Mathematical Logic and Linguistics

Glyn Morrill & Oriol Valentín

Department of Computer Science Universitat Politècnica de Catalunya morrill@cs.upc.edu & oriol.valentin@gmail.com

> BGSMath Course Class 5

Recall the following operations on sets:

(1) a. Functional exponentiation:

 X^{Y} = the set of all total functions from Y to X

b. Cartesian product: $X \times Y = \{\langle x, y \rangle | x \in X \& y \in Y\}$

(日) (日) (日) (日) (日) (日) (日)

- c. Disjoint union: $X \uplus Y = (\{1\} \times X) \cup (\{2\} \times Y)$
- d. *n*-th Cross product, $n \in \mathcal{N}$: $X^0 = \{0\}$ $X^{1+n} = X \times (X^n)$

The set \mathcal{T} of *semantic types* of the semantic representation language is defined on the basis of a set δ of *basic semantic types* as follows:

(ロ) (同) (三) (三) (三) (○) (○)

(2) $\mathcal{T} ::= \delta \mid \top \mid \mathcal{T} + \mathcal{T} \mid \mathcal{T} \& \mathcal{T} \mid \mathcal{T} \to \mathcal{T} \mid \mathsf{M}\mathcal{T} \mid \mathsf{L}\mathcal{T} \mid \mathcal{T}^+$

The set \mathcal{T} of *semantic types* of the semantic representation language is defined on the basis of a set δ of *basic semantic types* as follows:

(4) $\mathcal{T} ::= \delta \mid \top \mid \mathcal{T} + \mathcal{T} \mid \mathcal{T} \& \mathcal{T} \mid \mathcal{T} \to \mathcal{T} \mid \mathsf{M}\mathcal{T} \mid \mathsf{L}\mathcal{T} \mid \mathcal{T}^+$

A semantic frame comprises a family $\{D_{\tau}\}_{\tau \in \delta}$ of non-empty basic type domains and a nonempty set W of worlds. This induces a nonempty type domain D_{τ} for each type τ as follows:

(ロ) (同) (三) (三) (三) (○) (○)

$$\begin{array}{rcl} (5) & D_{\mathsf{T}} & = & \{\emptyset\} \\ & D_{\tau_1 + \tau_2} & = & D_{\tau_1} \uplus D_{\tau_2} \\ & D_{\tau_1 \& \tau_2} & = & D_{\tau_1} \times D_{\tau_2} \\ & D_{\tau_1 \to \tau_2} & = & D_{\tau_2}^{D_{\tau_1}} \\ & D_{\mathsf{M}\tau} & = & \mathsf{W} \times D_{\tau} \\ & D_{\mathsf{L}\tau} & = & D_{\tau}^W \\ & D_{\tau^+} & = & \bigcup_{n > 0} (D_{\tau})^n \end{array}$$

Semantic Representation Language

The sets Φ_{τ} of *terms* of type τ for each semantic type τ are defined on the basis of sets C_{τ} of constants of type τ and denumerably infinite sets V_{τ} of variables of type τ for each type τ as follows:

(6)

$$\begin{array}{rcl} \Phi_{\tau} & ::= & C_{\tau} \\ \Phi_{\tau} & ::= & V_{\tau} \\ \Phi_{\tau} & ::= & 0 \\ \Phi_{\tau} & ::= & \Phi_{\tau_1+\tau_2} -> V_{\tau_1} \cdot \Phi_{\tau}; \ V_{\tau_2} \cdot \Phi_{\tau} \\ \Phi_{\tau+\tau'} & ::= & \iota_1 \Phi_{\tau} \\ \Phi_{\tau'+\tau} & ::= & \iota_2 \Phi_{\tau} \\ \Phi_{\tau} & ::= & \pi_1 \Phi_{\tau \& \tau'} \\ \Phi_{\tau} & ::= & \pi_2 \Phi_{\tau' \& \tau} \\ \Phi_{\tau \& \tau'} & ::= & (\Phi_{\tau}, \Phi_{\tau'}) \\ \Phi_{\tau} & ::= & (\Phi_{\tau' \to \tau} \Phi_{\tau'}) \\ \Phi_{\tau \to \tau'} & ::= & \lambda V_{\tau} \Phi_{\tau'} \\ \Phi_{\tau} & ::= & ^{\wedge} \Phi_{\tau} \\ \Phi_{\tau} & ::= & ^{\wedge} \Phi_{\tau} \\ \Phi_{\pi} & ::= & ^{\wedge} \Phi_{\tau} \\ \Phi_{\tau^+} & ::= & [\Phi_{\tau}] \mid [\Phi_{\tau} \mid \Phi_{\tau^+}] \end{array}$$

