇡1z/x ,⇡2z/y}

⇣1;�1) A :� ⇣2;�2) B:

�k R

⇣1] ⇣2;�1 |k �2) A�k B

8.

⇣;�h1i) A :�

JL

⇣;�h�!J : xi) A :�

JR

1) J:0

Discontinuous multiplicatives

The discontinuous multiplicatives {", #, �, J}, the displacement
connectives, of Morrill and Valentı́n (2010[13]), Morrill et al.
(2011[15]), are defined in relation to intercalation.

5.
⇣1;�) B: ⇣2;�h

�!
C : zi) D:!

"k L

⇣1] ⇣2;�h
����!
C"k B: x |k �i) D:!{(x)/z}

⇣;� |k
�!
B : y) C:�

"k R

⇣;�) C"k B:�y�

6.
⇣1;�) A :� ⇣2;�h

�!
C : zi) D:!

#k L

⇣1] ⇣2;�h� |k
�����!
A#k C: yi) D:!{(y �)/z}

⇣;
�!
A : x |k �) C:�

#k R

⇣;�) A#k C:�x�

7.
⇣;�h�!A : x |k

�!
B : yi) D:!

�k L

⇣;�h�����!A�k B: zi) D:!{⇡1z/x ,⇡2z/y}

⇣1;�1) A :� ⇣2;�2) B:

�k R

⇣1] ⇣2;�1 |k �2) A�k B

8.

⇣;�h1i) A :�

JL

⇣;�h�!J : xi) A :�

JR

1) J:0

Discontinuous multiplicatives

The discontinuous multiplicatives {", #, �, J}, the displacement
connectives, of Morrill and Valentı́n (2010[13]), Morrill et al.
(2011[15]), are defined in relation to intercalation.

5.
⇣1;�) B: ⇣2;�h

�!
C : zi) D:!

"k L

⇣1] ⇣2;�h
����!
C"k B: x |k �i) D:!{(x)/z}

⇣;� |k
�!
B : y) C:�

"k R

⇣;�) C"k B:�y�

6.
⇣1;�) A :� ⇣2;�h

�!
C : zi) D:!

#k L

⇣1] ⇣2;�h� |k
�����!
A#k C: yi) D:!{(y �)/z}

⇣;
�!
A : x |k �) C:�

#k R

⇣;�) A#k C:�x�

7.
⇣;�h�!A : x |k

�!
B : yi) D:!

�k L

⇣;�h�����!A�k B: zi) D:!{⇡1z/x ,⇡2z/y}

⇣1;�1) A :� ⇣2;�2) B:

�k R

⇣1] ⇣2;�1 |k �2) A�k B

8.

⇣;�h1i) A :�

JL

⇣;�h�!J : xi) A :�

JR

1) J:0

When the value of the k subscript is one it may be omitted, i.e.
it defaults to one.

Circumfixation, ", is exemplified by a
discontinuous idiom assignment gives+1+the+cold+shoulder:
(N\S)"N for Mary gives the man the cold shoulder:S:

CN) CN N) N
/L

N/CN,CN) N

N) N S) S
\L

N,N\S) S
"L

N, (N\S)"N{N/CN,CN}) S

Infixation, #, and extraction together are exemplified by a
quantifier assignment everyone: (S"N)#S simulating
Montague’s S14 quantifying in:

. . . ,N, . . .) S
"R

. . . ,1, . . .) S"N
id

S) S
#L

. . . , (S"N)#S , . . .) S

When the value of the k subscript is one it may be omitted, i.e.
it defaults to one. Circumfixation, ", is exemplified by a
discontinuous idiom assignment gives+1+the+cold+shoulder:
(N\S)"N for Mary gives the man the cold shoulder:S:

CN) CN N) N
/L

N/CN,CN) N

N) N S) S
\L

N,N\S) S
"L

N, (N\S)"N{N/CN,CN}) S

Infixation, #, and extraction together are exemplified by a
quantifier assignment everyone: (S"N)#S simulating
Montague’s S14 quantifying in:

. . . ,N, . . .) S
"R

. . . ,1, . . .) S"N
id

S) S
#L

. . . , (S"N)#S , . . .) S

When the value of the k subscript is one it may be omitted, i.e.
it defaults to one. Circumfixation, ", is exemplified by a
discontinuous idiom assignment gives+1+the+cold+shoulder:
(N\S)"N for Mary gives the man the cold shoulder:S:

