Mathematical Logic and Linguistics Slides 4

Glyn Morrill & Oriol Valentín

Department of Computer Science Universitat Politècnica de Catalunya morrill@cs.upc.edu & oriol.valentin@gmail.com

> BGSMath Course Autumn 2015

> > ◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

On tree-based hypersequent syntax

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

On tree-based hypersequent syntax

- A logical metaphor: NL_{Assc} vs L.
- Absorbing structural rules in the Lambek calculus L.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

The NL_{Assc}-L metaphor

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Consider the following set of structural terms:

StructTerm ::= $\mathcal{F}|\mathbb{I}|$ (StructTerm \circ StructTerm)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

In fact, **StructTerm** is a free groupoid generated by \mathcal{F} with a distinguished structural constant.

The NL_{Assc}-L metaphor

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

The NL_{Assc}-L metaphor

Let us consider the non-associative Lambek calculus NL:

$$\frac{1}{A \to A, \text{ where } A \in Pr} Id \qquad \frac{T \to A \qquad S[A] \to B}{S[T] \to B} Cut$$

$$\frac{T \to A \qquad S[B] \to C}{S[(B/A \circ T)] \to C} /L \qquad \frac{(T \circ A) \Rightarrow B}{T \Rightarrow B/A} /R$$

$$\frac{T \to A \qquad S[B] \to C}{S[(T \circ A \setminus B)] \to C} \setminus L \qquad \frac{(A \circ T) \Rightarrow B}{T \Rightarrow A \setminus A} \setminus R$$

$$\frac{T[(A \circ B)] \to C}{T[(A \bullet B)] \to C} \bullet L \qquad \frac{T \to A \quad S \to B}{(T \circ S) \to A \bullet B} \bullet R$$

NL continued

$$\frac{T[\mathbb{I}] \to A}{T[I] \to A} IL \qquad \frac{1}{\mathbb{I} \to I} IR$$

$$\frac{T[S \circ \mathbb{I}] \to A}{T[S] \to A} Unit_1 \qquad \frac{T[\mathbb{I} \circ S] \to A}{T[S] \to A} Unit_2$$

$$\frac{T[S] \rightarrow A}{T[S \circ \mathbb{I}] \rightarrow A} \text{ Unit}_{3} \qquad \frac{T[S] \rightarrow A}{T[\mathbb{I} \circ S] \rightarrow A} \text{ Unit}_{4}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

NL_{Assc}

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへの

NLAssc

(ロ) (同) (三) (三) (三) (○) (○)

The equational class of monoids

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

The equational class of monoids

$$\begin{array}{rcl} (x+y)+z &\approx& x+(y+z)\\ x+(y+z) &\approx& (x+y)+z\\ x+0 &\approx& x\\ &\approx& 0+x \end{array}$$

The set of Lambek configurations O_L is the free monoid generated by the set of types \mathcal{F}_L .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Faithful embedding between NLAssc and L

<ロ> <個> < 国> < 国> < 国> < 国> < 国</p>

Faithful embedding between NLAssc and L

We consider the following embedding translation from \mathbf{NL}_{Assc} to L:

$$\begin{array}{ccc} (\cdot)^{\sharp} : \mathsf{NL}_{\mathsf{Assc}} = (\mathcal{F}, \mathsf{StructTerm}, \rightarrow) & \longrightarrow & \mathsf{L} = (\mathcal{F}, O_L, \Rightarrow) \\ T \rightarrow A & \mapsto & (T)^{\sharp} \Rightarrow (A)^{\sharp} \end{array}$$

 $(\cdot)^{\sharp}$ is such that:

$$A^{\sharp} = A$$
 if A is a type
 $(T_1 \circ T_2)^{\sharp} = T_1^{\sharp}, T_2^{\sharp}$
 $\mathbb{I}^{\sharp} = \Lambda$

 $(\cdot)^{\sharp}$ satisfies:

$$(T[S])^{\sharp} = T^{\sharp}(S^{\sharp})$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

On $(\cdot)^{\sharp}$

▲□▶▲□▶▲≣▶▲≣▶ ≣ めんの

On $(\cdot)^{\sharp}$

 $(\cdot)^{\sharp}$ is faithful, i.e.:

- If $T \to A$ then $T^{\sharp} \Rightarrow A$.
- Conversely, for any T_{Δ} such that $(T_{\Delta})^{\sharp} = \Delta$ and $\Delta \Rightarrow A$, then $T_{\Delta} \rightarrow A$.
- $(\cdot)^{\sharp}$ absorbs the structural rules. If $T \in$ **StructTerm** and $T \leftrightarrow^* S$, then:

$$\mathit{T}^{\sharp} = \mathit{S}^{\sharp}$$

Where \leftrightarrow^* is the reflexive, symmetric and transitive closure of \leftrightarrow , where \leftrightarrow is the result applying a single structural rule to a (structural) term.

