Mathematical Logic and Linguistics

Glyn Morrill \& Oriol Valentín

Department of Computer Science
Universitat Politècnica de Catalunya
morrill@cs.upc.edu \& oriol.valentin@gmail.com

BGSMath Course
 Class 3

Tree-based hypersequent calculus

Tree-based hypersequent calculus

We shall motivate, present, illustrate and analyse a conservative extension of the Lambek calculus called displacement calculus (Morrill \& Valentín 2010; Morrill, Valentín \& Fadda 2011).

Recall Lambek calculus

Recall Lambek calculus

Logic of strings

Recall Lambek calculus

Logic of strings

Recall Lambek calculus

Logic of strings

Recall Lambek calculus

Logic of strings

Syntactic types

The set \mathcal{F} of types is defined in terms of a set \mathcal{P} of primitive types by:

Syntactic types

The set \mathcal{F} of types is defined in terms of a set \mathcal{P} of primitive types by:

$$
\begin{array}{rllll}
\mathcal{F} & :=\mathcal{P} \\
& & & \\
\mathcal{F} & :=\mathcal{F} / \mathcal{F} & T(C / B) & =T(B) \rightarrow T(C) & \text { over } \\
\mathcal{F} & :=\mathcal{F} \backslash \mathcal{F} & T(A \backslash C) & =T(A) \rightarrow T(C) & \text { under } \\
\mathcal{F} & ::=\mathcal{F} \bullet \mathcal{F} & T(A \bullet B) & =T(A) \& T(B) & \text { continuous product } \\
\mathcal{F} & :=I & T(I)=T & \text { continuous unit }
\end{array}
$$

Syntactical interpretation

$$
\begin{aligned}
{[[C / B]] } & =\left\{s_{1} \mid \forall s_{2} \in[[B]], s_{1}+s_{2} \in[[C]]\right\} \\
{[[A \backslash C]] } & =\left\{s_{2} \mid \forall s_{1} \in[[A]], s_{1}+s_{2} \in[[C]]\right\} \\
{[[A \bullet B]] } & =\left\{s_{1}+s_{2} \mid s_{1} \in[[A]] \& s_{2} \in[[B]]\right\} \\
{[[I]] } & =\{0\}
\end{aligned}
$$

Sequents

The set O of configurations is defined by the following, where \wedge is the empty configuration:

Sequents

The set O of configurations is defined by the following, where Λ is the empty configuration:

$$
O::=\Lambda \mid \mathcal{F}, O
$$

Sequents

The set O of configurations is defined by the following, where Λ is the empty configuration:

$$
O::=\Lambda \mid \mathcal{F}, O
$$

A sequent has the form:

Sequents

The set O of configurations is defined by the following, where Λ is the empty configuration:

$$
O::=\Lambda \mid \mathcal{F}, O
$$

A sequent has the form:

$$
O \Rightarrow \mathcal{F}
$$

Sequent calculus

The logical rules are as follows, where $\Delta(\Gamma)$ signifies context configuration Δ with a distinguished subconfiguration Γ.

Sequent calculus

The logical rules are as follows, where $\Delta(\Gamma)$ signifies context configuration Δ with a distinguished subconfiguration Γ.

$$
\begin{array}{cc}
\Gamma \Rightarrow B \quad \Delta(C) \Rightarrow D \\
\frac{\Gamma(C / B, \Gamma) \Rightarrow D}{} / L & \frac{\Gamma, B \Rightarrow C}{\Gamma \Rightarrow C / B} / R \\
\frac{\Gamma \Rightarrow A \quad \Delta(C) \Rightarrow D}{\Delta(\Gamma, A \backslash C) \Rightarrow D} \backslash L & \frac{A, \Gamma \Rightarrow C}{\Gamma \Rightarrow A \backslash C} \backslash R \\
\frac{\Delta(A, B) \Rightarrow D}{\Delta(A \bullet B) \Rightarrow D} \bullet L & \frac{\Gamma_{1} \Rightarrow A}{\Gamma_{1}, \Gamma_{2} \Rightarrow A \bullet B} \bullet R \\
\frac{\Delta(\Lambda) \Rightarrow A}{\Delta(I) \Rightarrow A} I L & \\
\hline \Rightarrow I R
\end{array}
$$

Descriptive inadequacy of Lambek calculus

Descriptive inadequacy of Lambek calculus

Discontinuous idioms

Descriptive inadequacy of Lambek calculus

Discontinuous idioms

- Mary gave the man the cold shoulder

Descriptive inadequacy of Lambek calculus

Discontinuous idioms

- Mary gave the man the cold shoulder

Medial relativisation

Descriptive inadequacy of Lambek calculus

Discontinuous idioms

- Mary gave the man the cold shoulder

Medial relativisation

- the man that Mary saw today

Descriptive inadequacy of Lambek calculus

Discontinuous idioms

- Mary gave the man the cold shoulder

Medial relativisation

- the man that Mary saw today

Cross serial dependencies ...