CN) CN N) N
/L

N/CN,CN) N

N) N S) S
\L

N,N\S) S
"L

N, (N\S)"N{N/CN,CN}) S

Infixation, #, and extraction together are exemplified by a
quantifier assignment everyone: (S"N)#S simulating
Montague’s S14 quantifying in:

. . . ,N, . . .) S
"R

. . . ,1, . . .) S"N
id

S) S
#L

. . . , (S"N)#S , . . .) S

When the value of the k subscript is one it may be omitted, i.e.
it defaults to one. Circumfixation, ", is exemplified by a
discontinuous idiom assignment gives+1+the+cold+shoulder:
(N\S)"N for Mary gives the man the cold shoulder:S:

CN) CN N) N
/L

N/CN,CN) N

N) N S) S
\L

N,N\S) S
"L

N, (N\S)"N{N/CN,CN}) S

Infixation, #, and extraction together are exemplified by a
quantifier assignment everyone: (S"N)#S simulating
Montague’s S14 quantifying in:

. . . ,N, . . .) S
"R

. . . ,1, . . .) S"N
id

S) S
#L

. . . , (S"N)#S , . . .) S

When the value of the k subscript is one it may be omitted, i.e.
it defaults to one. Circumfixation, ", is exemplified by a
discontinuous idiom assignment gives+1+the+cold+shoulder:
(N\S)"N for Mary gives the man the cold shoulder:S:

CN) CN N) N
/L

N/CN,CN) N

N) N S) S
\L

N,N\S) S
"L

N, (N\S)"N{N/CN,CN}) S

Infixation, #, and extraction together are exemplified by a
quantifier assignment everyone: (S"N)#S simulating
Montague’s S14 quantifying in:

. . . ,N, . . .) S
"R

. . . ,1, . . .) S"N
id

S) S
#L

. . . , (S"N)#S , . . .) S

Circumfixation and discontinuous product, �, are illustrated in
an assignment to a relative pronoun that: (CN\CN)/((S"N)�I)
allowing both peripheral and medial extraction,
that John likes:CN\CN and that John saw today:CN\CN:

N, (N\S)/N,N) S
"R

N, (N\S)/N,1) S"N
IL

) I
�R

N, (N\S)/N) (S"N)�I CN\CN) CN\CN
/L

(CN\CN)/((S"N)�I),N, (N\S)/N) CN\CN

N, (N\S)/N,N,S\S) S
"R

N, (N\S)/N,1,S\S) S"N
IL

) I
�R

N, (N\S)/N,S\S) (S"N)�I CN\CN) CN\CN
/L

(CN\CN)/((S"N)�I),N, (N\S)/N,S\S) CN\CN

Circumfixation and discontinuous product, �, are illustrated in
an assignment to a relative pronoun that: (CN\CN)/((S"N)�I)
allowing both peripheral and medial extraction,
that John likes:CN\CN and that John saw today:CN\CN:

N, (N\S)/N,N) S
"R

N, (N\S)/N,1) S"N
IL

) I
�R

N, (N\S)/N) (S"N)�I CN\CN) CN\CN
/L

(CN\CN)/((S"N)�I),N, (N\S)/N) CN\CN

N, (N\S)/N,N,S\S) S
"R

N, (N\S)/N,1,S\S) S"N
IL

) I
�R

N, (N\S)/N,S\S) (S"N)�I CN\CN) CN\CN
/L

(CN\CN)/((S"N)�I),N, (N\S)/N,S\S) CN\CN

Circumfixation and discontinuous product, �, are illustrated in
an assignment to a relative pronoun that: (CN\CN)/((S"N)�I)
allowing both peripheral and medial extraction,
that John likes:CN\CN and that John saw today:CN\CN:

N, (N\S)/N,N) S
"R

N, (N\S)/N,1) S"N
IL

) I
�R

N, (N\S)/N) (S"N)�I CN\CN) CN\CN
/L

(CN\CN)/((S"N)�I),N, (N\S)/N) CN\CN

N, (N\S)/N,N,S\S) S
"R

N, (N\S)/N,1,S\S) S"N
IL

) I
�R

N, (N\S)/N,S\S) (S"N)�I CN\CN) CN\CN
/L

(CN\CN)/((S"N)�I),N, (N\S)/N,S\S) CN\CN

Additives

The additive conjunction and disjunction {&, �} of Lambek
(1961[5]), Morrill (1990[10]), and Kanazawa (1992[4]), capture
polymorphism.

