Displacement Logic for Grammar

Glyn Morrill \& Oriol Valentín

Department of Computer Science
Universitat Politècnica de Catalunya
morrill@cs.upc.edu \& oriol.valentin@gmail.com

ESSLLI 2016, Bolzano - Bozen

Lecture 4

From Linearity to Non-Linearity

Linguistic applications of connectives

Linguistic applications of connectives

In Gentzen sequent antecedents for displacement logic with bracket modalities (structural inhibition) and exponentials (structural facilitation) there is also a bracket constructor for the former and 'stoups' for the latter.

Linguistic applications of connectives

In Gentzen sequent antecedents for displacement logic with bracket modalities (structural inhibition) and exponentials (structural facilitation) there is also a bracket constructor for the former and 'stoups' for the latter.

Stoups (cf. the linear logic of Girard 2011[3]) (弓) are stores read as multisets for re-usable (nonlinear) resources which appear at the left of a configuration marked off by a semicolon (when the stoup is empty the semicolon may be omitted).

Linguistic applications of connectives

In Gentzen sequent antecedents for displacement logic with bracket modalities (structural inhibition) and exponentials (structural facilitation) there is also a bracket constructor for the former and 'stoups' for the latter.

Stoups (cf. the linear logic of Girard 2011[3]) (ζ) are stores read as multisets for re-usable (nonlinear) resources which appear at the left of a configuration marked off by a semicolon (when the stoup is empty the semicolon may be omitted).

A configuration together with a stoup is a zone (Ω). The bracket constructor applies not to a configuration alone but to a configuration with a stoup, i.e a zone: reusable resources are specific to their domain.

Zones Zone, stoups Stoup and configurations Config are

 defined by (\emptyset is the empty stoup; Λ is the empty configuration; the separator 1 marks points of discontinuity.):
Zones Zone, stoups Stoup and configurations Config are

 defined by (\emptyset is the empty stoup; Λ is the empty configuration; the separator 1 marks points of discontinuity.):Zone $::=$ Stoup; Config
Stoup $::=\emptyset \mid \mathbf{T p}_{0}$, Stoup
Config $::=\Lambda \mid$ TreeTerm, Config
TreeTerm $::=1\left|\mathbf{T p}_{0}\right| \mathbf{T p}_{i>0}\{$ Config : Config $\} \mid[Z o n e]$
iConfig's

Zones Zone, stoups Stoup and configurations Config are defined by (\emptyset is the empty stoup; Λ is the empty configuration; the separator 1 marks points of discontinuity.):

Zone $::=$ Stoup; Config
Stoup $::=\emptyset \mid \mathbf{T p}_{0}$, Stoup
Config $::=\Lambda \mid$ TreeTerm, Config
TreeTerm $::=1\left|\mathbf{T p}_{0}\right|$ Tp $_{i>0}\{$ Config : ... : Config $\} \mid[Z o n e]$
iConfig's

Where a type A of sort $i>0$ includes
$\alpha_{0}+1+\alpha_{1}+\cdots+\alpha_{i-1}+1+\alpha_{i}$ and $\beta_{1} \in \Delta_{1}, \ldots, \beta_{i} \in \Delta_{i}$,
$A\left\{\Delta_{1}: \ldots: \Delta_{i}\right\}$ contains $\alpha_{0}+\beta_{1}+\alpha_{1}+\cdots+\alpha_{i-1}+\beta_{i}+\alpha_{i}$.

For a type A, its sort $s A$ is the i such that $A \in \mathbf{T p}_{i}$;

For a type A, its sort $s A$ is the i such that $A \in \mathbf{T p}_{i}$; for example:

$$
s\left(S \uparrow_{1} N\right) \uparrow_{1} N=s\left(S \uparrow_{1} N\right) \uparrow_{2} N=2
$$

For a type A, its sort $s A$ is the i such that $A \in \mathbf{T p}_{i}$; for example:

$$
s\left(S \uparrow_{1} N\right) \uparrow_{1} N=s\left(S \uparrow_{1} N\right) \uparrow_{2} N=2
$$

For a configuration Γ, its sort $s \Gamma$ is $|\Gamma|_{1}$, i.e. the number of separators 1 which 「 contains.

For a type A, its sort $s A$ is the i such that $A \in \mathbf{T p}_{i}$; for example:

$$
s\left(S \uparrow_{1} N\right) \uparrow_{1} N=s\left(S \uparrow_{1} N\right) \uparrow_{2} N=2
$$

For a configuration Γ, its sort $s \Gamma$ is $|\Gamma|_{1}$, i.e. the number of separators 1 which Г contains.

For a zone Ω, its sort $s \Omega$ is the sort of its configuration since stoup types are of sort is 0 ; for example:

For a type A, its sort $s A$ is the i such that $A \in \mathbf{T p}_{i}$; for example:

$$
s\left(S \uparrow_{1} N\right) \uparrow_{1} N=s\left(S \uparrow_{1} N\right) \uparrow_{2} N=2
$$

For a configuration Γ, its sort $s \Gamma$ is $|\Gamma|_{1}$, i.e. the number of separators 1 which Γ contains.

