Displacement Logic for Grammar

Glyn Morrill \& Oriol Valentín

Department of Computer Science
Universitat Politècnica de Catalunya morrill@cs.upc.edu \& oriol.valentin@gmail.com

ESSLLI 2016, Bolzano - Bozen

Lecture 1

From Lambek Calculus to Displacement Calculus: Natural Deduction

The challenge

A/the main challenge of natural grammar: syntax/semantics mismatch or displacement.
E.g. overt 'movement' such as relativisation:
(1) a. (the book) that ${ }_{i}$ Mary reads e_{i}
$\lambda y \lambda z[(y z) \wedge(($ read $z) m)]$
b. the book that ${ }_{i}$ John gave e_{i} to Mary
$\lambda y \lambda z[(y z) \wedge((($ give $z) m) j)]$
and covert 'movement' such as quantification:
(2) a. Mary reads every book
$\forall z[($ book $z) \rightarrow(($ read $z) m)]$
b. John gave every book to Mary
$\forall z[($ book $z) \rightarrow((($ give $z) m) j)]$

As we shall see now, the Lambek calculus L of Lambek (1958[1]) can handle the (peripheral) a. cases, but the (medial) b. cases require something like the displacement calculus \mathbf{D} of Morrill, Valentín and Fadda (2011[2]).

Lambek Calculus L (with product unit)

Types:

$$
\begin{array}{lll}
\mathcal{F}::=\mathcal{F} \backslash \mathcal{F} & T(A \backslash C)=T(A) \rightarrow T(C) & \text { under } \\
\mathcal{F}::=\mathcal{F} / \mathcal{F} & T(C / B)=T(B) \rightarrow T(C) & \text { over } \\
\mathcal{F}::=\mathcal{F} \bullet \mathcal{F} & T(A \bullet B)=T(A) \& T(B) & \text { product } \\
\mathcal{F}::=1 & T(I)=T & \text { product unit }
\end{array}
$$

Approximate algebraic interpretation as subsets of the monoid ($L,+, 0$) of strings over an alphabet:

$$
\begin{aligned}
{[[A \backslash C]] } & =\left\{s_{2} \mid \forall s_{1} \in[[A]], s_{1}+s_{2} \in[[C]]\right\} \\
{[[C / B]] } & =\left\{s_{1} \mid \forall s_{2} \in[[B]], s_{1}+s_{2} \in[[C]]\right\} \\
{[[A \bullet B]] } & =\left\{s_{1}+s_{2} \mid s_{1} \in[[A]] \text { and } s_{2} \in[[B]]\right\} \\
{[[I]] } & =\{0\}
\end{aligned}
$$

Natural Deduction for L

$$
\frac{\alpha: \dot{C / B}: \phi \quad \beta: \dot{B}: \psi}{\alpha+\beta: C:(\phi \psi)} E /
$$

$$
\begin{gathered}
\overline{a: A: x}^{i} \\
\vdots \\
\frac{a+\beta: C: \psi}{\beta: A \backslash C: \lambda x \psi} \Lambda^{i} \\
\overline{b: B: y}^{i} \\
\vdots \\
\frac{\alpha+b: C: \psi}{\alpha: C / B: \lambda x \psi} I / i
\end{gathered}
$$

Example: Mary reads the book in L

$\frac{\text { Mary: } N: m \text { reads: }(N \backslash S) / N: \text { read } \frac{\text { the: } N / C N: \iota \text { book: } C N: b o o k}{\text { the }+ \text { book: } N:(\iota \text { book })}}{\text { reads }+ \text { the }+ \text { book: } N \backslash S:(\text { read }(\iota \text { book }))} E /$

Example: John gave the book to Mary in L

John: N : j	$\begin{gathered} \text { gives: } \\ ((N \backslash S) / P P) / N: \\ \text { give } \end{gathered}$	$\begin{aligned} & \text { the+book: } \\ & N: \\ & \text { (} \text { : book) } \end{aligned}$	$\begin{gathered} \text { to: } \\ P P / N: \\ \lambda x x \end{gathered}$	Mary N : m
	gives+the+book: (N	$\text {)/PP: (give (ı book)) } E /$	$\text { to }+ \text { Ma }$	$\frac{m}{\mathbf{y}: P P: m}$
	gives+the+book+to+Mary: $N \backslash S$: ((give (book)) m)			