9.
⌦h�!A : xi) C:�

&L1
⌦h����!A&B: zi) C:�{⇡1z/x}

⌦h�!B : yi) C:�
&L2

⌦h����!A&B: zi) C:�{⇡2z/y}

⌦) A :� ⌦) B:
&R

⌦) A&B: (�,)

10.
⌦h�!A : xi) C:�1 ⌦h�!B : yi) C:�2

�L
⌦h���!A�B: zi) C: z�>x .�1; y .�2

⌦) A :�
�R1

⌦) A�B: ◆1�

⌦) B:
�R2

⌦) A�B: ◆2

Additives

The additive conjunction and disjunction {&, �} of Lambek
(1961[5]), Morrill (1990[10]), and Kanazawa (1992[4]), capture
polymorphism.

9.
⌦h�!A : xi) C:�

&L1
⌦h����!A&B: zi) C:�{⇡1z/x}

⌦h�!B : yi) C:�
&L2

⌦h����!A&B: zi) C:�{⇡2z/y}

⌦) A :� ⌦) B:
&R

⌦) A&B: (�,)

10.
⌦h�!A : xi) C:�1 ⌦h�!B : yi) C:�2

�L
⌦h���!A�B: zi) C: z�>x .�1; y .�2

⌦) A :�
�R1

⌦) A�B: ◆1�

⌦) B:
�R2

⌦) A�B: ◆2

Additives

The additive conjunction and disjunction {&, �} of Lambek
(1961[5]), Morrill (1990[10]), and Kanazawa (1992[4]), capture
polymorphism.

9.
⌦h�!A : xi) C:�

&L1
⌦h����!A&B: zi) C:�{⇡1z/x}

⌦h�!B : yi) C:�
&L2

⌦h����!A&B: zi) C:�{⇡2z/y}

⌦) A :� ⌦) B:
&R

⌦) A&B: (�,)

10.
⌦h�!A : xi) C:�1 ⌦h�!B : yi) C:�2

�L
⌦h���!A�B: zi) C: z�>x .�1; y .�2

⌦) A :�
�R1

⌦) A�B: ◆1�

⌦) B:
�R2

⌦) A�B: ◆2

For example the additive conjunction & can be used for
rice:N&CN as in rice grows:S and the rice grows:S:

N) N
&L1

N&CN) N S) S
\L

N&CN,N\S) S

N/CN,CN,N\S) S
&L2

N/CN,N&CN,N\S) S

The additive disjunction � can be used for
is: (N\S)/(N�(CN/CN)) as in Tully is Cicero:S and
Tully is humanist:S:

N) N
�R1

N) N�(CN/CN) N\S) N\S
/L

(N\S)/(N�(CN/CN)),N) N\S

CN/CN) CN/CN
�R2

CN/CN) N�(CN/CN) N\S) N\S
/L

(N\S)/(N�(CN/CN)),CN/CN) N\S

For example the additive conjunction & can be used for
rice:N&CN as in rice grows:S and the rice grows:S:

N) N
&L1

N&CN) N S) S
\L

N&CN,N\S) S

N/CN,CN,N\S) S
&L2

N/CN,N&CN,N\S) S

The additive disjunction � can be used for
is: (N\S)/(N�(CN/CN)) as in Tully is Cicero:S and
Tully is humanist:S:

N) N
�R1

N) N�(CN/CN) N\S) N\S
/L

(N\S)/(N�(CN/CN)),N) N\S

CN/CN) CN/CN
�R2

CN/CN) N�(CN/CN) N\S) N\S
/L

(N\S)/(N�(CN/CN)),CN/CN) N\S

For example the additive conjunction & can be used for
rice:N&CN as in rice grows:S and the rice grows:S:

N) N
&L1

N&CN) N S) S
\L

N&CN,N\S) S

N/CN,CN,N\S) S
&L2

N/CN,N&CN,N\S) S

The additive disjunction � can be used for
is: (N\S)/(N�(CN/CN)) as in Tully is Cicero:S and
Tully is humanist:S:

