Mathematical Logic and Linguistics

Glyn Morrill \& Oriol Valentín

Department of Computer Science
Universitat Politècnica de Catalunya
morrill@cs.upc.edu \& oriol.valentin@gmail.com

BGSMath Course
 Class 5

Semantic types

Recall the following operations on sets:
(1) a. Functional exponentiation:
$X^{Y}=$ the set of all total functions from Y to X
b. Cartesian product: $X \times Y=\{\langle x, y\rangle \mid x \in X \& y \in Y\}$
c. Disjoint union: $X \uplus Y=(\{1\} \times X) \cup(\{2\} \times Y)$
d. n-th Cross product, $n \in \mathcal{N}: \quad X^{0}=\{0\}$

$$
X^{1+n}=X \times\left(X^{n}\right)
$$

The set \mathcal{T} of semantic types of the semantic representation language is defined on the basis of a set δ of basic semantic types as follows:
(2) $\mathcal{T}::=\delta|\top| \mathcal{T}+\mathcal{T}|\mathcal{T} \& \mathcal{T}| \mathcal{T} \rightarrow \mathcal{T}|\mathbf{M} \mathcal{T}| \mathbf{L T} \mid \mathcal{T}^{+}$

The set \mathcal{T} of semantic types of the semantic representation language is defined on the basis of a set δ of basic semantic types as follows:

$$
\text { (4) } \mathcal{T}::=\delta|\top| \mathcal{T}+\mathcal{T}|\mathcal{T} \& \mathcal{T}| \mathcal{T} \rightarrow \mathcal{T}|\mathbf{M} \mathcal{T}| \mathbf{L T} \mid \mathcal{T}^{+}
$$

A semantic frame comprises a family $\left\{D_{\tau}\right\}_{\tau \in \delta}$ of non-empty basic type domains and a nonempty set W of worlds. This induces a nonempty type domain D_{τ} for each type τ as follows:
(5) $\quad D_{\top}=\{\emptyset\}$

$$
D_{\tau_{1}+\tau_{2}}=D_{\tau_{1}} \uplus D_{\tau_{2}}
$$

$$
D_{\tau_{1} \& \tau_{2}}=D_{\tau_{1}} \times D_{\tau_{2}}
$$

$$
D_{\tau_{1} \rightarrow \tau_{2}}=D_{\tau_{2}}^{D_{\tau_{1}}}
$$

$$
D_{\mathbf{M} \tau}=W \times D_{\tau}
$$

$$
D_{\mathrm{L} \tau}=D_{\tau}^{W}
$$

$$
D_{\tau^{+}}=\bigcup_{n>0}\left(D_{\tau}\right)^{n}
$$

Semantic Representation Language

The sets Φ_{τ} of terms of type τ for each semantic type τ are defined on the basis of sets C_{τ} of constants of type τ and denumerably infinite sets V_{τ} of variables of type τ for each type τ as follows:
(6)