Overt movement: (the book) that Mary reads in \mathbf{L}

But medial overt movement:

(the book) that John gave to Mary in L

$$
\begin{gathered}
\text { to+Mary: } \\
P P:
\end{gathered}
$$

$$
m
$$

gave $+b+$ to + Mary: $N \backslash S$: ((give y) b)

John+gave +b+to+Mary: S: (((give y) b) j)

Covert movement: Mary reads every book in L

	every:	book:
Mary+reads:	$((S / N) \backslash S) / C N$	$C N:$
$S / N:$	$\lambda x \lambda y \forall z[(x z) \rightarrow(y z)]$	book
$\lambda y(($ read $y) m)$	every+book: $(S / N) \backslash S: \lambda y \forall z[($ book $z) \rightarrow(y z)]$	
Mary+reads+every+book: $S: \forall z[($ book $z) \rightarrow(($ read $z) m)]$		

But medial covert movement: John gave every book to Mary in L

Displacement Calculus (D)

Discontinuous strings s are strings over an alphabet with a distinguished symbol 1 called the separator.

The sort $\sigma(s)$ of a discontinuous string s is the number of separators it contains.

We define the sets L_{i} of discontinuous strings of sort i by:

$$
L_{i}=\{s \mid \sigma(s)=i\}
$$

The continuous strings are L_{0}.

Operations on discontinuous strings

We consider the operations concatenation and intercalation on discontinuous strings. Concatenation is represented in (3).

concatenation $+: L_{i}, L_{j} \rightarrow L_{i+j}$
For example, the concatenation of Leslie+1+Sandy and and + Robin + Bill is:
(4) Leslie $+1+$ Sandy + and + Robin + Bill

Leslie $+1+$ Sandy + and + Robin + Bill

Intercalation is represented in (5):
(5)

intercalation $\times_{k}: L_{i+1}, L_{j} \rightarrow L_{i+j}$
For example, the intercalation at the second separator of $1+$ dogs $+1+$ Whiskas + and + cats + Alpo and like is:
(6) $1+$ dogs $+1+$ Whiskas + and + cats + Alpo \times_{2} like
$1+$ dogs + like + Whiskas + and + cats + Alpo

Sorted types:

$$
\begin{aligned}
& \mathcal{F}_{j}::=\mathcal{F}_{i} \mid \mathcal{F}_{i+j} \\
& \mathcal{F}_{i}::=\mathcal{F}_{i+j} \mathcal{F}_{j} \\
& \mathcal{F}_{i+j}::=\mathcal{F}_{i} \bullet \mathcal{F}_{j} \\
& \mathcal{F}_{0}::=1
\end{aligned}
$$

$T(A \backslash C)=T(A) \rightarrow T(C) \quad$ under
$T(C / B)=T(B) \rightarrow T(C) \quad$ over
$T(A \bullet B)=T(A) \& T(B) \quad$ product
$T(I)=T$
product unit

$$
\begin{array}{lll}
\mathcal{F}_{j}::=\mathcal{F}_{i+1} \downarrow_{k} \mathcal{F}_{i+j} & T\left(A \downarrow_{k} C\right)=T(A) \rightarrow T(C) & \text { infix } \\
\mathcal{F}_{i+1}::=\mathcal{F}_{i+j} \uparrow_{k} \mathcal{F}_{j} & T\left(C \uparrow_{k} B\right)=T(B) \rightarrow T(C) & \text { extract } \\
\mathcal{F}_{i+j}::=\mathcal{F}_{i+1} \odot_{k} \mathcal{F}_{j} & T\left(A \otimes_{k} B\right)=T(A) \& T(B) & \text { disc. product } \\
\mathcal{F}_{1}::=J & T(J)=T & \text { disc. product unit }
\end{array}
$$

Sort map

$$
\begin{aligned}
s(I) & =0 \\
s(A \bullet B) & =s(A)+s(B) \\
s(C / B) & =s(C)-s(B) \\
s(A \backslash C) & =s(C)-s(A) \\
s(J) & =1 \\
s\left(A \odot_{k} B\right) & =s(A)+s(B)-1 \\
s\left(C \uparrow_{k} B\right) & =1+s(C)-s(B) \\
s\left(A \downarrow_{k} C\right) & =1+s(C)-s(A)
\end{aligned}
$$