N) N
�R1

N) N�(CN/CN) N\S) N\S
/L

(N\S)/(N�(CN/CN)),N) N\S

CN/CN) CN/CN
�R2

CN/CN) N�(CN/CN) N\S) N\S
/L

(N\S)/(N�(CN/CN)),CN/CN) N\S

For example the additive conjunction & can be used for
rice:N&CN as in rice grows:S and the rice grows:S:

N) N
&L1

N&CN) N S) S
\L

N&CN,N\S) S

N/CN,CN,N\S) S
&L2

N/CN,N&CN,N\S) S

The additive disjunction � can be used for
is: (N\S)/(N�(CN/CN)) as in Tully is Cicero:S and
Tully is humanist:S:

N) N
�R1

N) N�(CN/CN) N\S) N\S
/L

(N\S)/(N�(CN/CN)),N) N\S

CN/CN) CN/CN
�R2

CN/CN) N�(CN/CN) N\S) N\S
/L

(N\S)/(N�(CN/CN)),CN/CN) N\S

Quantifiers

The first-order quantifiers {V,
W} of Morrill (1994[16]), have

application to features.

11.
⌦h�����!A [t/v]: xi) B: V

L
⌦h
�����!^

vA : zi) B: {(z t)/x}

⌦) A [a/v]:� V
R†

⌦)
^

vA :�v�

12.
⌦h�����!A [a/v]: xi) B: W

L†

⌦h
�����!_

vA : zi) B: {⇡2z/x}

⌦) A [t/v]:� W
R

⌦)
_

vA : (t ,�)

where † indicates that there is no a in the conclusion

Quantifiers

The first-order quantifiers {V,
W} of Morrill (1994[16]), have

application to features.

11.
⌦h�����!A [t/v]: xi) B: V

L
⌦h
�����!^

vA : zi) B: {(z t)/x}

⌦) A [a/v]:� V
R†

⌦)
^

vA :�v�

12.
⌦h�����!A [a/v]: xi) B: W

L†

⌦h
�����!_

vA : zi) B: {⇡2z/x}

⌦) A [t/v]:� W
R

⌦)
_

vA : (t ,�)

where † indicates that there is no a in the conclusion

Quantifiers

The first-order quantifiers {V,
W} of Morrill (1994[16]), have

application to features.

11.
⌦h�����!A [t/v]: xi) B: V

L
⌦h
�����!^

vA : zi) B: {(z t)/x}

⌦) A [a/v]:� V
R†

⌦)
^

vA :�v�

12.
⌦h�����!A [a/v]: xi) B: W

L†

⌦h
�����!_

vA : zi) B: {⇡2z/x}

⌦) A [t/v]:� W
R

⌦)
_

vA : (t ,�)

where † indicates that there is no a in the conclusion

For example, we can generalise over singular and plural
number in sheep:

V
nCNn for the sheep grazes:S and

the sheep graze:S:

CNsg) CNsg V
L^

nCNn) CNsg

CNpl) CNpl V
L^

nCNn) CNpl

And we can express a past, present or future tense finite
sentence complement: said: (N\S)/

W
tSf(t) in

John said Mary walked:S, John said Mary walks:S and
John said Mary will walk:S:

Sf(past)) Sf(past) W
R

Sf(past))
_

tSf(t)

Sf(pres)) Sf(pres) W
R

Sf(pres))
_

tSf(t)

Sf(fut)) Sf(fut) W
R

Sf(fut))
_

tSf(t)

For example, we can generalise over singular and plural
number in sheep:

V
nCNn for the sheep grazes:S and

the sheep graze:S:

CNsg) CNsg V
L^

nCNn) CNsg

CNpl) CNpl V
L^

nCNn) CNpl

And we can express a past, present or future tense finite
sentence complement: said: (N\S)/

W
tSf(t) in

John said Mary walked:S, John said Mary walks:S and
John said Mary will walk:S:

Sf(past)) Sf(past) W
R

Sf(past))
_

tSf(t)

Sf(pres)) Sf(pres) W
R

Sf(pres))
_

tSf(t)

Sf(fut)) Sf(fut) W
R

Sf(fut))
_

tSf(t)

For example, we can generalise over singular and plural
number in sheep:

V
nCNn for the sheep grazes:S and

the sheep graze:S:

CNsg) CNsg V
L^

nCNn) CNsg

CNpl) CNpl V
L^

nCNn) CNpl

And we can express a past, present or future tense finite
sentence complement: said: (N\S)/