For a zone Ω, its sort $s \Omega$ is the sort of its configuration since stoup types are of sort is 0 ; for example:

$$
\begin{aligned}
& s N ; 1,1,\left(S \uparrow_{1} N\right) \uparrow_{2} N\{N / C N, C N: 1\}= \\
& s 1,1,\left(S \uparrow_{1} N\right) \uparrow_{2} N\{N / C N, C N: 1\}=3
\end{aligned}
$$

For a type A, its sort $s A$ is the i such that $A \in \mathbf{T p}_{i}$; for example:

$$
s\left(S \uparrow_{1} N\right) \uparrow_{1} N=s\left(S \uparrow_{1} N\right) \uparrow_{2} N=2
$$

For a configuration Γ, its sort $s \Gamma$ is $|\Gamma|_{1}$, i.e. the number of separators 1 which Γ contains.

For a zone Ω, its sort $s \Omega$ is the sort of its configuration since stoup types are of sort is 0 ; for example:

$$
\begin{aligned}
& s N ; 1,1,\left(S \uparrow_{1} N\right) \uparrow_{2} N\{N / C N, C N: 1\}= \\
& s 1,1,\left(S \uparrow_{1} N\right) \uparrow_{2} N\{N / C N, C N: 1\}=3
\end{aligned}
$$

Sequents are of the form:

For a type A, its sort $s A$ is the i such that $A \in \mathbf{T p}_{i}$; for example:

$$
s\left(S \uparrow_{1} N\right) \uparrow_{1} N=s\left(S \uparrow_{1} N\right) \uparrow_{2} N=2
$$

For a configuration Γ, its sort $s \Gamma$ is $|\Gamma|_{1}$, i.e. the number of separators 1 which Γ contains.

For a zone Ω, its sort $s \Omega$ is the sort of its configuration since stoup types are of sort is 0 ; for example:

$$
\begin{aligned}
& s N ; 1,1,\left(S \uparrow_{1} N\right) \uparrow_{2} N\{N / C N, C N: 1\}= \\
& s 1,1,\left(S \uparrow_{1} N\right) \uparrow_{2} N\{N / C N, C N: 1\}=3
\end{aligned}
$$

Sequents are of the form:

Zone \Rightarrow Tp such that s Zone $=s T p$

The figure \vec{A} of a type A is defined by:

The figure \vec{A} of a type A is defined by:

$$
\vec{A}= \begin{cases}A & \text { if } s A=0 \\ A\{\underbrace{1: \ldots: 1}_{s A 1 \text { 1's }}\} & \text { if } s A>0\end{cases}
$$

Where Γ is a configuration of sort i and $\Delta_{1}, \ldots, \Delta_{i}$ are configurations, the fold $\Gamma \otimes\left\langle\Delta_{1}: \ldots: \Delta_{i}\right\rangle$ is the result of replacing the successive 1 's in Γ by $\Delta_{1}, \ldots, \Delta_{i}$ respectively;

Where Γ is a configuration of sort i and $\Delta_{1}, \ldots, \Delta_{i}$ are configurations, the fold $\Gamma \otimes\left\langle\Delta_{1}: \ldots: \Delta_{i}\right\rangle$ is the result of replacing the successive 1's in Γ by $\Delta_{1}, \ldots, \Delta_{i}$ respectively; similarly, where Ω is a zone of sort i and $\Delta_{1}, \ldots, \Delta_{i}$ are configurations, the fold $\Omega \otimes\left\langle\Delta_{1}: \ldots: \Delta_{i}\right\rangle$ is the result of replacing the successive 1 's in the configuration of Ω by $\Delta_{1}, \ldots, \Delta_{i}$ respectively.

Where Γ is a configuration of sort i, the hyperoccurrence notation $\Delta\langle\Gamma\rangle$ abbreviates $\Delta_{0}\left(\Gamma \otimes\left\langle\Delta_{1}: \ldots: \Delta_{i}\right\rangle\right)$,

Where Γ is a configuration of sort i, the hyperoccurrence notation $\Delta\langle\Gamma\rangle$ abbreviates $\Delta_{0}\left(\Gamma \otimes\left\langle\Delta_{1}: \ldots: \Delta_{i}\right\rangle\right)$, i.e. a context configuration Δ (which is externally Δ_{0} and internally $\Delta_{1}, \ldots, \Delta_{i}$) with a potentially discontinuous distinguished subconfiguration Γ;

Where Γ is a configuration of sort i, the hyperoccurrence notation $\Delta\langle\Gamma\rangle$ abbreviates $\Delta_{0}\left(\Gamma \otimes\left\langle\Delta_{1}: \ldots: \Delta_{i}\right\rangle\right)$, i.e. a context configuration Δ (which is externally Δ_{0} and internally
$\Delta_{1}, \ldots, \Delta_{i}$) with a potentially discontinuous distinguished subconfiguration Γ; similarly, where Ω is a zone of sort i, the hyperoccurrence notation $\Omega\langle\Gamma\rangle$ abbreviates
$\zeta_{;} \Delta_{0}\left(\Gamma \otimes\left\langle\Delta_{1}: \ldots: \Delta_{i}\right\rangle\right)$ where $\Omega=\zeta ; \Delta$

