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From Linearity to Non-Linearity



Linguistic applications of connectives

In Gentzen sequent antecedents for displacement logic with
bracket modalities (structural inhibition) and exponentials
(structural facilitation) there is also a bracket constructor for the
former and ‘stoups’ for the latter.

Stoups (cf. the linear logic of Girard 2011[3]) (⇣) are stores read
as multisets for re-usable (nonlinear) resources which appear
at the left of a configuration marked off by a semicolon (when
the stoup is empty the semicolon may be omitted).

A configuration together with a stoup is a zone (⌦). The bracket
constructor applies not to a configuration alone but to a
configuration with a stoup, i.e a zone: reusable resources are
specific to their domain.
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Zones Zone, stoups Stoup and configurations Config are
defined by (; is the empty stoup; ⇤ is the empty configuration;
the separator 1 marks points of discontinuity.):

Zone ::= Stoup;Config

Stoup ::= ; | Tp0,Stoup

Config ::= ⇤ | TreeTerm,Config

TreeTerm ::= 1 | Tp0 | Tpi>0{Config : . . . : Config

|                     {z                     }
i Config

0s

} | [Zone]

Where a type A of sort i > 0 includes
↵0+1+↵1+ · · ·+↵i�1+1+↵i and �1 2 �1, . . . , �i 2 �i ,
A {�1 : . . . : �i} contains ↵0+�1+↵1+ · · ·+↵i�1+�i+↵i .
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For a type A , its sort sA is the i such that A 2 Tpi ;

for example:

s(S"1N)"1N = s(S"1N)"2N = 2

For a configuration �, its sort s� is |�|1, i.e. the number of
separators 1 which � contains.

For a zone ⌦, its sort s⌦ is the sort of its configuration since
stoup types are of sort is 0; for example:

sN; 1,1, (S"1N)"2N{N/CN,CN : 1} =
s1,1, (S"1N)"2N{N/CN,CN : 1} = 3

Sequents are of the form:

Zone) Tp such that sZone = sTp
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The figure
�!
A of a type A is defined by:

�!
A =

8>>><>>>:

A if sA = 0
A {1 : . . . : 1|    {z    }

sA 1’s

} if sA > 0
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Where � is a configuration of sort i and �1, . . . ,�i are
configurations, the fold � ⌦ h�1 : . . . : �ii is the result of
replacing the successive 1’s in � by �1, . . . ,�i respectively;

similarly, where ⌦ is a zone of sort i and �1, . . . ,�i are
configurations, the fold ⌦ ⌦ h�1 : . . . : �ii is the result of
replacing the successive 1’s in the configuration of ⌦ by
�1, . . . ,�i respectively.
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Where � is a configuration of sort i, the hyperoccurrence
notation �h�i abbreviates �0(� ⌦ h�1 : . . . : �ii),

i.e. a context
configuration � (which is externally �0 and internally
�1, . . . ,�i) with a potentially discontinuous distinguished
subconfiguration �; similarly, where ⌦ is a zone of sort i, the
hyperoccurrence notation ⌦h�i abbreviates
⇣;�0(� ⌦ h�1 : . . . : �ii) where ⌦ = ⇣;� i.e. a context zone ⇣;�
(which is externally ⇣;�0 and internally �1, . . . ,�i) with a
potentially discontinuous distinguished subconfiguration �.
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the k th metalinguistic intercalation � |k �, 1  k  i, is given by:
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i�k 1’s
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i.e. � |k � is the configuration resulting from replacing by � the
k th separator in �.
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A semantically labelled sequent is a sequent in which the
antecedent types A1, . . . ,An are labelled by distinct variables
x1, . . . , xn of types T(A1), . . . ,T(An) respectively, and the
succedent type A is labelled by a term of type T(A) with free
variables drawn from x1, . . . , xn.



The identity rules

The identity axiom is (a); since we adopt the convention that
empty stoups can be omitted, we write (b):

a. id
;;�!A : x ) A : x b . id�!