W
tSf(t) in

John said Mary walked:S, John said Mary walks:S and
John said Mary will walk:S:

Sf(past)) Sf(past) W
R

Sf(past))
_

tSf(t)

Sf(pres)) Sf(pres) W
R

Sf(pres))
_

tSf(t)

Sf(fut)) Sf(fut) W
R

Sf(fut))
_

tSf(t)

For example, we can generalise over singular and plural
number in sheep:

V
nCNn for the sheep grazes:S and

the sheep graze:S:

CNsg) CNsg V
L^

nCNn) CNsg

CNpl) CNpl V
L^

nCNn) CNpl

And we can express a past, present or future tense finite
sentence complement: said: (N\S)/

W
tSf(t) in

John said Mary walked:S, John said Mary walks:S and
John said Mary will walk:S:

Sf(past)) Sf(past) W
R

Sf(past))
_

tSf(t)

Sf(pres)) Sf(pres) W
R

Sf(pres))
_

tSf(t)

Sf(fut)) Sf(fut) W
R

Sf(fut))
_

tSf(t)

Normal modalities

With respect to the normal modalities {2, 3} of Morrill
(1990[11]) and Moortgat (1997[9]), the universal has
application to intensionality.

13.
⌦h�!A : xi) B:

2L
⌦h��!2A : zi) B: {_z/x}

2⇥⌦) A :�
2R

2⇥⌦) 2A : ^�

14.
2⇥⌦h�!A : xi) 3+B:

3L
2⇥⌦h��!3A : zi) 3+B: {[z/x}

⌦) A :�
3R

⌦) 3A : \�

where 2⇥/3+ marks a structure all the types of which have
principal connective a box/diamond

Normal modalities

With respect to the normal modalities {2, 3} of Morrill
(1990[11]) and Moortgat (1997[9]), the universal has
application to intensionality.

13.
⌦h�!A : xi) B:

2L
⌦h��!2A : zi) B: {_z/x}

2⇥⌦) A :�
2R

2⇥⌦) 2A : ^�

14.
2⇥⌦h�!A : xi) 3+B:

3L
2⇥⌦h��!3A : zi) 3+B: {[z/x}

⌦) A :�
3R

⌦) 3A : \�

where 2⇥/3+ marks a structure all the types of which have
principal connective a box/diamond

Normal modalities

With respect to the normal modalities {2, 3} of Morrill
(1990[11]) and Moortgat (1997[9]), the universal has
application to intensionality.

13.
⌦h�!A : xi) B:

2L
⌦h��!2A : zi) B: {_z/x}

2⇥⌦) A :�
2R

2⇥⌦) 2A : ^�

14.
2⇥⌦h�!A : xi) 3+B:

3L
2⇥⌦h��!3A : zi) 3+B: {[z/x}

⌦) A :�
3R

⌦) 3A : \�

where 2⇥/3+ marks a structure all the types of which have
principal connective a box/diamond

For example, for a propositional attitude verb we can have an
assignment such as believes:2((N\S)/2S) with a modality
outermost since the word has a sense, and its sentential
complement is an intensional domain, but its subject is not.

Bracket modalities

The bracket modalities {[]�1, hi} of Morrill (1992[12]) and
Moortgat (1995[8]), have application to syntactical domains
such as islands.

15.
⌦h�!A : xi) B:

[]�1L
⌦h[
����!
[]�1A : x]i) B:

[⌦]) A :�
[]�1R

⌦) []�1A :�

16.
⌦h[�!A : x]i) B:

hiL
⌦h��!hiA : xi) B:

⌦) A :�
hiR

[⌦]) hiA :�

Bracket modalities

The bracket modalities {[]�1, hi} of Morrill (1992[12]) and
Moortgat (1995[8]), have application to syntactical domains
such as islands.

15.
⌦h�!A : xi) B:

[]�1L
⌦h[
����!
[]�1A : x]i) B:

[⌦]) A :�
[]�1R

⌦) []�1A :�

16.
⌦h[�!A : x]i) B:

hiL
⌦h��!hiA : xi) B:

⌦) A :�
hiR

[⌦]) hiA :�

Bracket modalities

The bracket modalities {[]�1, hi} of Morrill (1992[12]) and
Moortgat (1995[8]), have application to syntactical domains
such as islands.