Displacement calculus

Displacement calculus

Logic of strings with holes

Displacement calculus

Logic of strings with holes - append and plug

Displacement calculus

Logic of strings with holes - append and plug

Displacement calculus

Logic of strings with holes - append and plug

Displacement calculus

Logic of strings with holes - append and plug

Displacement calculus

Logic of strings with holes - append and plug

$$
\text { append }+: L_{i}, L_{j} \rightarrow L_{i+j}
$$

Displacement calculus

Logic of strings with holes - append and plug

append $+: L_{i}, L_{j} \rightarrow L_{i+j}$

Displacement calculus

Logic of strings with holes - append and plug

append $+: L_{i}, L_{j} \rightarrow L_{i+j}$

Displacement calculus

Logic of strings with holes - append and plug

append $+: L_{i}, L_{j} \rightarrow L_{i+j}$

Displacement calculus

Logic of strings with holes - append and plug

append $+: L_{i}, L_{j} \rightarrow L_{i+j}$

Displacement calculus

Logic of strings with holes - append and plug

append $+: L_{i}, L_{j} \rightarrow L_{i+j}$

Displacement calculus

Logic of strings with holes - append and plug

append $+: L_{i}, L_{j} \rightarrow L_{i+j} \quad$ plug $\times_{k}: L_{i+1}, L_{j} \rightarrow L_{i+j}$

Syntactic types

The syntactic types are sorted $\mathcal{F}_{0}, \mathcal{F}_{1}, \mathcal{F}_{2}, \ldots$ according to the number of holes $0,1,2, \ldots$ their expressions contain.

Syntactic types

The syntactic types are sorted $\mathcal{F}_{0}, \mathscr{F}_{1}, \mathscr{F}_{2}, \ldots$ according to the number of holes $0,1,2, \ldots$ their expressions contain.

The sets \mathcal{F}_{i} of types of sort i are defined in terms of sets \mathcal{P}_{i} of primitive types of sort i by:

$$
\begin{array}{rlrll}
\mathcal{F}_{i} & : & :=\mathcal{P}_{i} & & \\
& & & \\
\mathcal{F}_{i} & :==\mathcal{F}_{i+j} / \mathcal{F}_{j} & T(C / B) & =T(B) \rightarrow T(C) & \text { over } \\
\mathcal{F}_{j} & :=\mathcal{F}_{i} \backslash \mathcal{F}_{i+j} & T(A \backslash C) & =T(A) \rightarrow T(C) & \text { under } \\
\mathcal{F}_{i+j} & :==\mathcal{F}_{i} \bullet \mathcal{F}_{j} & T(A \bullet B) & =T(A) \& T(B) & \text { continuous product } \\
\mathcal{F}_{0} & :=1 & T(I) & =T & \\
& & & \text { continuous unit } \\
\mathcal{F}_{i+1} & : & :=\mathcal{F}_{i+j} \uparrow_{k} \mathcal{F}_{j} & T\left(C \uparrow_{k} B\right) & =T(B) \rightarrow T(C)
\end{array}
$$

Syntactical interpretation

$$
\begin{aligned}
{[[C / B]] } & =\left\{s_{1} \mid \forall s_{2} \in[[B]], s_{1}+s_{2} \in[[C]]\right\} \\
{[[A \backslash C]] } & =\left\{s_{2} \mid \forall s_{1} \in[[A]], s_{1}+s_{2} \in[[C]]\right\} \\
{[[A \bullet B]] } & =\left\{s_{1}+s_{2} \mid s_{1} \in[[A]] \& s_{2} \in[[B]]\right\} \\
{[[I]] } & =\{0\} \\
{\left[\left[C \uparrow_{k} B\right]\right] } & =\left\{s_{1} \mid \forall s_{2} \in[[B]], s_{1} x_{k} s_{2} \in[[C]]\right\} \\
{\left[\left[A \downarrow_{k} C\right]\right] } & =\left\{s_{2} \mid \forall s_{1} \in[[A]], s_{1} x_{k} s_{2} \in[[C]]\right\} \\
{\left[\left[A \odot_{k} B\right]\right] } & \left.=\left\{s_{1} x_{k} s_{2} \mid s_{1} \in[[A]] \& s_{2} \in[[B]]\right\}\right\} \\
{[[I]] } & =\{1\}
\end{aligned}
$$