case statement first injection second injection first projection second projection ordered pair formation functional application functional abstraction extensionalization intensionalization projection injection non-empty list construction Given a semantic frame, a *valuation f* mapping each constant of type τ into an element of D_{τ} , an assignment *g* mapping each variable of type τ into an element of D_{τ} , and a world $i \in W$, each term ϕ of type τ receives an interpretation $[\phi]^{g,i} \in D_{\tau}$ as shown below;

(ロ) (同) (三) (三) (三) (○) (○)

Given a semantic frame, a *valuation f* mapping each constant of type τ into an element of D_{τ} , an assignment *g* mapping each variable of type τ into an element of D_{τ} , and a world $i \in W$, each term ϕ of type τ receives an interpretation $[\phi]^{g,i} \in D_{\tau}$ as shown below; the *update* g[x := m] is $(g - \{(x, g(x)\}) \cup \{(x, m)\},$ i.e. the function which sends *x* to *m* and agrees with *g* elsewhere.

(日) (日) (日) (日) (日) (日) (日)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

In $x.\phi$, $\lambda x\phi$ or $\wedge \phi$, ϕ is the *scope* of x., λx or \wedge .

(ロ) (型) (E) (E) (E) (O)(()

In *x*. ϕ , $\lambda x \phi$ or $\uparrow \phi$, ϕ is the *scope* of *x*., λx or \uparrow .

An occurrence of a variable x in a term is called *free* if and only if it does not fall within the scope of any x. or λx ; otherwise it is *bound* (by the closest x. or λx within the scope of which it falls).

In *x*. ϕ , $\lambda x \phi$ or $^{\wedge}\phi$, ϕ is the *scope* of *x*., λx or $^{\wedge}$.

An occurrence of a variable x in a term is called *free* if and only if it does not fall within the scope of any x. or λx ; otherwise it is *bound* (by the closest x. or λx within the scope of which it falls).

The result $\phi\{\psi_1/x_1, \dots, \psi_n/x_n\}$ of substituting terms ψ_1, \dots, ψ_n for variables x_1, \dots, x_n of the same types respectively in a term ϕ is the result of simultaneously replacing by ψ_i every free occurrence of x_i in ϕ .

In *x*. ϕ , $\lambda x \phi$ or $^{\wedge}\phi$, ϕ is the *scope* of *x*., λx or $^{\wedge}$.

An occurrence of a variable x in a term is called *free* if and only if it does not fall within the scope of any x. or λx ; otherwise it is *bound* (by the closest x. or λx within the scope of which it falls).

The result $\phi\{\psi_1/x_1, \dots, \psi_n/x_n\}$ of substituting terms ψ_1, \dots, ψ_n for variables x_1, \dots, x_n of the same types respectively in a term ϕ is the result of simultaneously replacing by ψ_i every free occurrence of x_i in ϕ .

We say that ψ is free for x in ϕ if and only if no variable in ψ becomes bound in $\phi{\{\psi/x\}}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

A modally closed term is denotationally invariant across worlds.

A modally closed term is denotationally invariant across worlds.

(ロ) (同) (三) (三) (三) (○) (○)

We say that a term ψ is *modally free for x in* ϕ if and only if either ψ is modally closed, or no free occurrence of *x* in ϕ is within the scope of an $^{\wedge}$.

A modally closed term is denotationally invariant across worlds.