15.
⌦h�!A : xi) B:

[]�1L
⌦h[
����!
[]�1A : x]i) B:

[⌦]) A :�
[]�1R

⌦) []�1A :�

16.
⌦h[�!A : x]i) B:

hiL
⌦h��!hiA : xi) B:

⌦) A :�
hiR

[⌦]) hiA :�

For example, walks: hiN\S for the subject condition, and
before: []�1(VP\VP)/VP for the adverbial island constraint,
which are weak islands, and can contain parasitic gaps, see the
next section;

for a strong island such as a coordinate structure,
which cannot contain a parasitic gap, we define doubly
bracketed strong islands — and: (S\[]�1[]�1S)/S.

N) N
hiR

[N]) hiN S) S
\L

[N], hiN\S) S S) S

S) S

S) S
[]�1L

[[]�1S]) S
[]�1L

[[[]�1[]�1S]]) S
\S

[[S ,S\[]�1[]�1S]]) S
/S

[[S , (S\[]�1[]�1S)/S ,S]]) S

For example, walks: hiN\S for the subject condition, and
before: []�1(VP\VP)/VP for the adverbial island constraint,
which are weak islands, and can contain parasitic gaps, see the
next section; for a strong island such as a coordinate structure,
which cannot contain a parasitic gap, we define doubly
bracketed strong islands — and: (S\[]�1[]�1S)/S.

N) N
hiR

[N]) hiN S) S
\L

[N], hiN\S) S S) S

S) S

S) S
[]�1L

[[]�1S]) S
[]�1L

[[[]�1[]�1S]]) S
\S

[[S ,S\[]�1[]�1S]]) S
/S

[[S , (S\[]�1[]�1S)/S ,S]]) S

Exponentials

The exponentials {!, ?} of Girard (1987[2]), Barry et al. (1991[1])
and Morrill (1994[16]), have application to sharing.

17.
⌦(⇣] {A : x};�1,�2)) B:

!L
⌦(⇣;�1, !A : x ,�2)) B:

⇣;⇤) A :�
!R

⇣;⇤) !A :�

⌦(⇣;�1,A : x ,�2)) B:
!P

⌦(⇣] {A : x};�1,�2)) B:

⌦(⇣] {A : x};�1, [{A : y};�2],�3)) B:
!C

⌦(⇣] {A : x};�1,�2,�3)) B: {x/y}

18.
⌦) A :�

?R
⌦) ?A : [�]

⇣;�) A :� ⇣0;�) ?A :
?M

⇣] ⇣0;�,�) ?A : [�|]

Exponentials

The exponentials {!, ?} of Girard (1987[2]), Barry et al. (1991[1])
and Morrill (1994[16]), have application to sharing.

17.
⌦(⇣] {A : x};�1,�2)) B:

!L
⌦(⇣;�1, !A : x ,�2)) B:

⇣;⇤) A :�
!R

⇣;⇤) !A :�

⌦(⇣;�1,A : x ,�2)) B:
!P

⌦(⇣] {A : x};�1,�2)) B:

⌦(⇣] {A : x};�1, [{A : y};�2],�3)) B:
!C

⌦(⇣] {A : x};�1,�2,�3)) B: {x/y}

18.
⌦) A :�

?R
⌦) ?A : [�]

⇣;�) A :� ⇣0;�) ?A :
?M

⇣] ⇣0;�,�) ?A : [�|]

Exponentials

The exponentials {!, ?} of Girard (1987[2]), Barry et al. (1991[1])
and Morrill (1994[16]), have application to sharing.

17.
⌦(⇣] {A : x};�1,�2)) B:

!L
⌦(⇣;�1, !A : x ,�2)) B:

⇣;⇤) A :�
!R

⇣;⇤) !A :�

⌦(⇣;�1,A : x ,�2)) B:
!P

⌦(⇣] {A : x};�1,�2)) B:

⌦(⇣] {A : x};�1, [{A : y};�2],�3)) B:
!C

⌦(⇣] {A : x};�1,�2,�3)) B: {x/y}

18.
⌦) A :�

?R
⌦) ?A : [�]

⇣;�) A :� ⇣0;�) ?A :
?M

⇣] ⇣0;�,�) ?A : [�|]

Using the universal exponential, !, we can assign a relative
pronoun type that: (CN\CN)/(S/!N) allowing parasitic
extraction, Morrill (2011[17]), Morrill and Valentı́n (2015[14]),
such as paper that John filed without reading:CN, where
parasitic gaps can appear only in (weak) islands, but can be
iterated in (weak) subislands.