Approximate algebraic interpretation as sort consistent subsets of the displacement algebra $\left(\left\{L_{i}\right\}_{i \in \mathcal{N},}+,\left\{x_{k}\right\}_{k \in \mathcal{N}}, 0,1\right)$ of discontinuous strings over an alphabet:

$$
\begin{aligned}
{[[A \backslash C]] } & =\left\{s_{2} \mid \forall s_{1} \in[[A]], s_{1}+s_{2} \in[[C]]\right\} \\
{[[C / B]] } & =\left\{s_{1} \mid \forall s_{2} \in[[B]], s_{1}+s_{2} \in[[C]]\right\} \\
{[[A \bullet B]] } & =\left\{s_{1}+s_{2} \mid s_{1} \in[[A]] \text { and } s_{2} \in[[B]]\right\} \\
{[[I]] } & =\{0\} \\
{\left[\left[A \downarrow_{k} C\right]\right] } & =\left\{s_{2} \mid \forall s_{1} \in[[A]], s_{1} \times_{k} s_{2} \in[[C]]\right\} \\
{\left[\left[C \uparrow_{k} B\right]\right] } & =\left\{s_{1} \mid \forall s_{2} \in[[B]], s_{1} \times_{k} s_{2} \in[[C]]\right\} \\
{\left[\left[A \odot_{k} B\right]\right] } & =\left\{s_{1} \times_{k} s_{2} \mid s_{1} \in[[A]] \text { and } s_{2} \in[[B]]\right\} \\
{[[J]] } & =\{1\}
\end{aligned}
$$

Natural Deduction for D: Continuous connectives (same as L)

Natural Deduction for D: Discontinuous connectives (same as L also!, except with \times_{k})

$$
\begin{array}{ccc}
\vdots & \vdots & \frac{a: A: x}{} \\
\frac{\alpha: A}{}: \phi & \beta: A \downarrow_{k} C: \psi \\
\alpha \times_{k} \beta: C:(\psi \phi) \\
& \vdots \downarrow_{k} & \frac{a \times_{k} \beta: C: \psi}{\beta: A \downarrow_{k} C: \lambda x \psi} I_{k}{ }^{i} \\
\vdots & \frac{\partial}{b: B: y} i \\
\frac{\alpha: C \uparrow_{k} B: \phi}{\alpha \times_{k} \beta: C:(\phi \psi)} & \beta: B: \psi \\
& \vdots \uparrow_{k} & \frac{\alpha \times_{k} b: C: \psi}{\alpha: C \uparrow_{k} B: \lambda x \psi} I_{k}^{i}
\end{array}
$$

 $\delta(\gamma): D: \omega\left\{\pi_{1} \chi / x, \pi_{2} \chi / y\right\}$
$\frac{\alpha: \dot{A}: \phi \quad \beta: J: \psi}{\alpha: A: \phi} E J \quad \overline{1: I: 0} I J$

Overt movement: (the book) that Mary reads in D

Medial Overt movement: (the book) that John gave to Mary in D

that+John+gave+to+Mary: $C N \backslash C N: \lambda y \lambda z[(y z) \wedge((($ give $z) m) j)]$

Covert movement: Mary reads every book in D

Medial covert movement: John gave every book to Mary in D

```
John + gave \(+1+\) to + Mary:
        \(S \uparrow N:\)
    \(\lambda x(((\) give \(x) m) j)\)
```

 every+book:
 \((S \uparrow N) \downarrow S\) :
 $\lambda y \forall z[($ book $z) \rightarrow(y z)]$

John+gave+every+book+to+Mary: $S: \forall z[($ book $z) \rightarrow((($ give z) $m) j)]$

References

Joachim Lambek.
The mathematics of sentence structure.
American Mathematical Monthly, 65:154-170, 1958.
囯 Glyn Morrill, Oriol Valentín, and Mario Fadda. The Displacement Calculus.
Journal of Logic, Language and Information, 20(1):1-48, 2011.