Where Γ is a configuration of sort i, the hyperoccurrence notation $\Delta\langle\Gamma\rangle$ abbreviates $\Delta_{0}\left(\Gamma \otimes\left\langle\Delta_{1}: \ldots: \Delta_{i}\right\rangle\right)$, i.e. a context configuration Δ (which is externally Δ_{0} and internally
$\Delta_{1}, \ldots, \Delta_{i}$) with a potentially discontinuous distinguished subconfiguration Γ; similarly, where Ω is a zone of sort i, the hyperoccurrence notation $\Omega\langle\Gamma\rangle$ abbreviates
$\zeta ; \Delta_{0}\left(\Gamma \otimes\left\langle\Delta_{1}: \ldots: \Delta_{i}\right\rangle\right)$ where $\Omega=\zeta$; Δ i.e. a context zone $\zeta ; \Delta$ (which is externally $\zeta_{;} \Delta_{0}$ and internally $\Delta_{1}, \ldots, \Delta_{i}$) with a potentially discontinuous distinguished subconfiguration Γ.

Where Δ is a configuration of sort $i>0$ and Γ is a configuration, the k th metalinguistic intercalation $\left.\Delta\right|_{k} \Gamma, 1 \leq k \leq i$, is given by:

Where Δ is a configuration of sort $i>0$ and Γ is a configuration, the k th metalinguistic intercalation $\left.\Delta\right|_{k} \Gamma, 1 \leq k \leq i$, is given by:

$$
\left.\Delta\right|_{k} \Gamma=d f \Delta \otimes\langle\underbrace{1: \ldots: 1}_{k-1 \text { 1's }}: \Gamma: \underbrace{1: \ldots: 1}_{i-k \text { 1's }}\rangle
$$

Where Δ is a configuration of sort $i>0$ and Γ is a configuration, the k th metalinguistic intercalation $\left.\Delta\right|_{k} \Gamma, 1 \leq k \leq i$, is given by:

$$
\left.\Delta\right|_{k} \Gamma=d f \Delta \otimes\langle\underbrace{1: \ldots: 1}_{k-1 \text { 1's }}: \Gamma: \underbrace{1: \ldots: 1}_{i-k \text { 1's }}\rangle
$$

i.e. $\left.\Delta\right|_{k} \Gamma$ is the configuration resulting from replacing by Γ the k th separator in Δ.

A semantically labelled sequent is a sequent in which the antecedent types A_{1}, \ldots, A_{n} are labelled by distinct variables x_{1}, \ldots, x_{n} of types $T\left(A_{1}\right), \ldots, T\left(A_{n}\right)$ respectively, and the succedent type A is labelled by a term of type $T(A)$ with free variables drawn from x_{1}, \ldots, x_{n}.

The identity rules

The identity rules

The identity axiom is (a); since we adopt the convention that empty stoups can be omitted, we write (b):

$$
\text { a. } \quad \overline{\emptyset ; \vec{A}: x \Rightarrow A: x} \text { id } \quad \text { b. } \quad \vec{A}: x \Rightarrow A: x \text { id }
$$

The identity rules

The identity axiom is (a); since we adopt the convention that empty stoups can be omitted, we write (b):

$$
\text { a. } \overline{\emptyset ; \vec{A}: x \Rightarrow A: x} \text { id } \quad \text { b. } \quad \overrightarrow{\vec{A}: x \Rightarrow A: x} \text { id }
$$

The Cut rule is:

$$
\frac{\left.\zeta_{1} ; \Gamma \Rightarrow A \quad \zeta_{2} ; \Delta\langle\vec{A}\rangle\right) \Rightarrow B}{\left.\zeta_{1} \uplus \zeta_{2} ; \Delta\langle\Gamma\rangle\right) \Rightarrow B} C u t
$$

Continuous multiplicatives

Continuous multiplicatives

The continuous multiplicatives $\{/, \backslash, \bullet, I\}$ of Lambek (1958[7]; 1988[6]), are the basic means of categorial (sub)categorization.

Continuous multiplicatives

The continuous multiplicatives $\{/, \backslash, \bullet, I\}$ of Lambek (1958[7]; 1988[6]), are the basic means of categorial (sub)categorization.

$$
\begin{aligned}
& 1 . \\
& 2 . \\
& 3 . \\
& \begin{array}{ll}
\zeta_{1} ; \Gamma \Rightarrow B: \psi \quad \zeta_{2} ; \Delta\langle\vec{C}: z\rangle \Rightarrow D: \omega \\
\zeta_{1} \uplus \zeta_{2} ; \Delta\langle\overrightarrow{C / B}: x, \Gamma\rangle \Rightarrow D: \omega\{(x \psi) / z\}
\end{array} / \quad \frac{\zeta ; \Gamma, \vec{B}: y \Rightarrow C: \chi}{\zeta ; \Gamma \Rightarrow C / B: \lambda y \chi} / R \\
& \zeta_{1} ; \Gamma \Rightarrow A: \phi \quad \zeta_{2} ; \Delta\langle\vec{C}: z\rangle \Rightarrow D: \omega \\
& \zeta ; \vec{A}: x, \Gamma \Rightarrow C: \chi \\
& \zeta_{1} \uplus \zeta_{2} ; \Delta\langle\Gamma, \overrightarrow{A \backslash C}: y\rangle \Rightarrow D: \omega\{(y \phi) / z\} \\
& \overline{\zeta ; \Gamma \Rightarrow A \backslash C: \lambda x \chi} \backslash R \\
& \zeta ; \Delta\langle\vec{A}: x, \vec{B}: y\rangle \Rightarrow D: \omega \\
& \zeta_{1} ; \Gamma_{1} \Rightarrow A: \\
& \zeta ; \Delta\langle\overrightarrow{A \bullet B}: z\rangle \Rightarrow D: \omega\left\{\pi_{1} z / x, \pi_{2} z / y\right\} \\
& \zeta_{1} \uplus \zeta_{2} ; \Gamma_{1}, \Gamma_{2} \Rightarrow A \bullet B:(\phi, \psi) \\
& 4 . \\
& \begin{array}{ll}
\zeta ; \Delta\langle\Lambda\rangle \Rightarrow A: \phi \\
\zeta ; \Delta\langle\vec{I}: x\rangle \Rightarrow A: \phi \\
I L & I R \\
\Lambda \Rightarrow I: 0
\end{array}
\end{aligned}
$$

