Mathematical Logic and Linguistics Slides 4

Glyn Morrill \& Oriol Valentín

Department of Computer Science
Universitat Politècnica de Catalunya
morrill@cs.upc.edu \& oriol.valentin@gmail.com

BGSMath Course
 Autumn 2015

On tree-based hypersequent syntax

On tree-based hypersequent syntax

- A logical metaphor: $\mathbf{N L}_{\text {Assc }}$ vs \mathbf{L}.
- Absorbing structural rules in the Lambek calculus \mathbf{L}.

The $\mathbf{N L}_{\text {Assc }}$-L metaphor

The $\mathbf{N L}_{\text {Assc }}$-L metaphor

Consider the following set of structural terms:

$$
\text { StructTerm }::=\mathcal{F}|\mathbb{I}|(\text { StructTermoStructTerm })
$$

In fact, StructTerm is a free groupoid generated by \mathcal{F} with a distinguished structural constant.

The $\mathbf{N L}_{\text {Assc }}$-L metaphor

The $\mathbf{N L}_{\text {Assc }}$-L metaphor

Let us consider the non-associative Lambek calculus NL:

$$
\begin{array}{ll}
\overline{A \rightarrow A, \text { where } A \in P r} & \text { ld } \\
\frac{T \rightarrow A S[A] \rightarrow B}{S[T] \rightarrow B} C u t \\
\frac{T \rightarrow A \quad S[B] \rightarrow C}{S[(B / A \circ T)] \rightarrow C} / L & \frac{(T \circ A) \Rightarrow B}{T \Rightarrow B / A} / R \\
\frac{T \rightarrow A}{} \quad S[B] \rightarrow C \\
S[(T \circ A \backslash B)] \rightarrow C \\
& \frac{(A \circ T) \Rightarrow B}{T \Rightarrow A \backslash A} \backslash R \\
\frac{T[(A \circ B)] \rightarrow C}{T[(A \bullet B)] \rightarrow C} \bullet L & \frac{T \rightarrow A}{(T \circ S) \rightarrow A \bullet B} \bullet R
\end{array}
$$

NL continued

$$
\frac{T[I I] \rightarrow A}{T[I] \rightarrow A} I L \quad \overline{\mathbb{I} \rightarrow I} I R
$$

$$
\frac{T[S \circ I] \rightarrow A}{T[S] \rightarrow A} \text { Unit }_{1} \quad \frac{T[I \mathbb{I} \circ S] \rightarrow A}{T[S] \rightarrow A} \text { Unit }_{2}
$$

$$
\frac{T[S] \rightarrow A}{T[S \circ I \mathbb{I}] \rightarrow A} \text { Unit }_{3} \quad \frac{T[S] \rightarrow A}{T[\mathbb{I} \circ S] \rightarrow A} \text { Unit }_{4}
$$

$\mathrm{NL}_{\text {Assc }}$

$\mathrm{NL}_{\text {Assc }}$

$\mathrm{NL}_{\text {Assc }} \triangleq \mathrm{NL}+$ Associativity

$T[(S \circ(K \circ L))] \rightarrow A$
$\overline{T[((S \circ K) \circ L)] \rightarrow A} A s s c_{1}$
$\frac{T[(S \circ K) \circ L)] \rightarrow A}{T[(S \circ(K \circ L))] \rightarrow A} A s s c_{2}$

The equational class of monoids

The equational class of monoids

$$
\begin{aligned}
(x+y)+z & \approx x+(y+z) \\
x+(y+z) & \approx(x+y)+z \\
x+0 & \approx x \\
& \approx 0+x
\end{aligned}
$$

The set of Lambek configurations O_{L} is the free monoid generated by the set of types \mathcal{F}_{L}.

