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Lecture 2

From Natural Deduction to Sequents: Hypersequents



On the Need of a Sequent Calculus for the
Displacement Calculus D

I
D like L is a substructural logic. We have presented a labelled
natural deduction for D.

I But we want D to be the core logic of what we call Displacement
Logic, which we denote DL.

I For example, we want to incorporate into DL, polymorphism
(additive connectives from Linear Logic), and first-order
quantifiers (not yet incorporated dependent types!).



On the Need of a Sequent Calculus for the
Displacement Calculus D

I Furthermore, the connectives we have considered preserve the
linearity status of DL. But we want more. We want to account for
non-linear phenomena which are ubiquituous in natural
language. The idea is to add to the linear component of DL a
pair of exponential-like modalities which control the structural
rules of contraction and expansion respectively.

I For all this new kind of logical machinery we need a sequent
calculus. Why? a) Natural deduction is not well-suited to these
new connectives, b) sequent calculus is symmetric (in its rules),
c) a simpler result of normalization for DL (Haupsatz) is proved
in sequent calculus, and d) a fast proof-search is easier (using
focalised proof search).



The NL

Assc

-L metaphor

I Let NL be the non-associative Lambek calculus. We call its
sequent calculus NL . Consider the substructural logic NL with
the structural rule of associativity:
NL

Assc

=def NL + Associativity.

I A logical metaphor: NL

Assc

vs L.



The NL

Assc

-L metaphor

I The sequent calculus (Lambek 1958) for L is free of structural
rules. What kind of data-structure is used for the antecedents of
L sequents? (Possibly empty1) lists of types. But lists of items of
a given set X have a name in universal algebra. Lists are the
free monoid (up to isomorphism) generated by a set of
generators X .

I The natural algebraic semantics for L is the class of residuated
monoids.

I We can consider then a multimodal calculus with a set of
structural postulates (or rules) which is equivalent to L. We
already have it: NL

Assc

. It is a story which is folklore, but it worth
going into the details.

1Recall we are considering the Lambek calculus with empty antecedent.



The Metaphor in Details

Let O
L

be the set of configurations of L (we denote it O). O is simply,
as we know, a possibly non-empty list of types, where we denote the
set of Lambek types as F .

The sequent calculus of L is free of structural rules (the associativity
is built-in).



The Metaphor in Details

Which kind of data-structure do we have for NL? Binary trees.
Consider the following set of structural terms:

StructTerm ::= F | I | (StructTerm�StructTerm)

In fact, StructTerm is the free unital groupoid generated by F with a
distinguished structural 0-ary term constructor (or constant) related to
the product unit of NL (and NL

Assc

).



The Metaphor in Details
Let us consider the non-associative Lambek sequent calculus NL:

Id
A!A , where A 2 Pr

T!A S[A ]!B
Cut

S[T ]!B

T!A S[B]!C
/L

S[(B/A�T)]!C

(T�A)) B
/R

T ) B/A

T!A S[B]!C
\L

S[(T�A\B)]!C

(A�T)) B
\R

T ) A\A

T [(A�B)]!C
•L

T [(A•B)]!C

T!A S!B
•R

(T�S)!A•B



NL continued

T [I]!A
IL

T [I]!A
IR

I!I

T [S�I]!A
Unit1

T [S]!A

T [I�S]!A
Unit2

T [S]!A

T [S]!A
Unit3

T [S�I]!A

T [S]!A
Unit4

T [I�S]!A



NL

Assc

NL

Assc

, NL + Associativity

T [(S�(K�L))]!A
Assc1

T [((S�K)�L)]!A

T [(S�K)�L)]!A
Assc2

T [(S�(K�L))]!A



NL

Assc

NL

Assc

, NL + Associativity

T [(S�(K�L))]!A
Assc1

T [((S�K)�L)]!A

T [(S�K)�L)]!A
Assc2

T [(S�(K�L))]!A



The variety (equational class) of monoids

(x + y) + z ⇡ x + (y + z)
x + (y + z) ⇡ (x + y) + z
x + 0 ⇡ x

⇡ 0 + x

As we have seen, the data-structure for L-sequents O is the free
monoid generated by the set of types FL , i.e., lists of Lambek types.
In any variety V we can build the relatively free algebra FAV(X) w.r.t.
a set of generators.
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Faithful embedding between NL