A : x ) A : x

The Cut rule is:

⇣1; �) A ⇣2;�h
�!
A i)) B

Cut
⇣1 ] ⇣2;�h�i)) B
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Continuous multiplicatives

The continuous multiplicatives {/, \, •, I} of Lambek (1958[7];
1988[6]), are the basic means of categorial (sub)categorization.

1.
⇣1;�) B: ⇣2;�h

�!
C : zi ) D:!

/L

⇣1 ] ⇣2;�h
���!
C/B: x ,�i ) D:!{(x  )/z}

⇣;�,
�!
B : y ) C:�

/R

⇣;�) C/B:�y�

2.
⇣1;�) A :� ⇣2;�h

�!
C : zi ) D:!

\L
⇣1 ] ⇣2;�h�,

���!
A\C: yi ) D:!{(y �)/z}

⇣;
�!
A : x ,�) C:�

\R
⇣;�) A\C:�x�

3.
⇣;�h�!A : x ,

�!
B : yi ) D:!

•L
⇣;�h���!A•B: zi ) D:!{⇡1z/x ,⇡2z/y}

⇣1;�1 ) A :� ⇣2;�2 ) B: 

•R
⇣1 ] ⇣2;�1 ,�2 ) A•B: (�, )

4.

⇣;�h⇤i ) A :�

IL

⇣;�h�!I : xi ) A :�

IR

⇤) I: 0
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The directional divisions over, /, and under, \, are exemplified
by assignments such as the:N/CN for the man:N and
sings:N\S for John sings:S, and loves: (N\S)/N for
John loves Mary:S.

Hence, for the man:

CN) CN N ) N
/L

N/CN,CN) N

And for John sings and John loves Mary:

N ) N S ) S
\L

N,N\S ) S
N ) N

N ) N S ) S
\L

N,N\S ) S
/L

N, (N\S)/N,N ) S
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The continuous product • is exemplified by a ‘small clause’
assignment such as considers: (N\S)/ (N•(CN/CN)) for
John considers Mary socialist:S.
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Of course this use of product is not essential: we could just as
well have used ((N\S)/(CN/CN))/N since in general we have
both A/(C•B)) (A/B)/C (currying) and
(A/B)/C ) A/(C•B) (uncurrying).
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Discontinuous multiplicatives

The discontinuous multiplicatives {", #, �, J}, the displacement
connectives, of Morrill and Valentı́n (2010[13]), Morrill et al.
(2011[15]), are defined in relation to intercalation.
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When the value of the k subscript is one it may be omitted, i.e.
it defaults to one.

Circumfixation, ", is exemplified by a
discontinuous idiom assignment gives+1+the+cold+shoulder:
(N\S)"N for Mary gives the man the cold shoulder:S:

CN) CN N ) N
/L

N/CN,CN) N

N ) N S ) S
\L

N,N\S ) S
"L

N, (N\S)"N{N/CN,CN}) S

Infixation, #, and extraction together are exemplified by a
quantifier assignment everyone: (S"N)#S simulating
Montague’s S14 quantifying in:

. . . ,N, . . . ) S
"R

. . . ,1, . . . ) S"N
id

S ) S
#L

. . . , (S"N)#S , . . . ) S
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Circumfixation and discontinuous product, �, are illustrated in
an assignment to a relative pronoun that: (CN\CN)/((S"N)�I)
allowing both peripheral and medial extraction,
that John likes:CN\CN and that John saw today:CN\CN:

N, (N\S)/N,N ) S
"R

N, (N\S)/N,1) S"N
IL

) I
�R

N, (N\S)/N ) (S"N)�I CN\CN) CN\CN
/L

(CN\CN)/((S"N)�I),N, (N\S)/N ) CN\CN

N, (N\S)/N,N,S\S ) S
"R

N, (N\S)/N,1,S\S ) S"N
IL

) I
�R

N, (N\S)/N,S\S ) (S"N)�I CN\CN) CN\CN
/L

(CN\CN)/((S"N)�I),N, (N\S)/N,S\S ) CN\CN
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Additives

The additive conjunction and disjunction {&, �} of Lambek
(1961[5]), Morrill (1990[10]), and Kanazawa (1992[4]), capture
polymorphism.