The directional divisions over, /, and under,
, are exemplified by assignments such as the: $N / C N$ for the man: N and sings: $N \backslash S$ for John sings: S, and loves: $(N \backslash S) / N$ for John loves Mary: S.

The directional divisions over, /, and under,
, are exemplified by assignments such as the: $N / C N$ for the man: N and sings: $N \backslash S$ for John sings: S, and loves: $(N \backslash S) / N$ for John loves Mary: S. Hence, for the man:

$$
\frac{C N \Rightarrow C N \quad N \Rightarrow N}{N / C N, C N \Rightarrow N}
$$

The directional divisions over, /, and under,
, are exemplified by assignments such as the: $N / C N$ for the man: N and sings: $N \backslash S$ for John sings: S, and loves: $(N \backslash S) / N$ for John loves Mary: S. Hence, for the man:

$$
\frac{C N \Rightarrow C N \quad N \Rightarrow N}{N / C N, C N \Rightarrow N}
$$

And for John sings and John loves Mary:

$$
\frac{N \Rightarrow N \quad S \Rightarrow S}{N, N \backslash S \Rightarrow S} \backslash L \quad \frac{N \Rightarrow N \quad \frac{N \Rightarrow N \quad S \Rightarrow S}{N, N \backslash S \Rightarrow S} / L}{N,(N \backslash S) / N, N \Rightarrow S} / L
$$

The continuous product • is exemplified by a 'small clause' assignment such as considers: $(N \backslash S) /(N \bullet(C N / C N))$ for John considers Mary socialist: S.

The continuous product \bullet is exemplified by a 'small clause' assignment such as considers: $(N \backslash S) /(N \bullet(C N / C N))$ for John considers Mary socialist: S.

The continuous product • is exemplified by a 'small clause' assignment such as considers: $(N \backslash S) /(N \bullet(C N / C N))$ for John considers Mary socialist: S.

Of course this use of product is not essential: we could just as well have used $((N \backslash S) /(C N / C N)) / N$ since in general we have both $A /(C \bullet B) \Rightarrow(A / B) / C$ (currying) and $(A / B) / C \Rightarrow A /(C \bullet B)$ (uncurrying).

Discontinuous multiplicatives

Discontinuous multiplicatives

The discontinuous multiplicatives $\{\uparrow, \downarrow, \odot, J\}$, the displacement connectives, of Morrill and Valentín (2010[13]), Morrill et al. (2011[15]), are defined in relation to intercalation.

Discontinuous multiplicatives

The discontinuous multiplicatives $\{\uparrow, \downarrow, \odot, J\}$, the displacement connectives, of Morrill and Valentín (2010[13]), Morrill et al. (2011[15]), are defined in relation to intercalation.
5.
6.
7.
8.

$$
\begin{aligned}
& \zeta_{1} ; \Gamma \Rightarrow B: \psi \quad \zeta_{2} ; \Delta\langle\vec{C}: z\rangle \Rightarrow D:\left.\omega \quad \zeta_{;} \Gamma\right|_{k} \vec{B}: y \Rightarrow C: \chi \\
& \overrightarrow{\zeta_{1} \uplus \zeta_{2} ; \Delta\left\langle\overrightarrow{C \uparrow_{k} B}:\left.x\right|_{k} \Gamma\right\rangle \Rightarrow D: \omega\{(x \psi) / z\}} \uparrow_{k} L \\
& \overline{\zeta ; \Gamma \Rightarrow C \uparrow_{k} B: \lambda y \chi} \uparrow_{k} R \\
& \zeta_{1} ; \Gamma \Rightarrow A: \phi \quad \zeta_{2} ; \Delta\langle\vec{C}: z\rangle \Rightarrow D: \omega \\
& \zeta ; \vec{A}:\left.x\right|_{k} \Gamma \Rightarrow C: \chi \\
& \zeta_{1} \uplus \zeta_{2} ; \Delta\left\langle\left.\Gamma\right|_{k} \overrightarrow{A \downarrow_{k} C}: y\right\rangle \Rightarrow D: \omega\{(y \phi) / z\} \\
& \overline{l_{k} R} \\
& \zeta ; \Delta\left\langle\vec{A}:\left.x\right|_{k} \vec{B}: y\right\rangle \Rightarrow D: \omega \\
& \zeta_{1} ; \Gamma_{1} \Rightarrow A: \phi \quad \zeta_{2} ; \Gamma_{2} \Rightarrow B: \psi \\
& \overline{\zeta ; \Delta\left\langle\overrightarrow{A \odot_{k} B}: z\right\rangle \Rightarrow D: \omega\left\{\pi_{1} z / x, \pi_{2} z / y\right\}} \odot_{k} L \\
& \zeta_{1} \uplus \zeta_{2} ;\left.\Gamma_{1}\right|_{k} \Gamma_{2} \Rightarrow A \odot_{k} B
\end{aligned}
$$

When the value of the k subscript is one it may be omitted, i.e. it defaults to one.