Faithful embedding between $\mathbf{N L}_{\text {Assc }}$ and \mathbf{L}

Faithful embedding between $\mathbf{N L}_{\text {Assc }}$ and \mathbf{L}

We consider the following embedding translation from $\mathbf{N L}_{\text {Assc }}$ to \mathbf{L} :

$$
\left.\begin{array}{rlrl}
(\cdot)^{\sharp}: \mathbf{N L}_{\text {Assc }}= & (\mathcal{F}, \text { StructTerm }, \rightarrow) & & \mathbf{L}=\left(\mathcal{F}, O_{L} \Rightarrow\right) \\
& T \rightarrow A & & \mapsto
\end{array}(T)^{\sharp} \Rightarrow(A)^{\sharp}\right)
$$

$(\cdot)^{\sharp}$ is such that:

$$
\begin{aligned}
& A^{\sharp}=A \text { if } A \text { is a type } \\
& \left(T_{1} \circ T_{2}\right)^{\sharp}=T_{1}^{\sharp}, T_{2}^{\sharp} \\
& \mathbb{I}^{\sharp}=\Lambda
\end{aligned}
$$

(•) $)^{\sharp}$ satisfies:

$$
(T[S])^{\sharp}=T^{\sharp}\left(S^{\sharp}\right)
$$

On $(\cdot)^{\#}$

On $(\cdot)^{\#}$

$(\cdot)^{\#}$ is faithful, i.e.:

- If $T \rightarrow A$ then $T^{\sharp} \Rightarrow A$.
- Conversely, for any T_{Δ} such that $\left(T_{\Delta}\right)^{\sharp}=\Delta$ and $\Delta \Rightarrow A$, then $T_{\Delta} \rightarrow A$.
- (•) ${ }^{\#}$ absorbs the structural rules. If $T \in$ StructTerm and $T \leftrightarrow{ }^{*} S$, then:

$$
T^{\sharp}=S^{\sharp}
$$

Where $\leftrightarrow{ }^{*}$ is the reflexive, symmetric and transitive closure of \leftrightarrow, where \leftrightarrow is the result applying a single structural rule to a (structural) term.

Summary of the metaphor

Summary of the metaphor

Slogan:

- \mathbf{L} is free of structural rules.
- In fact, \mathbf{L} absorbs the structural rules of $\mathbf{N L}_{\text {Assc }}$, which correspond to the equations defining the class of monoids.
- The set of \mathcal{F}_{L} is the free monoid generated by the set of Lambek types.

From the metaphor $\mathbf{N L}_{\text {Assc }} / \mathbf{L}$ to ?/hD

From the metaphor $\mathbf{N L}_{\text {Assc }} / \mathbf{L}$ to ?/hD

- hD is free of structural rules.
- Does hD absorb the structural rules of a (ω-sorted) multimodal calculus?
- YES!
- This absorbed structural rules correspond to sorted equations of a certain ω-sorted equational class.

The equational class of displacements algebras $\mathfrak{D} \mathcal{A}$

The equational class of displacements algebras $\mathcal{D A}$

 Continuous associativity$x+(y+z) \approx(x+y)+z$
Discontinuous associativity

```
\(x \times_{i}\left(y \times_{j} z\right) \approx\left(x \times_{i} y\right) \times_{i+j-1} z\)
\(\left(x \times_{i} y\right) \times_{j} z \approx x \times_{i}\left(y \times_{j-i+1} z\right)\) if \(i \leq j \leq 1+s(y)-1\)
```

Mixed permutation
$\left(x \times_{i} y\right) \times_{j} z \approx\left(x \times_{j-s(y)+1} z\right) \times_{i} y$ if $j>i+s(y)-1$ $\left(x \times_{i} z\right) \times_{j} y \approx\left(x \times_{j} y\right) \times_{i+S(y)-1} z$ if $j<i$

Mixed associativity

$$
\begin{aligned}
& (x+y) \times_{i} z \approx\left(x x_{i} z\right)+y \text { if } 1 \leq i \leq s(x) \\
& (x+y) \times_{i} z \approx x+\left(y \times_{i-s(x)} z\right) \text { if } x+1 \leq i \leq s(x)+s(y)
\end{aligned}
$$

Continuous unit and discontinuous unit

$$
0+x \approx x \approx x+0 \text { and } 1 \times_{1} x \approx x \approx x \times_{i} 1
$$

