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Semantic types

Recall the following operations on sets:

(1) a. Functional exponentiation:
XY = the set of all total functions from Y to X
b. Cartesian product: X XY ={{(x, )| x e X & y € Y}
c. Disjoint union: X w Y = ({1} x X) U ({2} x Y)
d. n-th Cross product, ne N: X% = {0}
X1+n — XX (X”)



The set 7 of semantic types of the semantic representation
language is defined on the basis of a set 6 of basic semantic
types as follows:

@) T =0 TITHT | T&T | T-T |IMT |LT | T+



The set 7 of semantic types of the semantic representation
language is defined on the basis of a set 6 of basic semantic
types as follows:
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A semantic frame comprises a family {D;}.cs of non-empty
basic type domains and a nonempty set W of worlds. This
induces a nonempty type domain D, for each type 7 as follows:

(5) Dr = {0}

DTH—Tg = DT1 @ DTg
Drgr, = D731 X Dy,
DT1—>T2 = DT2T1
Dy = WxD,
DLT = D¥V

DT+ = Un>0(DT)n



Semantic Representation Language

The sets ¢, of terms of type t for each semantic type 7 are
defined on the basis of sets C; of constants of type t and
denumerably infinite sets V., of variables of type t for each type
T as follows:
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functional application
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Given a semantic frame, a valuation f mapping each constant
of type 7 into an element of D,, an assignment g mapping each
variable of type 7 into an element of D;, and aworld i € W,
each term ¢ of type 7 receives an interpretation [¢]9 € D, as
shown below;



Given a semantic frame, a valuation f mapping each constant
of type 7 into an element of D,, an assignment g mapping each
variable of type 7 into an element of D;, and aworld i € W,
each term ¢ of type 7 receives an interpretation [¢]9 € D, as
shown below; the update g[x := m]is (g — {(x, g(x)}) U {(x, m)},
i.e. the function which sends x to m and agrees with g
elsewhere.
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f(a) for constant a € C,
g(x) for variable x € V;
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In x.¢, Ax¢p or "¢, ¢ is the scope of x., Ax or ".

An occurrence of a variable x in a term is called free if and only
if it does not fall within the scope of any x. or Ax; otherwise it is
bound (by the closest x. or Ax within the scope of which it falls).

The result p{y1/x1,...,¢¥n/Xxn} of substituting terms ¢4, ..., 9p
for variables xi, ..., x, of the same types respectively in a term
¢ is the result of simultaneously replacing by ¢; every free
occurrence of x; in ¢.

We say that ¢ is free for x in ¢ if and only if no variable in i
becomes bound in ¢{y/x}.
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We say that a term is modally closed if and only if every
occurrence of ¥ occurs within the scope of an .

A modally closed term is denotationally invariant across worlds.
We say that a term ¢ is modally free for x in ¢ if and only if
either ¢ is modally closed, or no free occurrence of x in ¢ is

within the scope of an *.

There are the following laws of conversion.



o—>ypizx = ¢—=>x.(Pix/y})iz.x
if x is not free in ¢ and is free for y in ¢

p=>ypizx = o—>yix(xix/z))
if x is not free in y and is free for z in x
Ayp = Ax(oix/y})

if x is not free in ¢ and is free for y in ¢
a-conversion

no—>yzx = Pio/yl
if ¢ is free for y in 1p and modally free for y in ¢

po—>ygizx = xi¢/z)
if ¢ is free for z in x and modally free for z in y
(o) = ¢
(¢, ¥) = ¢
(Axpy) = oly/x)
if 1 is free for x in ¢, and modally free for x in ¢
A
6 = o
p-conversion
(mp,m2p) = ¢
AX(@x) = ¢
if x is not free in ¢
if ¢ is modally clc);ed
Yo = ¢

n-conversion



For completeness, the so-called commuting conversions for the
case statement are thus:



O—>X.14; Y. X
G—>X.121; Y 1o X
Q—>X.T; Y. X
O—>X.TY; Y.l X
o=>x.(6,9): y-(6,x)
d->x.(10,0);¥.(x,0)
P—>x.(0); y.(0 x)
o=>x.(16); y.(x )

Q—>X.Az; y.Azx
if z is not free in ¢

¢—>xYPy N x

¢—>x Py x
if ¢ is modally closed

¢—>xPyx
¢—>x."Pry."x
d—>x.[0[}]; y.[6Ix]
o—>x.[¢10]; y-[x10]

u(p—>x4;y.x)
(p—>x4;y.x)
T (P—>XP; y.x)
T (P—>X.1; y.x)
(6, p—>x.9; y.x)
(p—>x4;y.x,0)
(6 p—>x;y.x)
(p—>x.4;y.x0)

Az(p—>x1p; y.X)

(o—>x4;y.x)
Mop—>x4hiy.x)

Y(o—>x.4;y.x)
o—>x.9;y.x)
[olp—>x.¢; y.x]
[p—>x.4; y.xI0]