$$
\begin{aligned}
& \Phi_{\tau}::=C_{\tau} \\
& \Phi_{\tau}::=V_{\tau} \\
& \Phi_{\mathrm{T}}::=0 \\
& \Phi_{\tau}::=\Phi_{\tau_{1}+\tau_{2}}->V_{\tau_{1}} \cdot \Phi_{\tau} ; V_{\tau_{2}} . \Phi_{\tau} \quad \text { case statement } \\
& \Phi_{\tau+\tau^{\prime}}::=\iota_{1} \Phi_{\tau} \\
& \Phi_{\tau^{\prime}+\tau}::=\iota_{2} \Phi_{\tau} \\
& \Phi_{\tau}::=\pi_{1} \Phi_{\tau \& \tau^{\prime}} \\
& \Phi_{\tau}::=\pi_{2} \Phi_{\tau^{\prime} \& \tau} \\
& \Phi_{\tau \& \tau^{\prime}}::=\left(\Phi_{\tau}, \Phi_{\tau^{\prime}}\right) \\
& \Phi_{\tau}::=\left(\Phi_{\tau^{\prime} \rightarrow \tau} \Phi_{\tau^{\prime}}\right) \\
& \Phi_{\tau \rightarrow \tau^{\prime}}::=\lambda V_{\tau} \Phi_{\tau^{\prime}} \\
& \Phi_{\tau}::={ }^{\vee} \Phi_{\mathbf{L}_{\tau}} \\
& \Phi_{\mathbf{L} \tau}::={ }^{\wedge} \Phi_{\tau} \\
& \Phi_{\tau}::={ }^{\cup} \Phi_{\boldsymbol{M}_{\tau}} \\
& \Phi_{\mathbf{M}_{\tau}}::={ }^{n} \Phi_{\tau} \\
& \Phi_{\tau^{+}}::=\left[\Phi_{\tau}\right] \mid\left[\Phi_{\tau} \mid \Phi_{\tau^{+}}\right] \\
& \text {constants } \\
& \text { variables } \\
& \text { first injection } \\
& \text { second injection } \\
& \text { first projection } \\
& \text { second projection } \\
& \text { ordered pair formation } \\
& \text { functional application } \\
& \text { functional abstraction } \\
& \text { extensionalization } \\
& \text { intensionalization } \\
& \text { projection } \\
& \text { injection } \\
& \text { non-empty list construction }
\end{aligned}
$$

Given a semantic frame, a valuation f mapping each constant of type τ into an element of D_{τ}, an assignment g mapping each variable of type τ into an element of D_{τ}, and a world $i \in W$, each term ϕ of type τ receives an interpretation $[\phi]^{g, i} \in D_{\tau}$ as shown below;

Given a semantic frame, a valuation f mapping each constant of type τ into an element of D_{τ}, an assignment g mapping each variable of type τ into an element of D_{τ}, and a world $i \in W$, each term ϕ of type τ receives an interpretation $[\phi]^{g, i} \in D_{\tau}$ as shown below; the update $g[x:=m]$ is $(g-\{(x, g(x)\}) \cup\{(x, m)\}$, i.e. the function which sends x to m and agrees with g elsewhere.

$$
\begin{aligned}
& {[a]^{g, i}=f(a) \text { for constant } a \in C_{\tau}} \\
& {[x]^{g, i}=g(x) \text { for variable } x \in V_{\tau}} \\
& {[0]^{g, i}=\emptyset} \\
& {[\phi->x \cdot \psi ; y \cdot \chi]^{g, i}= \begin{cases}{[\psi]^{g\left[x:=\operatorname{snd}\left([\phi]^{g, i}\right)\right], i}} & \text { if } \mathbf{f s t}\left([\phi]^{g, i}\right)=1 \\
{[\chi]^{g\left[y:=\mathbf{s n d}\left([\phi]^{g, i}\right)\right], i}} & \text { if } \mathbf{f s t}\left([\phi]^{g, i}\right)=2\end{cases} } \\
& {\left[\iota_{1} \phi\right]^{g, i}=\left\langle 1,[\phi]^{g, i}\right\rangle} \\
& {\left[\iota_{2} \phi\right]^{g, i}=\left\langle 2,[\phi]^{g, i}\right\rangle} \\
& {\left[\pi_{1} \phi\right]^{g, i}=\mathbf{f s t}\left([\phi]^{g, i}\right)} \\
& {\left[\pi_{2} \phi\right]^{g, i}=\operatorname{snd}\left([\phi]^{g, i}\right)} \\
& {[(\phi, \psi)]^{g, i}=\left\langle[\phi]^{g, i},[\psi]^{g, i}\right\rangle} \\
& {[(\phi \psi)]^{g, i}=[\phi]^{g, i}\left([\psi]^{g, i}\right)} \\
& {[\lambda \times \phi]^{g, i}=d \mapsto[\phi]^{g[x:=d], i}} \\
& \left.{ }^{\vee} \phi\right]^{g, i}=[\phi]^{g, i}(i) \\
& \left.{ }^{\wedge} \phi\right]^{g, i}=j \mapsto[\phi]^{g, j} \\
& {\left[{ }^{U} \phi\right]^{g, i}=\operatorname{snd}\left([\phi]^{g, i}\right)} \\
& \left.{ }^{n} \phi\right]^{g, i}=\left\langle i,[\phi]^{g, i}\right\rangle \\
& {[[\phi]]^{g, i}=\left\langle[\phi]^{g, i}, 0\right\rangle} \\
& {[[\phi \mid \psi]]^{g, i}=\left\langle[\phi]^{g, i},[\psi]^{g, i}\right\rangle}
\end{aligned}
$$

In $x . \phi, \lambda x \phi$ or ${ }^{\wedge} \phi, \phi$ is the scope of $x ., \lambda x$ or ${ }^{\wedge}$.