(日) (日) (日) (日) (日) (日) (日)

Summary of the metaphor

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Summary of the metaphor

Slogan:

- L is free of structural rules.
- In fact, L absorbs the structural rules of NL_{Assc}, which correspond to the equations defining the class of monoids.
- ► The set of *F*_L is the free monoid generated by the set of Lambek types.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

From the metaphor NL_{Assc}/L to ?/hD

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

From the metaphor NL_{Assc}/L to ?/hD

- **hD** is free of structural rules.
- Does hD absorb the structural rules of a (ω-sorted) multimodal calculus?

YES!

This absorbed structural rules correspond to sorted equations of a certain ω-sorted equational class.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The equational class of displacements algebras $\mathcal{D}\mathcal{R}$

The equational class of displacements algebras \mathcal{DR}

Continuous associativity

$$x + (y + z) \approx (x + y) + z$$

Discontinuous associativity

$$\begin{aligned} x \times_i (y \times_j z) &\approx (x \times_i y) \times_{i+j-1} z \\ (x \times_i y) \times_j z &\approx x \times_i (y \times_{j-i+1} z) \text{ if } i \leq j \leq 1 + s(y) - 1 \end{aligned}$$

Mixed permutation

$$(x \times_i y) \times_j z \approx (x \times_{j-S(y)+1} z) \times_i y$$
 if $j > i + s(y) - 1$
 $(x \times_i z) \times_j y \approx (x \times_j y) \times_{i+S(y)-1} z$ if $j < i$

Mixed associativity

$$(x + y) \times_i z \approx (x \times_i z) + y \text{ if } 1 \le i \le s(x)$$

(x + y) \times_i z \approx x + (y \times_{i-s(x)} z) \text{ if } x + 1 \le i \le s(x) + s(y)

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Continuous unit and discontinuous unit

$$0 + x \approx x \approx x + 0$$
 and $1 \times_1 x \approx x \approx x \times_i 1$

The equational class of displacements algebras $\mathcal{D}\mathcal{R}$

The equational class of displacements algebras $\mathcal{D}\mathcal{R}$

- ► The class of standard displacement algebras (DAs) is properly contained in *DA*.
- ► The set of hyperconfigurations O_D is the free DA algebra with the set of ω-sorted generators F_D. I.e.:

(2) **Theorem** (*Freeness of* O_D)

$$FDA(\mathcal{F}_D) = O_D$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

$\begin{array}{rcl} \textbf{StructTerm} & ::= & \mathcal{F} | \mathbb{I} | (\textbf{StructTerm} \circ \textbf{StructTerm}) | \\ & ::= & \mathbb{J} | (\textbf{StructTerm} \circ_i \textbf{StructTerm}) \end{array}$

StructTerm is ω -sorted, i.e. **StructTerm** = $\bigcup_{i \in \omega}$ **StructTerm**_{*i*}.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

The ω -sorted multimodal displacement calculus **mD**

(4日) (個) (主) (主) (三) の(の)

The ω-sorted multimodal displacement calculus **mD** The logical rules:

A→A ld	$S \rightarrow A$	$T[A] \rightarrow B$ Cut	
A→A lù			
$\frac{T[\mathbb{I}] \to A}{T[I] \to A} IL$	$\frac{1}{\mathbb{I} \Rightarrow I}$		
$\frac{T[\mathbb{J}] \to A}{\prod} JL$ $T[J] \to A$	$\frac{1}{\mathbb{J}} \Rightarrow J$		
	$\frac{Y[B] \to C}{] \to C} \setminus L$		
$\frac{X \rightarrow A}{Y[B/A \circ X]}$	/L	$\frac{X \circ A \to B}{X \to B/A} / R$	
$\frac{X \rightarrow A}{Y[B \uparrow_i A \circ_i.}$	↑i L	X∘¦A→B —↑¦R X→B↑¦A _{< □} > < @ > < ≥ > < ≥ > ≥	୬୯୯