(ロ) (同) (三) (三) (三) (○) (○)

We say that a term ψ is *modally free for x in* ϕ if and only if either ψ is modally closed, or no free occurrence of *x* in ϕ is within the scope of an $^{\wedge}$.

There are the following laws of conversion.

 $\iota_1 \phi \rightarrow y.\psi; z.\chi = \psi \{\phi/y\}$ if ϕ is free for y in ψ and modally free for y in ψ $\iota_2 \phi \rightarrow y.\psi; z.\chi = \chi\{\phi/z\}$ if ϕ is free for z in χ and modally free for z in χ $\begin{array}{rcl} \pi_1(\phi,\psi) &=& \phi \\ \pi_2(\phi,\psi) &=& \psi \end{array}$ $(\lambda x \phi \psi) = \phi \{\psi/x\}$ if ψ is free for x in ϕ , and modally free for x in ϕ $\overset{\vee \wedge \phi}{\overset{\cup}{}} = \phi$ β-conversion $\begin{array}{rcl} (\pi_1\phi,\pi_2\phi) &=& \phi\\ \lambda x(\phi\,x) &=& \phi \end{array}$ if x is not free in ϕ $^{\wedge\vee}\phi \quad = \quad \phi$ if ϕ is modally closed $^{\cap \cup}\phi \quad = \quad \phi$ n-conversion

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

For completeness, the so-called commuting conversions for the case statement are thus:

$$\begin{array}{rcl} \phi -> x.\iota_1\psi; y.\iota_1\chi &=& \iota_1(\phi -> x.\psi; y.\chi) \\ \phi -> x.\iota_2\psi; y.\iota_2\chi &=& \iota_2(\phi -> x.\psi; y.\chi) \\ \phi -> x.\pi_1\psi; y.\iota_1\chi &=& \pi_1(\phi -> x.\psi; y.\chi) \\ \phi -> x.\pi_2\psi; y.\iota_2\chi &=& \pi_2(\phi -> x.\psi; y.\chi) \\ \phi -> x.(\delta,\psi); y.(\delta,\chi) &=& (\delta,\phi -> x.\psi; y.\chi) \\ \phi -> x.(\phi,\delta); y.(\chi,\delta) &=& (\phi -> x.\psi; y.\chi,\delta) \\ \phi -> x.(\delta\psi); y.(\delta\chi) &=& (\delta\phi -> x.\psi; y.\chi) \\ \phi -> x.(\psi,\delta); y.(\chi,\delta) &=& (\phi -> x.\psi; y.\chi) \\ \phi -> x.(\psi,\delta); y.(\chi,\delta) &=& (\phi -> x.\psi; y.\chi) \\ \end{array}$$

$$\phi \rightarrow x.\lambda z\psi; y.\lambda z\chi = \lambda z(\phi \rightarrow x.\psi; y.\chi)$$

if z is not free in ϕ

$$\phi \rightarrow \mathbf{x}.^{\vee}\psi; \mathbf{y}.^{\vee}\chi = ^{\vee}(\phi \rightarrow \mathbf{x}.\psi; \mathbf{y}.\chi)$$

$$\phi \rightarrow x.^{\psi}; y.^{\chi} = (\phi \rightarrow x.\psi; y.\chi)$$

if ϕ is modally closed

$$\begin{array}{rcl} \phi -> \mathbf{x}.^{\cup}\psi; \mathbf{y}.^{\cup}\chi &=& {}^{\cup}(\phi -> \mathbf{x}.\psi; \mathbf{y}.\chi) \\ \phi -> \mathbf{x}.^{\cap}\psi; \mathbf{y}.^{\cap}\chi &=& {}^{\cap}(\phi -> \mathbf{x}.\psi; \mathbf{y}.\chi) \\ \phi -> \mathbf{x}.[\delta|\psi]; \mathbf{y}.[\delta|\chi] &=& [\delta|\phi -> \mathbf{x}.\psi; \mathbf{y}.\chi] \\ \phi -> \mathbf{x}.[\psi|\delta]; \mathbf{y}.[\chi|\delta] &=& [\phi -> \mathbf{x}.\psi; \mathbf{y}.\chi|\delta] \end{array}$$