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On tree-based hypersequent syntax

I A logical metaphor: NLAssc vs L.

I Absorbing structural rules in the Lambek calculus L.
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The NLAssc-L metaphor

Consider the following set of structural terms:

StructTerm ::= F | I | (StructTerm◦StructTerm)

In fact, StructTerm is a free groupoid generated by F with a
distinguished structural constant.
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The NLAssc-L metaphor

Let us consider the non-associative Lambek calculus NL:

Id
A→A , where A ∈ Pr

T→A S[A ]→B
Cut

S[T ]→B

T→A S[B]→C
/L

S[(B/A◦T)]→C

(T◦A)⇒ B
/R

T ⇒ B/A

T→A S[B]→C
\L

S[(T◦A\B)]→C

(A◦T)⇒ B
\R

T ⇒ A\A

T [(A◦B)]→C
•L

T [(A•B)]→C

T→A S→B
•R

(T◦S)→A•B
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NL continued

T [I]→A
IL

T [I]→A
IR

I→I

T [S◦I]→A
Unit1

T [S]→A

T [I◦S]→A
Unit2

T [S]→A

T [S]→A
Unit3

T [S◦I]→A

T [S]→A
Unit4

T [I◦S]→A



NLAssc

NLAssc , NL + Associativity

T [(S◦(K◦L))]→A
Assc1

T [((S◦K)◦L)]→A

T [(S◦K)◦L)]→A
Assc2

T [(S◦(K◦L))]→A
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The equational class of monoids

(x + y) + z ≈ x + (y + z)
x + (y + z) ≈ (x + y) + z
x + 0 ≈ x

≈ 0 + x

The set of Lambek configurations OL is the free monoid generated by
the set of types FL .
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Faithful embedding between NLAssc and L

We consider the following embedding translation from NLAssc to L:

(·)] : NLAssc = (F ,StructTerm,→) −→ L = (F ,OL ,⇒)

T→A 7→ (T)] ⇒ (A)]

(·)] is such that:
A ] = A if A is a type
(T1 ◦ T2)] = T ]1,T

]
2

I] = Λ

(·)] satisfies:
(T [S])] = T ](S])
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On (·)]

(·)] is faithful, i.e.:

I If T → A then T ] ⇒ A .

I Conversely, for any T∆ such that (T∆)] = ∆ and ∆⇒ A , then
T∆ → A .

I (·)] absorbs the structural rules. If T ∈ StructTerm and T↔∗S,
then:

T ] = S]

Where↔∗ is the reflexive, symmetric and transitive closure of
↔, where↔ is the result applying a single structural rule to a
(structural) term.
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Summary of the metaphor

Slogan:

I L is free of structural rules.

I In fact, L absorbs the structural rules of NLAssc, which
correspond to the equations defining the class of monoids.

I The set of FL is the free monoid generated by the set of Lambek
types.
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From the metaphor NLAssc/L to ?/hD

I hD is free of structural rules.

I Does hD absorb the structural rules of a (ω-sorted) multimodal
calculus?

I YES!

I This absorbed structural rules correspond to sorted equations of
a certain ω-sorted equational class.
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The equational class of displacements algebras DA

Continuous associativity

x + (y + z) ≈ (x + y) + z

Discontinuous associativity

x ×i (y ×j z) ≈ (x ×i y) ×i+j−1 z
(x ×i y) ×j z ≈ x ×i (y ×j−i+1 z) if i ≤ j ≤ 1 + s(y) − 1

Mixed permutation

(x ×i y) ×j z ≈ (x ×j−S(y) +1 z) ×i y if j > i + s(y) − 1
(x ×i z) ×j y ≈ (x ×j y) ×i+S(y)−1 z if j < i

Mixed associativity

(x + y) ×i z ≈ (x ×i z) + y if 1 ≤ i ≤ s(x)
(x + y) ×i z ≈ x + (y ×i−s(x) z) if x + 1 ≤ i ≤ s(x) + s(y)

Continuous unit and discontinuous unit

0 + x ≈ x ≈ x + 0 and 1 ×1 x ≈ x ≈ x ×i 1

Figure : Equational theory for DA
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The equational class of displacements algebras DA

I The class of standard displacement algebras (DAs) is properly
contained in DA.

