
Mathematical Logic and Linguistics

Glyn Morrill & Oriol Valentı́n

Department of Computer Science
Universitat Politècnica de Catalunya

morrill@cs.upc.edu & oriol.valentin@gmail.com

BGSMath Course
Class 5

Semantic types

Recall the following operations on sets:
(1) a. Functional exponentiation:

XY = the set of all total functions from Y to X
b. Cartesian product: X × Y = {〈x , y〉| x ∈ X & y ∈ Y }
c. Disjoint union: X] Y = ({1} × X) ∪ ({2} × Y)
d. n-th Cross product, n ∈ N : X0 = {0}

X1+n = X × (Xn)

The set T of semantic types of the semantic representation
language is defined on the basis of a set δ of basic semantic
types as follows:
(2) T ::= δ | > | T+T | T&T | T→T | MT | LT | T+

A semantic frame comprises a family {Dτ}τ∈δ of non-empty
basic type domains and a nonempty set W of worlds. This
induces a nonempty type domain Dτ for each type τ as follows:

(3) D> = {∅}

Dτ1+τ2 = Dτ1] Dτ2

Dτ1&τ2 = Dτ1 × Dτ2

Dτ1→τ2 = D
Dτ1
τ2

DMτ = W × Dτ

DLτ = DW
τ

Dτ+ =
⋃

n>0(Dτ)
n

The set T of semantic types of the semantic representation
language is defined on the basis of a set δ of basic semantic
types as follows:
(4) T ::= δ | > | T+T | T&T | T→T | MT | LT | T+

A semantic frame comprises a family {Dτ}τ∈δ of non-empty
basic type domains and a nonempty set W of worlds. This
induces a nonempty type domain Dτ for each type τ as follows:

(5) D> = {∅}

Dτ1+τ2 = Dτ1] Dτ2

Dτ1&τ2 = Dτ1 × Dτ2

Dτ1→τ2 = D
Dτ1
τ2

DMτ = W × Dτ

DLτ = DW
τ

Dτ+ =
⋃

n>0(Dτ)
n

Semantic Representation Language

The sets Φτ of terms of type τ for each semantic type τ are
defined on the basis of sets Cτ of constants of type τ and
denumerably infinite sets Vτ of variables of type τ for each type
τ as follows:

(6)
Φτ ::= Cτ constants
Φτ ::= Vτ variables
Φ> ::= 0
Φτ ::= Φτ1+τ2−>Vτ1 .Φτ; Vτ2 .Φτ case statement

Φτ+τ′ ::= ι1Φτ first injection
Φτ′+τ ::= ι2Φτ second injection

Φτ ::= π1Φτ&τ′ first projection
Φτ ::= π2Φτ′&τ second projection

Φτ&τ′ ::= (Φτ,Φτ′) ordered pair formation
Φτ ::= (Φτ′→τ Φτ′) functional application

Φτ→τ′ ::= λVτΦτ′ functional abstraction
Φτ ::= ∨ΦLτ extensionalization

ΦLτ ::= ∧Φτ intensionalization
Φτ ::= ∪ΦMτ projection

ΦMτ ::= ∩Φτ injection
Φτ+ ::= [Φτ] | [Φτ|Φτ+] non-empty list construction

Given a semantic frame, a valuation f mapping each constant
of type τ into an element of Dτ, an assignment g mapping each
variable of type τ into an element of Dτ, and a world i ∈W ,
each term φ of type τ receives an interpretation [φ]g,i ∈ Dτ as
shown below;

the update g[x := m] is (g − {(x ,g(x)}) ∪ {(x ,m)},
i.e. the function which sends x to m and agrees with g
elsewhere.

Given a semantic frame, a valuation f mapping each constant
of type τ into an element of Dτ, an assignment g mapping each
variable of type τ into an element of Dτ, and a world i ∈W ,
each term φ of type τ receives an interpretation [φ]g,i ∈ Dτ as
shown below; the update g[x := m] is (g − {(x ,g(x)}) ∪ {(x ,m)},
i.e. the function which sends x to m and agrees with g
elsewhere.