When the value of the k subscript is one it may be omitted, i.e. it defaults to one. Circumfixation, \uparrow, is exemplified by a discontinuous idiom assignment gives+1+the+cold+shoulder: $(N \backslash S) \uparrow N$ for Mary gives the man the cold shoulder: S :

When the value of the k subscript is one it may be omitted, i.e. it defaults to one. Circumfixation, \uparrow, is exemplified by a discontinuous idiom assignment gives $+1+$ the + cold + shoulder: $(N \backslash S) \uparrow N$ for Mary gives the man the cold shoulder: S :

$$
\frac{C N \Rightarrow C N \quad N \Rightarrow N}{\frac{N / C N, C N \Rightarrow N}{N,(N \backslash S) \uparrow N\{N / C N, C N\} \Rightarrow S} \quad \frac{N \Rightarrow N \quad S \Rightarrow S}{N, N \backslash S \Rightarrow S} \backslash L}
$$

When the value of the k subscript is one it may be omitted, i.e. it defaults to one. Circumfixation, \uparrow, is exemplified by a discontinuous idiom assignment gives+1+the+cold+shoulder: $(N \backslash S) \uparrow N$ for Mary gives the man the cold shoulder: S :

$$
\frac{C N \Rightarrow C N \quad N \Rightarrow N}{\frac{N / C N, C N \Rightarrow N}{N,(N \backslash S) \uparrow N\{N / C N, C N\} \Rightarrow S} \frac{N \Rightarrow N \quad S \Rightarrow S}{N, N \backslash S \Rightarrow S} \backslash L}
$$

Infixation, \downarrow, and extraction together are exemplified by a quantifier assignment everyone: $(S \uparrow N) \downarrow S$ simulating Montague's S14 quantifying in:

When the value of the k subscript is one it may be omitted, i.e. it defaults to one. Circumfixation, \uparrow, is exemplified by a discontinuous idiom assignment gives+1+the+cold+shoulder: $(N \backslash S) \uparrow N$ for Mary gives the man the cold shoulder: S :

$$
\frac{C N \Rightarrow C N \quad N \Rightarrow N}{\frac{N / C N, C N \Rightarrow N}{N,(N \backslash S) \uparrow N\{N / C N, C N\} \Rightarrow S} \frac{N \Rightarrow N \quad S \Rightarrow S}{N, N \backslash S \Rightarrow S} \backslash L}
$$

Infixation, \downarrow, and extraction together are exemplified by a quantifier assignment everyone: $(S \uparrow N) \downarrow S$ simulating Montague's S14 quantifying in:

$$
\frac{\ldots, N, \ldots \Rightarrow S}{\ldots, 1, \ldots \Rightarrow S \uparrow N} \uparrow R \quad \overline{S \Rightarrow S} \text { id }
$$

Circumfixation and discontinuous product, \odot, are illustrated in an assignment to a relative pronoun that: $(C N / C N) /((S \uparrow N) \odot I)$ allowing both peripheral and medial extraction, that John likes: $C N \backslash C N$ and that John saw today: $C N \backslash C N$:

Circumfixation and discontinuous product, \odot, are illustrated in an assignment to a relative pronoun that: $(C M C N) /((S \uparrow N) \odot /)$ allowing both peripheral and medial extraction, that John likes: $C M \backslash N$ and that John saw today: $C M$ CN:

Circumfixation and discontinuous product, \odot, are illustrated in an assignment to a relative pronoun that: $(C M C N) /((S \uparrow N) \odot I)$ allowing both peripheral and medial extraction, that John likes: CN $\backslash C N$ and that John saw today: $C M \backslash N$:

$$
\begin{aligned}
& \frac{N,(N \backslash S) / N, N \Rightarrow S}{N,(N \backslash S) / N, 1 \Rightarrow S \uparrow N} \uparrow R \underset{\Rightarrow I}{ } \quad l \\
& \frac{N,(N \backslash S) / N \Rightarrow(S \uparrow N) \odot I \quad C N \backslash C N \Rightarrow C N \backslash C N}{(C N \backslash C N) /((S \uparrow N) \odot I), N,(N \backslash S) / N \Rightarrow C M C N} / L \\
& N,(N \backslash S) / N, N, S \backslash S \Rightarrow S
\end{aligned}
$$

Additives

Additives

The additive conjunction and disjunction $\{\&, \oplus\}$ of Lambek (1961[5]), Morrill (1990[10]), and Kanazawa (1992[4]), capture polymorphism.