The equational class of displacements algebras $\mathfrak{D} \mathcal{A}$

The equational class of displacements algebras $\mathcal{D A}$

- The class of standard displacement algebras (DAs) is properly contained in $\mathfrak{D A}$.
- The set of hyperconfigurations O_{D} is the free DA algebra with the set of ω-sorted generators \mathcal{F}_{D}. I.e.:
(2) Theorem (Freeness of O_{D})

$$
F D A\left(\mathscr{F}_{D}\right)=O_{D}
$$

StructTerm $::=\mathcal{F}|\mathbb{I}|($ StructTermoStructTerm) \mid
 $::=\mathbb{J} \mid\left(\right.$ StructTerm \circ_{i} StructTerm)

StructTerm is ω-sorted, i.e. StructTerm $=\bigcup_{i \epsilon \omega}$ StructTerm ${ }_{i}$.

The ω-sorted multimodal displacement calculus mD

The ω-sorted multimodal displacement calculus mD

 The logical rules:$$
A \rightarrow A \text { ld } \frac{S \rightarrow A \quad T[A] \rightarrow B}{T[S] \rightarrow B} \text { Cut }
$$

$$
{\underset{T[I] \rightarrow A}{T[I] \rightarrow A} I L \quad-I R, \mathbb{I} \quad I \Rightarrow I}^{I}
$$

$$
\frac{T[J] \rightarrow A}{T[J] \rightarrow A} J L \quad-J R
$$

$$
\frac{X \rightarrow A \quad Y[B] \rightarrow C}{Y[X \circ A \backslash B] \rightarrow C} \backslash L \quad \frac{A \circ X \rightarrow B}{X \rightarrow A \backslash B} \backslash R
$$

$\frac{X \rightarrow A \quad Y[B] \rightarrow C}{Y[B / A \circ X] \rightarrow C} / L \quad \frac{X \circ A \rightarrow B}{X \rightarrow B / A} / R$
$X \rightarrow A \quad Y[B] \rightarrow C$
$Y\left[B \uparrow_{i} A \circ_{i} X\right] \rightarrow C$$\uparrow_{i} L \quad \frac{X \circ_{i} A \rightarrow B}{X \rightarrow B \uparrow_{i} A} \uparrow_{i} R$
mD continued

mD continued

More logical rules:

$$
\begin{aligned}
& \frac{X \rightarrow A \quad Y[B] \rightarrow C}{Y\left[X \circ_{i} A \downarrow_{i} B\right] \rightarrow C} \downarrow_{i} L \quad \frac{A \circ_{i} X \rightarrow B}{X \rightarrow A \downarrow_{i} B} \downarrow_{i} R \\
& \frac{X[A \circ B] \rightarrow C}{X[A \bullet B] \rightarrow C} \bullet L \quad \frac{X \rightarrow A \quad Y \rightarrow B}{X \circ Y \rightarrow A \bullet B} \bullet R \\
& \frac{X\left[A \circ_{i} B\right] \rightarrow C}{X\left[A \odot_{i} B\right] \rightarrow C} \odot_{i} L \quad \frac{X \rightarrow A \quad Y \rightarrow B}{X \circ_{i} Y \rightarrow A \odot_{i} B} \odot_{i} R
\end{aligned}
$$

mD continued

mD continued

Some useful stuff on terms:
(4) Definition (Wrapping and Permutable Terms)

Given the term $\left(T_{1} \circ_{i} T_{2}\right) \circ_{j} T_{3}$, we say that:
(P1) $T_{2}<T_{1} T_{3}$ iff $i+t_{2}-1<j$.
(P2) $T_{3}<T_{1} T_{2}$ iff $j<i$.
(O) $T_{2}{ }_{\ell} T_{1} T_{3}$ iff $i \leq j \leq i+t_{2}-1$.
mD continued

mD continued

The structural rules:
Continuous unit:
$\frac{T[X] \rightarrow A}{T[\mathbb{I} \circ X] \rightarrow A} \quad \frac{T[\mathbb{I} \circ X] \rightarrow A}{T[X] \rightarrow A} \quad \frac{T[X] \rightarrow A}{T[X \circ \mathbb{I}] \rightarrow A} \quad \frac{T[X \circ \mathbb{I}] \rightarrow A}{T[X] \rightarrow A}$