9.
⌦h�!A : xi ) C:�

&L1
⌦h����!A&B: zi ) C:�{⇡1z/x}

⌦h�!B : yi ) C:�
&L2

⌦h����!A&B: zi ) C:�{⇡2z/y}

⌦) A :� ⌦) B: 
&R

⌦) A&B: (�, )

10.
⌦h�!A : xi ) C:�1 ⌦h�!B : yi ) C:�2

�L
⌦h���!A�B: zi ) C: z�>x .�1; y .�2

⌦) A :�
�R1

⌦) A�B: ◆1�

⌦) B: 
�R2

⌦) A�B: ◆2 
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For example the additive conjunction & can be used for
rice:N&CN as in rice grows:S and the rice grows:S:

N ) N
&L1

N&CN) N S ) S
\L

N&CN,N\S ) S

N/CN,CN,N\S ) S
&L2

N/CN,N&CN,N\S ) S

The additive disjunction � can be used for
is: (N\S)/(N�(CN/CN)) as in Tully is Cicero:S and
Tully is humanist:S:

N ) N
�R1

N ) N�(CN/CN) N\S ) N\S
/L

(N\S)/(N�(CN/CN)),N ) N\S

CN/CN) CN/CN
�R2

CN/CN) N�(CN/CN) N\S ) N\S
/L

(N\S)/(N�(CN/CN)),CN/CN) N\S
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Quantifiers

The first-order quantifiers {V,
W} of Morrill (1994[16]), have

application to features.

11.
⌦h�����!A [t/v]: xi ) B: V

L
⌦h
�����!^

vA : zi ) B: {(z t)/x}

⌦) A [a/v]:� V
R†

⌦)
^

vA :�v�

12.
⌦h�����!A [a/v]: xi ) B: W

L†

⌦h
�����!_

vA : zi ) B: {⇡2z/x}

⌦) A [t/v]:� W
R

⌦)
_

vA : (t ,�)

where † indicates that there is no a in the conclusion
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For example, we can generalise over singular and plural
number in sheep:

V
nCNn for the sheep grazes:S and

the sheep graze:S:

CNsg) CNsg V
L^

nCNn) CNsg

CNpl) CNpl V
L^

nCNn) CNpl

And we can express a past, present or future tense finite
sentence complement: said: (N\S)/

W
tSf(t) in

John said Mary walked:S, John said Mary walks:S and
John said Mary will walk:S:

Sf(past)) Sf(past) W
R

Sf(past))
_

tSf(t)

Sf(pres)) Sf(pres) W
R

Sf(pres))
_

tSf(t)

Sf(fut)) Sf(fut) W
R

Sf(fut))
_

tSf(t)
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Normal modalities

With respect to the normal modalities {2, 3} of Morrill
(1990[11]) and Moortgat (1997[9]), the universal has
application to intensionality.

13.
⌦h�!A : xi ) B: 

2L
⌦h��!2A : zi ) B: {_z/x}

2⇥⌦) A :�
2R

2⇥⌦) 2A : ^�

14.
2⇥⌦h�!A : xi ) 3+B: 

3L
2⇥⌦h��!3A : zi ) 3+B: {[z/x}

⌦) A :�
3R

⌦) 3A : \�

where 2⇥/3+ marks a structure all the types of which have
principal connective a box/diamond
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For example, for a propositional attitude verb we can have an
assignment such as believes:2((N\S)/2S) with a modality
outermost since the word has a sense, and its sentential
complement is an intensional domain, but its subject is not.



Bracket modalities

The bracket modalities {[ ]�1, hi} of Morrill (1992[12]) and
Moortgat (1995[8]), have application to syntactical domains
such as islands.