Additives

The additive conjunction and disjunction $\{\&, \oplus\}$ of Lambek (1961[5]), Morrill (1990[10]), and Kanazawa (1992[4]), capture polymorphism.

$$
\begin{aligned}
& \text { 9. } \frac{\Omega\langle\vec{A}: x\rangle \Rightarrow C: \chi}{\Omega\langle\overrightarrow{A \& B}: z\rangle \Rightarrow C: \chi\left\{\pi_{1} z / x\right\}} \& L_{1} \quad \frac{\Omega\langle\vec{B}: y\rangle \Rightarrow C: \chi}{\Omega\langle\overrightarrow{A \& B}: z\rangle \Rightarrow C: \chi\left\{\pi_{2} z / y\right\}} \& L_{2} \\
& \begin{array}{c}
\frac{\Omega \Rightarrow A: \phi \quad \Omega \Rightarrow B: \psi}{\Omega \Rightarrow A \& B:(\phi, \psi)} \& R \\
\frac{\Omega\langle\vec{A}: x\rangle \Rightarrow C: \chi_{1} \quad \Omega\langle\vec{B}: y\rangle \Rightarrow C: \chi_{2}}{\Omega\langle\overrightarrow{A \oplus B}: z\rangle \Rightarrow C: z->x \cdot \chi_{1} ; y \cdot \chi_{2}} \oplus L \\
\frac{\Omega \Rightarrow A: \phi}{\Omega \Rightarrow A \oplus B: \iota_{1} \phi} \oplus R_{1} \quad \frac{\Omega \Rightarrow B: \psi}{\Omega \Rightarrow A \oplus B: \iota_{2} \psi} \oplus R_{2}
\end{array} \\
& \begin{array}{c}
\frac{\Omega \Rightarrow A: \phi \quad \Omega \Rightarrow B: \psi}{\Omega \Rightarrow A \& B:(\phi, \psi)} \& R \\
\frac{\Omega\langle\vec{A}: x\rangle \Rightarrow C: \chi_{1} \quad \Omega\langle\vec{B}: y\rangle \Rightarrow C: \chi_{2}}{\Omega\langle\overrightarrow{A \oplus B}: z\rangle \Rightarrow C: z->x \cdot \chi_{1} ; y \cdot \chi_{2}} \oplus L \\
\frac{\Omega \Rightarrow A: \phi}{\Omega \Rightarrow A \oplus B: \iota_{1} \phi} \oplus R_{1} \quad \frac{\Omega \Rightarrow B: \psi}{\Omega \Rightarrow A \oplus B: \iota_{2} \psi} \oplus R_{2}
\end{array} \\
& 10 .
\end{aligned}
$$

For example the additive conjunction \& can be used for rice: $N \& C N$ as in rice grows: S and the rice grows: S :

For example the additive conjunction \& can be used for rice: $N \& C N$ as in rice grows: S and the rice grows: S :

For example the additive conjunction \& can be used for rice: $N \& C N$ as in rice grows: S and the rice grows: S :

$$
\frac{\frac{N \Rightarrow N}{N \& C N \Rightarrow N}}{\frac{N}{N \& C N, N \backslash S \Rightarrow S}} \backslash L \quad \frac{N / C N, C N, N \backslash S \Rightarrow S}{N / C N, N \& C N, N \backslash S \Rightarrow S} \& L_{2}
$$

The additive disjunction \oplus can be used for is: $(N \backslash S) /(N \oplus(C N / C N))$ as in Tully is Cicero: S and Tully is humanist: S :

For example the additive conjunction \& can be used for rice: $N \& C N$ as in rice grows: S and the rice grows: S :

$$
\frac{\frac{N \Rightarrow N}{N \& C N \Rightarrow N}}{\frac{N}{N \& C N, N \backslash S \Rightarrow S}} \backslash L \quad \frac{N / C N, C N, N \backslash S \Rightarrow S}{N / C N, N \& C N, N \backslash S \Rightarrow S} \& L_{2}
$$

The additive disjunction \oplus can be used for is: $(N \backslash S) /(N \oplus(C N / C N))$ as in Tully is Cicero: S and Tully is humanist: S :

$$
\frac{\frac{N \Rightarrow N}{N \Rightarrow N \oplus(C N / C N)} \oplus R_{1} N \backslash S \Rightarrow N \backslash S}{(N \backslash S) /(N \oplus(C N / C N)), N \Rightarrow N \backslash S} / L
$$

Quantifiers

Quantifiers

The first-order quantifiers $\{\wedge, \bigvee\}$ of Morrill (1994[16]), have application to features.

Quantifiers

The first-order quantifiers $\{\wedge, \bigvee\}$ of Morrill (1994[16]), have application to features.

where ${ }^{+}$indicates that there is no a in the conclusion

For example, we can generalise over singular and plural number in sheep: $\wedge n C N n$ for the sheep grazes: S and the sheep graze: S :

For example, we can generalise over singular and plural number in sheep: $\wedge n C N n$ for the sheep grazes: S and the sheep graze: S :

$$
\frac{C N s g \Rightarrow C N s g}{\bigwedge n C N n \Rightarrow C N s g} \wedge L
$$

$$
\frac{C N p l \Rightarrow C N p l}{\bigwedge n C N n \Rightarrow C N p l} \ L
$$