Discontinuous unit:

$$
\frac{T[X] \rightarrow A}{T\left[J \circ_{1} X\right] \rightarrow A} \quad \frac{T\left[J \circ_{1} X\right] \rightarrow A}{T[X] \rightarrow A} \quad \frac{T[X] \rightarrow A}{T\left[X \circ_{i} J\right] \rightarrow A} \quad \frac{T\left[X \circ_{i} J\right] \rightarrow A}{T[X] \rightarrow A}
$$

mD continued

mD continued

More structural rules:

Continuous associativity

$X\left[\left(T_{1} \circ T_{2}\right) \circ T_{3}\right] \rightarrow D$	
$X\left[T_{1} \circ\left(T_{2} \circ T_{3}\right)\right] \rightarrow D$	${A s s c_{c}}$

Discontinuous associativity $T_{2}{ }_{\ell} T_{1} T_{3}$

$\frac{S\left[T_{1} \circ_{i}\left(T_{2} \circ_{j} T_{3}\right)\right] \rightarrow C}{\left.S\left[\left(T_{1} \circ_{i} T_{2}\right) \circ_{i+j-1} T_{3}\right)\right] \rightarrow C}$ Assc $_{\mathbf{d}} \mathbf{1}$	$\frac{S\left[\left(T_{1} \circ_{i} T_{2}\right) \circ_{j} T_{3}\right] \rightarrow C}{S\left[T_{1} \circ_{i}\left(T_{2} \circ_{j-i+1} T_{3}\right)\right] \rightarrow C}$ Assc $_{\mathbf{d}} \mathbf{2}$

Mixed permutation 1 case $T_{2}<T_{1} T_{3}$
$\frac{S\left[\left(T_{1} \circ_{i} T_{2}\right) \circ_{j} T_{3}\right] \rightarrow C}{S\left[\left(T_{1} \circ_{j-S\left(T_{2}\right)+1} T_{3}\right) \circ_{i} T_{2}\right] \rightarrow C}$ MixPerm1 $\left.\quad \frac{S\left[\left(T_{1} \circ_{i} T_{3}\right) \circ_{j} T_{2}\right] \rightarrow C}{S\left[\left(T_{1} \circ_{j} T_{2}\right) \circ_{i+} S\left(T_{2}\right)-1\right.} T_{3}\right] \rightarrow C \quad$ MixPerm1
mD continued

mD continued

More structural rules:
Mixed permutation 2 case $T_{3}<T_{1} T_{2}$
$\frac{S\left[\left(T_{1} \circ_{i} T_{2}\right) \circ_{j} T_{3}\right] \rightarrow C}{S\left[\left(T_{1} \circ_{j} T_{3}\right) \circ_{i+S\left(T_{3}\right)-1} T_{2}\right] \rightarrow C}$ MixPerm2

$$
\frac{S\left[\left(T_{1} \circ_{i} T_{3}\right) \circ_{j} T_{2}\right] \rightarrow C}{S\left[\left(T_{1} \circ_{j-S\left(T_{3}\right)+1} T_{2}\right) \circ_{i} T_{3}\right] \rightarrow C}
$$

Mixed associativity I
$\frac{R\left[(T \circ S) \circ_{i} K\right] \rightarrow A}{R[(T \circ ; K) \circ S] \rightarrow A}$
Mixed associativity II

$$
\frac{R\left[(T \circ S) \circ_{i} K\right] \rightarrow A}{R\left[\left(T \circ\left(S \circ_{i-s(T)} K\right] \rightarrow A\right.\right.}
$$

mD vs hD

mD vs hD

Let us define the following map between sequent calculi: We consider the following embedding translation from $\mathbf{m D}$ to $\mathbf{h D}$: We consider the following embedding translation from $\mathbf{m D}$ to $\mathbf{h D}$:

$$
\begin{array}{ccc}
(\cdot)^{\sharp}: \mathbf{m D}=(\mathcal{F}, \text { StructTerm }, \rightarrow) & \longrightarrow & \mathbf{h D}=(\mathcal{F}, O, \Rightarrow) \\
T \rightarrow A & \mapsto & (T)^{\sharp} \Rightarrow(A)^{\#}
\end{array}
$$