Sequents

Sequents

Configurations O are defined by the following, where Λ is the empty string, and the metalinguistic separator 1 marks holes:

Sequents

Configurations O are defined by the following, where Λ is the empty string, and the metalinguistic separator 1 marks holes:

$$
\begin{aligned}
& O::=\wedge \mid \mathcal{T}, O \\
& \mathcal{T}::=1\left|\mathcal{F}_{0}\right| \mathcal{F}_{i>0}\{\underbrace{O: \ldots: O}_{i O^{\prime} \mathrm{s}}\}
\end{aligned}
$$

Sequents

Configurations O are defined by the following, where Λ is the empty string, and the metalinguistic separator 1 marks holes:

$$
\begin{aligned}
& O::=\wedge \mid \mathcal{T}, O \\
& \mathcal{T}::=1\left|\mathcal{F}_{0}\right| \mathcal{F}_{i>0}\{\underbrace{O: \ldots: O}_{i O^{\prime} \mathrm{s}}\}
\end{aligned}
$$

Where A is a type, $s A$ is its sort.

Sequents

Configurations O are defined by the following, where Λ is the empty string, and the metalinguistic separator 1 marks holes:

$$
\begin{aligned}
& O::=\wedge \mid \mathcal{T}, O \\
& \mathcal{T}::=1\left|\mathcal{F}_{0}\right| \mathcal{F}_{i>0}\{\underbrace{O: \ldots: O}_{i O^{\prime} \mathrm{s}}\}
\end{aligned}
$$

Where A is a type, $s A$ is its sort.
Where Γ is a configuration, its sort $s \Gamma$ is the number of holes (1's) it contains.

Sequents

Configurations O are defined by the following, where Λ is the empty string, and the metalinguistic separator 1 marks holes:

$$
\begin{aligned}
& O::=\wedge \mid \mathcal{T}, O \\
& \mathcal{T}::=1\left|\mathcal{F}_{0}\right| \mathcal{F}_{i>0}\{\underbrace{O: \ldots: O}_{i O^{\prime} \mathrm{s}}\}
\end{aligned}
$$

Where A is a type, $s A$ is its sort.
Where Γ is a configuration, its sort $s \Gamma$ is the number of holes (1 's) it contains.

Sequents Σ are defined by:

Sequents

Configurations O are defined by the following, where Λ is the empty string, and the metalinguistic separator 1 marks holes:

$$
\begin{aligned}
& O::=\wedge \mid \mathcal{T}, O \\
& \mathcal{T}::=1\left|\mathcal{F}_{0}\right| \mathcal{F}_{i>0}\{\underbrace{O: \ldots: O}_{i O^{\prime} \mathrm{s}}\}
\end{aligned}
$$

Where A is a type, $s A$ is its sort.
Where Γ is a configuration, its sort $s \Gamma$ is the number of holes (1 's) it contains.

Sequents Σ are defined by:

$$
O \Rightarrow \mathcal{F} \text { such that } s O=s \mathcal{F}
$$

Sequent calculus

Sequent calculus

The figure \vec{A} of a type A is defined by:

Sequent calculus

The figure \vec{A} of a type A is defined by:

$$
\vec{A}= \begin{cases}A & \text { if } s A=0 \\ A\{\underbrace{1: \ldots: 1}_{s A 1 \text { 1's }}\} & \text { if } s A>0\end{cases}
$$

Where Γ is a configuration of sort i and $\Delta_{1}, \ldots, \Delta_{i}$ are configurations, the fold $\Gamma \otimes\left\langle\Delta_{1}, \ldots, \Delta_{i}\right\rangle$ is the result of replacing the successive holes in Γ by $\Delta_{1}, \ldots, \Delta_{i}$ respectively.

Where Γ is a configuration of sort i and $\Delta_{1}, \ldots, \Delta_{i}$ are configurations, the fold $\Gamma \otimes\left\langle\Delta_{1}, \ldots, \Delta_{i}\right\rangle$ is the result of replacing the successive holes in Γ by $\Delta_{1}, \ldots, \Delta_{i}$ respectively.

Where Γ is of sort i, the notation $\Delta\langle\Gamma\rangle$ abbreviates $\Delta_{0}\left(\Gamma \otimes\left\langle\Delta_{1}, \ldots, \Delta_{i}\right\rangle\right)$, i.e. a context configuration Δ (which is externally Δ_{0} and internally $\left.\Delta_{1}, \ldots, \Delta_{i}\right)$ with a potentially discontinuous distinguished subconfiguration Γ.