More logical rules:

$$\frac{X \to A \quad Y[B] \to C}{Y[X \circ_i A \downarrow_i B] \to C} \downarrow_i L \qquad \frac{A \circ_i X \to B}{X \to A \downarrow_i B} \downarrow_i R$$
$$\frac{X[A \circ B] \to C}{X[A \bullet B] \to C} \bullet L \qquad \frac{X \to A \quad Y \to B}{X \circ Y \to A \bullet B} \bullet R$$
$$\frac{X[A \circ_i B] \to C}{X[A \circ_i B] \to C} \odot_i L \qquad \frac{X \to A \quad Y \to B}{X \circ_i Y \to A \odot_i B} \odot_i R$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽ Q Q @

Some useful stuff on terms:

(4) Definition (Wrapping and Permutable Terms)

Given the term $(T_1 \circ_i T_2) \circ_j T_3$, we say that: (P1) $T_2 \prec_{T_1} T_3$ iff $i + t_2 - 1 < j$. (P2) $T_3 \prec_{T_1} T_2$ iff j < i. (O) $T_2 \notin_{T_1} T_3$ iff $i \le j \le i + t_2 - 1$.

(ロ) (同) (三) (三) (三) (○) (○)

The structural rules:

Continuous unit:

$T[X] \rightarrow A$	$T[\mathbb{I} \circ X] {\rightarrow} A$	$T[X] \rightarrow A$	$T[X \circ \mathbb{I}] \rightarrow A$
$T[\mathbb{I} \circ X] \rightarrow A$	$T[X] \rightarrow A$	$T[X \circ \mathbb{I}] \rightarrow A$	$T[X] \rightarrow A$

Discontinuous unit:

$T[X] \rightarrow A$	$T[\mathbb{J}\circ_1 X] {\rightarrow} A$	$T[X] \rightarrow A$	$T[X \circ_i \mathbb{J}] \rightarrow A$
$T[\mathbb{J}\circ_1 X] \rightarrow A$	$T[X] \rightarrow A$	$T[X \circ_i \mathbb{J}] \rightarrow A$	$T[X] \rightarrow A$

More structural rules:

Continuous associativity

 $\frac{X[(T_1 \circ T_2) \circ T_3] \rightarrow D}{X[T_1 \circ (T_2 \circ T_3)] \rightarrow D} Assc_c \qquad \frac{X[T_1 \circ (T_2 \circ T_3)] \rightarrow D}{X[(T_1 \circ T_2) \circ T_3] \rightarrow D} Assc_c$

Discontinuous associativity $T_2 \ Q_{T_1} \ T_3$

$$\frac{S[T_{1}\circ_{i}(T_{2}\circ_{j}T_{3})] \rightarrow C}{S[(T_{1}\circ_{i}T_{2})\circ_{i+j-1}T_{3})] \rightarrow C} \xrightarrow{Assc_{d}1} \frac{S[(T_{1}\circ_{i}T_{2})\circ_{j}T_{3}] \rightarrow C}{S[T_{1}\circ_{i}(T_{2}\circ_{j-i+1}T_{3})] \rightarrow C} \xrightarrow{Assc_{d}2}$$

$$\frac{S[(T_{1}\circ_{i}T_{2})\circ_{i+j-1}T_{3})] \rightarrow C}{S[(T_{1}\circ_{i}T_{2})\circ_{j}T_{3}] \rightarrow C} \xrightarrow{Assc_{d}2} \xrightarrow{S[(T_{1}\circ_{i}T_{3})\circ_{j}T_{2}] \rightarrow C} \xrightarrow{Assc_{d}2} \xrightarrow{S[(T_{1}\circ_{i}T_{3})\circ_{j}T_{2}] \rightarrow C} \xrightarrow{Assc_{d}2}$$

$$\frac{S[(T_{1}\circ_{i}T_{3})\circ_{j}T_{2}] \rightarrow C}{S[(T_{1}\circ_{j}T_{2})\circ_{i+S(T_{2})-1}T_{3}] \rightarrow C} \xrightarrow{MixPerm1} \xrightarrow{S[(T_{1}\circ_{i}T_{2})\circ_{i+S(T_{2})-1}T_{3}] \rightarrow C} \xrightarrow{MixPerm1}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

More structural rules:

Mixed permutation 2 case $T_3 \prec_{T_1} T_2$

$$\frac{S[(T_1 \circ_i T_2) \circ_j T_3] \to C}{S[(T_1 \circ_j T_3) \circ_{i+S(T_3)-1} T_2] \to C}$$
 MixPerm2

$$\frac{S[(T_1\circ_i T_3)\circ_j T_2] \to C}{S[(T_1\circ_{j-S(T_3)+1}T_2)\circ_i T_3] \to C}$$
 MixPerm2

(ロ) (同) (三) (三) (三) (○) (○)

