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Primitive types

1. ™ = TRl /Tpl.5 T(C/B) = T(B)->T(C) over[s]

2 Tpf n= Tp?\Tpr. T(A\C) = T(A)>T(C) under[5]

3. ij’+. = Tpf’-Tp;J T(AeB) = T(A)&T(B)  continuous product [5]

4 Tog == | T(H = T continuous unit [4]

5,k. Tpf+1 = Tpf’+/TkTpl‘.’,1 <k <i+1 T(C«B) = T(B)=T(C) extract[12]

6, k. Tpf = Tp'?+1 LkTprJ <k<it1 T(AlkC) = T(A)-T(C) infix[12]

7,k. Tpﬁr. = Tpf+1®kTpf/1 <k <i+1 T(AokB) = T(A)&T(B) discontinuous product [12]
8. Tp! = J TYW) = T discontinuous unit [12]

9 Tpg’ = Tpp&Tpg T(A&B) = T(A)&T(B) additive conjunction [3, 8]
10 Tpi.j = Tpé’e)Tpi T(AeB) = T(A)+T(B) additive disjunction [3, 8]

11 pr = A VTpg T(AVA) = F-T(A) 1st order univ. qu. [13]

12 pr =V VIp; T(VVA) = F&T(A) 1st order exist. qu. [13]

13 pr = DTpf T(oA) = LT(A) universal modality [9]

14, Tpi.J = <>Tp¢j T(CA) = MT(A) existential modality [7]

15 TpE = []'TpP T(7'A) =  T(A) univ. bracket modality [10, 6]
16 T a= 0Tl T(OA) = T(A) exist. bracket modality [10, 6]
17. Tpf)J n= !Tpg T(A) = T(A) universal exponential [1]

18. Tpa = ?Tpg B T(?A) = TA)*" existential exponential [13]
9. TP, = TprlTp}’.) T(BIA) = T(A)-T(B) limited contraction [2]

20. Tog == W(w) TWw) = T limited weakening [11]
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Sequent calculus

The sort sA of atype A is the i € N such that A € Tp;. For
example, s(ST1N)T2N = 2.

The sets Config of configurations and TreeTerm of tree terms
of (hyper)sequent calculus for our categorial logic are defined
by mutual recursion as follows, where A is the metalinguistic
empty string and 1 is a metalinguistic placeholder called the

separator:
Config ::= A|TreeTerm, Config | [Config]
TreeTerm := 1|Tpo | Tpi=o{Config : ... : Config}

i Config's



For example, there is the configuration
y = A{C,1: B{1},D},F,1 where sA =2 and sB = 1 and
sC =sD = sF =0.
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For example, there is the configuration
y = A{C,1: B{1},D},F,1 where sA =2 and sB = 1 and
sC =sD = sF =0.

Diagramatically this configuration y is . ..

The intuition is the following. Dotted nodes signify unbounded
arity concatenations and a type labelling a mother node
signifies a discontinuous type intercalated by its daughters.
Leaf types are continuous, and a leaf 1 marks a point of
discontinuity.
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The sort of a configuration I is the number of separators 1 that
I" contains. For example, sy = 3.

The figureX of a type A is defined by:

A ifsA=0

A_)A(l:....:1} ifsA>0
————

sA1’s
For example, (ST1N)TaN = (ST1N)T2N{1 : 1}.



Where T is a configuration of sort i and A4, ..., A; are
configurations, the fold T ® (A4 : ... : Aj) is the result of
replacing the successive 1'sin T by Ay, ..., Aj respectively.



Where T is a configuration of sort i and A4, ..., A; are
configurations, the fold T ® (A4 : ... : Aj) is the result of
replacing the successive 1'sin T by Ay, ..., Aj respectively.

For example, if y1, y2 and y3 are configurations, the fold
y®<y1:y2:v3) =A{C,y1:Blyal, D}, F,ys.
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Where A is a configuration of sort i > 0 and I is a configuration,
the kth metalinguistic wrap, 1 < k < i, A I is given by

AllMN=g A1 :...:1:T:1:...:1)
~—_————

N———
k-11s i-k 1’s

i.e. Ak I is the configuration resulting from replacing by I' the
kth separator in A.

For example, where y’ is a configuration,
vley” = A{C,1:B{y’}, D}, F 1.



Rules of grammatical inference

Identity rules

%
r= A A(AY=> B

> id Cut

A=A AT = B




Multiplicatives

q
r-B A(C)=D .

A(C/B,Ty=D

ﬁ
r A AC)=D

A(T,LA\C)=D

é
A,
—\R
r= A\C

ﬁ
B=C
- /R
r= C/B

r==0C

F2:>B

—_——— @
A(AeB) = D

AN = A
A=A

AABy=D , r=A

F1,F2 = AeB

A=

IR

oR



r-B8 A =D
5k L @)=

A(CTkB Ik I‘) =D

r-A AC) =D
6,k . ()=

A(Flk A,l,kC> =D

- —

AR B)Y= D

7,k.

oL
A{AOkB) = D
A{1y= A

H

|_|kB$C

Tkl ————— T«
F=>CTKB
_)
A|kF:>C

Lk — <k
I‘:>AikC

M =A =B

©kR

Ty
A(d)Y=> A

M|k = AckB

——JR
1=J



Additives

[A)= C r(By= C
9. —_— 1 —— &Lz
{A&B)= C NA&B) = C

= A =B
&R
= A&B

MAy=>C T(B)y=C
NAeB) = C

10.

r= A =B

— ®R; —— ®R>
= AeB = A®B



Quantifiers

M(A[t B
o (Alt/v]) = AL = Ala/v]

F(/\VA):>B ri/\VA
(A B

12, <E>]>ﬁ Lt lw\/[q
F(VVA):>B r:>\/VA

* indicates that there is no a in the conclusion



Normal modalities

ﬁ
A= _B Xl = A
13. 7" o ——oR
r{oA)= B XM= OA
XM(A) = ©B r=A
14. S N] OR
RKIM{CA)Y = ©B = CA

x /< marks a structure all the types of which have principal
connective a box/diamond



Bracket modalities

('R

r(A)= B M= A
15. ML —
(Al = B r=1"A
4 r=A
16. {[A])=B =

(A= B : 1= 0A



Exponentials

MA B 1A¢,...,lA A
(A) = n 1 n= R

17. ! !
r!A)=1B Ay,..., 1A= |A

A(A,TY = B P AT, Ay = B P
AT, IAY =B AUATY =B
AQAg, ... \An, [Ao, ..., A T]y = B o
AA, ... A, TY= B '

r= A
?
= ?A

18.

r= A A:>?A?
A= ?A '
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