Continuous logical rules

$$
\begin{aligned}
& \frac{\Gamma \Rightarrow B \quad \Delta\langle\vec{C}\rangle \Rightarrow D}{\Delta\langle\overrightarrow{C / B}, \Gamma\rangle \Rightarrow D} / L \quad \frac{\Gamma, \vec{B} \Rightarrow C}{\Gamma \Rightarrow C / B} / R \\
& \frac{\Gamma \Rightarrow A \quad \Delta\langle\vec{C}\rangle \Rightarrow D}{\Delta\langle\Gamma, \overrightarrow{A \backslash C}\rangle \Rightarrow D} \backslash L \quad \frac{\vec{A}, \Gamma \Rightarrow C}{\Gamma \Rightarrow A \backslash C} \backslash R \\
& \frac{\Delta\langle\vec{A}, \vec{B}\rangle \Rightarrow D}{\Delta\langle\overrightarrow{A \bullet B}\rangle \Rightarrow D} \bullet L \quad \frac{\Gamma_{1} \Rightarrow A \quad \Gamma_{2} \Rightarrow B}{\Gamma_{1}, \Gamma_{2} \Rightarrow A \bullet B} \bullet R \\
& \frac{\Delta\langle\Lambda\rangle \Rightarrow A}{\Delta\langle\vec{l}\rangle \Rightarrow A} I L \\
& \underset{\Lambda \Rightarrow I}{ } I R
\end{aligned}
$$

Where Δ is a configuration of sort $i>0$ and Γ is a configuration, the k th metalinguistic wrap $\left.\Delta\right|_{k} \Gamma, 1 \leq k \leq i$, is given by:

Where Δ is a configuration of sort $i>0$ and Γ is a configuration, the k th metalinguistic wrap $\left.\Delta\right|_{k} \Gamma, 1 \leq k \leq i$, is given by:

$$
\left.\Delta\right|_{k} \Gamma=d f \Delta \otimes\langle\underbrace{1, \ldots, 1}_{k-1 \text { 1's }}, \Gamma, \underbrace{1, \ldots, 1}_{i-k \text { 1's }}\rangle
$$

Where Δ is a configuration of sort $i>0$ and Γ is a configuration, the k th metalinguistic wrap $\left.\Delta\right|_{k} \Gamma, 1 \leq k \leq i$, is given by:
$\left.\Delta\right|_{k} \Gamma={ }_{d f} \Delta \otimes\langle\underbrace{1, \ldots, 1}_{k-1 \text { 1's }}, \Gamma, \underbrace{1, \ldots, 1}_{i-k \text { 1's }}\rangle$
i.e. $\left.\Delta\right|_{k} \Gamma$ is the configuration resulting from replacing by Γ the k th hole in Δ.

Discontinuous logical rules

Discontinuous logical rules

$$
\begin{array}{cc}
\begin{array}{ll}
\Gamma \Rightarrow B & \Delta\langle\vec{C}\rangle \Rightarrow D \\
\Delta\left\langle\left.\overrightarrow{C \uparrow_{k} B}\right|_{k} \Gamma\right\rangle \Rightarrow D \\
\uparrow_{k} L & \frac{\left.\Gamma\right|_{k} \vec{B} \Rightarrow C}{\Gamma \Rightarrow C \uparrow_{k} B} \uparrow_{k} R \\
\frac{\Gamma \Rightarrow A \quad \Delta\langle\vec{C}\rangle \Rightarrow D}{\Delta\left\langle\left.\Gamma\right|_{k} \overrightarrow{A \downarrow_{k} C}\right\rangle \Rightarrow D} \downarrow_{k} L & \frac{\left.\vec{A}\right|_{k} \Gamma \Rightarrow C}{\Gamma \Rightarrow A \downarrow_{k} C} \downarrow_{k} R \\
\frac{\Delta\left\langle\left.\vec{A}\right|_{k} \vec{B}\right\rangle \Rightarrow D}{\Delta\left\langle\overrightarrow{A \odot_{k} B}\right\rangle \Rightarrow D} \odot_{k} L & \frac{\Gamma_{1} \Rightarrow A}{\left.\Gamma_{1}\right|_{k} \Gamma_{2} \Rightarrow A \odot_{k} B} \Gamma_{k} \Rightarrow B \\
\frac{\Delta\langle 1\rangle \Rightarrow A}{\Delta\langle\vec{J}\rangle \Rightarrow A} J L & \overrightarrow{1 \Rightarrow J} J
\end{array}
\end{array}
$$

Examples

Mary gave the man the cold shoulder

- gave+1+the+cold+shoulder: $(N \backslash S) \uparrow N$
the man Mary saw today
- that: $(C N \backslash C N) /((S \uparrow N) \odot I)$