Mixed associativity I

 $R[(T \circ S) \circ_i K] \rightarrow A$

 $R[(T \circ_i K) \circ S] \rightarrow A$

Mixed associativity II

 $\frac{R[(T \circ S) \circ_i K] \to A}{R[(T \circ (S \circ_{i-s(T)} K] \to A]}$

mD vs hD

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

mD vs hD

Let us define the following map between sequent calculi: We consider the following embedding translation from **mD** to **hD**: We consider the following embedding translation from **mD** to **hD**:

$$\begin{array}{ccc} (\cdot)^{\sharp}: \mathsf{mD} = (\mathcal{F}, \mathsf{StructTerm}, \rightarrow) & \longrightarrow & \mathsf{hD} = (\mathcal{F}, O, \Rightarrow) \\ T \rightarrow A & \mapsto & (T)^{\sharp} \Rightarrow (A)^{\sharp} \end{array}$$

 $(\cdot)^{\sharp}$ is such that:

$$\begin{aligned} A^{\sharp} &= \overrightarrow{A} \text{ if } A \text{ is of sort strictly greater than } 0 \\ A^{\sharp} &= A \text{ if } A \text{ is of sort } 0 \\ (T_1 \circ T_2)^{\sharp} &= T_1^{\sharp}, T_2^{\sharp} \\ (T_1 \circ_i T_2)^{\sharp} &= T_1^{\sharp}|_i T_2^{\sharp} \\ \mathbb{I}^{\sharp} &= \Lambda \\ \mathbb{J}^{\sharp} &= 1 \end{aligned}$$

(ロ) (同) (三) (三) (三) (○) (○)

Mutually recursive definition of hyperconfigurations

Mutually recursive definition of hyperconfigurations

$$O ::= \Lambda$$

$$O ::= A, O \text{ for } s(A) = 0$$

$$O ::= 1, O$$

$$O ::= A\{O: \dots : O\}, O$$

$$a \text{ times}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

On the morphism $(\cdot)^{\sharp}$

т

(5) **Lemma** $((\cdot)^{\sharp}$ is an Epimorphism)

For every $\Delta \in O$ there exists a structural term¹ T_{Δ} such that:

$$(T_{\Delta})^{\sharp} = \Delta$$

Proof. This can be proved by induction on the structure of hyperconfigurations. We define recursively T_{Δ} such that $(T_{\Delta})^{\sharp} = \Delta$:

- Case $\Delta = \Lambda$ (the empty tree): $T_{\Delta} = \mathbb{I}$.
- Case where $\Delta = A, \Gamma$: $T_{\Delta} = A \circ T_{\Gamma}$, where by induction hypothesis (i.h.) $(T_{\Gamma})^{\sharp} = \Gamma.$
- Case where $\Delta = 1, \Gamma$: $T_{\Delta} = \mathbb{J} \circ T_{\Gamma}$, where by i.h. $(T_{\Gamma})^{\sharp} = \Gamma$.
- Case $\Delta = \overrightarrow{A} \otimes \langle \Delta_1, \cdots, \Delta_a \rangle, \Delta_{a+1}$. By i.h. we have:

$$(T_{\Delta_i})^{\sharp} = \Delta_i \text{ for } 1 \le i \le a+1$$

$$T_{\Delta} = (A \circ_1 T_{\Delta_1}) \circ T_{\Delta_2} \text{ if } a = 1$$

$$T_{\Delta} = ((\cdots ((A \circ_1 T_{\Delta_1}) \circ_{1+d_1} T_{\Delta_2}) \cdots) \circ_{1+d_1 + \dots + d_{a-1}} T_{\Delta_a}) \circ T_{\Delta_{a+1}} \text{ if } a > 1$$

¹In fact there exists an infinite set of such structural terms.

mD vs hD

(6) **Theorem** (*Faithfulness of* $(\cdot)^{\sharp}$ *Embedding Translation*)

Let *A*, *X* and Δ be respectively a type, a structural term and a hyperconfiguration. The following statements hold:

i) If ⊢_{mD} X → A then ⊢_{hD} (X)[#] ⇒ A
ii) For any X such that (X)[#] = Δ, if ⊢_{hD} Δ ⇒ A then ⊢_{mD} X → A

(日) (日) (日) (日) (日) (日) (日)

hD absorbs the structural rules

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

hD absorbs the structural rules

Again, as before with NL_{Assc}/L , the embedding translation mapping satisfies:

 $(R[T])^{\sharp}=R^{\sharp}\langle T^{\sharp}\rangle$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Since O_D is the free algebra of DAs over \mathcal{F}_D , $(\cdot)^{\sharp}$ absorbs the structural rules of **mD**.