For example, we can generalise over singular and plural number in sheep: $\wedge n C N n$ for the sheep grazes: S and the sheep graze: S :

$$
\frac{C N s g \Rightarrow C N s g}{\bigwedge n C N n \Rightarrow C N s g} \wedge L
$$

$$
\frac{C N p l \Rightarrow C N p l}{\bigwedge n C N n \Rightarrow C N p l} \wedge L
$$

And we can express a past, present or future tense finite sentence complement: said: $(N \backslash S) / \bigvee t S f(t)$ in John said Mary walked: S, John said Mary walks: S and John said Mary will walk: S:

For example, we can generalise over singular and plural number in sheep: $\wedge n C N n$ for the sheep grazes: S and the sheep graze: S :

$$
\frac{C N s g \Rightarrow C N s g}{\bigwedge n C N n \Rightarrow C N s g} \wedge L
$$

$$
\frac{C N p l \Rightarrow C N p l}{\bigwedge n C N n \Rightarrow C N p l} \wedge L
$$

And we can express a past, present or future tense finite sentence complement: said: ($N \backslash S$)/ $V \operatorname{tSf}(t)$ in John said Mary walked: S, John said Mary walks: S and John said Mary will walk: S:

$$
\frac{S f(\text { past }) \Rightarrow S f(\text { past })}{S f(\text { past }) \Rightarrow \bigvee t S f(t)} \vee R \quad \frac{S f(\text { pres }) \Rightarrow S f(\text { pres })}{S f(\text { pres }) \Rightarrow \bigvee t S f(t)} \vee R \quad \frac{S f(f u t) \Rightarrow S f(f u t)}{S f(f u t) \Rightarrow \bigvee t S f(t)} \vee R
$$

Normal modalities

Normal modalities

With respect to the normal modalities $\{\square, \diamond\}$ of Morrill (1990[11]) and Moortgat (1997[9]), the universal has application to intensionality.

Normal modalities

With respect to the normal modalities $\{\square, \diamond\}$ of Morrill (1990[11]) and Moortgat (1997[9]), the universal has application to intensionality.

$$
\begin{aligned}
& \text { 13. } \frac{\Omega\langle\vec{A}: x\rangle \Rightarrow B: \psi}{\Omega\langle\overrightarrow{\square A}: z\rangle \Rightarrow B: \psi\left\{^{\vee} z / x\right\}} \square L \quad \frac{\boxtimes \Omega \Rightarrow A: \phi}{\boxtimes \Omega \Rightarrow \square A:^{\wedge} \phi} \square R \\
& \text { 14. } \frac{\boxtimes \Omega\langle\vec{A}: x\rangle \Rightarrow \oplus B: \psi}{\otimes \Omega\langle\overrightarrow{\diamond A}: z\rangle \Rightarrow \oplus B: \psi\left\{U^{\cup} z / x\right\}} \diamond L \quad \frac{\Omega \Rightarrow A: \phi}{\Omega \Rightarrow \diamond A:^{\cap} \phi} \diamond R
\end{aligned}
$$

where \boxtimes / \oplus marks a structure all the types of which have principal connective a box/diamond

For example, for a propositional attitude verb we can have an assignment such as believes: $\square((N \backslash S) / \square S)$ with a modality outermost since the word has a sense, and its sentential complement is an intensional domain, but its subject is not.

Bracket modalities

Bracket modalities

The bracket modalities $\left\{[]^{-1},\langle \rangle\right\}$ of Morrill (1992[12]) and Moortgat (1995[8]), have application to syntactical domains such as islands.

Bracket modalities

The bracket modalities $\left\{[]^{-1},\langle \rangle\right\}$ of Morrill (1992[12]) and Moortgat (1995[8]), have application to syntactical domains such as islands.
15. $\left.\left.\left.\quad \frac{\Omega\langle\vec{A}: x\rangle \Rightarrow B: \psi}{\Omega\left\langle\left[[]^{-1} A\right.\right.}: x\right]\right\rangle \Rightarrow B: \psi 1\right]^{-1} L \quad \frac{[\Omega] \Rightarrow A: \phi}{\Omega \Rightarrow[]^{-1} A: \phi}[]^{-1} R$

For example, walks: $\rangle N \backslash S$ for the subject condition, and before: []$^{-1}(V P \backslash V P) / V P$ for the adverbial island constraint, which are weak islands, and can contain parasitic gaps, see the next section;

For example, walks: $\rangle N \backslash S$ for the subject condition, and before: []$^{-1}(V P \backslash V P) / V P$ for the adverbial island constraint, which are weak islands, and can contain parasitic gaps, see the next section; for a strong island such as a coordinate structure, which cannot contain a parasitic gap, we define doubly bracketed strong islands - and: $\left(S \backslash[]^{-1}[]^{-1} S\right) / S$.

Exponentials

Exponentials

The exponentials \{!, ?\} of Girard (1987[2]), Barry et al. (1991[1]) and Morrill (1994[16]), have application to sharing.