[a]g,i = f(a) for constant a ∈ Cτ

[x]g,i = g(x) for variable x ∈ Vτ
[0]g,i = ∅

[φ−>x .ψ; y .χ]g,i =

{
[ψ]g[x:=snd([φ]g,i)],i if fst([φ]g,i) = 1
[χ]g[y:=snd([φ]g,i)],i if fst([φ]g,i) = 2

[ι1φ]g,i = 〈1, [φ]g,i〉
[ι2φ]g,i = 〈2, [φ]g,i〉

[π1φ]g,i = fst([φ]g,i)
[π2φ]g,i = snd([φ]g,i)

[(φ,ψ)]g,i = 〈[φ]g,i , [ψ]g,i〉
[(φψ)]g,i = [φ]g,i([ψ]g,i)
[λxφ]g,i = d 7→ [φ]g[x:=d],i

[∨φ]g,i = [φ]g,i(i)
[∧φ]g,i = j 7→ [φ]g,j

[∪φ]g,i = snd([φ]g,i)
[∩φ]g,i = 〈i, [φ]g,i〉
[[φ]]g,i = 〈[φ]g,i ,0〉

[[φ|ψ]]g,i = 〈[φ]g,i , [ψ]g,i〉

In x .φ, λxφ or ∧φ, φ is the scope of x ., λx or ∧.

An occurrence of a variable x in a term is called free if and only
if it does not fall within the scope of any x . or λx; otherwise it is
bound (by the closest x . or λx within the scope of which it falls).

The result φ{ψ1/x1, . . . , ψn/xn} of substituting terms ψ1, . . . , ψn
for variables x1, . . . , xn of the same types respectively in a term
φ is the result of simultaneously replacing by ψi every free
occurrence of xi in φ.

We say that ψ is free for x in φ if and only if no variable in ψ
becomes bound in φ{ψ/x}.

In x .φ, λxφ or ∧φ, φ is the scope of x ., λx or ∧.

An occurrence of a variable x in a term is called free if and only
if it does not fall within the scope of any x . or λx; otherwise it is
bound (by the closest x . or λx within the scope of which it falls).

The result φ{ψ1/x1, . . . , ψn/xn} of substituting terms ψ1, . . . , ψn
for variables x1, . . . , xn of the same types respectively in a term
φ is the result of simultaneously replacing by ψi every free
occurrence of xi in φ.

We say that ψ is free for x in φ if and only if no variable in ψ
becomes bound in φ{ψ/x}.

In x .φ, λxφ or ∧φ, φ is the scope of x ., λx or ∧.

An occurrence of a variable x in a term is called free if and only
if it does not fall within the scope of any x . or λx; otherwise it is
bound (by the closest x . or λx within the scope of which it falls).

The result φ{ψ1/x1, . . . , ψn/xn} of substituting terms ψ1, . . . , ψn
for variables x1, . . . , xn of the same types respectively in a term
φ is the result of simultaneously replacing by ψi every free
occurrence of xi in φ.

We say that ψ is free for x in φ if and only if no variable in ψ
becomes bound in φ{ψ/x}.

In x .φ, λxφ or ∧φ, φ is the scope of x ., λx or ∧.

An occurrence of a variable x in a term is called free if and only
if it does not fall within the scope of any x . or λx; otherwise it is
bound (by the closest x . or λx within the scope of which it falls).

The result φ{ψ1/x1, . . . , ψn/xn} of substituting terms ψ1, . . . , ψn
for variables x1, . . . , xn of the same types respectively in a term
φ is the result of simultaneously replacing by ψi every free
occurrence of xi in φ.

We say that ψ is free for x in φ if and only if no variable in ψ
becomes bound in φ{ψ/x}.

We say that a term is modally closed if and only if every
occurrence of ∨ occurs within the scope of an ∧.