Assc

and L

We consider the following embedding translation from NL

Assc

to L:

(·)] : NL

Assc

= (F ,StructTerm,!) �! L = (F ,OL ,))
T!A 7! (T)] ) (A)]

(·)] is such that:
A ] = A if A is a type
(T1 � T2)] = T ]1,T

]
2

I] = ⇤

(·)] satisfies:
(T [S])] = T ](S])
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On (·)]

(·)] is faithful, i.e.:

I If T ! A then T ] ) A .

I Conversely, for any T� such that (T�)] = � and L ` �) A ,
then NL

Assc

` T� ! A .

I (·)] absorbs the structural rules. If T 2 StructTerm and T$⇤S,
then:

T ] = S]

Where$⇤ is the reflexive, symmetric and transitive closure of
$, compatible with operations, and closed by substitutions. $ is
the result of applying a single structural rule to a (structural)
term, and here the structural rules are the rules of associativity.
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Summary of the metaphor

Slogan:

I
L is free of structural rules.

I In fact, L absorbs the structural rules of NL

Assc

, which
correspond to the equations defining the variety of monoids.

I The data-structure corresponding to the antecedent of an
L-sequent is precisely isomorphic to the free algebra of
monoids, i.e. to lists of types.

I We have a faithful embedding translation betwee NL

Assc

and L.
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(Hyper)sequents

Configurations O are defined by the following, where ⇤ is the empty
string, and the metalinguistic separator 1 marks holes:

O ::= ⇤ | T ,O
T ::= 1 | F0 | Fi>0{O : . . . : O|     {z     }

iO’s

}

Where A is a type, sA is its sort.

Where � is a configuration, its sort s� is the number of holes (1’s) it
contains.

Sequents ⌃ are defined by:

O) F such that sO = sF
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Sequent calculus

The figure
�!
A of a type A is defined by:

�!
A =

8>>><>>>:

A if sA = 0
A {1 : . . . : 1|    {z    }

sA 1’s

} if sA > 0
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Where � is a configuration of sort i and �1, . . . ,�i are configurations,
the fold � ⌦ h�1, . . . ,�ii is the result of replacing the successive holes
in � by �1, . . . ,�i respectively.

Intuitively, a prosodic inhabitant of the fold � ⌦ h�1, . . . ,�ii is:
�0+�1+�1+ · · ·+�i�1+�i+�i , where �0+1+�1+ · · ·+�i�1+1+�i is a
prosodic inhabitant of � and �k is a prosodic inhabitant of �k for
1  k  i.

Where � is of sort i, the notation �h�i abbreviates
�0(� ⌦ h�1, . . . ,�ii), i.e. a context configuration � (which is
externally �0 and internally �1, . . . ,�i) with a potentially
discontinuous distinguished subconfiguration �.
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Continuous logical rules

�) B �h�!C i ) D
/L

�h���!C/B ,�i ) D

�,
�!
B ) C

/R
�) C/B

�) A �h�!C i ) D
\L

�h�,���!A\Ci ) D

�!
A ,�) C

\R
�) A\C

�h�!A ,�!B i ) D
•L

�h���!A•Bi ) D

�1 ) A �2 ) B
•R

�1,�2 ) A•B
�h⇤i ) A

IL
�h�!I i ) A

IR
⇤) I



Where � is a configuration of sort i > 0 and � is a configuration, the
k th metalinguistic wrap � |k �, 1  k  i, is given by:

� |k � =df � ⌦ h1, . . . ,1|  {z  }
k�1 1’s

, �,1, . . . ,1
|  {z  }

i�k 1’s

i

i.e. � |k � is the configuration resulting from replacing by � the k th
hole in �.
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Discontinuous logical rules

�) B �h�!C i ) D
"k L

�h����!C"k B |k �i ) D

� |k �!B ) C
"k R

�) C"k B

�) A �h�!C i ) D
#k L

�h� |k ����!A#k Ci ) D

�!
A |k �) C

#k R
�) A#k C

�h�!A |k �!B i ) D
�k L

�h����!A�k Bi ) D

�1 ) A �2 ) B
�k R

�1 |k �2 ) A�k B

�h1i ) A
JL

�h�!J i ) A
JR

1) J
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Sequent Calculus: Hypersequents



From the metaphor NL

Assc

/L to ?/hD

I
hD is free of structural rules.