15.
⌦h�!A : xi ) B: 

[ ]�1L
⌦h[
����!
[ ]�1A : x]i ) B: 

[⌦]) A :�
[ ]�1R

⌦) [ ]�1A :�

16.
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For example, walks: hiN\S for the subject condition, and
before: [ ]�1(VP\VP)/VP for the adverbial island constraint,
which are weak islands, and can contain parasitic gaps, see the
next section;

for a strong island such as a coordinate structure,
which cannot contain a parasitic gap, we define doubly
bracketed strong islands — and: (S\[ ]�1[ ]�1S)/S.

N ) N
hiR

[N]) hiN S ) S
\L

[N], hiN\S ) S S ) S

S ) S

S ) S
[ ]�1L

[[ ]�1S]) S
[ ]�1L

[[[ ]�1[ ]�1S]]) S
\S

[[S ,S\[ ]�1[ ]�1S]]) S
/S

[[S , (S\[ ]�1[ ]�1S)/S ,S]]) S
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next section; for a strong island such as a coordinate structure,
which cannot contain a parasitic gap, we define doubly
bracketed strong islands — and: (S\[ ]�1[ ]�1S)/S.
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[N]) hiN S ) S
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[N], hiN\S ) S S ) S

S ) S
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[ ]�1L
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[[[ ]�1[ ]�1S]]) S
\S

[[S ,S\[ ]�1[ ]�1S]]) S
/S

[[S , (S\[ ]�1[ ]�1S)/S ,S]]) S



Exponentials

The exponentials {!, ?} of Girard (1987[2]), Barry et al. (1991[1])
and Morrill (1994[16]), have application to sharing.

17.
⌦(⇣] {A : x};�1,�2)) B: 

!L
⌦(⇣;�1, !A : x ,�2)) B: 

⇣;⇤) A :�
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!P
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!C
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18.
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Exponentials

The exponentials {!, ?} of Girard (1987[2]), Barry et al. (1991[1])
and Morrill (1994[16]), have application to sharing.

17.
⌦(⇣] {A : x};�1,�2)) B: 

!L
⌦(⇣;�1, !A : x ,�2)) B: 

⇣;⇤) A :�
!R

⇣;⇤) !A :�

⌦(⇣;�1,A : x ,�2)) B: 
!P

⌦(⇣] {A : x};�1,�2)) B: 

⌦(⇣] {A : x};�1, [{A : y};�2],�3)) B: 
!C

⌦(⇣] {A : x};�1,�2,�3)) B: {x/y}

18.
⌦) A :�

?R
⌦) ?A : [�]

⇣;�) A :� ⇣0;�) ?A : 
?M

⇣] ⇣0;�,�) ?A : [�| ]



Exponentials

The exponentials {!, ?} of Girard (1987[2]), Barry et al. (1991[1])
and Morrill (1994[16]), have application to sharing.

17.
⌦(⇣] {A : x};�1,�2)) B: 

!L
⌦(⇣;�1, !A : x ,�2)) B: 

⇣;⇤) A :�
!R

⇣;⇤) !A :�

⌦(⇣;�1,A : x ,�2)) B: 
!P

⌦(⇣] {A : x};�1,�2)) B: 

⌦(⇣] {A : x};�1, [{A : y};�2],�3)) B: 
!C

⌦(⇣] {A : x};�1,�2,�3)) B: {x/y}

18.
⌦) A :�

?R
⌦) ?A : [�]

⇣;�) A :� ⇣0;�) ?A : 
?M

⇣] ⇣0;�,�) ?A : [�| ]



Using the universal exponential, !, we can assign a relative
pronoun type that: (CN\CN)/(S/!N) allowing parasitic
extraction, Morrill (2011[17]), Morrill and Valentı́n (2015[14]),
such as paper that John filed without reading:CN, where
parasitic gaps can appear only in (weak) islands, but can be
iterated in (weak) subislands.

Using the existential exponential, ?, we can assign a
coordinator type and: (?N\N)/N allowing iterated coordination
as in John, Bill, Mary and Suzy:N.
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