In $x . \phi, \lambda x \phi$ or ${ }^{\wedge} \phi, \phi$ is the scope of $x ., \lambda x$ or ${ }^{\wedge}$.
An occurrence of a variable x in a term is called free if and only if it does not fall within the scope of any x. or λx; otherwise it is bound (by the closest x. or λx within the scope of which it falls).

In $x . \phi, \lambda x \phi$ or ${ }^{\wedge} \phi, \phi$ is the scope of $x ., \lambda x$ or ${ }^{\wedge}$.
An occurrence of a variable x in a term is called free if and only if it does not fall within the scope of any x. or λx; otherwise it is bound (by the closest x. or λx within the scope of which it falls).

The result $\phi\left\{\psi_{1} / x_{1}, \ldots, \psi_{n} / x_{n}\right\}$ of substituting terms $\psi_{1}, \ldots, \psi_{n}$ for variables x_{1}, \ldots, x_{n} of the same types respectively in a term ϕ is the result of simultaneously replacing by ψ_{i} every free occurrence of x_{i} in ϕ.

In $x . \phi, \lambda x \phi$ or ${ }^{\wedge} \phi, \phi$ is the scope of $x ., \lambda x$ or ${ }^{\wedge}$.
An occurrence of a variable x in a term is called free if and only if it does not fall within the scope of any x. or λx; otherwise it is bound (by the closest x. or λx within the scope of which it falls).

The result $\phi\left\{\psi_{1} / x_{1}, \ldots, \psi_{n} / x_{n}\right\}$ of substituting terms $\psi_{1}, \ldots, \psi_{n}$ for variables x_{1}, \ldots, x_{n} of the same types respectively in a term ϕ is the result of simultaneously replacing by ψ_{i} every free occurrence of x_{i} in ϕ.

We say that ψ is free for x in ϕ if and only if no variable in ψ becomes bound in $\phi\{\psi / x\}$.

We say that a term is modally closed if and only if every occurrence of ${ }^{\vee}$ occurs within the scope of an ${ }^{\wedge}$.

We say that a term is modally closed if and only if every occurrence of ${ }^{\vee}$ occurs within the scope of an ${ }^{\wedge}$.

A modally closed term is denotationally invariant across worlds.

We say that a term is modally closed if and only if every occurrence of ${ }^{\vee}$ occurs within the scope of an ${ }^{\wedge}$.

A modally closed term is denotationally invariant across worlds.
We say that a term ψ is modally free for x in ϕ if and only if either ψ is modally closed, or no free occurrence of x in ϕ is within the scope of an ${ }^{\wedge}$.

We say that a term is modally closed if and only if every occurrence of ${ }^{\vee}$ occurs within the scope of an ${ }^{\wedge}$.

A modally closed term is denotationally invariant across worlds.
We say that a term ψ is modally free for x in ϕ if and only if either ψ is modally closed, or no free occurrence of x in ϕ is within the scope of an ${ }^{\wedge}$.