I Does hD absorb the structural rules of a (!-sorted) multimodal
calculus?

I YES!

I These absorbed structural rules correspond to the sorted
equational theory of a certain !-sorted variety.

I Finally, the data-structure O
D

, as we will see, corresponds to the
relatively free algebra of this sorted variety.
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The (Sorted) Variety of displacements algebras DA

Continuous associativity

x + (y + z) ⇡ (x + y) + z

Discontinuous associativity

x ⇥i (y ⇥j z) ⇡ (x ⇥i y) ⇥i+j�1 z
(x ⇥i y) ⇥j z ⇡ x ⇥i (y ⇥j�i+1 z) if i  j  1 + s(y) � 1

Mixed permutation

(x ⇥i y) ⇥j z ⇡ (x ⇥j�S(y)+1 z) ⇥i y if j > i + s(y) � 1
(x ⇥i z) ⇥j y ⇡ (x ⇥j y) ⇥i+S(y)�1 z if j < i

Mixed associativity

(x + y) ⇥i z ⇡ (x ⇥i z) + y if 1  i  s(x)
(x + y) ⇥i z ⇡ x + (y ⇥i�s(x) z) if x + 1  i  s(x) + s(y)

Continuous unit and discontinuous unit

0 + x ⇡ x ⇡ x + 0 and 1 ⇥1 x ⇡ x ⇡ x ⇥i 1

Figure: Equational theory for DA
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The (Sorted) Variety of displacements algebras DA

I The class of standard displacement algebras (DAs) is properly
contained in DA.

I The set of hyperconfigurations O
D

is the relatively free DA of the
variety DA with the set of !-sorted generators FD . I.e.:

(1) Theorem (Freeness of O
D

)

FADA(F ) = O
D

Proof. Via the equivalence theorem (see Valentı́n 2012). ⇤
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The !-sorted multimodal displacement calculus mD

StructTerm ::= F | I | (StructTerm�StructTerm) |
::= J | (StructTerm�iStructTerm)

StructTerm is !-sorted, i.e. StructTerm =
S

i2! StructTermi .



The !-sorted multimodal displacement calculus mD

The logical rules:

A!A Id

S ! A T [A ]! B

Cut

T [S]! B

T [I]!A

IL

T [I]!A

IR

I) I

T [J]!A

JL

T [J]!A

JR

J) J

X!A Y [B]!C

\L
Y [X�A\B]!C

A�X!B

\R
X!A\B

X!A Y [B]!C

/L

Y [B/A�X ]!C

X�A!B

/R

X!B/A

X!A Y [B]!C

"i L

Y [B "i A�i X ]!C

X�i A!B

"i R
X!B "i A
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mD continued

More logical rules:

X!A Y [B]!C
#i L

Y [X�iA #i B]!C

A�iX!B
#i R

X!A #i B

X [A�B]!C
•L

X [A • B]!C

X!A Y!B
•R

X�Y!A • B

X [A�iB]!C
�iL

X [A�iB]!C

X!A Y!B
�iR

X�iY!A�iB
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mD continued

Some useful stuff on terms:

(3) Definition (Wrapping and Permutable Terms)

Given the structural term term (T1 �i T2) �j T3, we say that:

(P1) T2 �T1 T3 iff i + t2 � 1 < j.
(P2) T3 �T1 T2 iff j < i.
(O) T2 GT1 T3 iff i  j  i + t2 � 1.