$(\cdot)^{\sharp}$ is such that:

$$
\begin{aligned}
& A^{\sharp}=\vec{A} \text { if } A \text { is of sort strictly greater than } 0 \\
& A^{\sharp}=A \text { if } A \text { is of sort } 0 \\
& \left(T_{1} \circ T_{2}\right)^{\sharp}=T_{1}^{\sharp}, T_{2}^{\sharp} \\
& \left(T_{1} \circ O_{i} T_{2}\right)^{\sharp}=T_{1}^{\sharp} \mid i T_{2}^{\sharp} \\
& I^{\sharp}=\Lambda \\
& \mathrm{J}^{\sharp}=1
\end{aligned}
$$

Mutually recursive definition of hyperconfigurations

Mutually recursive definition of hyperconfigurations

$$
\begin{aligned}
& O::=\Lambda \\
& O \\
& O::=A, O \text { for } s(A)=0 \\
& O \\
& O::=A, O \\
& \text { a times }
\end{aligned}
$$

On the morphism $(\cdot)^{\sharp}$

(5) Lemma $\left((\cdot)^{\sharp}\right.$ is an Epimorphism)

For every $\Delta \in O$ there exists a structural term ${ }^{1} T_{\Delta}$ such that:

$$
\left(T_{\Delta}\right)^{\sharp}=\Delta
$$

Proof. This can be proved by induction on the structure of hyperconfigurations. We define recursively T_{Δ} such that $\left(T_{\Delta}\right)^{\#}=\Delta$:

- Case $\Delta=\Lambda$ (the empty tree): $T_{\Delta}=\mathbb{I}$.
- Case where $\Delta=A, \Gamma: T_{\Delta}=A \circ T_{\Gamma}$, where by induction hypothesis (i.h.) $\left(T_{\Gamma}\right)^{\sharp}=\Gamma$.
- Case where $\Delta=1, \Gamma: T_{\Delta}=\rrbracket \circ T_{\Gamma}$, where by i.h. $\left(T_{\Gamma}\right)^{\sharp}=\Gamma$.
- Case $\Delta=\vec{A} \otimes\left\langle\Delta_{1}, \cdots, \Delta_{a}\right\rangle, \Delta_{a+1}$. By i.h. we have:

$$
\begin{gathered}
\quad\left(T_{\Delta_{i}}\right)^{\sharp}=\Delta_{i} \text { for } 1 \leq i \leq a+1 \\
T_{\Delta}=\left(A \circ_{1} T_{\left.\Delta_{\Delta_{1}}\right) \circ T_{\Delta_{2}} \text { if } a=1}^{T_{\Delta}=\left(\left(\cdots\left(\left(A \circ_{1} T_{\Delta_{1}}\right) \circ_{1+d_{1}} T_{\Delta_{2}}\right) \cdots\right) \circ_{1+d_{1}+\cdots+d_{a-1}} T_{\Delta_{\mathrm{a}}}\right) \circ T_{\Delta_{a+1}} \text { if } a>1}\right.
\end{gathered}
$$

${ }^{1}$ In fact there exists an infinite set of such structural terms.

mD vs hD

(6) Theorem (Faithfulness of $(\cdot)^{\sharp}$ Embedding Translation)

Let A, X and Δ be respectively a type, a structural term and a hyperconfiguration. The following statements hold:
i) If $\vdash_{\mathrm{mD}} X \rightarrow A$ then $\vdash_{\mathrm{hD}}(X)^{\sharp} \Rightarrow A$
ii) For any X such that $(X)^{\sharp}=\Delta$, if $\vdash_{\mathrm{hD}} \Delta \Rightarrow A$ then \vdash_{mD} $X \rightarrow A$

hD absorbs the structural rules

hD absorbs the structural rules

Again, as before with $\mathbf{N L}_{\text {Assc }} / \mathbf{L}$, the embedding translation mapping satisfies:

$$
(R[T])^{\sharp}=R^{\sharp}\left\langle T^{\sharp}\right\rangle
$$

Since O_{D} is the free algebra of DAs over $\mathcal{F}_{D},(\cdot)^{\sharp}$ absorbs the structural rules of $\mathbf{m D}$.