Exponentials

The exponentials \{!, ?\} of Girard (1987[2]), Barry et al. (1991[1]) and Morrill (1994[16]), have application to sharing.
17.

$$
\frac{\Omega\left(\zeta ; \Gamma_{1}, A: x, \Gamma_{2}\right) \Rightarrow B: \psi}{\Omega\left(\zeta \uplus\{A: x\} ; \Gamma_{1}, \Gamma_{2}\right) \Rightarrow B: \psi}!P
$$

$$
\Omega\left(\zeta \uplus\{A: x\} ; \Gamma_{1},\left[\{A: y\} ; \Gamma_{2}\right], \Gamma_{3}\right) \Rightarrow B: \psi
$$

$$
\Omega\left(\zeta \uplus\{A: x\} ; \Gamma_{1}, \Gamma_{2}, \Gamma_{3}\right) \Rightarrow B: \psi\{x / y\}!C
$$

$$
\text { 18. } \frac{\Omega \Rightarrow A: \phi}{\Omega \Rightarrow ? A:[\phi]} ? R \quad \frac{\zeta ; \Gamma \Rightarrow A: \phi \quad \zeta^{\prime} ; \Delta \Rightarrow ? A: \psi}{\zeta \uplus \zeta^{\prime} ; \Gamma, \Delta \Rightarrow ? A:[\phi \mid \psi]} ? M
$$

Using the universal exponential, !, we can assign a relative pronoun type that: $(C N / C N) /(S /!N)$ allowing parasitic extraction, Morrill (2011[17]), Morrill and Valentín (2015[14]), such as paper that John filed without reading: CN, where parasitic gaps can appear only in (weak) islands, but can be iterated in (weak) subislands.

Using the universal exponential, !, we can assign a relative pronoun type that: $(C N \backslash C N) /(S /!N)$ allowing parasitic extraction, Morrill (2011[17]), Morrill and Valentín (2015[14]), such as paper that John filed without reading: CN, where parasitic gaps can appear only in (weak) islands, but can be iterated in (weak) subislands.

Using the existential exponential, ?, we can assign a coordinator type and: (?N $\backslash N$)/N allowing iterated coordination as in John, Bill, Mary and Suzy: N.

Guy Barry，Mark Hepple，Neil Leslie，and Glyn Morrill． Proof Figures and Structural Operators for Categorial Grammar．
In Proceedings of the Fifth Conference of the European Chapter of the Association for Computational Linguistics， Berlin， 1991.

雷 Jean－Yves Girard．
Linear logic．
Theoretical Computer Science，50：1－102， 1987.
圊 Jean－Yves Girard．
The Blind Spot．
European Mathematical Society，Zürich， 2011.
嗇 M．Kanazawa．
The Lambek calculus enriched with additional connectives．
Journal of Logic，Language and Information，1：141－171， 1992.

目 J．Lambek．

On the Calculus of Syntactic Types．
In Roman Jakobson，editor，Structure of Language and its
Mathematical Aspects，Proceedings of the Symposia in
Applied Mathematics XII，pages 166－178．American
Mathematical Society，Providence，Rhode Island， 1961.
囯 J．Lambek．
Categorial and Categorical Grammars．
In Richard T．Oehrle，Emmon Bach，and Deidre Wheeler，
editors，Categorial Grammars and Natural Language
Structures，volume 32 of Studies in Linguistics and
Philosophy，pages 297－317．D．Reidel，Dordrecht， 1988.
固 Joachim Lambek．
The mathematics of sentence structure．
American Mathematical Monthly，65：154－170， 1958.
这 Michael Moortgat．
Multimodal linguistic inference．
Journal of Logic，Language and Information，5（3，
4）：349－385， 1996.

R Michael Moortgat.
Categorial Type Logics.
In Johan van Benthem and Alice ter Meulen, editors, Handbook of Logic and Language, pages 93-177. Elsevier
Science B.V. and the MIT Press, Amsterdam and
Cambridge, Massachusetts, 1997.
睩 Glyn Morrill.
Grammar and Logical Types.
In Martin Stockhof and Leen Torenvliet, editors,
Proceedings of the Seventh Amsterdam Colloquium, pages
429-450, Amsterdam, 1990. Universiteit van Amsterdam.
围 Glyn Morrill.
Intensionality and Boundedness.
Linguistics and Philosophy, 13(6):699-726, 1990.
R Glyn Morrill.
Categorial Formalisation of Relativisation: Pied Piping, Islands, and Extraction Sites.

Technical Report LSI－92－23－R，Departament de Llenguatges i Sistemes Informàtics，Universitat Politècnica de Catalunya， 1992.

嗇 Glyn Morrill and Oriol Valentín． Displacement Calculus．
Linguistic Analysis，36（1－4）：167－192， 2010.
Special issue Festschrift for Joachim Lambek．
圊 Glyn Morrill and Oriol Valentín．
Computational Coverage of TLG：Nonlinearity．
In M．Kanazawa，L．S．Moss，and V．de Paiva，editors， Proceedings of NLCS＇15．Third Workshop on Natural Language and Computer Science，volume 32，pages 51－63，Kyoto，2015．EPiC．
Workshop affiliated with Automata，Languages and
Programming（ICALP）and Logic in Computer Science （LICS）．

围 Glyn Morrill，Oriol Valentín，and Mario Fadda．
The Displacement Calculus．

Journal of Logic, Language and Information, 20(1):1-48, 2011.

國 Glyn V. Morrill.
Type Logical Grammar: Categorial Logic of Signs. Kluwer Academic Publishers, Dordrecht, 1994.

睩 Glyn V. Morrill.
Categorial Grammar: Logical Syntax, Semantics, and Processing.
Oxford University Press, New York and Oxford, 2011.