Intuitively, (P1) holds when in the approximate algebraic interpretation
is such that:

(4)
[[(T1 �i T2) �j T3]] = · · ·+ [[T2]] + · · ·+ [[T3]] + · · · (P1)
[[(T1 �i T2) �j T3]] = · · ·+ [[T3]] + · · ·+ [[T2]] + · · · (P2)
[[(T1 �i T2) �j T3]] = · · ·+ �0 + · · ·+ �k + [[T3]] + �k+1+ · · · (O)

Where �0 + 1 + · · ·+ �k + 1 + �k+1
+ · · ·+ �s(T2) 2 [[T2]]
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[[(T1 �i T2) �j T3]] = · · ·+ �0 + · · ·+ �k + [[T3]] + �k+1+ · · · (O)

Where �0 + 1 + · · ·+ �k + 1 + �k+1
+ · · ·+ �s(T2) 2 [[T2]]



mD continued

The structural rules:

Continuous unit:

T [X ]!A

T [I�X ]!A

T [I�X ]!A

T [X ]!A

T [X ]!A

T [X�I]!A

T [X�I]!A

T [X ]!A

Discontinuous unit:

T [X ]!A

T [J�1X ]!A

T [J�1X ]!A

T [X ]!A

T [X ]!A

T [X�iJ]!A

T [X�iJ]!A

T [X ]!A
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The structural rules:

Continuous unit:
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T [I�X ]!A
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T [X ]!A

T [X�I]!A

T [X�I]!A
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Discontinuous unit:

T [X ]!A
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T [J�1X ]!A

T [X ]!A
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T [X�iJ]!A

T [X ]!A



mD continued

More structural rules:
Continuous associativity

X [(T1�T2)�T3]!D

Asscc

X [T1�(T2�T3)]!D

X [T1�(T2�T3)]!D

Asscc

X [(T1�T2)�T3]!D

Discontinuous associativity T2 GT1 T3

S[T1�i (T2�j T3)]! C

Assc

d

1

S[(T1�i T2)�i+j�1T3)]! C

S[(T1�i T2)�j T3]! C

Assc

d

2

S[T1�i (T2�j�i+1T3)]! C

Mixed permutation 1 case T2 �T1 T3

S[(T1�i T2)�j T3]! C

MixPerm1

S[(T1�j�S(T2)+1T3)�i T2]! C

S[(T1�i T3)�j T2]! C

MixPerm1

S[(T1�j T2)�i+S(T2)�1T3]! C
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More structural rules:
Continuous associativity

X [(T1�T2)�T3]!D

Asscc

X [T1�(T2�T3)]!D
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Asscc
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Discontinuous associativity T2 GT1 T3

S[T1�i (T2�j T3)]! C

Assc

d
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S[(T1�i T2)�i+j�1T3)]! C

S[(T1�i T2)�j T3]! C
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d
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S[(T1�j T2)�i+S(T2)�1T3]! C



mD continued

More structural rules:

Mixed permutation 2 case T3 �T1 T2

S[(T1�iT2)�jT3]! C
MixPerm2

S[(T1�jT3)�i+S(T3)�1T2]! C

S[(T1�iT3)�jT2]! C
MixPerm2

S[(T1�j�S(T3)+1T2)�iT3]! C

Mixed associativity I

R[(T�S)�iK ]!A

R[(T�iK)�S]!A

Mixed associativity II

R[(T�S)�iK ]!A

R[(T�(S�i�s(T)K ]!A



mD continued

More structural rules:

Mixed permutation 2 case T3 �T1 T2

S[(T1�iT2)�jT3]! C
MixPerm2

S[(T1�jT3)�i+S(T3)�1T2]! C

S[(T1�iT3)�jT2]! C
MixPerm2

S[(T1�j�S(T3)+1T2)�iT3]! C

Mixed associativity I

R[(T�S)�iK ]!A

R[(T�iK)�S]!A

Mixed associativity II

R[(T�S)�iK ]!A

R[(T�(S�i�s(T)K ]!A



mD vs hD

Let us define the following map between sequent calculi: We consider
the following embedding translation from mD to hD: We consider the
following embedding translation from mD to hD:

(·)] : mD = (F ,StructTerm,!) �! hD = (F ,O,))
T!A 7! (T)] ) (A)]

(·)] is such that:

A ] =
�!
A if A is of sort strictly greater than 0

A ] = A if A is of sort 0
(T1 � T2)] = T ]1,T

]
2

(T1 �i T2)] = T ]1|iT ]2
I] = ⇤
J] = 1



mD vs hD

Let us define the following map between sequent calculi: We consider
the following embedding translation from mD to hD: We consider the
following embedding translation from mD to hD:

(·)] : mD = (F ,StructTerm,!) �! hD = (F ,O,))
T!A 7! (T)] ) (A)]

(·)] is such that:

A ] =
�!
A if A is of sort strictly greater than 0

A ] = A if A is of sort 0
(T1 � T2)] = T ]1,T

]
2

(T1 �i T2)] = T ]1|iT ]2
I] = ⇤
J] = 1



On the morphism (·)]
(7) Lemma ((·)] is an Epimorphism)

For every � 2 O there exists a structural term2 T� such that:

(T�)
] = �

Proof. This can be proved by induction on the structure of
hyperconfigurations. We define recursively T� such that (T�)] = �:
I Case � = ⇤ (the empty tree): T� = I.
I Case where � = A ,�: T� = A�T�, where by induction hypothesis (i.h.)

(T�)] = �.
I Case where � = 1,�: T� = J�T�, where by i.h. (T�)] = �.

I Case � =
�!
A ⌦ h�1, · · · ,�ai,�a+1. By i.h. we have:

(T�i )
] = �i for 1  i  a + 1

T� = (A�1T�1)�T�2 if a = 1
T� = ((· · · ((A�1T�1)�1+d1 T�2) · · · )�1+d1+···+da�1 T�a )�T�a+1 if a > 1

⇤
2In fact there exists an infinite set of such structural terms.



mD vs hD

(8) Theorem (Faithfulness of (·)] Embedding Translation)

Let A , X and � be respectively a type, a structural term and a
hyperconfiguration. The following statements hold:

i) If `
mD

X ! A then `
hD

(X)] ) A
ii) For any X such that (X)] = �, if `

hD

�) A then `
mD

X ! A



hD absorbs the structural rules

Again, as before with NL

Assc

/L, the embedding translation mapping
satisfies:

(R[T ])] = R]hT ]i

Since O is the free algebra of DAs over F , (·)] absorbs the structural
rules of mD. I.e., if T$⇤S (where$⇤ is defined as before, but w.r.t. to
D), then (R[T ])] = (R[S])].
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The Categorical Calculus of Displacement Calculus

(9)
A ! A Axiom
A•B ! C iff A ! C/B iff B ! A\C Rescont

A �i B ! C iff A ! C"iB iff B ! A#iC Resdisc

A • I $ A $ I • A A �i J $ A $ J �1 A
(A • B) • C $ A • (B • C) Continuous associativity
A �i (B �j C)$ (A �i B) �i+j�1 C Discontinuous associativity
(A �i B) �j C $ A �i (B �j�i+1 C), if i  j  1 + s(B) � 1

(A �i B) �j C $ (A �j�s(B)+1 C) �i B , if j > i + s(B) � 1 Mixed permutation
(A �i C) �j B $ (A �j B) �i+s(B)�1 C , if j < i

(A • B) �i C $ (A �i C) • B, if 1  i  S(A) Mixed associativity
(A • B) �i C $ A • (B �i�s(C) C), if s(A) + 1  i  s(A) + s(B)
From A ! B and B ! C we have A ! C Transitivity



The Categorical Calculus of Displacement Calculus

From mD we have its equivalent categorical calculus cD. cD is the
logic of pure residuation for the continuous and discontinuous
multiplicatives with the set of postulates corresponding to the axioms
of the variety of DAs.

From cD we directly build the corresponding Lindenbaum-Tarski
algebra, which is the very first step to the study of algebraic
semantics of D.