A modally closed term is denotationally invariant across worlds.

We say that a term ψ is modally free for x in φ if and only if
either ψ is modally closed, or no free occurrence of x in φ is
within the scope of an ∧.

There are the following laws of conversion.

We say that a term is modally closed if and only if every
occurrence of ∨ occurs within the scope of an ∧.

A modally closed term is denotationally invariant across worlds.

We say that a term ψ is modally free for x in φ if and only if
either ψ is modally closed, or no free occurrence of x in φ is
within the scope of an ∧.

There are the following laws of conversion.

We say that a term is modally closed if and only if every
occurrence of ∨ occurs within the scope of an ∧.

A modally closed term is denotationally invariant across worlds.

We say that a term ψ is modally free for x in φ if and only if
either ψ is modally closed, or no free occurrence of x in φ is
within the scope of an ∧.

There are the following laws of conversion.

We say that a term is modally closed if and only if every
occurrence of ∨ occurs within the scope of an ∧.

A modally closed term is denotationally invariant across worlds.

We say that a term ψ is modally free for x in φ if and only if
either ψ is modally closed, or no free occurrence of x in φ is
within the scope of an ∧.

There are the following laws of conversion.

φ−>y .ψ; z.χ = φ−>x .(ψ{x/y}); z.χ
if x is not free in ψ and is free for y in ψ
φ−>y .ψ; z.χ = φ−>y .ψ; x .(χ{x/z})

if x is not free in χ and is free for z in χ
λyφ = λx(φ{x/y})

if x is not free in φ and is free for y in φ
α-conversion

ι1φ−>y .ψ; z.χ = ψ{φ/y}
if φ is free for y in ψ and modally free for y in ψ
ι2φ−>y .ψ; z.χ = χ{φ/z}
if φ is free for z in χ and modally free for z in χ

π1(φ,ψ) = φ
π2(φ,ψ) = ψ
(λxφψ) = φ{ψ/x}

if ψ is free for x in φ, and modally free for x in φ
∨∧φ = φ
∪∩φ = φ

β-conversion

(π1φ, π2φ) = φ
λx(φ x) = φ

if x is not free in φ
∧∨φ = φ

if φ is modally closed
∩∪φ = φ

η-conversion

For completeness, the so-called commuting conversions for the
case statement are thus:

φ−>x .ι1ψ; y .ι1χ = ι1(φ−>x .ψ; y .χ)
φ−>x .ι2ψ; y .ι2χ = ι2(φ−>x .ψ; y .χ)
φ−>x .π1ψ; y .ι1χ = π1(φ−>x .ψ; y .χ)
φ−>x .π2ψ; y .ι2χ = π2(φ−>x .ψ; y .χ)

φ−>x .(δ, ψ); y .(δ, χ) = (δ, φ−>x .ψ; y .χ)
φ−>x .(ψ, δ); y .(χ, δ) = (φ−>x .ψ; y .χ, δ)
φ−>x .(δψ); y .(δ χ) = (δφ−>x .ψ; y .χ)
φ−>x .(ψδ); y .(χ δ) = (φ−>x .ψ; y .χ δ)

φ−>x .λzψ; y .λzχ = λz(φ−>x .ψ; y .χ)
if z is not free in φ

φ−>x .∨ψ; y .∨χ = ∨(φ−>x .ψ; y .χ)

φ−>x .∧ψ; y .∧χ = ∧(φ−>x .ψ; y .χ)
if φ is modally closed

φ−>x .∪ψ; y .∪χ = ∪(φ−>x .ψ; y .χ)
φ−>x .∩ψ; y .∩χ = ∩(φ−>x .ψ; y .χ)

φ−>x .[δ|ψ]; y .[δ|χ] = [δ|φ−>x .ψ; y .χ]
φ−>x .[ψ|δ]; y .[χ|δ] = [φ−>x .ψ; y .χ|δ]