There are the following laws of conversion.

$$
\phi->y \cdot \psi ; z \cdot \chi=\phi->x \cdot(\psi\{x / y\}) ; z \cdot \chi
$$

if x is not free in ψ and is free for y in ψ

$$
\phi->y \cdot \psi ; z \cdot \chi=\phi->y \cdot \psi ; x \cdot(\chi\{x / z\})
$$

if x is not free in χ and is free for z in χ

$$
\lambda y \phi=\lambda x(\phi\{x / y\})
$$

if x is not free in ϕ and is free for y in ϕ α-conversion
$\iota_{1} \phi->y \cdot \psi ; z \cdot \chi=\psi\{\phi / y\}$
if ϕ is free for y in ψ and modally free for y in ψ
$\iota_{2} \phi->y \cdot \psi ; z . \chi=\chi\{\phi / z\}$
if ϕ is free for z in χ and modally free for z in χ

$$
\begin{aligned}
\pi_{1}(\phi, \psi) & =\phi \\
\pi_{2}(\phi, \psi) & =\psi \\
(\lambda x \phi \psi) & =\phi\{\psi / x\}
\end{aligned}
$$

if ψ is free for x in ϕ, and modally free for x in ϕ

$$
\begin{aligned}
\mathrm{v} \mathrm{\wedge} \phi & =\phi \\
\mathrm{un}_{\phi} & =\phi \\
& \beta \text {-conversion }
\end{aligned}
$$

$$
\left(\pi_{1} \phi, \pi_{2} \phi\right)=\phi
$$

$$
\lambda x(\phi x)=\phi
$$

if x is not free in ϕ

$$
\wedge^{\wedge} \phi=\phi
$$

if ϕ is modally closed

$$
{ }^{\cap \cup} \phi \quad=\quad \phi
$$

For completeness, the so-called commuting conversions for the case statement are thus:

$$
\begin{aligned}
& \phi->x . \iota_{1} \psi ; y \cdot \iota_{1} \chi=\iota_{1}(\phi->x \cdot \psi ; y \cdot \chi) \\
& \phi->x . \iota_{2} \psi ; y \cdot \iota_{2} \chi=\iota_{2}(\phi->x \cdot \psi ; y \cdot \chi) \\
& \phi->x . \pi_{1} \psi ; y \cdot \iota_{1} \chi=\pi_{1}(\phi->x \cdot \psi ; y \cdot \chi) \\
& \phi->x \cdot \pi_{2} \psi ; y \cdot \iota_{2} \chi=\pi_{2}(\phi->x \cdot \psi ; y \cdot \chi) \\
& \phi->x .(\delta, \psi) ; y \cdot(\delta, \chi)=(\delta, \phi->x \cdot \psi ; y \cdot \chi) \\
& \phi->x \cdot(\psi, \delta) ; y \cdot(\chi, \delta)=(\phi->x \cdot \psi ; y \cdot \chi, \delta) \\
& \phi->x .(\delta \psi) ; y \cdot(\delta \chi)=(\delta \phi->x \cdot \psi ; y \cdot \chi) \\
& \phi->x .(\psi \delta) ; y \cdot(\chi \delta)=(\phi->x \cdot \psi ; y \cdot \chi \delta) \\
& \phi->x . \lambda z \psi ; y \cdot \lambda z \chi=\lambda z(\phi->x \cdot \psi ; y \cdot \chi) \\
& \text { if } z \text { is not free in } \phi
\end{aligned}
$$

$$
\begin{aligned}
& \phi->x .{ }^{\vee} \psi ; y \cdot{ }^{\vee} \chi={ }^{\vee}(\phi->x \cdot \psi ; y \cdot \chi) \\
& \phi->x \cdot \wedge \psi ; y \cdot \wedge \chi={ }^{\wedge}(\phi->x \cdot \psi ; y \cdot \chi)
\end{aligned}
$$

if ϕ is modally closed

$$
\begin{aligned}
\phi->x .^{\cup} \psi ; y .{ }^{\cup} \chi & ={ }^{\cup}(\phi->x . \psi ; y \cdot \chi) \\
\phi->x .^{\cap} \psi ; y .{ }^{\cap} \chi & =\cap(\phi->x . \psi ; y \cdot \chi) \\
\phi->x .[\delta \mid \psi] ; y \cdot[\delta \mid \chi] & =[\delta \mid \phi->x . \psi ; y \cdot \chi] \\
\phi->x .[\psi \mid \delta] ; y \cdot[\chi \mid \delta] & =[\phi->x . \psi ; y \cdot \chi \mid \delta]
\end{aligned}
$$