Using the existential exponential, ?, we can assign a
coordinator type and: (?N\N)/N allowing iterated coordination
as in John, Bill, Mary and Suzy:N.

Using the universal exponential, !, we can assign a relative
pronoun type that: (CN\CN)/(S/!N) allowing parasitic
extraction, Morrill (2011[17]), Morrill and Valentı́n (2015[14]),
such as paper that John filed without reading:CN, where
parasitic gaps can appear only in (weak) islands, but can be
iterated in (weak) subislands.

Using the existential exponential, ?, we can assign a
coordinator type and: (?N\N)/N allowing iterated coordination
as in John, Bill, Mary and Suzy:N.

Guy Barry, Mark Hepple, Neil Leslie, and Glyn Morrill.
Proof Figures and Structural Operators for Categorial
Grammar.
In Proceedings of the Fifth Conference of the European
Chapter of the Association for Computational Linguistics,
Berlin, 1991.

Jean-Yves Girard.
Linear logic.
Theoretical Computer Science, 50:1–102, 1987.

Jean-Yves Girard.
The Blind Spot.
European Mathematical Society, Zürich, 2011.

M. Kanazawa.
The Lambek calculus enriched with additional connectives.
Journal of Logic, Language and Information, 1:141–171,
1992.
J. Lambek.

On the Calculus of Syntactic Types.
In Roman Jakobson, editor, Structure of Language and its
Mathematical Aspects, Proceedings of the Symposia in
Applied Mathematics XII, pages 166–178. American
Mathematical Society, Providence, Rhode Island, 1961.

J. Lambek.
Categorial and Categorical Grammars.
In Richard T. Oehrle, Emmon Bach, and Deidre Wheeler,
editors, Categorial Grammars and Natural Language
Structures, volume 32 of Studies in Linguistics and
Philosophy, pages 297–317. D. Reidel, Dordrecht, 1988.

Joachim Lambek.
The mathematics of sentence structure.
American Mathematical Monthly, 65:154–170, 1958.

Michael Moortgat.
Multimodal linguistic inference.
Journal of Logic, Language and Information, 5(3,
4):349–385, 1996.

Also in Bulletin of the IGPL, 3(2,3):371–401, 1995.

Michael Moortgat.
Categorial Type Logics.
In Johan van Benthem and Alice ter Meulen, editors,
Handbook of Logic and Language, pages 93–177. Elsevier
Science B.V. and the MIT Press, Amsterdam and
Cambridge, Massachusetts, 1997.

Glyn Morrill.
Grammar and Logical Types.
In Martin Stockhof and Leen Torenvliet, editors,
Proceedings of the Seventh Amsterdam Colloquium, pages
429–450, Amsterdam, 1990. Universiteit van Amsterdam.

Glyn Morrill.
Intensionality and Boundedness.
Linguistics and Philosophy, 13(6):699–726, 1990.

Glyn Morrill.
Categorial Formalisation of Relativisation: Pied Piping,
Islands, and Extraction Sites.

Technical Report LSI-92-23-R, Departament de
Llenguatges i Sistemes Informàtics, Universitat Politècnica
de Catalunya, 1992.

Glyn Morrill and Oriol Valentı́n.
Displacement Calculus.
Linguistic Analysis, 36(1–4):167–192, 2010.
Special issue Festschrift for Joachim Lambek.

Glyn Morrill and Oriol Valentı́n.
Computational Coverage of TLG: Nonlinearity.
In M. Kanazawa, L.S. Moss, and V. de Paiva, editors,
Proceedings of NLCS’15. Third Workshop on Natural
Language and Computer Science, volume 32, pages
51–63, Kyoto, 2015. EPiC.
Workshop affiliated with Automata, Languages and
Programming (ICALP) and Logic in Computer Science
(LICS).

Glyn Morrill, Oriol Valentı́n, and Mario Fadda.
The Displacement Calculus.

Journal of Logic, Language and Information, 20(1):1–48,
2011.
Glyn V. Morrill.
Type Logical Grammar: Categorial Logic of Signs.
Kluwer Academic Publishers, Dordrecht, 1994.

Glyn V. Morrill.
Categorial Grammar: Logical Syntax, Semantics, and
Processing.
Oxford University Press, New York and Oxford, 2011.