I The set of hyperconfigurations OD is the free DA algebra with the
set of ω-sorted generators FD . I.e.:

(1) Theorem (Freeness of OD )

FDA(FD) = OD



The equational class of displacements algebras DA

I The class of standard displacement algebras (DAs) is properly
contained in DA.

I The set of hyperconfigurations OD is the free DA algebra with the
set of ω-sorted generators FD . I.e.:

(2) Theorem (Freeness of OD )

FDA(FD) = OD



StructTerm ::= F | I | (StructTerm◦StructTerm) |
::= J | (StructTerm◦iStructTerm)

StructTerm is ω-sorted, i.e. StructTerm =
⋃

i∈ω StructTermi .



The ω-sorted multimodal displacement calculus mD

The logical rules:

A→A Id

S → A T [A ]→ B

Cut

T [S]→ B

T [I]→A

IL

T [I]→A

IR

I⇒ I

T [J]→A

JL

T [J]→A

JR

J⇒ J

X→A Y [B]→C

\L

Y [X◦A\B]→C

A◦X→B

\R

X→A\B

X→A Y [B]→C

/L

Y [B/A◦X ]→C

X◦A→B

/R

X→B/A

X→A Y [B]→C

↑i L

Y [B ↑i A◦i X ]→C

X◦i A→B

↑i R

X→B ↑i A
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mD continued

More logical rules:

X→A Y [B]→C
↓i L

Y [X◦iA ↓i B]→C

A◦iX→B
↓i R

X→A ↓i B

X [A◦B]→C
•L

X [A • B]→C

X→A Y→B
•R

X◦Y→A • B

X [A◦iB]→C
�iL

X [A�iB]→C

X→A Y→B
�iR

X◦iY→A�iB
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mD continued

Some useful stuff on terms:

(3) Definition (Wrapping and Permutable Terms)

Given the term (T1 ◦i T2) ◦j T3, we say that:

(P1) T2 ≺T1 T3 iff i + t2 − 1 < j.
(P2) T3 ≺T1 T2 iff j < i.
(O) T2 GT1 T3 iff i ≤ j ≤ i + t2 − 1.
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The structural rules:

Continuous unit:

T [X ]→A

T [I◦X ]→A

T [I◦X ]→A

T [X ]→A

T [X ]→A

T [X◦I]→A

T [X◦I]→A

T [X ]→A

Discontinuous unit:

T [X ]→A

T [J◦1X ]→A

T [J◦1X ]→A

T [X ]→A

T [X ]→A

T [X◦iJ]→A

T [X◦iJ]→A

T [X ]→A
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More structural rules:

Continuous associativity

X [(T1◦T2)◦T3]→D

Asscc

X [T1◦(T2◦T3)]→D

X [T1◦(T2◦T3)]→D

Asscc

X [(T1◦T2)◦T3]→D

Discontinuous associativity T2 GT1
T3

S[T1◦i (T2◦j T3)]→ C

Asscd1

S[(T1◦i T2)◦i+j−1T3)]→ C

S[(T1◦i T2)◦j T3]→ C

Asscd2

S[T1◦i (T2◦j−i+1T3)]→ C

Mixed permutation 1 case T2 ≺T1
T3

S[(T1◦i T2)◦j T3]→ C

MixPerm1

S[(T1◦j−S(T2)+1T3)◦i T2]→ C

S[(T1◦i T3)◦j T2]→ C

MixPerm1

S[(T1◦j T2)◦i+S(T2)−1T3]→ C



mD continued

More structural rules:

Continuous associativity

X [(T1◦T2)◦T3]→D

Asscc

X [T1◦(T2◦T3)]→D

X [T1◦(T2◦T3)]→D

Asscc

X [(T1◦T2)◦T3]→D

Discontinuous associativity T2 GT1
T3

S[T1◦i (T2◦j T3)]→ C

Asscd1

S[(T1◦i T2)◦i+j−1T3)]→ C

S[(T1◦i T2)◦j T3]→ C

Asscd2

S[T1◦i (T2◦j−i+1T3)]→ C

Mixed permutation 1 case T2 ≺T1
T3

S[(T1◦i T2)◦j T3]→ C

MixPerm1

S[(T1◦j−S(T2)+1T3)◦i T2]→ C

S[(T1◦i T3)◦j T2]→ C

MixPerm1

S[(T1◦j T2)◦i+S(T2)−1T3]→ C



mD continued

More structural rules:

Mixed permutation 2 case T3 ≺T1 T2

S[(T1◦iT2)◦jT3]→ C
MixPerm2

S[(T1◦jT3)◦i+S(T3)−1T2]→ C

S[(T1◦iT3)◦jT2]→ C
MixPerm2

S[(T1◦j−S(T3)+1T2)◦iT3]→ C

Mixed associativity I

R[(T◦S)◦iK ]→A

R[(T◦iK)◦S]→A

Mixed associativity II

R[(T◦S)◦iK ]→A

R[(T◦(S◦i−s(T)K ]→A
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mD vs hD

Let us define the following map between sequent calculi: We consider
the following embedding translation from mD to hD: We consider the
following embedding translation from mD to hD:

(·)] : mD = (F ,StructTerm,→) −→ hD = (F ,O,⇒)

T→A 7→ (T)] ⇒ (A)]

(·)] is such that:

A ] =
−→
A if A is of sort strictly greater than 0

A ] = A if A is of sort 0
(T1 ◦ T2)] = T ]1,T

]
2

(T1 ◦i T2)] = T ]1|iT
]
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I] = Λ
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Mutually recursive definition of hyperconfigurations

O ::= Λ
O ::= A ,O for s(A) = 0
O ::= 1,O
O ::= A {O : . . . : O︸     ︷︷     ︸

a times

},O
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On the morphism (·)]

(5) Lemma ((·)] is an Epimorphism)

For every ∆ ∈ O there exists a structural term1 T∆ such that:

(T∆)] = ∆

Proof. This can be proved by induction on the structure of
hyperconfigurations. We define recursively T∆ such that (T∆)] = ∆:
I Case ∆ = Λ (the empty tree): T∆ = I.
I Case where ∆ = A ,Γ: T∆ = A◦TΓ, where by induction hypothesis (i.h.)

(TΓ)] = Γ.
I Case where ∆ = 1,Γ: T∆ = J◦TΓ, where by i.h. (TΓ)] = Γ.

I Case ∆ =
−→
A ⊗ 〈∆1, · · · ,∆a〉,∆a+1. By i.h. we have:

(T∆i )
] = ∆i for 1 ≤ i ≤ a + 1

T∆ = (A◦1T∆1 )◦T∆2 if a = 1
T∆ = ((· · · ((A◦1T∆1 )◦1+d1 T∆2 ) · · · )◦1+d1+···+da−1 T∆a )◦T∆a+1 if a > 1

�
1In fact there exists an infinite set of such structural terms.



mD vs hD

(6) Theorem (Faithfulness of (·)] Embedding Translation)

Let A , X and ∆ be respectively a type, a structural term and a
hyperconfiguration. The following statements hold:

i) If `mD X → A then `hD (X)] ⇒ A
ii) For any X such that (X)] = ∆, if `hD ∆⇒ A then `mD

X → A



hD absorbs the structural rules

Again, as before with NLAssc/L, the embedding translation mapping
satisfies:

(R[T ])] = R]〈T ]〉

Since OD is the free algebra of DAs over FD , (·)] absorbs the
structural rules of mD.
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