
Mathematical Logic and Linguistics

Glyn Morrill & Oriol Valentı́n

Department of Computer Science
Universitat Politècnica de Catalunya

morrill@cs.upc.edu & oriol.valentin@gmail.com

BGSMath Course
Class 6

Higher-order logic as a simply typed lambda-calculus
with logical constants

We can express indefinitely high-order logic by adding logical
constants to typed lambda calculus (Church 1940).

Let us assume basic types e for entities (De a nonempty set)
and t for truth values (Dt = {{∅}, ∅}).

Logical constants are typed constants as usual, except that
their denotations are constrained.

For example, we may assume a logical constant And for
conjunction which is of type t → (t → t). But as a constant
which is logical, rather than considering valuations in which it is
interpreted as any function this type, we include only those
valuations in which it is interpreted specifically according to the
truth table of conjunction.

Higher-order logic as a simply typed lambda-calculus
with logical constants

We can express indefinitely high-order logic by adding logical
constants to typed lambda calculus (Church 1940).

Let us assume basic types e for entities (De a nonempty set)
and t for truth values (Dt = {{∅}, ∅}).

Logical constants are typed constants as usual, except that
their denotations are constrained.

For example, we may assume a logical constant And for
conjunction which is of type t → (t → t). But as a constant
which is logical, rather than considering valuations in which it is
interpreted as any function this type, we include only those
valuations in which it is interpreted specifically according to the
truth table of conjunction.

Higher-order logic as a simply typed lambda-calculus
with logical constants

We can express indefinitely high-order logic by adding logical
constants to typed lambda calculus (Church 1940).

Let us assume basic types e for entities (De a nonempty set)
and t for truth values (Dt = {{∅}, ∅}).

Logical constants are typed constants as usual, except that
their denotations are constrained.

For example, we may assume a logical constant And for
conjunction which is of type t → (t → t). But as a constant
which is logical, rather than considering valuations in which it is
interpreted as any function this type, we include only those
valuations in which it is interpreted specifically according to the
truth table of conjunction.

Higher-order logic as a simply typed lambda-calculus
with logical constants

We can express indefinitely high-order logic by adding logical
constants to typed lambda calculus (Church 1940).

Let us assume basic types e for entities (De a nonempty set)
and t for truth values (Dt = {{∅}, ∅}).

Logical constants are typed constants as usual, except that
their denotations are constrained.

For example, we may assume a logical constant And for
conjunction which is of type t → (t → t). But as a constant
which is logical, rather than considering valuations in which it is
interpreted as any function this type, we include only those
valuations in which it is interpreted specifically according to the
truth table of conjunction.

Higher-order logic as a simply typed lambda-calculus
with logical constants

We can express indefinitely high-order logic by adding logical
constants to typed lambda calculus (Church 1940).

Let us assume basic types e for entities (De a nonempty set)
and t for truth values (Dt = {{∅}, ∅}).

Logical constants are typed constants as usual, except that
their denotations are constrained.

For example, we may assume a logical constant And for
conjunction which is of type t → (t → t). But as a constant
which is logical, rather than considering valuations in which it is
interpreted as any function this type, we include only those
valuations in which it is interpreted specifically according to the
truth table of conjunction.

Logical constants

constant type constraint
Not t → t f(Not)(m) = m{∅}

And t → (t → t) f(And)(m)(m′) = m ∩m′

Or t → (t → t) f(Or)(m)(m′) = m ∪m′

Imp t → (t → t) f(Imp)(m)(m′) = m{∅} ∪m′

Eq t → (t → t) f(Eq)(m)(m′) = {∅} if m = m′ else ∅
All (e → t)→ t f(All)(m) =

⋂
m′∈De

m(m′)
Exst (e → t)→ t f(Exst)(m) =

⋃
m′∈De

m(m′)
Iota (e → t)→ e f(Iota)({m}) = m

Translation from first-order logic notation into
higher-order logic

|x | = x for individual variable x
|a | = a for individual constant a

|f(t0, . . . , tn)| = (· · · (|f | |t0|) · · · |tn |)
|Pt1 . . . tn | = (· · · (|P | |t1|) · · · |tn |)

|¬A | = (Not |A |)
|A ∧ B | = ((And |A |) |B |)
|A ∨ B | = ((Or |A |) |B |)
|A → B | = ((Imp |A |) |B |)
|∀xA | = (All λx |A |)
|∃xA | = (Exst λx |A |)

